
Learning to play chess using TD(λ)-learning with database games

Henk Mannen & Marco Wiering
Cognitive Artificial Intelligence

University of Utrecht
henk.mannen@phil.uu.nl & marco@cs.uu.nl

Abstract

In this paper we present some experiments in
the training of different evaluation functions
for a chess program through reinforcement
learning. A neural network is used as the eval-
uation function of the chess program. Learning
occurs by using TD(λ)-learning on the results
of high-level database games. Experiments are
performed with different classes of features and
neural network architectures. The results show
that that separated networks for different game
situations lead to the best performance.

1 Introduction

Machine learning is the branch of artificial in-
telligence that studies learning methods for cre-
ating intelligent systems. These systems are
trained with the use of a learning algorithm
for a domain specific problem or task. One
of these machine learning methods is reinforce-
ment learning. With reinforcement learning al-
gorithms an agent can improve its performance
by using the feedback it gets from the environ-
ment.
Game-playing is a very popular machine learn-
ing research domain for AI. This is due to the
fact that board games offer a fixed environment,
easy measurement of taken actions (result of the
game) and enough complexity. AI-search algo-
rithms also play an important role in game play-
ing programs.
Learning takes place by showing database
games of strong human players to our agent.
We make use of database games because this
saves a lot of time compared to playing against
itself or against an other opponent. Watch-
ing a database game takes less than a second,
while playing a game itself consumes much more
time. This is because database games are al-

ready played, it is therefore not necessary for
the agent to search for moves to be played. This
saves thousands of evaluation function calls per
move. Learning on database games is not a
completely new idea. Some researchers made
use of database games in order to learn an eval-
uation function. Thrun (1995), for example,
combined database learning with self-play. Af-
ter presenting several expert moves a game was
finished by the program itself. Our approach
learns solely on database games. It differs from
previous research in the way that we focus pri-
marily on database learning. We are interested
in the results that can be obtained by learning
on a huge amount of training data and compare
several different evaluation functions.

The outline of this paper is as follows. In sec-
tion 2 we describe game playing, and in section
3 we present the used reinforcement learning al-
gorithm. In section 4 we discuss several ways of
evaluating positions and describe our used input
features. In section 5 we present experimental
results, and in section 6 we conclude this paper.

2 Game Playing

2.1 Ingredients

A game playing program mainly consists of
a move generator, a search procedure and an
evaluation function. The move generator pro-
duces moves that are legal in a position. Move
continuations in the game tree are searched till
the program’s search depth is reached. The
evaluation function assigns an evaluation score
to a board position. This function can be seen
as the measuring rod for intelligent behavior in
most game playing programs.



2.2 Game-Learning Programs
A lot of game-learning programs have been de-
veloped in the past decades. Samuel’s check-
ers program (Samuel, 1959; Samuel, 1967) and
Tesauro’s TD-Gammon (Tesauro, 1995) were
important breakthroughs. Samuel’s checkers
program was the first successful checkers learn-
ing program that was able to defeat amateur
players. TD-Gammon was able to compete with
the world’s strongest backgammon players. The
program was trained by playing against itself
and learned from the result of a game.
A learning chess program is Sebastian Thrun’s
NeuroChess (Thrun, 1995). NeuroChess has
two neural networks, V and M . V is the eval-
uation function, which gives an output value
for the input vector of 175 hand-coded chess
features. M is a neural network, which pre-
dicts the value of an input vector two ply (half
moves) later. M is an explanation-based neural
network (EBNN) (Mitchell and Thrun, 1993),
which is the central learning mechanism of Neu-
roChess. The EBNN is used for training the
evaluation function V . Neurochess uses the
framework of the chess program GnuChess. The
evaluation function of GnuChess was replaced
by the trained neural network V . NeuroChess
defeated GnuChess in about 13% of the games.
Another learning chess program is KnightCap,
which was developed by Jonathan Baxter et
al. (1997). It uses TDLeaf-learning(Beal,
1997), which is an enhancement of Richard Sut-
ton’s TD(λ)-learning (Sutton, 1988). Knight-
Cap makes use of a linear evaluation function
and learns from the games it plays against op-
ponents on the Internet. The modifications in
the evaluation function of KnightCap are based
upon the outcome of the played games. It also
uses a book learning algorithm that enables it
to learn opening lines and endgames.

