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Abstract

Data mining involves the use of data analysis tools to discover and
extract information from a data set and transform it into an understand-
able expression. One of its central problems is to identify a representa-
tive subset of features from which a learning model can be constructed.
Feature selection is an important pre-processing step before data mining
which aims to select a representative subset of features with high predic-
tive information and eliminate irrelevant features with little importance
for classification. By reducing the dimensionality of the data, feature se-
lection helps to decrease the time for training and by selecting the most
relevant features and removing the irrelevant and noisy data, the classi-
fication performance may be improved. Besides, with a smaller feature
subset, the learned model may be more intuitive and easier to interpret.

This thesis investigates the extension of Generalized Matrix LVQ (GM-
LVQ) model on feature selection. Generalized Matrix LVQ employs a full
matrix as the distance metric in training. The diagonal and off-diagonal
elements of the distance matrix respectively measure the contribution of
each feature and feature pair for classification; therefore, their distribu-
tion can provide a quantitative measurement of feature weight. More
steps and analysis are performed to force a more effective feature selec-
tion result and remove the weighting ambiguity. Besides, compared to
other methods which perform feature ranking first and learning a model
after selecting the feature subset, GMLV(Q) based methods can combine
the process of feature ranking and classification together which helps to
decrease the computation time.

Experiments in this thesis were performed on data sets collected from
the UCI Machine Learning Repository [29]. The GMLVQ based feature
weight algorithm is compared with other state-of-the-art methods: Infor-
mation Gain, Fisher and Relieff. All these four feature ranking methods
are evaluated using both GMLV(Q and RBF based Support Vector Ma-
chine (RBF-SVM) methods by increasing the size of the selected feature
subset with a stepsize rate. The results indicate that the performance
of GMLV(Q based feature selection method is comparable to other meth-
ods and on some of the data sets, it consistently outperforms the other
methods.



Chapter 1

1 Introduction and Background

1.1 Motivation

For a machine learning algorithm to be successful on a given task, the repre-
sentation and quality of the data are the first and most important. With the
advancing of database technology, data is easier to assess and more features can
be gathered for a specific task. However, more features do not necessarily result
in more discriminative classifiers. Instead, when there are too many redundant
or irrelevant features, the computation can be much more expensive and the
classifier may have a poor generalization performance due to the interference
of noises; therefore, proper data preprocessing is essential for the successful
training of machine learning algorithms.

Feature selection is one of the most important and frequently used prepro-
cessing techniques [5] which aims to identify and select the most discriminative
subset from the original features while eliminating irrelevant, redundant and
noisy data. Some studies have shown that irrelevant features can be removed
without significant performance downgrade [6]. The application of feature se-
lection can have some benefits:

1. It reduces the data dimensionality which helps the learning algorithms to
work faster and more effectively;

2. In some cases, the classification accuracy can be improved by using a
subset of all features;

3. The selected feature subset is usually a more compact result which can be
interpreted more easily;

To perform feature selection, the training data can be with or without label
information, corresponding to supervised or unsupervised feature selection. In
unsupervised tasks [1, 2], without considering the label information, feature
relevance can be evaluated by measuring some intrinsic properties within the
data, such as the separability or covariance. In practice, unlabeled data is
easier to obtain compared to labelled ones, thereby indicating the significance
of unsupervised algorithms. However, these methods ignore label information,
which may lead to performance deterioration when the label information is
available. Supervised feature selection is proposed to take the label information
into account. It can be generally divided into two major frameworks: the filter
model [14, 15, 16, 17] and the wrapper model [18, 19, 20]. The filter model
performs the feature selection as a pre-processing step, independent of the choice
of the classifier. The wrapper model, on the other hand, evaluates subsets of
features according to their usefulness to a given predictor.

Feature selection techniques can be further categorized into feature ranking
and feature subset selection. Feature ranking methods assign a weight to each



feature, indicating their importance in terms of some criterion. It is the user to
select the subset of features by choosing a threshold and eliminate all features
which do not achieve that score. Feature subset selection searches for the op-
timal subset which collectively has the best performance with respect to some
predictor. In this thesis, a new method for feature ranking will be investigated
and compared with other state-of-the-art ones.

Learning Vector Quantization is one of the most famous prototype-based
supervised learning methods. It was first introduced by Kohonen [3]. After that,
several advanced cost functions were proposed to improve the performance, one
example being Generalized LVQ [4] which is only based on Euclidean distance.
To model the different contributions of features for classification, Generalized
Relevance LVQ is proposed [4, 7] to extend the Euclidean distance with scaling
or relevance factors for all features. The recently introduced Generalized Matrix
LVQ (GMLVQ) [33] extends the distance measurement further to account for
pairwise contribution of features. The distance matrix in GMLV(Q contains some
information which may be useful for feature selection. For example, the diagonal
element A;; of the dissimilarity matrix can be regarded as a measurement of the
overall relevance of feature i for classification and the off-diagonal element A;;
can be interpreted as the contribution of feature pair i and j. A high absolute
value indicates the existence of a highly relevant relationship while an absolute
value closer to zero may suggest that is is not that important for classification.

The above discussion illustrates the potential application of GMLVQ in fea-
ture ranking which has not yet been fully investigated. Early studies include
applying GMLVQ to select the best feature in the classification of lung disease
[39] and select the most discriminative marker in the diagnosis of Adrenal Tumor
[41]. In this thesis, a further investigation will be conducted and experiments
on more data sets will be carried out.

1.2 Research Questions

This thesis will attempt to answer the following questions:

1. Can GMLVQ method be extended to perform feature ranking?

2. How well does the feature ranking perform? In this thesis, the GMLVQ
based feature ranking technique will be compared with three other state-
of-the-art feature ranking methods. All these four methods will be evalu-

ated by GMLVQ and RBF-SVM in terms of their AUC metric.

3. Can GMLVQ combine the feature ranking and classification into one single
process and how well does the classification perform compares to other
methods in which feature ranking and classification are performed in two
steps?

1.3 Thesis Outline

This thesis has six chapters and is organized as follows. Chapter 2 presents
the basic concepts in machine learning and the algorithm details of the Sup-



port Vector Machine (SVM) and GMLVQ which will be used to evaluate the
performance of various feature ranking algorithms in a later stage. Chapter 3
discusses the idea of feature selection, its general framework and three state-
of-the-art feature ranking techniques which will be compared with the GMLVQ
based ranking method. Chapter 4 gives a description about the GMLVQ based
feature ranking method. In this chapter, details will be given to extract feature
ranking from GMLVQ), the waypoint averaging algorithm and how to obtain a
unique feature ranking result. Chapter 5 elaborates on the experiments con-
ducted to compare the four feature ranking techniques discussed above and is
followed by Chapter 6 that states the conclusion and future work for this thesis.



Chapter 2

2 Machine Learning

In this chapter, we firstly give a brief introduction to machine learning and
some of its basic concepts. The data representation, classification and learning
algorithms are further presented. We further present some specific learning algo-
rithms which are RBF-based SVM, basic LVQ and its two other variations. The
learning algorithms introduced in this chapter will be later utilized to evaluate
the feature selection algorithms introduced in Chapter 3.

2.1 Basic Concept of Machine Learning
2.1.1 Definition of learning

What is learning? Learning is generally referred to the mutual interaction be-
tween the environment and the person through which one gains or modifies
knowledge or skills. A more formal definition was given by Runyon in 1977 [36]:
“Learning is a process in which behavior capabilities are changed as the result of
experience provided the change cannot be accounted for by native response ten-
dencies, maturation, or temporary states of the organism due to fatigue, drugs,
or other temporary factors.”

One of the examples in learning is the association between events. For
example, if a normal person tastes an apple for the first time and finds it very
delicious, he will assume that the next apple he meets will also be delicious
although he has not eaten it and that apple is different from the one he ate.
The important discovery here is the association of the facts that the apple is
tasty. This association is the knowledge someone gains by the experience to eat
an apple.

2.1.2 Definition of machine learning

Learning for computers falls into the field of machine learning. A widely ac-
cepted definition is: A computer program is said to learn from experience E
with respect to some class of tasks T and performance measure P, if its perfor-
mance at tasks in T, as measured by P, improves with experience E [37]. The
experience here usually refers to the data which demonstrates the relationship
between observed variables.

There are many example applications in Machine Learning. One of the
largest groups lies in the categorization of objects into a set of pre-specified
classes or labels. Some of the practical examples are:

1. Optical Character Recognition: classify images of handwritten characters
to the specific letters;

2. Face Recognition: categorize facial images to the person it belongs to;



Instance # Features Class
Outlook  Temperature  Humidity  Wind

1 sunmy hot high false  Don’t play
2 sunry hot high true Don't Play
3 overcast  hot high false  Play

4 rain mild high false  Play

5 rain cool normal false  Play

6 rain cool normal true Don't Play
7 overcast  cool normal true Play

8 sunmy mild high false  Don’t Play
9 sunny cool normal false  Play

10 rain mild normal false  Play

11 sunmy mild normal true Play

12 overcast  mild high true Play

13 overcast  hot normal false  Play

14 rain mild high true Don't Play

Figure 1: The “Golf” example demonstrating the data representation in machine
learning.

3. Medical Diagnosis: determine whether or not a patient suffers from some
disease;

4. Stock Prediction: predict whether a stock goes up or down

2.1.3 Data representation

In the field of machine learning, data is represented by a table where each row
corresponds to one sample or instance and each column describes one attribute
or feature. In the case of supervised learning, there will be another column
containing the label information for each instance. Omne of the examples is
shown in Figure 1. There are 14 instances in this example and each instance
consists of the data with four features: “Outlook”, “Temperature”, “Humidity”,
“Wind” and the label information specifying whether or not to play.

