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Abstract— Optimal traffic light control is a multi-agent by a reward function which emits a scalar reward value
decision problem, for which we propose to use reinforcement after each time step. Now the goal of the agent becomes to
learning algorithms. Our algorithm learns the expected wait- o451 3 policy which maximizes its cumulative reward intake
ing times of cars for red and green lights at each intersection, . . .
and sets the traffic lights to green for the configuration througho.ut its fgture. To learn the policy, a value functisn
maximizing individual car gains. For testing our adaptive Used which estimates how much future reward the current
traffic light controllers, we developed the Green Light District ~ state will give. Reinforcement learning has already been
simulator. The experimental results show that the adaptive successfully applied for particular problems such as iegrn
algorithms can strongly reduce average waiting times of cars to play backgammon at human expert level [3], learning to
compared to three hand-designed controllers. . . . ey

control multiple elevators in a simulated building [4], and
I. INTRODUCTION network routing [5].

This paper describes our research in simulation and Decision Problem.The environment co_nsists of sta_tes

optimization of traffic light controllers to minimize car 5 € 151,---, 9.}, for example for each discrete possible

waiting times in a city. For optimization, we have developecPOSition (cell) _in an infrastructure there is a state which
a reinforcement learning (RL) [1], [2] algorithm that learn MaY b€ occupied by a car. If there would betm << n)
waiting times of cars before traffic lights, and uses thesg?' which could occupy any state, there would be about
estimates to set the traffic light configuration. Our conZ’. Possible traffic configurations.

troller uses information about the locations of cars around | Nere are actions for the traffic light controller that rep-
the intersection, which is different from fixed-cycle traff resent possible traffic light configurations that do not lead

controllers where a cycle of configurations is defined ifi® @ny Possible collisions between cars on an intersection.
which all traffic gets a green light at some point. As an example: for a 4 four-way junction with one lane for

We have compared our reinforcement learning algorith/d©ind |eft and one lane for going right/straight, we have 8
to other hand-designed controllers using the Green Ligi0SSiPle actions (4 actions: for one street with two lanes
District (GLD) simulator which we have developed. cLpPoth traffic lights green for left and for right/straight; 2
makes it possible to construct infrastructures by using tr%CtIOH'SZ fr.om opposmg.streets both I|ght§ green for left;
mouse, simulate many different traffic patterns, build and 2ctions: from opposing streets both lights green for

test many different traffic light controllers, and displaySt@ight/right). We denotel; as the traffic light configura-

experimental results using a number of different statistOn (&ction) for node; in the infrastructure. The complete
t of actions of all traffic controllers in the infrastruetu

cal measures (such as average waiting time). The resuftS g h s q fth ) ¢ all
showed that the reinforcement learning algorithms clearl rﬁe_presgnte as the Cartesian product of the actions of a
raffic nodes.

outperform the handwritten controllers. . .
For developing the goal for the multi-agent system, we

Outline. In section 2 we discuss reinforcement learnin d function. Th 4 funci .
as an optimization tool, and present our traffic light con- S€ a reward function. The reward function we use Is more

troller based on reinforcement learning. In section 3 w@ cost function, since we deal with a minimization problem

describe the GLD simulator. Then, in section 4 we preserTfOur gOf?I '? :10 m_lrr;:mlz_e tTe Waltlr:jg]c times of r;\]I_I rc}:ars
our experimental setup and results. Section 5 summarizgg ore traffic lights. The simple reward function, which we

related work on intelligent traffic light control. Finally, _l;se, emits agqst of 1 |rf]a car hzsfto w_dii(s, s).: L, gndN
section 6 concludes this paper. if a car can drive on the reward function emits a 0. Now

the goal is to minimize the sum of the emitted costs during
I[I. REINFORCEMENT LEARNING FOR TRAFFIC an extensive period of time.
LIGHT CONTROL For optimization, we use value functions. We define the