3 Reinforcement Learning

3.1 Markov Decision Problems
Reinforcement learning is a technique for
solving Markov Decision Problems (MDPs).
We speak of an MDP if we want to compute the
optimal policy in a stochastic environment with
a known transition model. Classical algorithms
for calculating an optimal policy, such as value
iteration and policy iteration (Bellman, 1957),
can only be used if the amount of possible

states is small and the environment is not too
complex. This is because transition probabili-
ties have to be calculated. These calculations
need to be stored and can lead to a storage
problem with large state spaces.
Reinforcement learning is capable of solving
these MDPs because no calculation or storage
of the transition probabilities is needed. With
large state spaces, it can be combined with a
function approximator such as a neural network
to approximate the evaluation function.

3.2 Temporal Difference Learning
Learning takes place with the help of the TD(λ)-
learning rule (Sutton, 1988). The TD(λ)-
learning rule provides the desired values for each
board position, taking into account the result of
a game and the prediction of the result by the
next state. The final position is scored with the
result of the game, i.e. a win for white (=1), a
win for black (=-1) or a draw (=0).

V ′(stend
) = result of game

where:

• V ′(stend
) is the desired value of the terminal

state

The desired values of the other positions are
given by the following function:

V ′(st) = λ · V ′(st+1) + ((1− λ) · V (st+1))

where:

• V ′(st) is the desired value of state t

• V (st+1) is the value of state t+1 (computed
by the evaluation function)

• 0≤ λ ≤1 controls the feedback of the de-
sired value of future states

3.3 Neural Networks
A neural network was used as the chess pro-
gram’s evaluation function. Neural networks
are known for their ability to approximate ev-
ery non-linear function if they are equipped with
enough hidden nodes. We obtain an evaluation
value of a board position by feeding it to the
network. The board position is translated into
a feature vector. This vector forms the input
of the network and passing it forward through

2



the network results in an output value. The
difference between the desired value obtained
from the TD-learning algorithm and the actual
output value of the network is propagated back
through to the network in order to minimize the
error. This is done by updating the weights of
the network during this backward error propa-
gation process.

4 Evaluating Positions

4.1 The Evaluation Function

In recent years much progress has been made in
the field of chess computing. Today’s strongest
chess programs are already playing at grand-
master level. This has all been done by pro-
gramming the computers with the use of sym-
bolic rules. These programs evaluate a given
chess position with the help of an evaluation
function. This function is programmed by
translating the available human chess knowl-
edge into a computer language. How does a
program decide if a position is good, bad or
equal? The computer is able to convert the fea-
tures of a board position into a score. Winning
chances increase in his opinion when the evalu-
ation score increases, and winning chances de-
crease vice versa.
Notions such as material balance, mobility, board
control and connectivity can be used to give an
evaluation value for a board position.

4.2 Human vs. computer

Gary Kasparov was beaten in 1997 by the com-
puter program Deep Blue in a match over six
games by 3,5-2,5 (Schaeffer and Plaat, 1997).
Despite this breakthrough, world class human
players are still considered playing better chess
than computer programs. Chess programs still
suffer problems with positions where the eval-
uation depends mainly on long-term positional
features(e.g. pawn structure). This is rather
difficult to solve because the positional charac-
ter often leads to a clear advantage in a much
later stadium than within the search depth of
the chess program.
The programs can look very deep ahead nowa-
days, so they are quite good at calculating tac-
tical lines. Winning material in chess usually
occurs within a few moves and most chess pro-
grams have a search depth of at least 8 ply.
Deeper search can occur for instance, when a

tactical line is examined or a king is in check
after normal search or if there are only a few
pieces on the board.
Humans are able to recognize patterns in posi-
tions and have therefore important information
on what a position is about. Expert players
are quite good at grouping pieces together into
chunks of information, as was pointed out in the
psychological studies by de Groot (de Groot,
1965).
Computers analyze a position with the help of
their chess knowledge. The more chess knowl-
edge it has, the longer it takes for a single po-
sition to be evaluated. So the playing strength
not only depends on the amount of knowledge,
it also depends on the time it takes to evaluate
a position, because less evaluation-time leads to
deeper searches.
It is a question of finding a balance between
chess knowledge and search depth. Deep Blue
for instance, thanked its strength mainly due
to a high search depth. Other programs focus
more on chess knowledge and therefore have a
relatively lower search depth.