The mathematical expressions of the data and labels are presented here to
serve as the notations in this thesis. Let {x;,;} denote the i*" instance where
z; € RN denotes the data in the N dimensional space and y; is the corresponding
label information with C different possible values. To be brief, the combination
of data and label are expressed as below:

{x“yz} S RN x C (1)

2.2 Classification

As discussed in the previous section, the major task in machine learning is to
learn how to classify objects into one of the pre-defined set of labels. In such task,



it is crucial to identify the common characteristics from a set of representative
objects in a class. For example, to identify whether a fruit is a banana, people
have to check its color, size, shape and infer its label from this information.

2.2.1 Unsupervised and supervised learning

The classification task discussed above is generally referred to as supervised
learning where the labels of training data are provided and the learning algo-
rithm tries to generalize from the training instances to enable novel objects
to be classified to correct categories. In contrast to supervised learning, un-
supervised learning refers to the learning in which the labels of training data
are unknown. Its goal is to group the training data into different clusters by
evaluating some intrinsic properties within the data, such as the separability or
covariance; therefore, the quality of the data provided for training is crucial.
If irrelevant or noisy data are provided, misclassifications will happen on novel
data.

2.3 Learning Algorithms

In this section, two supervised learning algorithms will be described which are
the SVM algorithm with RBF kernel and the LVQ algorithm with its two vari-
ants: GRLVQ and GMLVQ. The GMLVQ and RBF-SVM will be later utilized
to evaluate the performance of four feature ranking methods.

2.3.1 SVM with RBF kernel

The Support Vector Machine (SVM) was originally proposed by Vapnik for
classification and regression [25, 24, 26, 27] and then it was also extended for
other application [28]. It has attracted large attention in recent years due to
its superior performance and soundly developed theoretical foundation. As a
result, it also serves as an evaluation method for the feature selection results in
this thesis.

The SVM is a method to find an optimal hyperplane to separate training
data of two or more classes and at the same time, maximizing its margin. The
linear Support Vector Machine, as the simplest and most basic case, will be
introduced first. Then we will show how it can classify non-linearly separable
data in a feature space in higher dimensions.

Linear SVM and separating hyperplane maximization The linear SVM
is a supervised learning method which is built upon a group of labelled samples
and that performs binary classification in the feature space. Let’s denote the
data and labels as (z;,y;) where z; C RYN is a N-dimensional feature vector
and y; is the label of sample z;. In a two-class problem, y; € {+1,—1}. The
classification process of a supervised learning algorithm can then be regarded
as a mapping process f(z;):RY — R which maps the feature vector from a
N dimensional space to the class membership of the vector. Without loss of
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Figure 2: Linear Support Vector Machine. Function f(x) divides the feature
space into two halves

generality, it is assumed that f(x;) > 0 and y; = 1 indicate the feature vector
belongs to class 1 and f(z;) < 0 and y; = —1 specify the class 2. Then a formal
definition about linearly separable data can be given as: a data set is linearly
separable if the following equations hold:

Vy, =1: f(xl) >0 (2)

An illustration example is shown in Figure 2. As can be seen from the figure,
all the points with y; = 1 are classified into the positive side of the hyperplane
and others with y; = —1 are in the opposite side.

The discriminant function in Figure 2 is a linear model and can be expressed
as:

fla) =wlz +b (4)

where w indicates the weight vector and b is the bias. The hyperplane which
divides the plane into two half-planes is expressed as:

f@)=wTz+b=0

The discriminant function f(x) can also help to measure the distance of a
data point to the hyperplane. Consider the point x4 and its normal projection
x on the hyperplane in Figure 2. The coordinates of the point x4 can then be
expressed as:

w

Tqg=x0+d—r7: (5)
* T ]

10



where d describes the algebraic distance between the point x4 and zg. Be-
cause xo is on the hyperplane, f(z¢) = 0. We have:

flza) = f(xo+dﬁ)=wT(wo+dﬁ)+b (6)
wTw
flao) +d = dlo] (7)

It follows that: d = f”gfh) and to enforce that d is always positive under

correct classification, we define:

_yif ()

o lwll

(8)

Then the term margin p can be defined here as the distance between the
hyperplane and the closest data points from both sides:

(9)

where n is the number of examples in the training data set. The linear SVM
is trained to find an optimal hyperplane to maximize the margin p. As shown
in the formula above, this can be achieved by either maximizing the value of
yi f(x;) of the closest points or by minimizing ||w||. Since w”x + b can be scaled
without changing its sign, it is reasonable to impose the constraint that:

yi(w 'z +b) > 1 (10)
i = 1,2,--n (11)

Therefore, the optimization problem can be formulated as [25]: given a set of
training samples {x;, y; }"_;, try to find the optimal parameters w and b which
satisfies the constraint that:

yitwTz; +b) > 1 (12)
i = 1,2,---.n (13)
and minimizes the following function:
L
L= qw W (14)

This is called the primary problem and can be solved by constructing the
Lagrange function [30] as below:

J(w,b,a) = %wTw - Zai[yi(wai +b)—1] (15)

=1

11



The a; here are called the Lagrange multipliers and the solution of this opti-
mization problem should be minimized with respect to w and b and maximized
with respect to a;. As a result, it follows that

dJ(w,b,a) = B
— a5~ w — ;:1 a;y;z; =0 (16)
and
0J(w,b,a) - o
= ;:1 a;y; =0 (17)

which gives rise to

n
w = Z a;YiT; (18)
i=1
and
n
Z a;yY; = 0 (19)
i=1
Then by substituting the above two equations into equation (15), the equa-

tion becomes:

n

Q(a) = Z a; — % Z Z aiajyyel v (20)

i=1 i=1 j=1

The corresponding problem is called the dual problem and is formulated
as below: given training samples {z;,y;}!;, try to find the optimal Lagrange
multipliers {a;}7_; which maximize the objective function above and also satisty
the following constrains:

1. .
> aiy =0;
i=1

2. a;>0fori=1,2,...,n

After the Lagrange multipliers are determined, the weight vector can be easily
determined by

w = Zaiyixi (21)
i=1

and the bias b can be determined by arbitrarily choosing a labeled sample
{zi,vy:} and calculate:

12



yi(w z; +b) = 1
Vyi=1: b=1—-wTx
or
Vyi=—-1: b=—-1—wlz

It is also important to state the Karush-Kuhn-Tucker theorem [25, 30] which
gives the following constraint on the saddle point of the Lagrange:

aiolys(wd z; +bg) — 1] =0 fori = 1,2,...,n (26)

It states that a;o # 0 only for the points which satisfy y;(wlx; + by) = 1.
These points are called the support vectors.
To sum up, we have:

m
flz) = Z aioyix; x + bo (27)
i=1
where {z;}, are the support vectors and {a;o}", are the corresponding
Lagrange multipliers.

Non-linear separable data and soft margin In practical applications,
many of the data sets are non-linearly separable which makes the algorithm
in the previous section infeasible. One example is shown in Figure 3. As can be
seen from the figure, although most of the points are classified into the correct
side, there are still some points which violate the hyperplane. These points
either cross the boundary of the margin but are still located on the correct half-
space, or have been misclassified onto the incorrect half-space. In such cases, it
is impossible to find a hyperplane which completely removes the errors; instead,
a solution can be proposed to minimize the errors on the training data.

Slack variables are introduced to solve this problem. For a data set with n
samples, there are n slack variables {e;}? ; which satisfy:

Vyi=1:wla; +b>1—¢ (28)

Vyi=—1: wla; +b< —1+¢ (29)

The slack variable ; here is a measure of the violation to the margin. If
0 < g; < 1, then the sample violates the margin but is still correctly classified.
When ¢; > 1, the sample is classified into the wrong half-space. Since the goal
is to have fewer training samples misclassified, a penalty force can be added:

n(e) = Z €i (30)

13
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Figure 3: Non-linearly separable situation in SVM

which should be minimized. It can be incorporated into the cost function in
the previous section as:

1 - n
f—2w w+C;£z (31)
The parameter C' here controls the trade-off between the margin rigidity
enforcement and the number of errors it can tolerate during training. A larger
value of C will produce a more accurate model while at the same time increasing
the risk of over-fitting; therefore, the value of C' has to be optimized by the user
during the experiment.
The corresponding Lagrange function for this problem is:

1 n n n
J(w,b,a,u,e) = §wTw+C’Z€¢ —Zﬂifi_zai[yi(wai+b) —1+4¢;] (32)

i=1 i=1 i=1

where p; is the Lagrange multiplier for the slack variables.

Kernel trick Consider the typical XOR problem which tries to separate four
examples in four corners of a rectangle such that the two examples connected
by a diagonal belong to the same class. It is impossible to make this in a
two-dimensional space but when projecting it to a three-dimensional space, it
becomes much easier. This example indicates that a non-linearly separable data
set may become linearly separable in a higher dimensional space. This kind of
mapping increases the separability of the data set.
Let the function 6 defines the non-linear mapping;:

0: RN - H (33)

14



Therefore, the discriminant function can be formulated as:

f@) =" awif(x:)"0(x) +b (34)
i=1
The kernel function is defined here by:

K(z,y) = 0(z)"0(y) (35)

and the discriminant function turns into:

f(z) = Z a;yi K (x5, ) +b (36)

This expression avoids providing the exact representation in a higher dimen-
sional space. Numerous kernels have been proposed to solve various kinds of
problems. One of the most popular kernels is the RBF kernel which is used in
this thesis. The RBF kernel can be expressed as:

K(z,y) = ooz lz—ul®) (37)

o indicates the kernel width. A larger ¢ indicates a smoother function to
avoid overfitting and also avoid reproducing the noises in the training data; On
the other hand, a smaller ¢ implies a more flexible function to produce highly
irregular decision boundaries. Hence, it is important to determine the optimal
value for o by means of cross validation.