Reinforcement learning is a machine learning algorithnfalue@(s, 1) of a car being in one state (which may include
used for learning to control an agent from trial and errofh€ destination address, which makes the state [p, d
[1], [2]. The agent receives inputs from the environmenWith p the position in the infrastructure, and as the
describing the environmental state and uses its policy &S destination) in the queue and having its lighset
select actions based on its current inputs. Evaluative-feetp red/green as follows:
back for judging how well the agent is doing is provided Q(s,red) = R(s,s) + vV (s) = 1 + 4V (s)
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WhereP(s, s') is the transition probability that the car goes *E‘i‘t'a‘"“g"‘“’ =lolx
to a next states’. Note thats’ could also bes, since a car —

i . LT = [roos =] 4 | Pl m||Hian |
may have to wait even though its traffic light is green (as =1 4 DlAIP] <] »] .ll | 5
in congestions). We use < 1 for the discounting factor il ‘.f_ 0 “,l;H . 4ol
which trades off immediate costs versus long-term costs and 7l T/
makes the Q-functions finite. Finally/(s) is defined as:

V(s) = P(green|s)Q(s, green) + P(red|s)Q(s,red)
o

where P(l|s) with I € {red,green} is defined as the
probability the light is on red/green when the car is in — _';I
states. V(s) estimates the average time a car has to wait 14 — 2
until its destination address without knowing the traffic ~ Fausedateen

light decision. By definitionV'(s) = 0, if s is the cars LA ot he G Liaht District simulae i
A : 9. 1. screenshot from the Green Light District simulafidre image
destination address (and the car will be removed from tHs:(%ows a junction with traffic lights, two edge-nodes, and sooagls with

infrastructure). cars. The number above the edge-node on the right indicatepatvning
For all cars the waiting time for a red light will be longer frequency.

than the waiting time for a green light. Therefore each car

will have an advantage to set its light to green based on

its waiting time for red minus its waiting time for green. If ang sets the traffic light configuration which maximizes this
we take for each traffic node the sum of all gains of cargoynt. In our system the counts are the learned Q-values
standing in the queue for the traffic light, we get an optimajyhich have values depending on the transition probatsiitie
local decision if we choose the traffic configuratidnthat  gnd the probability of setting a light to green. For example,
sets the light to green for traffic lights maximizing the f one car competes with always 10 cars on a different lane,

cumulative gain: then the counting system will always let the 10 cars drive
A% — hax s, red) — Q(s, green and the single one wait. In the RL system, the gain of the
/ A; Z Z @ )= Qg ) single car will go to a very large value if it has to wait

i€A; s€queue; ; X X )
a long time. Therefore the single car is allowed to drive

By learning the waiting times, we get a better and bettéfier some time as well, which is an effect of the learning
traffic light controller. How can we learn the transition gynamics and not designed ad-hoc.

probability functionsP(s, s’), P(green|s), and P(red|s)?
This is simply done by frequency counting. Each time a Ill. GREEN LIGHT DISTRICT SIMULATOR
car makes a transition to another state or has to wait, the oy simulating our adaptive controller and comparing it

probabilities are updated using counters, which is a simplgjth other algorithms on a broad range of infrastructures
and cheap way of inducing the model. and traffic patterns, we developed the Green Light Dis-
By applying this, we can compute both the Q- and Vyict (GLD) simulator in Javal GLD allows us to edit
functions (we initialize them to 0.0 for all states). Eachnfrastructures using the mouse, to set different spawning
time a car makes a step (or stands still), we update gllequencies creating different traffic patterns, to corapar
counters and recompute the Q- and V-functions. If a traffiparge number of implemented controllers (new ones can be
light decision has to be made, we sum over all gains Qfasjly added), and to evaluate the controllers using eiffer
cars standing in the queue and select the configuration thahtistical measures (such as average waiting time of.cars)
maximizes the score. The simulator itself is based on a cellular automaton model
Co-learning driving policies. A nice additional feature [6], and therefore a microscopic model which can be used
of our method is that cars can use the waiting timegy modelling various amounts of detail (e.g. the road user
computed at traffic lights for selecting a way for drivingcoyid be a car, bus, police car, etc.).
in the city. For this we have to expand the state of the car |nfrastructures. An infrastructure consists of roads and
by combining it with its destination. When we use a randongges. A road connects two nodes, and can have several
shortest path driving policy, we select a random next langnes in each direction (see Fig. 1). The length of each
from the set of possible next lanes lying approximately ORoad is expressed in units. A node is either a junction where
the shortest path. In the co-learning approach cars use §gic lights are operational (although when it connecty on
V-function to choose the next lane. For this, we look whag,q roads, no traffic lights are used), or an edge-node.
the average waiting time until the destination address for Agents. There are two types of agents that occupy
all possible next lanes are (in our system we use the firgh infrastructure; vehicles and traffic lights. All agents
position of each next lane lying on a shortest path). act autonomously, following some simple rules, and get

