
Indoor Localization by Denoising Autoencoders and
Semi-supervised Learning in 3D Simulated

Environment

Amirhossein Shantia∗, Rik Timmers∗, Lambert Schomaker∗, Marco Wiering∗
∗Institute of Artificial Intelligence and Cognitive Engineering

University of Groningen, Groningen, The Netherlands
a.shantia, r.p.timmers, l.r.b.schomaker, m.a.wiering@rug.nl

Abstract—Robotic mapping and localization methods are
mostly dominated by using a combination of spatial alignment of
sensory inputs, loop closure detection, and a global fine-tuning
step. This requires either expensive depth sensing systems, or fast
computational hardware at run-time to produce a 2D or 3D map
of the environment. In a similar context, deep neural networks
are used extensively in scene recognition applications, but are not
yet applied to localization and mapping problems. In this paper,
we adopt a novel approach by using denoising autoencoders
and image information for tackling robot localization problems.
We use semi-supervised learning with location values that are
provided by traditional mapping methods. After training, our
method requires much less run-time computations, and therefore
can perform real-time localization on normal processing units.
We compare the effects of different feature vectors such as plain
images, the scale invariant feature transform and histograms of
oriented gradients on the localization precision. The best system
can localize with an average positional error of ten centimeters
and an angular error of four degrees in 3D simulation.

I. INTRODUCTION

The commercial availability of robots is currently limited
to small service robots such as vacuum cleaners, lawn mowers,
and experimental robots for developers. Recently, however,
there is a clear rise of consumer interest in home robotics.
One example is the development of service robots that operate
in home and office environments. These robots must be priced
congruent with their abilities. In this paper, we join the current
trend of focusing more on smart software solutions combined
with low-cost hardware requirements to facilitate the process
of creating cheaper robots with reliable functionalities. With
this goal in mind, we focus on a very basic functionality
of a sophisticated robot, localization. Currently, the most
well-known and commonly used approaches for solving
the localization problem are through a precise process of
mapping the environment using 2D or 3D sensory data and
their required algorithms. These recursive and incremental
updating methods generally consist of three major parts,
spatial alignment of data frames, loop closure detection, and
a global fine-tuning step [1], [2]. The hardware requirements
for these methods, however, can be quite expensive.
For example, the cheapest 2D laser range finder roughly costs
hundreds of Euros, and the price exponentially increases
when more precision and robustness are added to the sensor.
There has been valuable research done on this topic in
the recent years, especially by using the fairly inexpensive

Primesense sensor 1 found on Microsoft Kinect devices.
Henry et al [4], introduced a 3D indoor mapping method
using a combination of RGB feature-based methods and
depth images to connect the frames and close the loops.
The results of this work are a very good approximation
of challenging environments visualized in a 3D map. The
calculations however, took approximately half a second per
frame to compute. Whelan et al [5], on the other hand,
promised a real time delivery of mapping and localization
by the use of high performance GPUs and expensive hardware.

Another issue that has not yet been addressed with these
methods is the effect of luminance from outside sources to
the process of mapping. In [6], the authors mention that the
lighting condition influences the correlation and measurement
of disparities. The laser speckles appear in low contrast in
the infrared image in the presence of strong light. Sun light
through windows, behind a cloud, or its reflection off the walls
and the floor can introduce non-existing pixel patches or gaps
to the depth image. Therefore, additional research is required to
measure these effects, and perhaps to introduce new methods
that require less computational power at run-time which are
robust to external sources and changes to the environment. In
a similar context, there has been significant research on image
classification and scene recognition using deep neural networks
in the recent years [7]–[10]. This has allowed the community
to achieve high classification performance in character, scene
and object recognition challenges [11]–[13].