2.3.2 LVQ

Learning Vector Quantization is one of the most famous prototype-based su-
pervised learning methods which was first introduced by Kohonen [3]. It has
some advantages over the other methods. Firstly, this method can be easily
implemented and the complexity of the classifier can be controlled and deter-
mined by the user. Secondly, multi-class problems can be naturally tackled by
the classifier without modifying the learning algorithm or decision rule. Lastly,
the resulting classifier is intuitive and easy to interpret due to its assignment
of class prototypes and intuitive classification mechanism of new data points to
the closest prototype. The resulting prototypes can then provide class-specific
attributes for the data. This is a big advantage over the methods such as SVM
or Neural Networks which suffer from the drawback of being like a black box and
because of that, LVQ has been applied into many fields, such as bioinformatics,
satellite remote sensing and image analysis [34, 35, 39|
Training data for LVQ can be denoted as:

{xivyi}?zl € RN X {17 2; s C} (38)

where z; denotes the data in N dimensional space and y; is the label with C
different classes.

15



prototypes

Figure 4: Example for LVQ with 3 Different Prototypes

LVQ can be parameterized by a set of prototypes representing the classes
in feature space and the distance measurement which may be a traditional
Euclidean distance or a full matrix trained from the data. One of the examples
can be seen in Figure 4 where there are 4 different prototypes representing 3
different classes.

Traditional LVQ employs Euclidean distance measurement and is based on
nearest prototype classification. To be more specific, a set of prototypes are
defined to represent the different classes. If one prototype per class is defined,
the prototypes can be represented as: W = {w;,c(w;)} € RN x {1,2,...,C}.
Each unseen example x,., will be assigned a label whose prototype has the
closest distance to it with respect to the distance measurement:

A(Znew)  c(wy) with wy, = argmin d(w;, Tpew) (39)
J
It is called a winner-takes-all strategy.
Training of this model is guided by the minimization of the cost function:

Y N d(@i,wy) — d(ziw)
F= ; B(g;) withe; = d(zs. wig) + d@swa) (40)

where ¢ is any monotonic function and in this thesis, ¢(z) = z; wy and
wyy are respectively the closest prototype with the same and different label to
sample x;:

wg = argmind(z;, w;j) Ve(w;) = c(z;) (41)
J

wy = argmin d(z;, w;) Ve(w;) # c(x;) (42)
j

In traditional LVQ systems, only the locations of the prototypes are updated
during the training to minimize the errors. wy is pushed toward the sample x;

16



and wys is pushed away from it. Their derivatives to the cost function F' are
expressed as:

AU}H = — - ¢, (Ei) . 6;,H . Vu)Hd(xi; wH) (43)
Dwyr=a-¢ () 5;,M + V(@i war) (44)
where « is the learning rate; ¢ (s;) = 1 because ¢(z) = ; 5;,H =2

d(ziwar)/[d(zi, wer)+d(x;war)]? and 5;7M = 2-d(x;wg)/[d(x;, wg)+d(z;war))%;
Vg d(z;,wy) and V,,, d(x;, wy) are respectively the derivatives of wy and wys
to the distance d(x;, wg o p) and therefore depend on the distance measure-
ment.

2.3.3 Two variants of LVQ: GRLVQ and GMLVQ

How the distance is calculated is very important in the LVQ system. One of
the most popular metrics is the Euclidean distance which is a special case of
Minkowski distance. The Euclidean distance from a data point x; to a prototype
w can be expressed as:

(45)

The Euclidean distance assigns the same weight for each feature, indicat-
ing that each feature has the same contribution for classification. However, in
practical applications, it is usually observed that different features contribute
differently toward the classification. Therefore, relevance learning [7, 4] is pro-
posed to assign adaptive weight values for different feature inputs:

N .
d(w,zi) = | D Aj(a] —wi)? (46)
j=1

The corresponding LVQ system is called GRLVQ [7, 4].

Each feature, besides their individual contribution for the classification, will
also correlate with the others to influence the performance. Generalized Matrix
LVQ (GMLVQ) [38] is proposed to extend the previous methods. A full matrix
of adaptive relevance is employed as the similarity metric and the distance is
calculated as:

d(w, x;) = (x; — w)" Ax; —w) (47)

where A is a full N x N matrix whose off-diagonal element A; ; account for
the contribution of feature pair i and j for classification. The matrix A has to
be positive definite to keep the distance result positive. Its positive definiteness

is achieved by constructing:
A=0TQ (48)

17



where 2 is an arbitrary real M x N matrix with M < N. However, in this
thesis, we only consider the case : M = N. Substituting Eq. (42) into Eq. (41),
obtain:

(z; —w)T Az —w) = (2; — w)TQTQ(z; —w) = [z, —w)]*> =0 (49)

It is noticed the GRLVQ is a special case of GMLVQ with diag(A) = {\;}Y,.
The derivative of the distance d(w, ;) with respect to prototype w is:

Vwd(w,z;) = —2A(x; — w) (50)

Substituting Eq. (50) into Eq. (43) and Eq. (44), we can obtain the update
rule for closest correct and incorrect prototype.

In the model of GMLVQ, the update rule of the distance matrix €2 also need
to be computed. The derivative of d(w,x;) with respect to one single element
le is:

Vadw,z) = Y (@ —w™) (el — )+ (] — w0 )] - u(B))
K j
= 2- (2" —w")[Qz: —w)li, (52)

3

The derivative of the cost function F with respect to one single element €,
can then be expressed as:

A = AQT 1+ AQM

(53)

= —B-2-¢(e) e Vau dwi,wn) + B2+ ¢ (&) - 500 - Vau d(ws, war)

where [ is the learning rate for €.
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Chapter 3

3 Feature Selection

3.1 Challenge

In this section, two topics about the challenges in feature selection will be dis-
cussed. The first issue about the curse of dimensionality and the second one is
the relevance and redundancy of features.

3.1.1 Curse of dimensionality

In machine learning, the term curse of dimensionality was initially defined by
Richard Bellman [10] when he conducted the work on dynamic optimization
[9, 10] and found it quite difficult to tackle the problem of the curse of dimen-
sionality. He stated:

“In view of all that we said in the foregoing sections, the many
obstacles we appear to have surmounted, what casts the pall over our
victory celebration? It is the curse of dimensionality, a malediction
that has plagued the scientist from the earliest days." [10]

Up to date, there are already many definitions about it, but generally it refers
to the problem incurred by adding extra features to the space. The reliability of
the learning model depends on the density of training examples in the feature
space. The increase of data dimensionality will sparse the feature space and
thus deteriorate the generalization performance.

It states that the predictive performance of a learning algorithm will deteri-
orate with the increase of data dimensionality. With the increase of the feature
space, the feature space will become more sparse and more training examples
are required. For example, if 5 samples are enough in each dimension, then 25
samples are sufficient to fill a two-dimensional cube. However, this number will
increase to 520 for a 20-dimensional hypercube.

It is also observed that it becomes more difficult to estimate the kernel in
a higher dimension [11]. Table 1 illustrates the number of samples required to
estimate a kernel at density 0 with a certain accuracy.

| Dimensionality | Sample Size |

1 1
2 19
5 786
7 10,700
10 842,000

Table 1: Sample size required for kernel estimation [11].
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3.1.2 Irrelevance and redundancy

There are some controversies in the definition of feature relevance. There is a
review [8] which introduces the different relevance definitions that have been
proposed in the literature. The authors then present an example to indicate
that all the other relevance definitions produce unexpected results and based on
that, the authors suggest that two different degrees of relevance are required:
strong relevance and weak relevance. The definition of weak relevance can also
be regarded as the definition of redundancy.

Let < X,Y > denote the training examples where X € R is the data
and Y indicates the labels. Let F be the full feature set and Fj is the i*"
feature; therefore each instance X is one element of the combination of the set
Fy X Fy x -+ Fn. Let S; = F — {F;} denote the feature subset with all features
except for F; and s; denote one value instantiation of S;. Let P denote the
conditional probability of the label Y given a feature subset.

Strong relevance A feature F; is strongly relevant iff
dx; € F,y € Y where P(z;,s;) > 0and P(Y = y|S; = s;, F; = x;) # P(Y =
ylSi = s:)

Weak relevance A feature F; is weakly relevant iff it is not strongly
relevant and

Jz; € Fi,s; C Si,y € Y, such that P(Y = y|S; = s, F; = z;) # P(Y =
ylSi = si)

A feature F; is called relevant if it is either strongly or weakly relevant to
the class label; otherwise it is irrelevant. A feature F; which is weakly relevant
can become strongly relevant after removing a certain feature subset. The weak
relevance can be interpreted as the existence of other relevant features which
can provide similar prediction power as the one we are measuring. This is also
what we call redundant. It is important to note that the feature F; which is
weakly relevant or redundant should not be removed if the feature subset whose
removal makes F; strongly relevant has been removed by the feature selection
algorithm.

3.2 General Framework

The framework in Figure 5 shows that a typical feature selection system usually
consists of four components. They include: feature subset generation, feature
subset evaluation, stopping criterion and feature subset validation. As indicated
in the figure, the complete feature set is firstly sent to the “Generation" model
which produces different feature subset candidates based on some search strat-
egy. Each subset candidate will then be evaluated in the “Evaluation" model by
a certain evaluation measurement. A new subset which turns out to be better
will replace the previous best one. This subset generation and evaluation will
be repeated over and over until the given stopping criterion is met. After that,
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Figure 5: Framework of Feature Selection

the ultimately selected feature subset will be sent to the “Validation" model for
validation by certain learning algorithms.