Workings of the learning controllers. We can compare pqated every time-step. Vehicles enter the network at the
our system to a system which always counts the number

of cars which can move on when the light is set to green 'GLD can be downloaded from http://www.sf.net/projectsgiicht.



edge-nodes. Each edge-node has a certain probability of
generating a vehicle at each time step. Each vehicle that is
generated is assigned a destination, which is one of the othe
edge-nodes. The distribution of destinations for each edge
node can be adjusted. There are several types of vehicles,
defined by their speed, length, and number of passengers.
For our experiments we only used cars, which move at a
speed of two units (or one or zero if they have to brake)
per time step, have a length of two units, and have two
passengers. The state of each vehicle is updated every time
step. It either moves with the distance given by its speed,
or stops when there is another vehicle or a red traffic light
ahead. At a junction, a car decides to which lane it should go

next according to its driving policy. Once a car has entereﬂdg- 2. ('jnffaStlfluPthe for the expefimenh Eok?es f?f?tfl'ti%d Wgﬂ‘flﬁrezent

. . edge-noaes. All intersections are controlle: ytra 1 ana all eages
a lane, it cannot SWItC,h Ian_es' . . represent roads with two lanes in each direction. At eacle edgle, 0.4
Controllers. Every junction is controlled by a traffic cars are generated each cycle.

light controller (TLC) that decides on the best configunatio
of red and green lights. A TLC will only consider safe

configurations, that is, configurations in which moving cars  resembling the Best First algorithm paired with the
do not intersect. A TLC can share information with other 1 ,cket mechanism.

controllers to improve global performance. GLD has several , Relative Longest Qchooses to set the lights to green
built in TLCs, and allows for custom TLCs. We used the for the queues with the maximum ratio of waiting road
following controllers in our experiments: users versus length of the road. Because completely
e TheTC-1 algorithm uses the reinforcement Iearning f|||ed up roads get priority over roads Where many
algorithm described in section 2. The car-state is  people are waiting, but are not full, this algorithm may
extended with information about the destination of the  ayoid jammed traffic.
car. The discount factor used by the algorithm was set pq driving policies, the random shortest path policy

t0 0.9. o ) o ) selects a random next lane lying on an approximately
« TC-1 Destinationlessis a simplified version of TC-1 ithin 10% range) shortest path to the destination address.

that does not use destinations in its computations. e compare this to co-learning which uses the computed
« TC-1 Bucketis TC-1 extended with the Bucket algo- yajting times, which can only be used with the RL algo-
rithm that is described below.

rithm.
e TC-1 Co-learning can be used with TC-1 and with
TC-1 Bucket, but not with TC-1 Destinationless, since IV. EXPERIMENTS
it requires information about vehicle destinations. We performed two series of experiments. For our first

« Best first always selects the traffic light configurationseries of experiments we used the grid-like infrastructure
which sets the lights to green for the largest amourdepicted in Fig. 2. With 12 edge nodes and 16 junctions, 15
of cars in the queues. of which have traffic signs, and 36 roads, 4 lanes wide each,