In this paper, we adopt a novel approach to the local-
ization problem by using denoising autoencoders (DA) [14]
with HSV color-space information. We use a semi-supervised
approach to learn the location values provided by traditional
mapping and localization methods such as Adaptive Monte
Carlo localization (AMCL), and Grid Mapping [2], [15].
This approach has a significant run-time advantage over the
traditional ones due to the low computational requirement of
a feed-forward neural network. It is only the initial training of
the network that requires a significant amount of computation
which can be done offline and delegated to other sources
such as cloud computing centers (e.g. Amazon Web Services).
Another benefit is the general ability of neural networks to
cope with sensor noise. We combine multiple feature vectors
with the DA and compare them to other scene recognition

1Primesense Ltd. Patent No.US7433024 [3]

methods such as histograms of oriented gradients (HoG) [16].
In a commercial scenario, the manufacturer can temporarily
install a depth sensor during the product delivery/installation
and perform a traditional mapping to record the approximate
ground truth for each captured image. The robot will then start
the training of the (deep) neural network, and the depth sensor
can be removed. Finally, the robot can continue localizing with
acceptable error rate.

In short, our method:

• is a novel approach for localization using denoising
autoencoders with semi-supervised learning

• has low run-time computation requirements

• has inexpensive hardware requirements

We also compare the effect of different feature vectors
on localization precision and conclude that the positional and
angular errors can compete with those of traditional methods.

In section II, we explain the features, the neural networks,
and the training methods in detail. We discuss our experimental
setup and the obtained results in section III. We finally
conclude the paper in section IV and discuss future work in
section V.

II. METHODOLOGY

In this section we first discuss the different feature vectors
used for training with denoising autoencoders (DA), and the
reasons for selecting them for localization purposes. Next, we
continue with an explanation of the pre-training of the DA
network, and a second layer neural network that is used for
learning the metric location values. A block diagram of the
complete pipeline is depicted in Figure 1.

 Image & Position

Storage

Image Resizing

SDA Training

Localization

Network

Training

Location

Estimating

Fig. 1. The block diagram of required steps for training and testing the
proposed approach.

A. Feature sets

Indoor localization requirements are slightly different com-
pared to those for normal scene recognition where the goal
is to distinguish totally different types of scenes from each
other. For example, in the SUN [17] and indoor CVPR [13]
databases, there are different types of scenes such as offices,
trees, zoos, etc. In each of these classes the details in the
scenery are different, but they share a set of similar objects
or landscapes (Figure 2). For robot navigation in indoor
environments, however, the robot needs to distinguish similar
scenes with different scale and rotation from each other. In
some cases (Figure 3), moving forward for a couple of meters
does not change the scenery, or there are views that look the
same, but are in fact, taken from different locations. In order
to select a good feature set, we use some established feature
vectors and carry out the experiments using them.

Fig. 2. Samples from the ICVPR dataset. The office environments share the
same characteristics, but are totally different from one another.

Fig. 3. Sample images from our robotics laboratory. The pictures taken show
the same scenery, but the robot was positioned in different locations.

1) Sub-sampled Plain Image: The original raw image
contains a lot of information about the scene. Due to the
large size of images, applying machine learning techniques
becomes difficult on the basis of the curse of dimensionality
[18]. However, it is possible to extract a sub-sample of the
original image, which results in a much smaller feature vector.
The downside of this method is that we may lose fine-grained
cues that are present in the original image. Krizhevsky et al.
in [9], and [19], demonstrated the learning ability of deep
neural networks using plain images. In [9], the authors used
a combination of convolutional neural networks (CNN) [20]
and traditional neural networks to solve a one thousand class
problem with more than a million training images [12]. In [19],

the authors used a very deep autoencoder with plain images to
retrieve a set of images from the CIFAR [11] database. Since
their experiments showed promising results using only plain
images, we also use a sub-sampled plain image in our feature
set.

On this basis, we use a flattened gray-scale and HSV color-
space image with a fixed size of 28× 28. We perform the re-
sampling using pixel area relation, which is a preferred method
for image decimation. This results in 784 input dimensions for
the gray scale image and 2352 input dimensions for the HSV
image. The HSV coloring system is preferred to RGB because
of its resistance to lighting changes. We will use the sub-
sampled plain image feature as a baseline for our comparisons.