Two basic issues have to be addressed in the “Generation model". Those
are: Starting point and search strategy.

e Starting Point. Choose a point to start the search in the feature space.
One choice is to begin with no feature and then for each iteration, expand
the current feature subset with each feature that is not yet in the subset.
The feature whose addition produces the best evaluation performance is
added to the current subset. This is called forward selection. Another
option is to do it conversely. The search starts with a full feature set and
then successively eliminates the feature whose removal results in the best
evaluation performance. This search is called backward selection. A third
alternative is to start by selecting a random feature subset [13] and then
successively add or remove features depending on the performance. This
random approach can avoid being trapped into local optima.

e Search Strategy. There are three different search strategies: complete,
heuristic and random. The complete strategy examines all the possible
feature subsets and guarantees to find the optimal one. When there are
N features, the search will examine 2"V subsets which makes it unrealistic
for large N. Heuristic search is guided by some heuristic. It is less com-
putationally demanding but the optimal subset is not guaranteed. The
guideline determines whether or not a better subset can be found. The
random strategy just simply chooses the next feature at random; therefore,
the probability to find the optimal subset depends on how many epochs
are tried.

3.3 Wrapper and Filter Approach

The evaluation methods in feature selection can be generally divided into two
basic models: the filter model [14, 15, 16, 17] and the wrapper model [18, 19, 20].

The filter model selects a feature subset as a pre-processing step, without
considering the predictor performance. It is usually achieved by designing an
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evaluation function and then choosing a set of features to maximize it. Some
evaluation functions that are frequently used are distance measures, information
measures, dependency measures and consistency measures. The filter model
does not involve any training of learning algorithm and is thus much faster
which makes it suitable to be applied on large data sets.

In the wrapper model, a predetermined data mining algorithm is utilized
to evaluate the feature subset and the candidate with highest prediction per-
formance will be selected as the final subset. The wrapper model can usually
select a feature subset with superior performance because it selects features bet-
ter suited to the predetermined algorithm. However, because the algorithm has
to be trained and tested for each subset candidate, the wrapper model tends to
be very computationally expensive, especially with large feature size.

3.4 Feature Ranking Technique
3.4.1 Information gain

Information gain [21] measures the dependency between a feature X; and the
class label Y. It is a very popular technique in feature selection because it is
easy to understand and compute. Information gain can also be regarded as a
measure of the reduction in uncertainty about a feature X; when the value of
Y is known. Uncertainty is usually measured by Shannon’s entropy:

Entropy Entropy measures the amount of uncertainty that a feature X; con-
tains. It is given by

H(X;) =— Zp(j)5092p(j) (54)

Jj=1

Where p is the number of possible values in X; and P(j) indicates the obser-
vation probability of the value j. Form this formula, a more uniform distribution
tends to produce a higher entropy. For example, if you toss a fair coin, there
are two possible values each with equal probability 0.5. Its entropy value is

H(coinToss) = —2 x (0.5 x log20.5) = 1

In another example, if you toss a die, there are six possible outcomes, each
with probability 1/6. Its entropy value is

H(diceToss) = —6 x ((1/6) x log2(1/6)) = 2.585

Therefore, the higher the entropy is, the more uncertainty it contains and
the more difficult to predict the output.
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Figure 6: Example to illustrate the algorithm Information Gain

Information Gain The information gain of a feature X; and the label Y is:

I(X:,Y) =H(X;) - HX; |Y) (55)

Where H(X;) and H(X; | Y) are respectively the entropy of feature X; and
the entropy of X; after knowing the value of Y. H(X; | Y) is calculated as

H(X; | Y) ==Y P(Y;))_ Plax | Y;)logaP(xx | V;) (56)
j k

A better understanding can be gained from Figure 6. As can be seen in
Figure 6, H(X) and H(Y) respectively measure the entropy of X and Y. The
information gain I(X,Y’) is a measure of the information shared by X and Y.
H(X,Y) is the information that X and Y collectively contain.

H(X,Y)==> plz.y)logp(a,y) = H(X | Y)+I(X,Y)+H(Y | X) = H(X)+H(Y)-I(X,Y)

(57)

If X and Y are highly correlated, then the information they share is very

high, indicating a large value of I(X,Y). Then if Y is known, much of the

information about X can be “guessed” from Y, suggesting a low H(X |Y') and
vice versa for H(Y | X).

3.4.2 Relieff

Relief [22] is a univariate feature weighting algorithm in the filter model. It
is based on the principle that the attribute which can better separate similar
instances but with different classes is more important and should be assigned a
larger weight. The three basic steps to compute the feature weight are:
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Algorithm 1 Pseudo code of Relief algorithm
Description: There are P instances described by N features and there are C
different classes: x € RN ¢(x) € {1,2,...C}; T iterations are performed.

1. Set all the feature weights to 0: Vi, w(i) = 0;
2. Fort =1to T, do:
3. Randomly pick an instance z € RY;

4. Find nearest hit NVH (z) and nearest miss NM (z):

5. NH(z) < xp, withzy = argmind(z,x;) Ve(z;) = c(x)
J

6. NM(z) < xpmwithx, = argmind(z,z)Ve(ry) # c(z)
k

7. Fori =1to N, do:

8. w(i) = w(i) + d(x;,, NM(x);) /(P xT) — d(z;, NH(x);) /(P x T)
9. end do.
10. end do.

1. Find the nearest miss and nearest hit where nearest hit is the closest
sample with the same class as the test sample and nearest miss specifies
the closest sample with a different label as the test sample;

2. Calculate the weight of a feature;

3. Return a ranked list of feature weights or the top k features according to
a given threshold;

The algorithm starts by initializing all the feature weights to be zero and it
randomly select an instance from the samples and calculates its nearest hit NH
and nearest miss NM. Each feature weight is then updated based on its ability
to discriminate NH and NM. The detailed pseudo code is given in Algorithm 1.

Relieff [23] extends the original Relief algorithm to deal with the multi-class
situation. It incorporates two important improvements. First, the result is
more robust to noises because of the consideration of k nearest neighbourhoods.
Second, it can deal with the multi-class problem. The detailed pseudo code is
shown in Algorithm 2.

3.4.3 Fisher

Fisher [40] is an effective supervised feature selection algorithm which aims to
select features that assign similar values to the same class and different values
to different classes. The evaluation score of Fisher’s algorithm is:
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Algorithm 2 Pseudo code of Relieff algorithm

Description: Instances described by N features and there are C' different classes:
€ RN, c(z) € {1,2,...C}; Look for k nearest neighbours; perform 7 iteration;
p(y) the class probability specifying the probability of an instance being from
the class y.

1. Set all the feature weights to 0: Vi, w(i) = 0;
2. Fort =1to T, do:
3. Randomly pick an instance z € R with label y,;

4. fory =1to C, do

5. find k nearest instances of  from class y: x(y,l) where l =1,2,---k
6. fori =1to N, do:
7. for1 =1 to k, do:
8. if y = y, (nearest hit), then
9. w(i) = w(i) — Lozl
10. else (nearest miss),
11. w(i) = w(i) + 20 x dAriluD
12. end if.
13. end for.
14. end for.
15. end for.
16. end for.
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c
Fisher(f;) = 2=V . 2 (58)
Zj:l n;jog ;

where f; is the i'" feature to be evaluated, n; is the number of instances
in class j, p; is the mean of feature i, ;1; ; and o; ; are respectively the mean
and the variance of feature i on class j. Fisher algorithm is computationally
effective and widely applied in many applications, however, because it considers

the features individually, it has no ability to deal with redundant features.
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Chapter 4

4 GMLVQ Based Feature Selection Algorithms

4.1 Entropy Enforcement for Feature Ranking Results

It is stated that the element A; ; in matrix A measures the correlation between
feature ¢ and j and the diagonal element A;; quantifies the contribution of
feature ¢ for classification. The above statement only makes sense when the
features have similar magnitude, therefore a z-score transformation is always
performed on the data before the training starts. One example is shown in
Figure 7 where 32 features are ranked with respect to their value of the diagonal
elements. The 19" feature contains the highest value, indicating that it has the
largest correlation with the classification. Another constraint is added so that
after each adaption, the sum of the diagonal elements is equal to zero:

N
S Ai=1 (59)
i=1

Diagonal Yalue
e B o . R e I ) I s B R I o I

Diagonal value

o
277 42815118 32925302632 9 21201324162210 8 3123 2 14171211 6 519
Diagonal Index

Figure 7: One example of diagonal elements of A

One of the ideal situations in feature ranking is that some of the features
are much more important than others and the least important features can
therefore be removed from the feature set without deteriorating the classification
performance. An external entropy force is added to the cost function to push
the diagonal elements to this ideal situation.

The definition of the entropy force is:
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Figure 8: Classification performance with respect to different values of regular-
ization force

N
Entropy(Adiag) = — Z A;ilogah; (60)
i=1
where N is the data dimension. This external force will reach the maxi-
mum when all the diagonal elements are equal, i.e. all the features are equally
important for classification. Its minimization will, on the other hand, push to
generate a discriminative feature relevance and at the extreme, only one feature
is identified as relevant for classification and the relevances of other features are
Zero.
It is integrated into the cost function by:

Frew — [ 4 o x Entropy(Admg) (61)

where the regularization parameter a controls the trade-off between the clas-
sification accuracy and the discrimination between features. A larger value of
a will produce a more discriminative feature ranking result by sacrificing the
classification performance. Their mutual relation on one of the data sets is
visualized in Figure 8.

