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Abstract— Optimal traffic light control is a multi-agent
decision problem, for which we propose to use reinforcement
learning algorithms. Our algorithm learns the expected wait-
ing times of cars for red and green lights at each intersection,
and sets the traffic lights to green for the configuration
maximizing individual car gains. For testing our adaptive
traffic light controllers, we developed the Green Light District
simulator. The experimental results show that the adaptive
algorithms can strongly reduce average waiting times of cars
compared to three hand-designed controllers.

I. INTRODUCTION

This paper describes our research in simulation and
optimization of traffic light controllers to minimize car
waiting times in a city. For optimization, we have developed
a reinforcement learning (RL) [1], [2] algorithm that learns
waiting times of cars before traffic lights, and uses these
estimates to set the traffic light configuration. Our con-
troller uses information about the locations of cars around
the intersection, which is different from fixed-cycle traffic
controllers where a cycle of configurations is defined in
which all traffic gets a green light at some point.

We have compared our reinforcement learning algorithm
to other hand-designed controllers using the Green Light
District (GLD) simulator which we have developed. GLD
makes it possible to construct infrastructures by using the
mouse, simulate many different traffic patterns, build and
test many different traffic light controllers, and display
experimental results using a number of different statisti-
cal measures (such as average waiting time). The results
showed that the reinforcement learning algorithms clearly
outperform the handwritten controllers.

Outline. In section 2 we discuss reinforcement learning
as an optimization tool, and present our traffic light con-
troller based on reinforcement learning. In section 3 we
describe the GLD simulator. Then, in section 4 we present
our experimental setup and results. Section 5 summarizes
related work on intelligent traffic light control. Finally,
section 6 concludes this paper.

II. REINFORCEMENT LEARNING FOR TRAFFIC
LIGHT CONTROL

Reinforcement learning is a machine learning algorithm
used for learning to control an agent from trial and error
[1], [2]. The agent receives inputs from the environment
describing the environmental state and uses its policy to
select actions based on its current inputs. Evaluative feed-
back for judging how well the agent is doing is provided
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by a reward function which emits a scalar reward value
after each time step. Now the goal of the agent becomes to
learn a policy which maximizes its cumulative reward intake
throughout its future. To learn the policy, a value functionis
used which estimates how much future reward the current
state will give. Reinforcement learning has already been
successfully applied for particular problems such as learning
to play backgammon at human expert level [3], learning to
control multiple elevators in a simulated building [4], and
network routing [5].

Decision Problem. The environment consists of states
s ∈ {S1, . . . , Sn}, for example for each discrete possible
position (cell) in an infrastructure there is a state which
may be occupied by a car. If there would bem(m << n)
cars which could occupy any state, there would be about
nm possible traffic configurations.

There are actions for the traffic light controller that rep-
resent possible traffic light configurations that do not lead
to any possible collisions between cars on an intersection.
As an example: for a 4 four-way junction with one lane for
going left and one lane for going right/straight, we have 8
possible actions (4 actions: for one street with two lanes
both traffic lights green for left and for right/straight; 2
actions: from opposing streets both lights green for left;
2 actions: from opposing streets both lights green for
straight/right). We denoteAj as the traffic light configura-
tion (action) for nodej in the infrastructure. The complete
set of actions of all traffic controllers in the infrastructure
is represented as the Cartesian product of the actions of all
traffic nodes.

For developing the goal for the multi-agent system, we
use a reward function. The reward function we use is more
a cost function, since we deal with a minimization problem
— our goal is to minimize the waiting times of all cars
before traffic lights. The simple reward function, which we
use, emits a cost of 1 if a car has to wait:R(s, s) = 1, and
if a car can drive on the reward function emits a 0. Now
the goal is to minimize the sum of the emitted costs during
an extensive period of time.

For optimization, we use value functions. We define the
valueQ(s, l) of a car being in one state (which may include
the destination address, which makes the states = [p, d]
with p the position in the infrastructure, andd as the
car’s destination) in the queue and having its lightl set
to red/green as follows:

Q(s, red) = R(s, s) + γV (s) = 1 + γV (s)

and

Q(s, green) =
∑

s′

P (s, s′)(R(s, s′) + γV (s′))



WhereP (s, s′) is the transition probability that the car goes
to a next states′. Note thats′ could also bes, since a car
may have to wait even though its traffic light is green (as
in congestions). We useγ < 1 for the discounting factor
which trades off immediate costs versus long-term costs and
makes the Q-functions finite. Finally,V (s) is defined as:

V (s) = P (green|s)Q(s, green) + P (red|s)Q(s, red)

where P (l|s) with l ∈ {red, green} is defined as the
probability the light is on red/green when the car is in
states. V (s) estimates the average time a car has to wait
until its destination address without knowing the traffic
light decision. By definitionV (s) = 0, if s is the car’s
destination address (and the car will be removed from the
infrastructure).