2) Sub-sampled image with top SIFT keypoints: On the one
hand, sampling down the camera image has the advantage of
retaining the scene structure, and also reducing noise. It also
allows the system to cope better with color and light variations.
On the other hand, it has a disadvantage of losing fine, high
resolution sections of the image which can be essential in
detailed scene recognition and localization. For example, a
key switch in the kitchen, or a prominent door handle can
give hints to the robot about its actual location. In order to
scale down this effect, we decided to use a combination of
sub-sampled plain images, and prominent SIFT features [21]
extracted from each image. For each image, we calculate the
SIFT features for the original high-resolution image. The top
four keypoints are selected from each image based on their
SIFT response value, and their descriptors are added to the
plain image feature set. This approach may help the system to
retain prominent image structures while learning from general
information of the sub-sampled image.

3) Histograms of Oriented Gradients: We decided to use
yet another method while bypassing the autoencoder to com-
pare the performance with the other two proposed methods. We
used the idea of histograms of oriented gradients which was
previously applied to human detection [16], and for indoor
localization [22]. We, however, decided to calculate the HoG
of additional blocks with varying sizes to capture both general
and detailed edge information of the scene using the spatial
pyramids approach [23]. The image is divided into separate
blocks of 8× 8, 4× 4, and 2× 2. The gradients for all of the
blocks and the image itself are then calculated. This results in
680 values for the feature vector.

B. Denoising Autoencoder Training

We decided to perform indoor scenery recognition using
the denoising autoencoder [14] because of the simplicity of the
training procedure compared to convolutional neural networks.
Stacked formation of denoising autoencoders (DAs) and their
strong learning ability and low error rate compared to support
vector machines, the restricted Boltzmann machine (RBM),
and traditional autoencoders [8], [14], [24], are other reasons
for selecting this approach.

1) Pre-training: Pre-training under the influence of noise
is the part that distinguishes a denoising autoencoder from a
traditional autoencoder. The input of the network is corrupted
by either random masking, salt and pepper, or Gaussian noise,
etc. (eq. 1):

x −→ x̃ ∼ qD(x̃|x) (1)

Then, the corrupted input is fed through a matrix product
with the first layer of weights, and the bias vector is added
to the hidden layer neuron activations. Finally the results go
through a sigmoid function (eq. 2):

y = fθ(x̃) = ς(Wx̃+ b) (2)

In the next step, the network attempts to reconstruct the
original input vector (eq. 3):

z = gθ′(y) = ς(W′y + b′) (3)

The cost function used is the reconstruction cross-entropy
depicted in equation 4:

L(x, z) = −
d∑
k=1

[xk log zk + (1− xk) log(1− zk)] (4)

In which x is the original input which is normalized
between 0 and 1, z is the reconstructed output from the
corrupted input, and k denotes the index of the input vector. By
using this equation, the error and the updates of one stochastic
gradient descent can be calculated. After sufficient epochs, the
training of the first layer is stopped. Figure 4(a) shows this
process.

qD

Fϴ
Gϴ

LH(x,z)

x

y

z

(a)

qD

Fϴ
(2)

Gϴ

LH(x,z)

y

z

x

Fϴ

(b)

Fig. 4. The input x is corrupted using the qD function. Then the result
is fed forward to the next layer using the fθ of equation 2. Afterwards, a
reconstruction attempt to the original input is made using the gθ of equation 3.
Finally the error at the outputs are backpropagated through the neural network.
For the stacked version, the non-corrupted input is fed forward up to level n
of the network before applying the corruption.

The training of a stacked denoising autoencoder (SDA) is
similar to that of a DA, but with a small difference in the
higher layers. Consider that the network is trained up to layer
n − 1, and we want to train the final layer n. For input x,
output fθ of the layer n−1 is extracted using traditional feed-
forward neural network algorithms. Then, this output vector
is corrupted using qD(x̃|x), and after that the output of the

nth layer is calculated. An attempt is made to reconstruct the
original nth layer output using the corrupted nth layer input
(Figure 4(b)). The type, and amount of the corruption has a
large effect on the result of pre-training. Parameters used in
our experiments will be discussed further in section III.

2) Semi-supervised Location Estimation using Ground
Truth: In order to associate the ground truth location values
to the encoded result of the neural network, we connect a
secondary two layer feedforward neural network to the learned
encoding of the input. In our experiments, we record the
ground truth data using the perfect robot odometry in 3D
simulation.