4.3 Chess Features
To characterize a chess position we can convert
it into some important features. An example of
such a feature is connectivity. The connectivity
of a piece is the amount of pieces it defends. In

Figure 1: Connectivity

figure 1 the connectivity of the white pieces is 7.
The pawn on b2 defends the pawn on c3. The
pawn on g2 defends the pawn on f3. The knight

3



on e3 defends the pawn on g2 and the bishop
on c2. The king on f2 defends the pawn on g2,
the pawn on f3 and the knight on e3. There
is no connectedness between the black pieces
because no black piece is defended by another
black piece. For a more extensive description
of the features we used in our experiments see
(Mannen, 2003). In this section we will give
the feature set for the chess position depicted
in figure 2.

Figure 2: Example chess position

Queens White and black both have 1 queen

Rooks White and black both have 2 rooks

Bishops White and black both have 1 bishop

Knights White and black both have 1 knight

Pawns White and black both have 6 pawns

Material balance white’s material is (1 × 9)
+ (2 × 5) + (1 × 3) + (1 × 3) + (6 ×
1) = 31 points. Black’s material is also 31
points, so the material balance is 31 - 31 =
0.

Queen’s mobility White’s queen can reach 11
empty squares and 1 square with a black
piece on it(a5). This leads to a mobility
of 12 squares. Black’s queen is able to
reach 10 empty squares and 1 square with
a white piece on it(f3), thus its mobility is
11 squares.

Rook’s horizontal mobility White’s rook
on c1 can reach 5 empty squares horizon-
tally. Its rook on c7 can reach 2 empty

squares horizontally and 2 squares with a
black piece on it(b7 and f7). This leads to
a horizontal mobility of 9 squares. Black’s
rook on a8 can reach 2 empty squares
horizontally. Its rook on d8 can reach 4
empty squares horizontally. This leads to
a horizontal mobility of 6 squares.

Rook’s vertical mobility White’s rook on c1
can reach 5 empty squares vertically. Its
rook on c7 can reach 6 empty squares ver-
tically. This leads to a vertical mobility of
11 squares. Black’s rook on a8 can reach
2 empty squares vertically. Its rook on d8
can reach 2 empty squares vertically. This
leads to a vertical mobility of 4 squares.

Bishop’s mobility White’s bishop can reach
3 empty squares leading to a mobility of 3
squares. Black’s bishop can reach 3 empty
squares, thus its mobility is 3 squares.

Knight’s mobility White’s knight can reach 4
empty squares and capture a black pawn on
e5, which leads to a mobility of 4 squares.
Black’s knight can reach 5 empty squares,
thus its mobility is 5 squares.

Center control White has no pawn on one of
the central squares e4, d4, e5 or d5 so its
control of the center is 0 squares. Black
has one pawn on a central square, e5, so its
control of the center is 1 square.

Isolated pawns White has one isolated pawn
on b5. Black has no isolated pawns.

Doubled pawns White has no doubled
pawns. Black has doubled pawns on f7
and f6.

Passed pawns White has no passed pawns.
Black has a passed pawn on a5.

Pawn forks There are no pawn forks.

Knight forks There are no knight forks.

Light pieces on first rank There are no
white bishops or knights placed on white’s
first rank. There are also no black bishops
or knights placed on black’s first rank.

Horizontally connected rooks White does
not have a pair of horizontally connected
rooks. Black has a pair of horizontally con-
nected rooks.

4



Vertically connected rooks White has a
pair of vertically connected rooks. Black
does not have a pair of vertically connected
rooks.

Rooks on seventh rank White has one rook
on its seventh rank. Black has no rook on
its seventh rank.