For all cars the waiting time for a red light will be longer
than the waiting time for a green light. Therefore each car
will have an advantage to set its light to green based on
its waiting time for red minus its waiting time for green. If
we take for each traffic node the sum of all gains of cars
standing in the queue for the traffic light, we get an optimal
local decision if we choose the traffic configurationA that
sets the light to green for traffic lightsi maximizing the
cumulative gain:

A
opt
j = max

Aj

∑

i∈Aj

∑

s∈queuei

Q(s, red) − Q(s, green)

By learning the waiting times, we get a better and better
traffic light controller. How can we learn the transition
probability functionsP (s, s′), P (green|s), andP (red|s)?
This is simply done by frequency counting. Each time a
car makes a transition to another state or has to wait, the
probabilities are updated using counters, which is a simple
and cheap way of inducing the model.

By applying this, we can compute both the Q- and V-
functions (we initialize them to 0.0 for all states). Each
time a car makes a step (or stands still), we update all
counters and recompute the Q- and V-functions. If a traffic
light decision has to be made, we sum over all gains of
cars standing in the queue and select the configuration that
maximizes the score.

Co-learning driving policies. A nice additional feature
of our method is that cars can use the waiting times
computed at traffic lights for selecting a way for driving
in the city. For this we have to expand the state of the car
by combining it with its destination. When we use a random
shortest path driving policy, we select a random next lane
from the set of possible next lanes lying approximately on
the shortest path. In the co-learning approach cars use the
V-function to choose the next lane. For this, we look what
the average waiting time until the destination address for
all possible next lanes are (in our system we use the first
position of each next lane lying on a shortest path).

Workings of the learning controllers. We can compare
our system to a system which always counts the number
of cars which can move on when the light is set to green

Fig. 1. A screenshot from the Green Light District simulator.The image
shows a junction with traffic lights, two edge-nodes, and someroads with
cars. The number above the edge-node on the right indicates its spawning
frequency.

and sets the traffic light configuration which maximizes this
count. In our system the counts are the learned Q-values
which have values depending on the transition probabilities,
and the probability of setting a light to green. For example,
if one car competes with always 10 cars on a different lane,
then the counting system will always let the 10 cars drive
and the single one wait. In the RL system, the gain of the
single car will go to a very large value if it has to wait
a long time. Therefore the single car is allowed to drive
after some time as well, which is an effect of the learning
dynamics and not designed ad-hoc.

III. GREEN LIGHT DISTRICT SIMULATOR

For simulating our adaptive controller and comparing it
with other algorithms on a broad range of infrastructures
and traffic patterns, we developed the Green Light Dis-
trict (GLD) simulator in Java.1 GLD allows us to edit
infrastructures using the mouse, to set different spawning
frequencies creating different traffic patterns, to compare a
large number of implemented controllers (new ones can be
easily added), and to evaluate the controllers using different
statistical measures (such as average waiting time of cars).
The simulator itself is based on a cellular automaton model
[6], and therefore a microscopic model which can be used
for modelling various amounts of detail (e.g. the road user
could be a car, bus, police car, etc.).

Infrastructures. An infrastructure consists of roads and
nodes. A road connects two nodes, and can have several
lanes in each direction (see Fig. 1). The length of each
road is expressed in units. A node is either a junction where
traffic lights are operational (although when it connects only
two roads, no traffic lights are used), or an edge-node.