The relation between the scenes and the odometry
readings is a non-linear function, and we can learn this by
using a feedforward neural network with non-linear activation
functions. In order to achieve this goal, the following
procedure is followed. After the pre-training phase of the
SDA is completed, we add a separate neural network with one
hidden layer on top of the denoising autoencoder. The hidden
layer activation function is a sigmoid, and the output layer
has a linear activation. The outputs of the neural network
consist of normalized metric X and Y values, and the sin(θ)
and cos(θ) with θ being the robot angle in radians. Reasons
for selecting sine and cosine of the radian are that first the
values are bounded and between [−1, 1], and can be easily
normalized to [0, 1], and we want to give a hint to the neural
network that the angular input is not continuous, but has a
periodic property. The network can learn this by observing
the 3rd and 4th output. The normalization factors of X and
Y come from the ground truth map available through the
simulation.

Fine-tuning layers in classification problems such as in
[9], [14], [19], have a one layer network where their outputs
were either the class label or the softmax probability of each
class. Our problem, however, is of the regression type, and
a hidden layer is required to non-linearly map the encoded
outputs to the position and angular values. In addition, in
those papers, the class labels are used to further reduce the
reconstruction error of the network. In our case, however,
we merely aim at associating location values to the encoded
outputs. Therefore, we do not propagate the error through the
whole network. Consequently, using the mean squared error as
our error function, the back propagation rule is used to train
the weights of the location estimating neural network.

III. EXPERIMENTS

We carried out our experiments using the Gazebo (v3.0)
3D physics simulator [25], and used the ROS framework to
develop our software [26]. We used Gazebo with the Bullet
3D physics engine which allows for the use of GPUs to
facilitate a real-time simulation and high frame rates for all the
robot sensory inputs using an ordinary PC. The environment
used for the experiments can be seen in Figure 52. We used
FANN, OpenCV, and Theano libraries to perform the SDA,
and location estimation neural network training phases, [27],
[28], [29]. Theano uses multiple cores and a GPU to perform
the SDA training steps.

2https://3dwarehouse.sketchup.com.

Fig. 5. The 3D model of the environment. The model is a modified version
of the Cherry Kitchen model in Google’s 3D warehouse.

The simulated robot, which can be seen in Figure 6 is
used for our experiments. The robot consists of a moving
base with differential drive, and a top frame which carries
its essential depth and RGB sensors, a laser range finder,
manipulator and an interface for human robot interaction. We
modeled our laboratory robot in Gazebo using the Unified
Robot Description Format (URDF), which is an XML format
for representing a robot model. The model shapes and meshes
used in simulation were partly generated by the vendors and
partly designed by ourselves.

Fig. 6. 3D model of the robot used for the experiments.

All the neural network training simulations are repeated 10
times with different initializations of the neural networks. The
baseline, which is the sub-sample plain image, is not given to
the SDA for high level feature extraction. The HoG features
are also not processed by the SDA because these features are
already a representation/compression of the full image. After
the autoencoder training is finished, training of the location
estimation neural network starts. We only update the weights
of the location estimation neural networks without propagating
it back to the SDA network. We explored multiple network and
training configurations in the 3D simulation and selected the
best ones based on localization performance and computational
requirements.

We found out that the number of required neurons in each
layer can be one third of the number of inputs. The results
would increase slightly if the number of neurons increases.
However, the speed of calculation decreases during training
and prediction phases which is not suitable for a real-time
robot. Therefore, we decided to limit the number of neurons
as much as possible. The denoising autoencoder network with
gray scale input images uses 256 hidden neurons, and the
networks with HSV and HSV+SIFT input images use 750
hidden neurons per layer. For the sub-sampled plain image

with top SIFT keypoints, we kept the number of neurons in
each layer the same to make sure the comparison is valid. The
HoG feature vector, however, does not require the autoencoder
so it is left out of this part of training. The learning rate for
training the SDA was set to 0.001.