The choice of the regularization value depends on how important the accu-
racy and the discrimination are for the user and differs per data set. A safe way
is to post their relation for each data set and choose the optimal point based on
the requirement. A more efficient way in this thesis is to choose the value by 7—02
where NN is the data dimension. On all of the data sets conducted in this thesis,
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Figure 9: Comparison of feature ranking result with and without entropy force

such a value can generate a considerable discriminative feature ranking result
without deteriorating the performance to a large extent. One of the examples
with and without entropy force can be seen in Figure 9.

4.2 Way-Point Average Algorithm

Gradient based minimization is a popular and powerful method in non-linear
optimization [31]. In this thesis, batch gradient descent is employed to train the
GMLVQ model. One of the critical choices in gradient descent methods is the
appropriate choice of the step size. Too small step sizes will slow the conver-
gence, however large steps can result in oscillatory or even divergent behavior.

In this section, a modification of batch gradient descent [32] is introduced
which aims at better convergence behavior. The idea is that, during the training
procedure, we compare the cost function of normal descent adaption with that of
the gliding average over the most recent steps and if the latter produces a lower
optimization value, minimization jumps to the latter configuration and decreases
the step size at the same time. A more detailed description is described below.

Consider we want to minimize an objective function F' with respect to a
N-dimensional vector € RY. A gradient descent process is started at xo and
proceeds to generate a sequence of steps iteratively:

VF

= 2
at|VF| (6 )

Tt41 = Tt —
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Note that the gradient has been normalized by % and therefore, a; here
is exactly the step size length during adaption: |zi41 — 24| = ay.
The waypoint averaging algorithm starts at xy with initial step size ay and

performs k steps with gradient steps unchanged:

F
xt+1:xt—at|§—F| fort=0,1,2...k—1witha; = ag (63)

After that (¢t > k), the procedure proceeds as below:
1. perform the normal gradient descent step and evaluate the corresponding
cost, function:

Ti g =T — and calculate F(xy, ) (64)

VF
ap——

IVE,
2. perform the waypoint average over the previous j steps:

j—1

19

Tirl = - E 2¢—i and calculate F(Ti11) (65)
J

i=0

3. determine the new step size and adaption position by comparison:

{mt+1:ﬁi andaiy1=as if F(rZJrl)éF(m) (66)
Ty41=T¢+1 and ar41=Na; else

with the parameter 0 < A\ < 1.

As can be seen from the algorithm, as long as the normal gradient descent
procedure produces a position with lower cost than the waypoint average algo-
rithm, the iteration proceeds as a normal gradient descent algorithm.

On the other hand, F'(ZTiy1) < F(x7, ;) indicates the potential existence of
oscillatory behavior because under oscillatory condition, the position fluctuates
around the local minimum and it is expected that the average over the previous
steps may provide a closer estimate to the minimum than the normal gradient
descent adaption. It also indicates that the step size may be too large to get to
the minimum and should be decreased for better convergence.

An intuitive example is shown in Figure 10 [32] which visualizes the adaption
steps of both the normal gradient descent and waypoint averaging algorithm.
The dotted lines mark the update trajectory of normal gradient descent algo-
rithm with constant step sizes which display strong oscillatory behavior. The
waypoint averaging algorithm shares the same trajectory with the normal gra-
dient descent in the first four steps. However, after that it jumps to the average
position over the previous steps and reduces the step size at the same time which
enables it to move closer to the minimum in the middle.

When considering its application in GMLVQ, since the cost function in GM-
LVQ has to be optimized with respect to both the prototype w and the matrix
Q, two independent waypoint averaging algorithms about w and € have to be
performed. The typical scheme is formulated as below:
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Figure 10: Comparison between way-point average algorithm and normal gra-
dient descent. From [32]

Given a GMLVQ system represented by  and a set of prototypes {wy }2L,
with cost function represented by F, respectively choose the start points Q29 and
{wdIM | and initial step sizes af} and a¥ for Q and w;

1. perform k (k=3 in this thesis) steps with gradient steps unchanged:

F
D1 = —a?|gF| fort=0,1,2...k —1witha}’ = af (67)

W1 = Wi — fort=0,1,2...k — lwithay = af (68)

o VF
LIVE|
After that (¢t > k), the procedure proceeds as below:
2. perform the normal gradient descent step and evaluate the corresponding
cost function for both Q and w:

F
Oy = — a?;—ﬂ and calculate F(Q ) (69)
¢
F
i, = w —a |§F| and calculate F(wy, ) (70)
¢

3. perform the waypoint average over the least previous j (j=3 in this thesis)
steps:
1 _
Q1 = = Z Qi—; and calculate F(11) (71)
J =0
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i—1
14

Wiyl = — Zwt,i and calculate F (Wi11) (72)
J iz

4. determine the new step size and adaption position for both 2 and w:

Qup1=07 1, and ay=af if F(Q),1)<F Qi) (73)
Q1= 41 and a?+1:)\a? else
wip1=wyiyq anday’y=a} if F(wi ) <F (W) (74)
W1 =Wi1 and a;f’+1:)\a}f’ else

with the parameter A = 2/3.

4.3 Feature Ranking Ambiguity Removal

Up to this step, we have the input vectors and class labels:

{z,y: 1y with z; € RN, y; € {1,2,...C} (75)

associated with a set of prototypes:

{wi L, where M > C (76)

And the distance is calculated as:

d(zi,wy) = (2; — wp) T A(z; —wi) = (25 — wp)TQTQ(zs — wi) =| Uz — wy) |2
(77)
where A, Q € RN and Q = [21 29, -+ zn]T where {2}, are column vec-
tors with dimension V. The feature ranking results can be obtained from the
values of diagonal elements in matrix A. However, an issue is raised whether
there is another matrix A which can keep the distance measurement unchanged.
It that matrix exists, the feature ranking results can be different without mod-
ifying the classifier, which means the feature ranking results we have obtained
in previous steps are not unique.
Consider a vector v; which satisfies the following constraints:

Vi:v @ =0 (78)

VEk: vjrwk =0 (79)

If we add such a vector v; to any row z! of the matrix Q, consider, for
instance, i = 1:

Qnew = [21 + Vj, 22, ZN]T (80)

we can easily verify that the following mappings keep unchanged:
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Vi Quew zi = Qu; (81)

Vk: Qnew Wg = ka (82)

Therefore, the distances between any pair of input samples and prototypes
will keep the same:

d(z;,wi) =| Qz; — wy) |2:| Qnew(z; — wy) |2 foralli, k (83)

Since the mapping and distance calculation are the same between ) and
Qnew, the cost functions, classification errors and classifiers they produce will
also stay the same. However, the feature ranking results may vary between (2
and ., because there is no constraint on the consistency of their diagonal
elements in matrix A and A™%.

Without loss of generality, we assume that there are J such spurious vectors
{v;}/_, and as it will be proved in later stages all such vectors are actually
eigenvectors of a construction matrix, we can additionally assume that all the
vectors {v;}7_, are orthonormal:

vyeve =du = {3 HiTh. (84)
The proposed solution is to project out all the spurious directions {v; }3’:1 from
a given matrix 2:

J
QZew - [I - Zvj’U]T]QT (85)

j=1

It follows that:
J
QL (x; —wy) = QT (27 —wy) — Zvj (x; —wg) UJ-TQT = QT (z; —wy)  (86)
J
VF Qe = VL Q — Z ViU UJTQ =0l Q—vfQ=0 (87)
121\5’/
ik

Hence, we can interpret the resulting matrix €2,,.,, as the minimal represen-
tation of the mapping which contains no contribution of the spurious direction
Uj.

The next question is how to find all these vectors {v; }3’:1. The conditions
that Vi : v;fpxi =0and Vk: vawk = 0 can be rewritten as

Xijzo where X = [x1, T2, TL, w1, Wa, W) (88)
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This in turn, is equivalent to
L M

XTv)? =0« vaCvj =0 whereC=XXT = Zmlsz + Z wrw?!  (89)
i=1 k=1

The matrix C here is a positive (semi-) definite matrix. Let’s assume that the
set of its orthonormal eigenvectors {g;} N;—1 with eigenvalues {v;}¥; >0 form
a basis of RV. Then any vector v; € RY can be written as a linear combination

of all the eigenvectors v; = Zi\il a;g; with coefficients a; € RY and we obtain:

JGoy = Vsl Gasgy = Y oap o, - Yy (00
irj irj Il
R

Hence, except for the nontrivial solutions in which v = 0, the other vectors v
a;

which satisfy v7 Gv = 0 should meet the requirement { on

=0 )
a;#0, for v;—0- Combined

together, the solution {v;} 3-]:1 are those eigenvectors with zero eigenvalues. Since
in practical applications, it is difficult to obtain exactly zero eigenvalues, the J
smallest eigenvalues are selected here.

To sum up, the typical scheme to obtain unique feature ranking results for
GMLVQ is formulated as below:

Given a GMLVQ system represented by Q and a set of prototypes {wy }2L,,
the training examples are {x,y;} ;, construct the matrix X as:

X =[z1,22, - Tp, w1, wa, - - W] (91)

and then calculate its eigenvalues and eigenvectors and perform the projec-
tion as:

J
Qnew = [I — Zvjvf]Q (92)
j=1

where {v;}7_, are the J eigenvectors of X with smallest eigenvalues.