« The Bucket algorithm is used for optimizing traffic it is a structure of reasonable size and interesting enough
flow in cities of very high traffic densities. The basicto compare the different algorithms. When totally filled up,
thought underlying the mechanism is that each traffi¢ contains about 1500 vehicles. All edge nodes were set at

light from which no movement is possible due tothe same spawning frequencies of 0.4, and for each edge

overfull destination lanes communicates part of itsode, all other nodes were given an equal chance of being
summed gain values there to stimulate movementhe destination of a new car.
Each traffic light sums the gain values calculated by the Results. As shown in Fig. 3, the TC-1 algorithms out-
traffic controller algorithm into its bucket. This value perform all other algorithms. TC-1 with co-learning clgarl
is used to determine the optimal configuration of greeperforms best, with an average trip waiting time (ATWT)
traffic lights, instead of the originals calculated by theof 6.46 during the last 10.000 cycles (see Table I). TC-1
TLC. Destinationless, the simplified version of TC-1, performs
« ACGJ-3 was the first traffic light controller algorithm surprisingly well, and seems to outperform TC-1 when co-
we paired with the bucket mechanism. The gain valukearning is not used. The TC-1 bucket algorithm is the worst
for a traffic light is calculated by summing over all performing of the TC-1 algorithms, but still outperforms
waiting road users, multiplying the road user weightACGJ-3, which is a best first algorithm with a bucket.
with a length-factorf™, wheren is the place of the Note that the best non-adaptive controller (ACGJ-3) has an
car in the queue. In the experiments presented in thavserage trip waiting time which is more than 30% larger
paper we used the ACGJ-3 algorithm (with= 1), than the ATWT of the best TC-1 algorithm.
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Fig. 4. Infrastructure for the second experiment. The inrtgreenodes
represent a city centre, surrounded by ring roads. Traffimfoutside the
city can either drive around or enter the city centre. Tradficning from
the centre always leaves the city. All intersections featuaffic lights.

Fig. 3. Results of the experiment. Each result is an averagterof
simulations.

Second Experiment.We also compared the traffic light

controllers using an infrastructure containing an inned anhjs particular structure, where there are few origins and
an outer part of edge-nodes, resembling a city-centre Syastinations, but always multiple routes, choosing betwee
rounded by highways (see Fig. 4). The inner edge-nodegytes randomly may result in an equal distribution of
represent access to the city centre, and the outer edge-noggnicles. When co-learning is used, all drivers with the
are the connections to the approach roads. The networkdgme origin and destination choose the same route, and that
of reasonable size, with a total of 615 units length of tworgyte might get more saturated. Another interesting result
lane, two-way roads. We again determined a traffic 10ag the fact that the TC-1 destinationless algorithm, whigh i
near saturation by experimenting with different spawning simplified version of TC-1, performs as well as the TC-1
frequencies. For this infrastructure, this point occurmgn algorithm. Note that the best non adaptive controller agai

all spawning frequencies are set(ia. ACGJ-3) has an ATWT which is more than 25% larger than
Results of Second Experiment.The results of the ihe ATWT of the best RL algorithm.

second experiment are shown in Table Il and Fig. 5. The

TC-1 algorithms again outperformed the others, but TC-1 V. RELATED WORK

with co-learning is no longer the best. TC-1 with the normal Many different approaches to intelligent traffic light con-

shortest path driving policy performs better, indicatih@tt trol exist. In this section we summarize a number of these.

the effect of co-learning depends on the infrastructure. In Expert Systems.An expert system uses a set of given
rules to decide upon the next action. In traffic light control