Board control White controls 17 squares, i.e.,
a1, a6, b1, b2, c2, c3, c4, c6, d1, e1, e3, e4,
f1, h1, h3, h4 and h6. Black controls a7,
b8, b4, b3, c8, c5, d7, d6, d4, e8, e7, e6, f8,
f4, g7, g5 and h8, 17 squares.

Connectivity The connectivity of the white
pieces is 15. The connectivity of the black
pieces is 16.

King’s distance to center The white king
and the black king are both 3 squares away
from the center.

5 Experimental Results

5.1 Parameters
We did two experiments, the first was to learn
the relative piece values and the second to com-
pare eight different evaluation functions in a
round robin tournament.
In our experiments we made use of the open
source chess program tscp 1.81 1, which was
written by Tom Kerrigan in C.
The parameters of the networks are described
in table 1.

learning rate 0.001
lambda 0.9

input nodes 7/71/311/831
hidden nodes 80
output nodes 1

bias hidden nodes 1.00
bias output node 0.25

Table 1: Parameters of the chess networks

To characterize a chess position we can
convert it into some important features. In
the material experiment the input features
only consisted of the amount of material. The
features we used in our main experiment were
features such as material balance, center con-
trol, mobility, passed pawns, etc. as described

1tscp 1.81 can be downloaded from:
http://home.comcast.net/∼tckerrigan

above.

5.2 First Experiment
In the first experiment we were interested in the
evaluation of a chess position by a network, with
just the material balance as its input. Most
chess programs make use of the following piece
values: According to table 2, a queen is worth 9

Piece Value in pawns
Queen 9
Rook 5

Bishop 3
Knight 3
Pawn 1

Table 2: Piece values

pawns, a bishop is worth 3 pawns and a bishop
and two knights is worth a queen, etc. In our
experiment the network has the following five
input features:

• white queens - black queens

• white rooks - black rooks

• white bishops - black bishops

• white knights - black knights

• white pawns - black pawns

The output of the network is the expected re-
sult of the game.
We tried 3 different networks in this experiment,
one of 40 hidden nodes, one of 60 hidden nodes
and one of 80 hidden nodes. There was no sig-
nificant difference in the output of these three
different networks. In table 3 the network’s val-
ues are shown for being a certain piece up in the
starting position. For example, the network’s
output value for the starting position with a
knight more for a side is 0.37. The network
has a higher expectation to win the game when
it is a bishop up then when it is a knight up.
This is not as strange as it may seem, because
more games are won with a bishop more than a
knight. For instance, an endgame with a king
and two bishops is a theoretical win. While an
endgame with a king and two knights against a
king is a theoretical draw. The network’s rela-
tive values of the pieces are not completely sim-
ilar to the relative values in table 2. This is

5



because the values in table 2 do not tell any-
thing about the expectation to win a game. It
is not that being a queen up gives 9 times more
chance to win a game than a pawn. It is also
important to note that being a rook up for in-
stance, is not always leading to a win. Games
in the database where one player has a rook
and his opponent has two pawns often end in
a draw, or even a loss for the player with the
rook. This is because pawns can be promoted
to queens when they reach the other side of the
board. It is also possible that a player is ahead
in material at one moment in a game and later
on in the game loses his material advantage by
making a mistake. So the material balance in a
game is often discontinuous.
Another thing is that one side can sacrifice ma-
terial to checkmate his opponent. In this case
one side has more material in the final position
but lost the game. Therefore the network is
sometimes presented with positions where one
side has more material, while the desired out-
put is negative because the game was lost.
It may seem remarkable that the network as-
sesses the expected outcome to be greater than
1 when being a queen up(see table 3). Most po-
sitions in which a side is a queen up are easily
won. These positions are not often encountered
during the training phase because the database
consists of high-level games. Games in which
a side loses a queen with no compensation at
all are resigned immediately at such level. This
may account for the fact that the network over-
rates the starting position being a queen ahead.

Piece Value
Queen 1.135
Rook 0.569

Bishop 0.468
Knight 0.37
Pawn 0.196

Equality 0.005

Table 3: Piece values after 40.000 games

Overall, we may conclude that the networks
were able to learn to estimate the outcome of a
game pretty good by solely looking at the ma-
terial balance.