The neural network used for estimating the location of the
robot is a single hidden layer neural network with sigmoid
functions in the hidden layer and a linear activation function
in the output layer. There are hundred neurons in the hidden
layer and four outputs which represent X,Y, sin(θ), cos(θ),
respectively. Finally, for the sub-sampled plain image vectors,
the encoding of the images are processed and then fed to
the localizing neural network. The HoG feature vector is
directly fed to the localizing neural network. The training
of the localizing neural network is done by traditional back
propagation with the learning rate of 0.001 and 10, 000 epochs
with no stopping criteria. To prevent overfitting, we record the
network every hundred epochs and only use the network with
highest validation performance for the final experiment with
the test dataset.

A. 3D Simulation

The simulation environment is a kitchen with a dimen-
sion of 5 × 7 meters. It contains both detailed and coarse
objects. The lighting is provided by a unified directional beam
(simulated sun), and two additional light bulbs. Only walls
and object shadows are visible, because the current texture
properties of the environment do not include light reflection
properties.

The data gathering is done through automatic and manual
processes to collect training, validation, and test data. In the
automatic method, the robot takes random discrete actions.
Before performing an action, the robot saves the current ground
truth location by using odometry in simulation. It then starts
to take pictures while rotating from minus to plus five degrees
around that point. This is to make sure that the robot has
similar training data for the approximate same location in the
environment. The robot is equipped with an obstacle avoidance
system, and will change trajectory if it is close to an obstacle.
In order to make sure that all locations are traversed, we let
the robot operate for several hours and take a data set with 150
thousand training pictures. These pictures are used to train the
denoising autoencoder.

For training the location estimation layer, we gather a more
structured data set of 10 thousand training, and 2 thousand
validation and testing pictures. A human operator controls the
robot, and takes steps of 0.5−1.5 meter. After each step he/she
will rotate the robot in a full circle to capture the surroundings.
This operation is repeated until the environment is covered.
Since the lighting effects are incomplete in the 3D simulation,
we avoid taking pictures of only walls. One side of the kitchen
has continuous walls with the same texture, and no lighting
changes. We make sure that another part of the kitchen is also
in the view. Otherwise, it would be impossible for the robot to
correctly estimate its position. For the validation and testing
set, however, the operator will move the robot in a path for
which the overlap with the previous run is minimal.

B. Experimental Results

We first discuss the results of different network architec-
tures and training configurations. Next, we elaborate the final
performance of these networks using the features mentioned in
section II-A. We tested a 1 layer DA with gray scale images,
and different SDA architectures (1-3 layers) with HSV images
using multiple training epochs in 3D simulation. The binomial
corruption levels were started at 0.1. For each additional layer,
the corruption level was increased by 0.1. We selected the
corruption levels similar to other applications of SDA for scene
and character recognition in [14]. Tables I and II show that the
HSV results are significantly superior in comparison to the
gray-scale. The reason is that the HSV images contain more
information about the scene.

TABLE I. THE AVERAGE POSITIONAL (METERS) ERROR FOR HSV
FEATURE VECTORS WITH 1-3 DENOISING AUTOENCODER LAYERS VERSUS

DIFFERENT TRAINING EPOCHS. WE ALSO INCLUDED THE GRAY SCALE
IMAGE WITH A 1 LAYER DENOISING AUTOENCODER. THE ONE LAYER

NETWORK WITH HSV IMAGES IS THE BEST CONSIDERING
COMPUTATIONAL REQUIREMENTS AND THE LOCALIZATION ERROR.

Networks 20 Epochs 40 Epochs 60 Epochs
HSV - 1 Layer 0.165 0.140 0.150
HSV - 2 Layer 0.155 0.152 0.151
HSV - 3 Layer 0.240 0.210 0.210
Gray Scale 0.410 0.370 0.351

TABLE II. THE AVERAGE ANGULAR (RADIAN) ERROR FOR HSV
FEATURE VECTORS WITH 1-3 DENOISING AUTOENCODER LAYERS VERSUS

DIFFERENT TRAINING EPOCHS. WE ALSO INCLUDED THE GRAY SCALE
IMAGE WITH A 1 LAYER DENOISING AUTOENCODER. THE ONE LAYER

NETWORK WITH HSV IMAGES IS THE BEST CONSIDERING
COMPUTATIONAL REQUIREMENTS AND THE LOCALIZATION ERROR.