Agents. There are two types of agents that occupy
an infrastructure; vehicles and traffic lights. All agents
act autonomously, following some simple rules, and get
updated every time-step. Vehicles enter the network at the

1GLD can be downloaded from http://www.sf.net/projects/stoplicht.



edge-nodes. Each edge-node has a certain probability of
generating a vehicle at each time step. Each vehicle that is
generated is assigned a destination, which is one of the other
edge-nodes. The distribution of destinations for each edge-
node can be adjusted. There are several types of vehicles,
defined by their speed, length, and number of passengers.
For our experiments we only used cars, which move at a
speed of two units (or one or zero if they have to brake)
per time step, have a length of two units, and have two
passengers. The state of each vehicle is updated every time
step. It either moves with the distance given by its speed,
or stops when there is another vehicle or a red traffic light
ahead. At a junction, a car decides to which lane it should go
next according to its driving policy. Once a car has entered
a lane, it cannot switch lanes.

Controllers. Every junction is controlled by a traffic
light controller (TLC) that decides on the best configuration
of red and green lights. A TLC will only consider safe
configurations, that is, configurations in which moving cars
do not intersect. A TLC can share information with other
controllers to improve global performance. GLD has several
built in TLCs, and allows for custom TLCs. We used the
following controllers in our experiments:

• The TC-1 algorithm uses the reinforcement learning
algorithm described in section 2. The car-state is
extended with information about the destination of the
car. The discount factor used by the algorithm was set
to 0.9.

• TC-1 Destinationlessis a simplified version of TC-1
that does not use destinations in its computations.

• TC-1 Bucket is TC-1 extended with the Bucket algo-
rithm that is described below.

• TC-1 Co-learning can be used with TC-1 and with
TC-1 Bucket, but not with TC-1 Destinationless, since
it requires information about vehicle destinations.

• Best first always selects the traffic light configuration
which sets the lights to green for the largest amount
of cars in the queues.

• The Bucket algorithm is used for optimizing traffic
flow in cities of very high traffic densities. The basic
thought underlying the mechanism is that each traffic
light from which no movement is possible due to
overfull destination lanes communicates part of its
summed gain values there to stimulate movement.
Each traffic light sums the gain values calculated by the
traffic controller algorithm into its bucket. This value
is used to determine the optimal configuration of green
traffic lights, instead of the originals calculated by the
TLC.

• ACGJ-3 was the first traffic light controller algorithm
we paired with the bucket mechanism. The gain value
for a traffic light is calculated by summing over all
waiting road users, multiplying the road user weight
with a length-factorfn, wheren is the place of the
car in the queue. In the experiments presented in this
paper we used the ACGJ-3 algorithm (withf = 1),
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Fig. 2. Infrastructure for the experiment. Nodes marked with Erepresent
edge-nodes. All intersections are controlled by traffic lights, and all edges
represent roads with two lanes in each direction. At each edge node, 0.4
cars are generated each cycle.

resembling the Best First algorithm paired with the
bucket mechanism.

• Relative Longest Qchooses to set the lights to green
for the queues with the maximum ratio of waiting road
users versus length of the road. Because completely
filled up roads get priority over roads where many
people are waiting, but are not full, this algorithm may
avoid jammed traffic.

As driving policies, the random shortest path policy
selects a random next lane lying on an approximately
(within 10% range) shortest path to the destination address.
We compare this to co-learning which uses the computed
waiting times, which can only be used with the RL algo-
rithm.

IV. EXPERIMENTS

We performed two series of experiments. For our first
series of experiments we used the grid-like infrastructure
depicted in Fig. 2. With 12 edge nodes and 16 junctions, 15
of which have traffic signs, and 36 roads, 4 lanes wide each,
it is a structure of reasonable size and interesting enough
to compare the different algorithms. When totally filled up,
it contains about 1500 vehicles. All edge nodes were set at
the same spawning frequencies of 0.4, and for each edge
node, all other nodes were given an equal chance of being
the destination of a new car.

Results. As shown in Fig. 3, the TC-1 algorithms out-
perform all other algorithms. TC-1 with co-learning clearly
performs best, with an average trip waiting time (ATWT)
of 6.46 during the last 10.000 cycles (see Table I). TC-1
Destinationless, the simplified version of TC-1, performs
surprisingly well, and seems to outperform TC-1 when co-
learning is not used. The TC-1 bucket algorithm is the worst
performing of the TC-1 algorithms, but still outperforms
ACGJ-3, which is a best first algorithm with a bucket.
Note that the best non-adaptive controller (ACGJ-3) has an
average trip waiting time which is more than 30% larger
than the ATWT of the best TC-1 algorithm.
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Fig. 3. Results of the experiment. Each result is an average often
simulations.