5.3 Second Experiment
For our second experiment we trained seven dif-
ferent evaluation functions:

a = a network with general features

b = 3 separated networks with general features

c = a network with general features and partial
raw board features

d = 3 separated networks with general features
and partial raw board features

e = a network with general features and full
raw board features

f = 3 separated networks with general features
and full raw board features

g = a linear network with general features and
partial raw board features

h = a hand-coded evaluation function2

All networks were trained a single time on
50,000 different database games.
The linear network was a network without a hid-
den layer (i.e., a perceptron).
The full raw board features contained informa-
tion about the position of all pieces. The partial
raw board features only informed about the po-
sition of kings and pawns.
The separated networks consisted of three net-
works. They had a different network for posi-
tions in the opening, middlegame and endgame.
Discriminating among these three stages of a
game was done by looking at the amount of ma-
terial present. Positions with a material value
greater than 65 points are classified as opening
positions. Middlegame positions have a value
between 35 and 65 points. All other positions
are labelled as endgame positions.
The hand-coded evaluation function sums up
the scores for similar features as the general
features of the trained evaluation functions. A
tournament was held in which every evaluation
function played 5 games with the white pieces
and 5 games with the black pieces against the
other evaluation functions. The search depth of
the programs was set to 2 ply. Programs only
searched deeper if a side was in check in the fi-
nal position or if a piece was captured. This
was done to avoid the overseeing of short tacti-
cal tricks. The results are reported in table 4.

2the evaluation function of tscp 1.81
6



The three possible results of a game are:
1-0(win), 0-1(loss) and 0,5-0,5(draw).

rank program won-lost score
1 d 51,5-18,5 +33
2 c 42-28 +14
3 b 39,5-30,5 +9
4 a 39-31 +8
5 g 37,5-32,5 +5
6 h 34,5-35,5 -1
7 f 20,5-49,5 -29
8 e 15,5-54,5 -39

Table 4: Performance

The best results were obtained by the sep-
arated networks with general features and par-
tial raw board. The single network with general
features and partial raw board also performed
well, but its ’big brother’ yielded a much higher
score. This is probably because it is hard to gen-
eralize on the position of kings and pawns dur-
ing the different stages of the game (opening,
middlegame and endgame). During the open-
ing and middlegame the king often seeks protec-
tion in a corner behind its pawns. While in the
endgame the king can become a strong piece,
often marching on to the center of the board.
Pawns also are moved further in endgame po-
sitions than they are in the opening and mid-
dlegame. Because the separated networks are
trained on the different stages of the game, they
are more capable of making this positional dis-
tinction.
The networks with general features (a and b)
also yielded a positive result. They lacked
knowledge of the exact position of the kings and
pawns on the board. Therefore awkward look-
ing pawn and king moves were sometimes made

h
a 4,5-5,5
b 6-4
c 6-4
d 7-3
e 3-7
f 2,5-7,5
g 6,5-3,5

Table 5: Results against hand-coded evaluation
function

in their games.
The linear network made a nice result, but be-
cause it is just a linear function it is not able
to learn nonlinear characteristics of the train-
ing examples. However, its result was still bet-
ter than the result obtained by the hand-coded
evaluation function, which scored slightly less
than 50%.
The networks with the greatest amount of input
features (e and f) scored not very well. This is
probably because they have to be trained on
much more games before they can generalize
well on the input they get from the positions
of all pieces. Still, they were able to draw and
win some games against the other programs.
The separated networks yielded a better result
than its single network counterpart. This can
partly be explained by the fact that the sepa-
rated networks version was better in the posi-
tioning of its pieces during the different stages
of the game. For instance, the single network of-
ten put its queen in play too soon. During the
opening it is normally not very wise to move a
queen to the center of the board. The queen
may have a high mobility score in the center,
but it often gives the opponent the possibility
for rapid development of its pieces by attacking
the queen.
In table 6 we can see that four of the seven
learned evaluation functions played better chess
than the hand-coded evaluation function after
just 50,000 training games. The linear evalu-
ation function defeated the hand-coded evalua-
tion function so we may conclude that the hand-
coded function used inferior features. Four non-
linear functions booked better results than this
linear function (see table 5). It only took 7
hours to train evaluation function d4. This il-
lustrates the attractiveness of database training
in order to create a reasonable evaluation func-
tion in a short time interval.