It is therefore important to determine the number J. It can be represented
as the delete rate which is the ratio between the value of J and dimension N.
The delete rate is determined by experiment and differs per data set. Since
no additional training is required when testing with multiple delete rates, the
choice of an optimal delete rate will not significantly increase the computation
time.
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Chapter 5

5 Experiments and Results

5.1 Data Set Description

Table 2 summarizes all the datasets that are chosen in our experiments for
feature selection evaluation. Except for the first data “Adrenal Tumor”, all the
other datasets in the table are selected from the UCI data set repository [29].
The selected datasets describe diverse real-world problems and thus show a
variety of characteristics. They are utilized to assist the comparison of different
feature selection algorithms. The table below provides a summary about the
various characteristics of the datasets, including the number of instances and
the number of input attributes and output classes.

Attribute Type | Number of Attributes

| Name of Datase | Number of Instances Number of Classes
Adrenal Tumor 147 Real 32 2
Breast Cancer Wisconsin 569 Real 30 2
Ionosphere 351 Integer and Real 34 2
SPECTF Heart 267 Integer 44 3
Connectionist Bench Sonar 208 Real 60 2

Table 2: The five datasets above are selected for the experiments. For each
dataset, its number of instances, attribute type, number of attributes and num-
ber of output classes are illustrated in the table.

5.2 Experiment Design

We now turn to the experimental procedure to perform feature selection and
evaluate the results. The various algorithms used in our experiments include
the four feature selection algorithms (information gain (IG), Relieff (RFF),
fisher (FR) and GMLVQ-based (GMLVQFS) feature selection and two eval-
uation methods (GMLVQ and rbf-kernel SVM). A five-fold cross-validation is
used in the experiment. As shown in Figure 11, the data is divided into five
folders. In each cross-validation, one folder is chosen as the test set, one for
validation and the other three as the training set. Feature selection algorithms
are performed on the dataset constituting of the training and validation set. For
the GMLVQ-based feature selection algorithm, the GMLVQ model is trained on
the training set and validated on the validation set to prevent overfitting. As
long as the feature ranking result is obtained, new data sets are constructed by
selecting different numbers of features, in term of their importance indicated
from the feature ranked list. For each new data set, which has the same dis-
tribution of training, validation and testing set, only different in the number of
features, the two evaluation methods are trained on the training and validation
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Figure 11: Experiment design of data set.

set and then tested on the test data. Their performances on the test set are
evaluated by the ROC curve and the AUC.

5.3 Results and Discussion

In this section, the experimental results on the five datasets are presented and
discussed. Each dataset will serve as a case-study. The abilities of the four
feature selection algorithms to deal with irrelevant and redundant features will
also be demonstrated in independent sections.

5.3.1 Case Study 1: Adrenal Tumor

As shown in Table 2, the Adrenal Tumor data set consists of 32 features and 2
classes. There are a few missing values in this data set and those missing values
are replaced by the mean of that feature. Four different feature ranking tech-
niques (IG,RFF FR,GMLVQ) have been used on the Adrenal Tumor dataset.
After that, two different evaluation methods, GMLVQ and RBF based SVM,
are built to evaluate the feature selection results. The performance is evaluated
in terms of the AUC metric.

Feature Ranking Results Comparison The differences between feature
ranking algorithms are essentially measured by the different feature ranking lists
they generate; therefore it is important to compare the different feature rank-
ing lists they have produced. Figure 12 illustrates the average feature ranking
results over 125 epochs from the four feature ranking methods. It is shown that
the features 5, 6 and 19 are ranked as the top three most important features
by all the four algorithms. Closer inspections on the feature distributions of
the top 3 features are demonstrated in Figure 13. It is obvious that although
the average ranking results of the top 3 features are the same among the four
feature ranking algorithms, their top three feature distributions are different.
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Figure 12: Different feature ranking results on data set Adrenal Tumor.

For example, while the GMLVQ based feature ranking algorithm always chooses
features 5, 6 and 19 as the top 3 features, the Information Gain algorithm also
occasionally ranks feature 2, 12, or 14 as the top three most important. It is
these differences in feature distribution that causes the performance differences
during the valuation even when the average ranking results are the same. This
analysis also demonstrates the more stable ranking results from GMLVQ based
method compared to other algorithms.

Feature Ranking Algorithm Evaluation In this section, different feature
ranking algorithms are evaluated by both the GMLVQ and SVM with RBF
kernel in terms of the AUC metric. Figure 14 describes the average evaluation
performance over 125 epochs using GMLVQ as the evaluation method on the
four feature ranking algorithms. It is seen from the figure that GMLVQ based
method outperforms other feature ranking algorithms when the feature subset
contains less than 13 features. This is essential for feature selection algorithms
because we always aim to achieve relatively better results by using smaller fea-
ture subsets. For example, when using only the top six most important features,
GMLVQ based method can achieve a AUC metric of 0.956 which is already quite
close to the 0.961 when all the features are included.

Furthermore, the line with squares illustrates the evaluation performance
when we directly utilize the prediction model from the feature ranking training
process to test on unseen data. In this way, the feature ranking training and
model learning process are combined together as one process which saves much
computation time. From Figure 14, it is shown that its performance is even
better than other feature ranking algorithms by using the top eight or less most
important features.

The evaluation result by RBF-based SVM in Figure 15 demonstrates that
GMLVQ based feature ranking method consistently outperforms methods “Fisher”
and “Information Gain” no matter how many features are selected. The method
“Relieff ” performs slightly better when in the range of (16,20) and (24,26) than
the GMLVQ based method. Another notable feature about GMLVQ based
ranking method is that it achieves the maximum performance when the number
of features is 6 and then decreases when more features are added into the sub-
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Figure 14: Evaluation on test set using GMLVQ on different feature selection
methods. Data set: Adrenal Tumor.

set. This is the ideal situation for feature selection algorithms because a better
performance can be achieved with less features and thus less computation time.

Irrelevant Features Irrelevant features are added to the original data set to
test their ability to filter out irrelevant features. To be more specific, three uni-
formly random boolean attributes, three uniformly random 4-valued attributes
and three uniformly random 8-value attributes are added to the dataset. Fig-
ure 16 demonstrates the average number of irrelevant features included in the
subset with various feature subset sizes. The ideal method will include no irrel-
evant feature in the top 32 features, leaving all the irrelevant attributes ranked
the least important ones. It is shown from Figure 15 that Information Gain
method can generate such ideal result while for the GMLVQ based method, its
32-feature subset will contain 2 irrelevant features by average, filtering out 7
irrelevant features. The performance difference here depends on how we con-
struct the irrelevant features. It is therefore expected that different methods of
irrelevant feature generation will produce different filtering out performance.

Redundant Features 9 Redundant features were added to the original data
set to form a data of 41 dimensions and test their ability to filter out redundant
features. Specifically, the 5'*,20*" and 25" feature in the original data set were
selected as they represented different importances to the classification. Each of
these three features was duplicated for three times to generate three more re-
dundant features and for these three redundant features, Gaussian noises with
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Figure 15: Evaluation on test set using SVM on different feature selection meth-
ods. Data set: Adrenal Tumor
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Figure 16: Irrelevant feature detection performance between different feature
selection methods. Data set: Adrenal Tumor
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different signal-to-noise ratios of respective 10, 50 and 80 were added. The
feature ranking results are shown in Figure 17. The top figure illustrates the
average number of redundant features that a feature subset contains. Although
the GMLVQ based method performs relatively better than the Fisher and Reli-
eff methods, the overall performances of all four methods are poor. To be more
specific, with a feature subset of 32 features which is the same size of the orig-
inal feature sets before adding redundant features, even the method with best
performance already contains 7 redundant features, filtering only 2 features. A
closer inspection about their exact ranking results was conducted to investigate
the reason of bad performance. It reveals that the redundant features can not
be efficiently removed by all these four methods. For example, the 33t",34 and
35" feature is the noisy copy of the 5" feature. In all the feature ranking results
here these three features are all ranked in the top 9 features. A similar situation
can also be observed for the 20** and 25" feature and their noisy copies.

5.3.2 Case Study 2: Ionosphere

The “Ionosphere” data set describes the radar data collected by a system in
Goose Bay. As shown in Table 2, it consists of 34 features and 2 classes.
The second feature contains all zeros and is removed during the experiment.
There are 351 instances in total from which 210 random ones are selected for
training, the other 70 randomly picked samples for validation and the remain-
ing 71 instances used for testing. Four different feature ranking techniques
(IG,RFF,FR,GMLVQ) have been used on this dataset. After that, two different
evaluation methods, GMLVQ and RBF based SVM, are built to evaluate the
feature selection results. The performance is evaluated in terms of the AUC
metric.

Feature Ranking Comparison Figure 18 illustrates the average feature
ranking results over 125 epochs from the four feature ranking methods. The
methods “Fisher” and “GMLVQ based” have closer average feature ranking
results and both rank the feature 1,4 and 2 as the most important features.
Method “Relieff” and “Information Gain”, on the other hand, display quite dif-
ferent average ranking results. For example, while the Relieff feature ranking
algorithm chooses features 26, 23 and 7 as the top 3 features, the Information
Gain algorithm ranks features 5, 4, and 32 as the top three most important.