Second Experiment.We also compared the traffic light
controllers using an infrastructure containing an inner and
an outer part of edge-nodes, resembling a city-centre sur-
rounded by highways (see Fig. 4). The inner edge-nodes
represent access to the city centre, and the outer edge-nodes
are the connections to the approach roads. The network is
of reasonable size, with a total of 615 units length of two-
lane, two-way roads. We again determined a traffic load
near saturation by experimenting with different spawning
frequencies. For this infrastructure, this point occurredwhen
all spawning frequencies are set to0.4.

Results of Second Experiment.The results of the
second experiment are shown in Table II and Fig. 5. The
TC-1 algorithms again outperformed the others, but TC-1
with co-learning is no longer the best. TC-1 with the normal
shortest path driving policy performs better, indicating that
the effect of co-learning depends on the infrastructure. In

TABLE I

COMPARISON OF THE CONTROLLERS ON THE INFRASTRUCTURE OF

FIG. 2. THE ATWT SHOWN IS AN AVERAGE OVER THE LAST10.000

CYCLES OF ALL TEN EXPERIMENTS

Controller ATWT
1 TC-1 Co-learning 6.46
2 TC-1 Destinationless 7.14
3 TC-1 7.40
4 TC-1 Bucket 8.20
5 ACGJ-3 8.46
6 Best First 9.27
7 Rel Longest Q 9.46
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Fig. 4. Infrastructure for the second experiment. The inner edge-nodes
represent a city centre, surrounded by ring roads. Traffic from outside the
city can either drive around or enter the city centre. Trafficcoming from
the centre always leaves the city. All intersections feature traffic lights.

this particular structure, where there are few origins and
destinations, but always multiple routes, choosing between
routes randomly may result in an equal distribution of
vehicles. When co-learning is used, all drivers with the
same origin and destination choose the same route, and that
route might get more saturated. Another interesting result
is the fact that the TC-1 destinationless algorithm, which is
a simplified version of TC-1, performs as well as the TC-1
algorithm. Note that the best non adaptive controller (again
ACGJ-3) has an ATWT which is more than 25% larger than
the ATWT of the best RL algorithm.

V. RELATED WORK

Many different approaches to intelligent traffic light con-
trol exist. In this section we summarize a number of these.

Expert Systems.An expert system uses a set of given
rules to decide upon the next action. In traffic light control,

TABLE II

RESULTS OF THE EXPERIMENT ON THE CITY-LIKE INFRASTRUCTURE

DEPICTED IN FIG. 4.

controller ATWT
1 TC-1 Destinationless 2.67
2 TC-1 2.68
3 TC-1 Co-learning 2.82
4 TC-1 Bucket 3.25
5 ACGJ-3 3.57
6 Best First 4.23
7 Rel Longest Q 4.75
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Fig. 5. Results of the experiment on the city-like infrastructure depicted
in Fig. 4. Each result is an average of 10 simulations.

such an action can change some of the control parameters.
Findler and Stapp (1992) describe a network of roads
connected by traffic light-based expert systems. The expert
systems can communicate to allow for synchronization.
Performance on the network depends on the rules that are
used. For each traffic light controller, the set of rules can
be optimized by analyzing how often each rule fires, and
the success it has. The system could even learn new rules.
Findler and Stapp showed that their system could improve
performance, but they had to make some simplifying as-
sumptions to avoid too much computation.

Prediction-based optimization. Tavladakis and Voul-
garis (1999) describe a traffic light controller using a simple
predictor. Measurements taken during the current cycle are
used to test several possible settings for the next cycle, and
the setting resulting in the least amount of queued vehicles
is executed. The system seems highly adaptive, and maybe
even too much so. Since it only uses data of one cycle, it
could not handle strong fluctuations in traffic flow well. In
this case, the system would adapt too quickly, resulting in
poor performance.

Liu et al. (2002) introduce a way to overcome problems
with fluctuations. Traffic detectors at both sides of a junction
and vehicle identification are used to measure delay of
vehicles at a junction. This is projected to an estimated
average delay time using a filter function to smooth out

random fluctuations. The control system tries to minimize
not only the total delay, but the summed deviations from the
average delay as well. Since it is no longer beneficial to let
a vehicle wait for a long time, even if letting it pass would
increase the total waiting time, this introduces a kind of
fairness. Data of about 15 minutes is used to determine the
optimal settings for the next cycle, and even using a simple
optimization algorithm, the system performs well compared
to preset and actuated controllers.