Networks 20 Epochs 40 Epochs 60 Epochs
HSV - 1 Layer 0.07 0.06 0.05
HSV - 2 Layer 0.08 0.07 0.07
HSV - 3 Layer 0.11 0.09 0.09
Gray Scale 0.19 0.18 0.16

The three layer HSV network performs worse in compari-
son to the two and one layer networks. It is possible that the
type and amount of corruption is not suited for this number of
layers in the SDA and our application. The two layer network
performs slightly better using a smaller number of epochs,
but the one layer DA network catches up when more training
is done on the denoising network. However, computationally
the one layer network is superior because it takes much less
time to train the network. Since the positional and angular
errors of two and one layer network are similar, we decided to
select the one layer networks for the rest of the experiments.
In addition to the localization results, a reconstruction attempt
of the scenes is depicted in Figure 7.

We compared the final location performance of all net-
work configurations with their features. The sub-sampled plain
HSV images which were not given to the DA networks,
but immediately to the location estimation neural network,
are now selected as our baseline. The HoG features were
also directly connected to the location estimating feedforward
neural network. The HSV image features that were given to the
DA networks are named DA-HSV. The HSV image features
including the top four prominent SIFT features are named DA-
HSV+SIFT. Table III shows the results of all the methods

Fig. 7. The pictures on the left are original images from the camera, and
the right side pictures are the reconstructions from a one layer denoising
autoencoder. The number of pictures used for training this network is 150
thousand.

against each other in 3D simulation. As can be seen, the
lowest performance is for the HoG feature. It seems that the
compressed information about the gradients in the scene is not
unique enough to approximate metric position of the robot. The
baseline clearly outperforms the HoG feature, but it fails to
reach the performance of features with the DA network with
a large margin. The sub-sampled HSV image average error
on X and Y is less than 10cm, with negligible error on θ
which corresponds to approximately 4 degrees. Surprisingly,
the results of the sub-sampled HSV image plus the prominent
SIFT keypoints performs worse than the normal HSV. This is
because the keypoints are resilient against rotation and scale,
and therefore they can be present in multiple views of the same
scene. Perhaps, including the location of the keypoint in the
image would help reducing the error of the system. The run-
time performance of our neural network is on average 120Hz.

TABLE III. THE METRIC AND ANGULAR ERRORS (WITH STANDARD
DEVIATIONS) OF ALL THE FEATURE VECTORS IN 3D SIMULATION. THE

NUMBER OF TRAINING EXAMPLES FOR THE AUTOENCODER IS 150
THOUSAND IMAGES, AND FOR THE LOCATION ESTIMATION LAYER WE

USED THE TRAINING SET OF 10 THOUSAND IMAGES, AND 2 THOUSAND
FOR VALIDATION AND TEST.

Error Baseline HoG DA-HSV DA-HSV+SIFT
X(m) 0.15±0.20 1.00±0.80 0.09±0.10 0.08±0.10
Y(m) 0.15±0.12 0.40±0.20 0.06±0.06 0.08±0.10
cos(θ) 0.09±0.13 0.56±0.30 0.06±0.07 0.08±0.10
sin(θ) 0.09±0.11 0.74±0.30 0.06±0.07 0.08±0.10

C. Computational Performance and Costs

We used a standard desktop PC running Ubuntu 12.04 with
an Intel Core i7-4790 CPU at 3.60 GHz, 8 GB of RAM, and
an nVidia GeForce 980GTX GPU with 4GB of memory. The
GPU was only used for training of the SDA networks using the
Theano library, and we only used one CPU core to test the final
trained network. The average training time for the SDAs was
about 2.5 hours for 150,000 images. Training of the localizing
network took on average 1 day for 10,000 epochs using the
FANN library. The runtime speed of the complete pipeline on
one CPU core is on average 0.008 seconds per image.