Feature Ranking Algorithm Evaluation In this section, different feature
ranking algorithms are evaluated by both the GMLVQ and SVM with RBF
kernel in terms of the AUC metric. Figure 19 describes the average evaluation
performance over 125 epochs using GMLVQ as the evaluation method on the
four feature ranking algorithms. It is seen from the figure that GMLV(Q based
method consistently outperforms other feature ranking algorithms in the top
30 features. Considering there are only 33 features in total, this phenomenon
demonstrates the big advantage of the GMLVQ based feature ranking method
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Figure 17: Feature ranking results after adding 9 redundant features. Data set:
Adrenal Tumor
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Figure 18: Differnt feature ranking results. Data set: Ionosphere.
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Figure 19: Evaluation on test set using GMLVQ on different feature selection
methods. Data set: Ionosphere.

on this data set. Furthermore, the dash-dot line illustrates the evaluation per-
formance by the classifier directly from the feature ranking training process to
test on unseen data. It means the feature ranking training and model learning
process are combined together as one process and as long as the feature ranking
results are obtained, the classification can be performed without retraining the
learning model again. Figure 19 shows it outperforms other feature ranking
algorithms when the number of feature selected is larger than 4.

Figure 20 present the evaluation results on the four feature ranking algorithm
using RBF-based SVM. It is shown that in the top 6 features, GMLVQ based
feature ranking results can provide a better AUC measurement and after the
methods “Relieff” and “Information Gain” take turns to lead the performance.

Irrelevant Features 20 irrelevant features were added to the original data
set to test their ability to filter out irrelevant features. The way to construct the
irrelevant features here is different from that of data set “Adrenal Tumor”. In this
experiment, the irrelevant features added are not discrete uniformly distributed
values but truly random continuous signals. From Figure 21, it is observed that
Information Gain method outperforms other methods by containing about only
1 irrelevant feature in the top 32 features, compared to 2 irrelevant features from
method Relieff and GMLVQ. Fisher algorithm performs worst on this data set.

Redundant Features 9 Redundant features were added to the original data
set to form a data of 42 dimensions and test their ability to filter out redundant
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Figure 20: Evaluation on test set using SVM on different feature selection meth-
ods. Data set: Ionosphere.
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Figure 21: Irrelevant feature detection performance between different feature
selection methods. Data set: Ionosphere.
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Figure 22: Feature ranking results after adding 9 redundant features on data
set “Ionosphere”. Data set: Ionosphere.

features. Specifically, the 5% 20" and 25" features in the original data set
were selected as they represented different importances to the classification.
Each of these three features was duplicated for three times to generate three
more redundant features and for these three redundant features, Gaussian noises
with different signal-to-noise ratios of respective 10, 50 and 80 were added. The
results are shown in Figure 22. The figure indicates that in the top 32 features,
the GMLVQ based method consistently outperforms other methods no matter
how many features are selected in the feature subset.

5.3.3 Case Study 3: Connectionist Bench Sonar

The “Connectionist Bench Sonar” data set describes features of the cell nuclei
present from the digitized images of a breast mass. As shown in table 2, it con-
sists of 208 instances with 60 features and 2 different classes. 125 random ones
are selected for training, the other 42 randomly picked samples for validation
and the remaining 42 instances used for testing. Four different feature ranking
techniques (IG,RFF,FR,GMLVQ) have been used on this dataset. After that,
two different evaluation methods, GMLVQ and RBF based SVM, are built to
evaluate the feature selection results. The performance is evaluated in terms of
the AUC metric.

Feature Ranking Comparison Figure 23 describes the average feature rank-
ing results over 100 epochs from the four feature ranking methods. Since it is
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Figure 23: Feature ranking results on data set Connectionist Bench Sonar.

difficult to display all the 60 features clearly, only the top 30 features are vi-
sualized here for the ease of observation. It is observed that these four feature
ranking methods have similar results on this data set. For example, in the top 8
most important features ranked by these four methods, 6 of them are the same
which are respectively the 11t" 12" 10" 9t* 10" and 48" feature.

Feature Ranking Algorithm Evaluation In this section, different feature
ranking algorithms are evaluated by both the GMLVQ and SVM with RBF
kernel in terms of the AUC metric. Figure 24 describes the average evaluation
performance over 100 epochs using GMLVQ as the evaluation method on the
four feature ranking algorithms. It is observed that in the top six features, the
“Relieff” method outperforms other methods and achieves the maximal perfor-
mance at number of features being 4. Thereafter, the GMLVQ based feature
ranking methods take the lead. It is also noticed that the model which combines
the feature ranking training and evaluation process together still demonstrates
some considerable performance, indicating the advantage of GMLVQ feature
ranking method.

The evaluation results by RBF-based SVM in Figure 25 demonstrates that
the evaluation performances of all these four feature ranking methods consis-
tently improve with the increase of the number of features. Specifically, the
GMLVQ method starts at 0.82 when the number of features is 2 and achieves
the maximal performance among all these feature ranking methods at 0.95 with
the number of features being 36. Besides, the GMLV(Q based method has a
similar performance with the “Relieff” method and consistently outperforms the
other two methods.

Irrelevant Features 20 irrelevant features were added to the original data
set to test their ability to filter out irrelevant features. The irrelevant features
added are truly random continuous signals. From Figure 26, it is observed that
Information Gain method outperforms other methods by containing about only
1 irrelevant feature in the top 60 features, compared to 2 irrelevant features
from method Relieff and GMLV(Q based one. Fisher algorithm, on this data set,
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Figure 24: Evaluation on test set using GMLVQ on different feature selection
methods. Data set: Connectionist Bench Sonar.
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Figure 25: Evaluation on test set using SVM on different feature selection meth-
ods. Data set: Connectionist Bench Sonar.
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Figure 26: Irrelevant feature detection performance between different feature
selection methods. Data set: Connectionist Bench Sonar.

performs worst.

Redundant Features 9 Redundant features were added to the original data
set to form a data set with 69 dimensions and test their ability to filter out
redundant features. The results are shown in Figure 27. It indicates that the
GMLVQ based feature ranking method contains about 3.5 redundant features in
the top 44 features which is the best performance compared to other methods. It
is observed that the GMLVQ based method consistently outperforms the Fisher
and Relieff method for the whole range of subset size. When the size of feature
subset is over 52, the Information Gain method performs a little better than
GMLVQ based method.
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Figure 27: Feature ranking results after adding 9 redundant features. Data set;:
Connectionist Bench Sonar.

5.3.4 Case Study 4: Breast Cancer

The “Breast Cancer” data set describes characteristics of cell nuclei from digi-
tized images of fine needle aspirates of breast masses. It consists of 30 features
and 569 instances. There are two possible labels for each instance, indicating
whether the cancer is benign or malignant.

Feature Ranking Results Comparison Figure 28 describes the average
feature ranking results over 100 epochs from the four feature ranking results on
data set “Breast Cancer”. It shows that these four feature ranking methods have
similar ranking results on this data set. For example, all these fours methods
rank the nine features: 23 21t 28th 24th gth 3th 1th Ath 7th 55 the top 10
most important ones.

Feature Ranking Results Evaluation In this section, all these four feature
ranking methods are evaluated by GMLVQ and RBF-SVM in terms of their
AUC metric. Figure 29 describes the performance evaluated by GMLVQ. A
closer inspection reveals that there is no dominant method on this data set with
the methods of Relieff, Information Gain and Fisher take turn to lead. GMLVQ
based method performs a little worse than others on this data set.

Figure 30 describes the evaluation performance of RBF-SVM. It is seen from
the figure that all these four methods perform quite similarly while the GMLVQ
based method slightly outperforms others when the subset size is between 14 to
24.
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Figure 28: Feature Ranking Results on data set Breast Cancer
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Figure 29: Evaluation on test set using GMLVQ on different feature selection
methods. Data set: Breast Cancer
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Figure 30: Evaluation on test set using SVM on different feature selection meth-
ods. Data set: Breast Cancer

Irrelevant Features 20 more random features are added to the original data
to form a 50 dimensional data set. It is seen from Figure 31 that the Information
Gain method performs best followed by the GMLVQ based method. Specifically,
when selecting the top 30 features, the GMLVQ based method contains about
3 irrelevant features on average, filtering out the other 18 noisy features.

Redundant Features 9 redundant features are added into the original data
to form a data set of 39 features. All the 9 features are duplicates of one of the
features in the original data set and added with Gaussian noises. It is shown
in Figure 32 that the GMLVQ based method performs consistently better than
the others when the size of subset is smaller than 30. However, even the best
performance still contains 6 redundant features in the top 30 important list,
indicating that all these four methods can not effectively filter out redundant
features on this data set.

5.3.5 Case Study 5: SPECTF Heart

The SPECTF Heart data set describes the diagnosis of the Single Proton Emis-
sion Computed Tomography (SPECT) images. It consists of 267 instances and
44 dimensions with each dimension describing one feature extracted from the
SPECT images. Each instance is labeled as normal or abnormal, indicating
whether the patient suffers from the disease. There are no missing values in
this data set. In each run of training, 160 examples are randomly selected for
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Figure 31: Irrelevant feature detection performance between different feature
selection methods. Data set: Breast Cancer
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Figure 32: Feature ranking results after adding 9 redundant features. Data set;:
Breast Cancer
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Figure 33: Feature ranking results on data set SPECTF Heart.

training, the other 53 are randomly selected for validation and the remaining
54 examples serve as the test data.

Feature Ranking Results Comparison Figure 33 describes the average
feature ranking results over 100 epochs on data set SPECTF Heart. In the top
12 most important features, 7 of them are the same which are the 40", 41",
26" 6th, 251" 43th and 30'" features. It indicates that on this data set, these
feature ranking results have similar ranking results.

Feature Ranking Algorithm Evaluation All the feature ranking methods
are evaluated in this section. Figure 34 illustrates the evaluation performance
by GMLVQ. It is seen from the figure that when selecting the top eight most
important features, GMLVQ based method performs the best and after that the
fisher method takes the lead and in the end they converge to about 0.77 in terms
of AUC. It is noticed that the GMLVQ based method achieves the maximum
performance by selecting only the top six features which means that these six
features may be most informative and strongly relevant for classification.