TABLE |
COMPARISON OF THE CONTROLLERS ON THE INFRASTRUCTURE OF TABLE I
FIG. 2. THE ATWT SHOWN IS AN AVERAGE OVER THE LAST10.000 RESULTS OF THE EXPERIMENT ON THE CITYLIKE INFRASTRUCTURE
CYCLES OF ALL TEN EXPERIMENTS DEPICTED INFIG. 4.
| Controller [ ATWT | | controller [ ATWT |
1 | TC-1 Co-learning 6.46 1 | TC-1 Destinationlesy 2.67
2 | TC-1 Destinationless 7.14 2 | TC-1 2.68
3| TC-1 7.40 3 | TC-1 Co-learning 2.82
4 | TC-1 Bucket 8.20 4 | TC-1 Bucket 3.25
5 | ACGJ-3 8.46 5 | ACGJ-3 3.57
6 | Best First 9.27 6 | Best First 4.23
7 | Rel Longest Q 9.46 7 | Rel Longest Q 4.75




random fluctuations. The control system tries to minimize
not only the total delay, but the summed deviations from the

5 average delay as well. Since it is no longer beneficial to let
/ a vehicle wait for a long time, even if letting it pass would
Prress e increase the total waiting time, this introduces a kind of
w fairness. Data of about 15 minutes is used to determine the
optimal settings for the next cycle, and even using a simple

N TN . .
5 %Mwm% optimization algorithm, the system performs well compared
=
<

to preset and actuated controllers.

2 — Relative longestQ | | . . .
— Best First Fuzzy Logic. Tan et al. (1995) describe a fuzzy logic
e e controller for a single junction that should mimic human
1 7%:1 Co — intelligence. Fuzzy logic offers a formal way of handling
—_TC-1 Destinationless terms like "more”, "less”, "longer” etc., so rules like "if
o there is more traffic from north to south, the lights should
N N stay green longer” can be reasoned with. The fuzzy logic

N \) \) Q Q \) Q Q
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cycles

controller determines the time that the traffic light should
stay in a certain state, before switching to the next stdte. T
Fig. 5. Results of the experiment on the city-like infrastane depicted order of states is predetermined, but the controller cgmaki
in Fig. 4. Each result is an average of 10 simulations. state if there is no traffic in a certain direction. The amount
of arriving and waiting vehicles are quantized into fuzzy
variables, like many, medium and none. The activation of

the variables in a certain situation is given by a membership

such an action can change some of the control parametefr fiction, so when there are 5 cars in the queue, this might

Findler and Stapp (1992) describe a network of roadl%Sult in an activation of 25% of 'many’ and 75% of

connected by traffic light-based expert systems. The expg edium’. Fuzzy rules are used to determine if the duration

systems can communicate to allow for synchromzatlor}jf the current state should be extended. In experiments

Performance on the network depends on the rules that e fuzzy logic controller showed to be more flexible than

used. '.:O.r each traffic “ght controller, the set of r.ules Calved controllers and vehicle actuated controllers, alhayvi
be optimized by analyzing how often each rule fires, an

affic to flow more smoothly, and reducing waiting time. A
%TQ‘Sadvantage of the controller seems to be its dependence

Findler and Stapp showed that their system could 'MPIOVE;, the preset quantification values for the fuzzy variables.

performance, but they had to make some simplifying aSfhey might cause the system to fail if the total amount of

sumptions to avoid too much computation. traffic varies. Furthermore, the system was only tested on a
Prediction-based optimization. Tavladakis and Voul- gjngle junction.
garis (1999) describe a traffic light controller using a denp | ee et al. (1995) studied the use of fuzzy logic in
predictor. Measurements taken during the current cycle aggntrolling multiple junctions. Controllers received ext
used to test several possible settings for the next cycte, afformation about vehicles at the previous and next junc-
the setting resulting in the least amount of queued vehiclggns, and were able to promote green waves. The system
is executed. The system seems highly adaptive, and may§gtperformed a fixed controller, and was at its best in either
even too much so. Since it only uses data of one cycle, |ight or heavy traffic. The controller could easily handle
could not handle strong fluctuations in traffic flow well. Inchanges in traffic flow, but required different parameter
this case, the system would adapt too quickly, resulting igettings for each junction.
poor performance. Evolutionary Algorithms. Taale et al. (1998) compare
Liu et al. (2002) introduce a way to overcome problemsising evolutionary algorithms (au()) evolution strategy
with fluctuations. Traffic detectors at both sides of a jumtti [12]) to evolve a traffic light controller for a single simteal
and vehicle identification are used to measure delay dfitersection to using the common traffic light controller
vehicles at a junction. This is projected to an estimateth the Netherlands (the RWS C-controller). They found
average delay time using a filter function to smooth outomparable results for both systems. Unfortunately they