6 Concluding Remarks

6.1 Conclusion
We trained several different chess evaluation
functions (neural networks) by using TD(λ)-
learning on a set of database games. The goal
was to evolve evaluation functions that would
offer a reasonable level of play in a short period
of training.

4we used a PentiumII 450mhz.
7



The main experiment shows that database
training is a good way to quickly learn a good
evaluation function for the game of chess. The
use of partial raw board features proved to be
beneficial. It therefore can be argued that the
evaluation functions with full raw board fea-
tures are the most promising versions in the long
run, despite their relative bad results. In order
to be able to generalize well on the raw board
features, they will probably need to be trained
on a lot more database games (or just more of-
ten on the same games).
The use of separated networks for the different
stages of the game led to better results than
the use of single networks. This indicates that
in order to train an evaluation function for a
problem domain, it is useful to divide the avail-
able training examples into different categories.

6.2 Future Work
Finally, we will put forward three possible sug-
gestions for future work:

1. Training on a larger amount of database
games

2. Using self-play after database training

3. Selection of appropriate chess features for
different game situations

First of all, as described in the previous section,
it would be interesting to train the two evalua-
tion functions with full raw board features on a
lot more examples. To be able to generalize on
positions that differ slightly in board position,
but hugely in desired output the network has to
come across many examples.
Secondly, the use of self-play after the train-
ing on database examples may also improve the
level of play. By only learning from sample play
the program can not discover what is wrong
with the moves it favors itself. On the contrary,
the problem of self-play without database train-
ing is that it is hard to learn something from
random play. Self-play becomes more interest-
ing with a solid evaluation function. Database
training offers a good way of training an ini-
tial evaluation function, because the training
examples are, generally speaking, sensible po-
sitions. An other drawback of using self-play is
that longer training time is necessary compared
to database training. This is because with self-
play the moves have to be searched.

A third refinement is the use of different features
for different game situations. This helps to fo-
cus the evaluation function on what features are
of importance in positions. For instance, in the
middlegame, rooks increase in strength when
they are placed on a (semi) open file. However,
in an endgame with few pawns left or no pawns
at all, this feature is of almost no importance.
The input of this feature to the network there-
fore should not influence the output. Hence, it
will be better to skip this feature in this context.

References
Baxter, J., Tridgell, A., and Weaver, L. (1997).

KnightCap: A chess program that learns by com-
bining TD(λ) with minimax search. Technical Re-
port, Department of Systems Engineering, Aus-
tralian National University.

Beal, D. (1997). Learning piece values using tem-
poral differences. International Computer Chess
Association Journal, 20:147–151.

Bellman, R. (1957). Dynamic Programming.
Princeton University Press, Princeton, 1957.

de Groot, A. (1965). Thought and Choice in Chess.
Mouton & Co. The Hague, The Netherlands.

Mannen, H. (2003). Learning to play chess us-
ing reinforcement learning with database games.
Master’s thesis, Cognitive Artificial Intelligence,
Utrecht University.

Mitchell, T. M. and Thrun, S. (1993). Explanation
based learning: A comparison of symbolic and
neural network approaches. In International Con-
ference on Machine Learning, pages 197–204.

Samuel, A. L. (1959). Some studies in machine
learning using the game of checkers. IBM Journal
of Research and Development, 3(3):210–229.

Samuel, A. L. (1967). Some studies in machine
learning using the game of checkers ii - recent
progress. IBM Journal of Research and Develop-
ment, 11(6):601–617.

Schaeffer, J. and Plaat, A. (1997). Kasparov versus
deep blue: The re-match. ICCA, 20(2):95–102.

Sutton, R. S. (1988). Learning to predict by the
methods of temporal differences. Machine Learn-
ing, 3:9–44.

Tesauro, G. (1995). Temporal difference learning
and TD-gammon. Communications of the ACM,
38(3):58–68.

Thrun, S. (1995). Learning to play the game of
chess. Advances in Neural Information Process-
ing Systems (NIPS), 7:1069-1076, MIT Press.

8