Figure 35 illustrates the evaluation performance by SVM. As seen from the
figure, the Relieff method takes the lead in the top 8 features and after that
the GMLVQ based method performs better than others when the number of
features is larger than 16.

Irrelevant Features 9 continuous random features are added to the original
data to form a 53 dimensional data set. The feature ranking results are shown
in Figure 36. It is noticed that the Information Gain method performs the
best in this case. On the other hand, GMLV(Q based method performs worst.
Specifically, the number of irrelevant features it contains increases linearly with
the size of feature subset, indicating that most of the irrelevant features can not
be detected and filtered out.

Redundant Features The 21* 10" and 43" feature in the original data set
were selected to generate redundant features. The ranking results are shown in
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Figure 34: Evaluation on test set using GMLVQ on different feature selection
methods. Data set: SPECTF Heart
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Figure 35: Evaluation on test set using SVM on different feature selection meth-
ods. Data set: SPECTF Heart
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Figure 36: Irrelevant feature detection performance between different feature
selection methods. Data set: SPECTF Heart

Figure 37. On this data set, the GMLVQ based method performs much better
than the others. For example, by choosing a subset of 40 features, only 1.5
redundant features on average are included, indicating that the GMLVQ based
method can filter out most of the redundant features and assigning them as the
least important ones.
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Figure 37: Feature Ranking Results After Adding 9 Redundant Features. Data
set: SPECTF Heart
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5.4 Discussion and Summary

Five experiments have been conducted in this chapter to compare the perfor-
mances of the four features ranking algorithms. Their performances differ per
data set, and a summary is provided here to conclude their comparison.

The performances are evaluated by GMLV(Q and RBF-SVM in terms of their
AUC metric. An easy way to compare their evaluation performance may be to
count the percentage that each method dominates among these four ranking
algorithms. An algorithm which dominates on more features may be regarded
as providing a better ranking results with respect to the evaluation methods.
The summaries can be seen in Table 3 and Table 4. It is obvious from Table
3 that GMLVQ related feature ranking methods, including the first and second
columns, dominate the performances, indicating the advantage of GMLV(Q based
methods. Table 4 also demonstrates the advantage of the GMLVQ based feature
ranking method. To be more specific, on three of these five data sets, the
GMLVQ based method has a dominance over 50%.

To compare their performances on filtering out irrelevant features, we count
the number of irrelevant features they contain when the sizes of subset are
equal to the original feature set before adding irrelevant features. The results
are shown in Table 5. It is shown from the table that the Information Gain
method performs best among the five experiments and in three of these exper-
iments, the GMLV(Q based method performs in the second place. On average,
the Information Gain method has the best performance. The GMLV(Q based
method is in the second place. The Relieff and Fisher methods are respectively
in the third and fourth place.

The performances on filtering out redundant features are also compared by
counting the number of redundant features the four algorithms contain when
the size of subset is equal to the original data set before adding redundant
features. The results are shown in Table 6. It is shown that the GMLV(Q based
method contains 29.08 redundant features in total over the five data sets. This
performance is close to that of the method Information Gain which contains
28.8 redundant features in total. On the other hand, the Relieff and Fisher
methods respectively contain 34.6 an 34 redundant features in total.

| Name of Dataset | GMLVQ Based | GMLVQ Based Using Original Omega | Information Gain | Fisher

Relieff

Adrenal Tumor 31.25% 12.50% 43.75% 0% 12.50%
Ionosphere 12.50% 75.00% 6.25% 0% 6.25%
Connectionist Bench Sonar 13.33% 53.33% 13.33% 6.67% 13.33%
Breast Cancer Wisconsin 6.67% 33.33% 13.33% 26.67% 20.00%
SPECTF Heart 28.57% 0% 42.86% 7.14% 21.43%

Table 3: Percentage of dominance of each method, evaluated by GMLVQ
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Name of Dataset GMLVQ Based Information Gain | Fisher | Relieff |

Adrenal Tumor 56.25% 0% 0% 43.75%
Ionosphere 25.00% 56.25% 6.25% 12.50%
Connectionist Bench Sonar 66.66% 0% 0% 33.33%
Breast Cancer Wisconsin 20.00% 33.33% 20.00% 26.67%
SPECTF Heart 71.43% 0% 14.29% 14.29%

Table 4: Percentage of dominance of each method, evaluated by RBF-SVM

| Name of Dataset | GMLVQ Based | Information Gain | Fisher | Relieff |
Adrenal Tumor 2 0 6.8 3.4
Ionosphere 1.6 1 6.2 1.8
Connectionist Bench Sonar 7.2 1.2 8.0 3.6
Breast Cancer Wisconsin 2.8 0 3.2 8.6
SPECTF Heart 8.6 0 2.8 7.2

Table 5: Comparing the performances on irrelevant features

| Name of Dataset | GMLVQ Based | Information Gain | Fisher | Relieff |
Adrenal Tumor 8.28 7.2 9.0 8.4
Ionosphere 5.8 6.4 6.2 5.4
Connectionist Bench Sonar 5.5 4.8 6.6 8.2
Breast Cancer Wisconsin 6 6 6 6
SPECTF Heart 3.5 4.4 6.2 6.6

Table 6: Comparing the performances on redundant features
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Chapter 6

6 Conclusion and Future Work

This thesis investigates the application of GMLVQ model on the the feature
ranking problems. The basic concepts in classification and feature selection are
discussed in the first three chapters as background information. Three state-of-
the-art feature ranking techniques are then described and introduced to work as
comparison methods for the GMLVQ based method. The GMLV(Q based feature
ranking technique is intensively described in Chapter 4 and then followed by
experimental results on the data sets collected from the UCI repository [29].

The experimental results, evaluated by GMLVQ and RBF-SVM, indicate
that GMLVQ based feature ranking method is comparable with other state-of-
the-art methods. Sometimes it consistently outperforms other methods. For
example, on the data set “Ionosphere” evaluated by “GMLVQ”, the GMLVQ
based method consistently has superior performance to others.

Another noticeable feature about GMLVQ based feature ranking method is
that it can combine the processes of feature ranking and classification together
which can help to save much computation time. Because the feature ranking
result is extracted from the distance metric from the training, after a specific
feature subset is selected the distance metric can then directly be obtained by
collecting the corresponding columns and removing the others. In this way,
there is no need to retrain the learning model and the classification result can
be directly obtained. The experimental results in this thesis demonstrate that
its performance is comparable to other results which perform feature ranking
first and model training in two steps.

The ability of the feature ranking methods to deal with irrelevant and redun-
dant feature is also tested and the results demonstrate that these four feature
methods have better ability to tackle irrelevant features than redundant fea-
tures. On average, these four methods will contain more redundant features
than irrelevant features when a specific feature subset is evaluated.

To answer the three research questions proposed in Chapter 1:

1. Can GMLVQ method be extended to perform feature ranking?

Yes, GMLVQ can be extended for feature ranking. The algorithm is de-
tailed in Chapter 4. The feature ranking results are obtained by measuring the
diagonal elements of the relevance matrix in GMLVQ. The diagonal elements
are regarded as a measurement of the contributions of the features for classi-
fication. External force is incorporated to enforce more discriminative ranking
results and to obtain a unique ranking list, the feature-pair linear dependency
in the relevance matrix is removed.

2. How well does the feature ranking perform?

The performances of the GMLVQ based method are comparable to the other
three state-of-the-art feature ranking methods. It is shown that on some of the
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data sets, the GMLVQ based method consistently performs better than other
ranking algorithms and on average, the GMLV(Q based method performs better
than any of the other three algorithms. For example, when the performances
are evaluated by RBF-SVM, the GMLVQ based method demonstrates its per-
formance dominance on three out of five data sets that have been tested. When
the GMLV(Q model is used for evaluation, the combination of the two GMLVQ
based methods also illustrates the performance superior to other methods on
three out of five experiments.

3. Can GMLVQ combine the feature ranking and classification into one
single process and how well does the classification perform compares to other
methods in which feature ranking and classification are performed in two steps?

Yes, the process of feature ranking and classification can be combined to-
gether under the framework of GMLVQ model. Its performances are compared
with four other feature ranking algorithms and it indicates the performances are
still comparable with other methods which perform feature ranking and classi-
fication in two steps. Among all the five data sets that have been tested, it has
dominant performances on three of them which is a quite promising results.

Some challenges and future work can still be extended after this thesis.

Feature Selection with Larger Data Set Some data sets in practi-
cal applications contain hundreds or thousands of features. Such data sets
require efficient feature selection methods to select the most representative fea-
ture subset. Experiments on such data sets may also demonstrate some new
characteristics of the feature ranking methods in this thesis.

Feature Selection with Active Data Selection In this thesis, the train-
ing, validation and test data are selected randomly from the original data set, ig-
noring the different data characteristic that different instances can have. Active
data selection means to explore the data characteristics first and then actively
select the instances with higher probability to be informative for the training
of feature selection. Such active training may improve the stability and perfor-
mance of feature selection.

Investigate The GMLVQ Based Method on Feature Redundancy
Although some of the experiments in this thesis demonstrate that the GMLVQ
based method has better performance to filter out redundant features compared
to other state-of-the-art methods, its theoretical foundation to deal with redun-
dancy has not yet been investigated. Since the GMLV(Q model already accounts
for feature pair contribution for classification, the study may be extended to
investigate the feature pair correlation and try to reduce their influence on the
classification.
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