did not try their system on multiple coupled intersectionscommunication between traffic lights. Furthermore, we want
since dynamics of such networks of traffic nodes are mudie study other controllers and compare them to the ones
more complex and learning or creating controllers for therpresented here. We also want to study different traffic
could show additional interesting behaviors and researgatterns, including non-stationary ones. Finally we want t
questions. make the traffic model more realistic by taking different

Reinforcement Learning. Reinforcement learning for car-speeds into account. The RL algorithms can use this
traffic light control has first been studied by Thorpe [14]information immediately by using the speeds in the states
[15], but Thorpe’s approach is different from ours. He usedf the cars.
a traffic light-based value function, and we used a car-
based one. Thorpe used a neural network for the traffic-light

i i i it ; [1] R. S. Sutton and A. G. BartdReinforcement Learning: An Introduc-
based value functlon W.hICh .prEdICt.s the waiting time for, tion, The MIT press, Cambridge MA, A Bradford Book, 1998.
all cars standing at the junction. This means that Thorpe'sy; | 'p. kaelbling, M. L. Littman, and A. W. Moore, “Reinforceent
traffic light controller have to deal with a huge number learning: A survey,”Journal of Artificial Intelligence Researchol.
. . : ; 4, pp. 237-285, 1996.

of states, where learning time and variance may be quit 3] G.J. Tesauro, “Temporal difference learning and TD-Gamjfnhon
large. Furthermore, Thorpe used a somewhat other form” communications of the ACMol. 38, pp. 58-68, 1995.
of RL, SARSA (State-Action, Reward-State Action) with [4] Robert H. Crites and Andrew G. Barto, “Improving elevator

eligibility traces [16]. and we use model-based RL. performance using reinforcement learning,” Advances in Neural
9 ty [ ]’ Information Processing SystemBavid S. Touretzky, Michael C.

Thorpe trained only a single traffic light controller, and Mozer, and Michael E. Hasselmo, Eds. 1996, vol. 8, pp. 1012310
tested it by instantiating it on a grid df x 4 traffic lights. The MIT Press.

The controller can decide to let either traffic on the north-[3! Justin A. Boyan and Michael L. Littman, “Packet routing in
dynamically changing networks: A reinforcement learningrapph,

?mﬂh axis or on the east-west axis pass. A .n.eural network i, advances in Neural Information Processing Systedeck D.
is used to predict the Q-values for each decision, based on Cowan, Gerald Tesauro, and Joshua Alspector, Eds. 19946yol
the number of waitin rs and the time since the lights | pp. 671-678, Morgan Kaufmann Publishers.

e number of wal 9 cas_a d the .es Cfe € lights fas 6] K. Nagel and M. Schreckenberg, “A cellular automaton moidel
changed. The goal state is the state in which there are n freeway traffic,” J. Phys. | Francevol. 2, pp. 2221-2229, 1992.
cars waiting. [7] N. Findler and J. Stapp, “A distributed approach to optiea control

The system outperformed both fixed and rule-based ‘;flgfflee;;fagg?_ signals Joumal of Transportation Engineeringol.
controllers in a realistic simulation with varying speed. [g] K. Tavladakis and N. C. Voulgaris, “Development of an awimous
Performance is said to be near optimal. Controllers trained adaptive traffic control system,” ifESIT '99 - The European

n ingle iunction h h m rforman ntroller Symposium on Intelligent Techniqua999.
on asingle junctio ad the same performance as contro 6[3] H. L. Liu, Jun-Seok Oh, and W. Recker, “Adaptive signahtrol
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