Whelan et al [5] achieved a run-time speed of 0.03 seconds
using a CUDA implementation of visual odometry for dense
RGBD mapping on an Intel Core i7-3960X CPU at 3.30 GHz,
and an nVidia 680GTX with the approximate price of 1800
Euros. Our approach has the advantage of higher speed and
requires minimal hardware during runtime. The computational
disadvantage of our method is the long training procedure
which can be neglected since it is only done once, and can
be delegated to cloud services to reduce the hardware costs.

IV. CONCLUSION

In this paper, we adopted a novel approach to tackle the
robotic localization problem by using denoising autoencoders
with image information and assistance of traditional mapping
methods. We first experimented with multiple network ar-
chitectures and training configurations. Next, we trained the
autoencoders in 3D simulation using multiple feature vectors.
We finally compared the localization error by attaching a two-
layer feedforward neural network that associates ground truth
values to the compressed autoencoder output. Our experiments
showed very promising autoencoder reconstruction results in
addition to low localization error. The error rates were ap-
proximately 10 centimeters and 4 degrees for 3D simulation
using a one layer denoising autoencoder with sub-sampled
HSV images. We can conclude that denoising neural networks
perform well in retaining image structure, and can be used
to both compress the image and associate location values
to the compressed results. In addition, the network run-time
computational requirements are so low that we were able to
achieve 120Hz on a conventional processing unit.

V. FUTURE WORK

There are several improvements that can be done to
enhance the performance of the system and to expand its
functionality.

In the context of increasing the performance of the current
deep neural network, we can first point to the error backpropa-
gation of the location estimation layer to the full network. This
can be done after the initial training of the location estimation
layer to avoid disrupting the SDA pre-trained weights. In
addition, the relation between the size of the environment and
the performance of the system is still unknown. Therefore,
we plan to first carry out extensive tests on bigger simulated
environments, and then move the experiments to real scenes
and report the performance and requirements of the system.
Although the results on the SIFT features were not promising,
it is also clear that a part of the location information may
come from sharp details of landmark objects, in addition to
the overall scene appearance provided by the HSV full image.
To incorporate the spatial layout of SIFT keypoints of relevant
landmark objects, it will be conducive to explore the method
of attentional patches [30] in future work. We also did not use
the informative depth features such as the images given by an
RGB-D sensor. It may further reduce the localization errors.
We also plan to reconstruct the scenes from the location points
using the full network, and attempt to build a 3D representation
of the memory of the system. Finally, we are trying to combine
the odometry of the robot and the neural network estimations
by using an extended Kalman filter in order to increase the
localization performance and exclude outliers.

REFERENCES

[1] S. Thrun, “Robotic mapping: A survey,” Exploring artificial intelligence
in the new millennium, pp. 1–35, 2002.

[2] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for
grid mapping with rao-blackwellized particle filters,” Robotics, IEEE
Transactions on, vol. 23, no. 1, pp. 34–46, 2007.

[3] J. Garcia and Z. Zalevsky, “Range mapping using speckle
decorrelation,” Oct. 7 2008, uS Patent 7,433,024. [Online]. Available:
https://www.google.com/patents/US7433024

[4] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “Rgb-d mapping:
Using kinect-style depth cameras for dense 3d modeling of indoor
environments,” The International Journal of Robotics Research, vol. 31,
no. 5, pp. 647–663, April 01 2012.

[5] T. Whelan, H. Johannsson, M. Kaess, J. J. Leonard, and J. McDon-
ald, “Robust real-time visual odometry for dense rgb-d mapping,” in
Robotics and Automation (ICRA), 2013 IEEE International Conference
on, 2013, pp. 5724–5731, iD: 1.

[6] K. Khoshelham and S. O. Elberink, “Accuracy and resolution of kinect
depth data for indoor mapping applications,” Sensors, vol. 12, no. 2,
pp. 1437–1454, 2012. [Online]. Available: http://www.mdpi.com/1424-
8220/12/2/1437

[7] G. E. Hinton, “Reducing the dimensionality of data with neural net-
works,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

[8] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,
“Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion,” The Journal of Machine
Learning Research, vol. 11, pp. 3371–3408, 2010.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems 25, P. Bartlett, F. Pereira, C. Burges,
L. Bottou, and K. Weinberger, Eds., 2012, pp. 1106–1114.