Fuzzy Logic. Tan et al. (1995) describe a fuzzy logic
controller for a single junction that should mimic human
intelligence. Fuzzy logic offers a formal way of handling
terms like ”more”, ”less”, ”longer” etc., so rules like ”if
there is more traffic from north to south, the lights should
stay green longer” can be reasoned with. The fuzzy logic
controller determines the time that the traffic light should
stay in a certain state, before switching to the next state. The
order of states is predetermined, but the controller can skip a
state if there is no traffic in a certain direction. The amount
of arriving and waiting vehicles are quantized into fuzzy
variables, like many, medium and none. The activation of
the variables in a certain situation is given by a membership
function, so when there are 5 cars in the queue, this might
result in an activation of 25% of ’many’ and 75% of
’medium’. Fuzzy rules are used to determine if the duration
of the current state should be extended. In experiments
the fuzzy logic controller showed to be more flexible than
fixed controllers and vehicle actuated controllers, allowing
traffic to flow more smoothly, and reducing waiting time. A
disadvantage of the controller seems to be its dependence
on the preset quantification values for the fuzzy variables.
They might cause the system to fail if the total amount of
traffic varies. Furthermore, the system was only tested on a
single junction.

Lee et al. (1995) studied the use of fuzzy logic in
controlling multiple junctions. Controllers received extra
information about vehicles at the previous and next junc-
tions, and were able to promote green waves. The system
outperformed a fixed controller, and was at its best in either
light or heavy traffic. The controller could easily handle
changes in traffic flow, but required different parameter
settings for each junction.

Evolutionary Algorithms. Taale et al. (1998) compare
using evolutionary algorithms (a (µ, λ) evolution strategy
[12]) to evolve a traffic light controller for a single simulated
intersection to using the common traffic light controller
in the Netherlands (the RWS C-controller). They found
comparable results for both systems. Unfortunately they



did not try their system on multiple coupled intersections,
since dynamics of such networks of traffic nodes are much
more complex and learning or creating controllers for them
could show additional interesting behaviors and research
questions.

Reinforcement Learning. Reinforcement learning for
traffic light control has first been studied by Thorpe [14],
[15], but Thorpe’s approach is different from ours. He used
a traffic light-based value function, and we used a car-
based one. Thorpe used a neural network for the traffic-light
based value function which predicts the waiting time for
all cars standing at the junction. This means that Thorpe’s
traffic light controller have to deal with a huge number
of states, where learning time and variance may be quite
large. Furthermore, Thorpe used a somewhat other form
of RL, SARSA (State-Action, Reward-State Action) with
eligibility traces [16], and we use model-based RL.

Thorpe trained only a single traffic light controller, and
tested it by instantiating it on a grid of4 × 4 traffic lights.
The controller can decide to let either traffic on the north-
south axis or on the east-west axis pass. A neural network
is used to predict the Q-values for each decision, based on
the number of waiting cars and the time since the lights last
changed. The goal state is the state in which there are no
cars waiting.

The system outperformed both fixed and rule-based
controllers in a realistic simulation with varying speed.
Performance is said to be near optimal. Controllers trained
on a single junction had the same performance as controllers
trained in a network.

VI. CONCLUSION

We presented our adaptive reinforcement learning algo-
rithms for learning to control traffic lights. These algorithms
make their decisions based on the amount of traffic around
an intersection and are therefore different from commonly
used fixed-cycle controllers. The RL algorithms adapt the
traffic light controllers automatically without the need for
manual tuning. Furthermore they are able to deal with non-
stationary traffic patterns. For comparing the RL algorithms
to other handwritten controllers, we developed the GLD
simulator which makes it easy to compare the algorithms
on different infrastructures and traffic patterns. The simula-
tions show that the RL algorithms reduce average waiting
times with more than25% on crowded traffic compared to
manually designed non-adaptive controllers.

In future work, we want to study the use of green
waves in the RL algorithms. We want to do this by using

communication between traffic lights. Furthermore, we want
to study other controllers and compare them to the ones
presented here. We also want to study different traffic
patterns, including non-stationary ones. Finally we want to
make the traffic model more realistic by taking different
car-speeds into account. The RL algorithms can use this
information immediately by using the speeds in the states
of the cars.
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