[10] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural Networks, vol. 61, pp. 85–117, 2015.

[11] A. Krizhevsky, “Learning Multiple Layers of Features from
Tiny Images,” Master’s thesis, University of Toronto, 2009.
[Online]. Available: http://www.cs.toronto.edu/˜kriz/learning-features-
2009-TR.pdf

[12] J. Deng, W. Dong, R. Socher, L. jia Li, K. Li, and L. Fei-fei, “Imagenet:
A large-scale hierarchical image database,” in CVPR, 2009.

[13] A. Quattoni and A. Torralba, “Recognizing indoor scenes,” in Computer
Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference
on, 2009, pp. 413–420, iD: 1.

[14] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting
and composing robust features with denoising autoencoders,” in
Proceedings of the 25th International Conference on Machine Learning,
ser. ICML ’08. New York, NY, USA: ACM, 2008, pp. 1096–1103.
[Online]. Available: http://doi.acm.org/10.1145/1390156.1390294

[15] D. Fox, W. Burgard, F. Dellaert, and S. Thrun, “Monte carlo localiza-
tion: Efficient position estimation for mobile robots,” AAAI/IAAI, vol.
1999, pp. 343–349, 1999.

[16] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on, vol. 1, 2005, pp. 886–893
vol. 1, iD: 1.

[17] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba, “Sun
database: Large-scale scene recognition from abbey to zoo,” in Com-
puter Vision and Pattern Recognition (CVPR), 2010 IEEE Conference
on, 2010, pp. 3485–3492, iD: 1.

[18] R. Bellman, Adaptive control processes: a guided tour.
Princeton University Press, 1961. [Online]. Available:
http://books.google.nl/books?id=hIP5oAEACAAJ

[19] A. Krizhevsky and G. E. Hinton, “Using very deep autoencoders for
content-based image retrieval.” in ESANN. Citeseer, 2011.

[20] Y. LeCun and Y. Bengio, “Convolutional networks for images, speech,
and time series,” The handbook of brain theory and neural networks,
vol. 3361, 1995.

[21] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International journal of computer vision, vol. 60, no. 2, pp. 91–110,
2004.

[22] J. Kosecka, L. Zhou, P. Barber, and Z. Duric, “Qualitative image
based localization in indoors environments,” in Computer Vision and
Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society
Conference on, vol. 2, 2003, pp. II–3–II–8 vol.2.

[23] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features:
Spatial pyramid matching for recognizing natural scene categories,” in
Computer Vision and Pattern Recognition, 2006 IEEE Computer Society
Conference, vol. 2. IEEE, 2006, pp. 2169–2178.

[24] C. C. Tan and C. Eswaran, “Performance comparison of three types
of autoencoder neural networks,” in Modeling and Simulation, 2008.
AICMS 08. Second Asia International Conference on, 2008, pp. 213–
218, iD: 12.

[25] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in Intelligent Robots and Systems,
2004. (IROS 2004). Proceedings. 2004 IEEE/RSJ International Confer-
ence on, vol. 3, 2004, pp. 2149–2154 vol.3, iD: 1.

[26] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. B. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009.

[27] S. Nissen, “Implementation of a fast artificial neural network library
(fann),” Department of Computer Science University of Copenhagen
(DIKU), Tech. Rep., 2003, http://fann.sf.net.

[28] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Des-
jardins, J. Turian, D. Warde-Farley, and Y. Bengio, “Theano: a CPU
and GPU math expression compiler,” in Proceedings of the Python for
Scientific Computing Conference (SciPy), Jun. 2010, oral Presentation.

[29] G. Bradski, “Opencv,” Dr. Dobb’s Journal of Software Tools, 2000.
[30] B. Sriman and L. Schomaker, “Object attention patches for text de-

tection and recognition in scene images using sift,” in Proceedings of
the International Conference on Pattern Recognition Applications and
Methods, 2015, pp. 304–311, iD: 1.

