
Algorithms for Selective Search

Bouke van der Spoel

March 8, 2007



2



Contents

1 Introduction 5
1.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Relevance to CAI . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Chess psychology 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Statistics from reports . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Chunking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.7 Human evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Computer chess algorithms 19
3.1 Conventional algorithms . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Alpha-beta . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2 Problems with alpha–beta . . . . . . . . . . . . . . . . . . 21

3.2 Selective algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.1 Pruning or Growing? . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 Adhoc selectivity . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.3 Probcut . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.4 Best First Search . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.5 Randomized Best First Search . . . . . . . . . . . . . . . 26
3.2.6 B* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.7 Conspiracy numbers . . . . . . . . . . . . . . . . . . . . . 28

3.3 Bayesian search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.1 Philosophy . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.2 Algorithmics . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.3 Full example . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Experiments 39
4.1 Generating distributions . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Decision trees . . . . . . . . . . . . . . . . . . . . . . . . . 39

3



4 CONTENTS

4.1.2 Neural networks . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.3 Errorfunctions . . . . . . . . . . . . . . . . . . . . . . . . 42
4.1.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Random Game Trees . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.2 Extending random game trees . . . . . . . . . . . . . . . . 46
4.2.3 A specific model . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.5 Further extensions . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Chess ending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . 55
4.3.3 Comparison between alpha-beta and Bayesian search . . . 56

5 Conclusions and future work 59
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1.1 Generating spikes . . . . . . . . . . . . . . . . . . . . . . . 59
5.1.2 Random game trees . . . . . . . . . . . . . . . . . . . . . 60

5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.1 Errormeasures . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2.2 The covariance problem . . . . . . . . . . . . . . . . . . . 61
5.2.3 Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.4 Training methods . . . . . . . . . . . . . . . . . . . . . . . 63
5.2.5 Online learning . . . . . . . . . . . . . . . . . . . . . . . . 63

A Transcript of an introspective report 69



Chapter 1

Introduction

1.1 History

The field of AI holds tremendous promise: if it succeeds in simulating human
thought, all jobs could be automated instantly. It was this promise of automa-
tion that lured the first researchers to the field of computer chess. Shannon
[25] envisioned that the design of a good computer chess player would “act as a
wedge in attacking other problems of a similar nature and a greater significance.”
Some of those other problems were machine translation, logical deduction and
telephone routing.

Among reasons to choose for chess, Shannon notes that “chess is generally
believed to require ‘thinking’ for succesful play; a solution of this problem will
force us either to admit the possibility of mechanized thinking or to further
restrict our concept of ‘thinking’.” Today, it seems the second option has come
true: A chess computer has defeated the human world champion, but it is still
plausibly possible to deny that that particular computer could think. Anyone
defending the view that what the computer does is actually ‘thinking’, would
have to admit that it is a very limited kind of thought, almost useless outside
the realm of two-player games.

Furthermore, everyone agrees that computer thought differs fundamentally
from human thought. The only similarity is that both consider possible moves
and evaluate their consequences. But where humans consider a number of moves
in the range of several hundreds, the computer considers many millions or even
billions of moves. Where humans consider only a few initial moves, computers
always consider all initial moves. Also, a human evaluation of a position can
sometimes reach a conclusion that would require a search of billions of positions
for a computer.

Nowhere can the failure of computer chess be seen clearer than with the game
of Go. Although Go is a zero-sum perfect information game, like chess, chess
techniques applied to Go have only resulted in an amateur strength player.
So computer chess tells us little about human thought and it does not even

5



6 CHAPTER 1. INTRODUCTION

generalize to a very similar game.
The causes of this failure can readily be seen from a historical perspective.

In the seventies, several championship cycles started, pitting different programs
against each other. Accomplishment of a program was measured by its rank-
ing, and programmers quickly found out that a focus on chess-specific tricks
and efficient implementation would help their program more than fundamen-
tal research on reasoning. In the eighties this tendency worsened. Computers
had become cheap enough for consumers to buy and strong programs had a
direct marketing benefit over their weaker siblings. Using chess as a vehicle to
study human thought virtually disappeared through this period. Afterwards,
programs continued to grow stronger, but little knowledge was gained in the
proces. In fact, the workings of the best known chess computer, Deep Blue, is
shrouded in a veil of secrecy. After playing just one match against the human
world champion (and winning it), the project was stopped and the machine was
dismantled and put on display.

The problem does not lie with the game of chess per se. Rather the excessive
attention to playing strength smothered other scientifically more interesting
approaches. The game in itself is still interesting, for the following reasons:

• A large percentage of the population knows the rules, so they don’t have
to be explained.

• The game has a considerable amount of expert players. This makes it
easier to elicit expert knowledge and to compare playing strengths.

• There is a relatively large body of psychological research on human chess
thought.

• It is still the most studied game in science, with a very large library of
papers on computer chess.

The large difference between number of positions searched strikes us as the
biggest difference between human and computer. The difference between accu-
racy of evaluation is also interesting, but this is of course related to the previous
issue: with less positions to be evaluated, more time can be invested in the eval-
uation itself.

Thus, the question we want to answer is whether viable selective search
algorithms can be created. We intend to answer this question by demonstration:
by creating and evaluating techniques that can play the same quality chess with
fewer move evaluations as other methods.

This question has not been answered yet. In the literature, papers on selec-
tive search are quite sparse. In most papers an isolated algorithm is proposed
and its effectiveness is evaluated, without much influence from other papers.
After publication, most authors move on to other research areas. These are
probably some of the reasons that no satisfactory solutions have been found
thus far. So, at the moment, in general the dominant non-selective algorithm
(alpha-beta) is still unchallenged [19].



1.2. OUTLINE 7

1.2 Outline

We start in Chapter 2 with an overview of human chess thinking, which proves
that selective search can be highly effective. After that we will give an overview
of current chess techniques and current attempts at selective search algorithms,
in Chapter 3. In this chapter, most of our attention will be given to the Bayesian
search algorithm, because this is the algorithm we intend to improve. Chapter 4
consists of the experiments carried out with the improved algorithm, with a de-
scription of the testing problems and comparisons with alpha-beta. Some work
is also done on improving synthetic testing models. We finish with conclusions
and future work in Chapter 5.

1.3 Relevance to CAI

Cognitive artificial intelligence has, in our view, two research parts. One part
is the direct study of human performance, either by cognitive psychology or
neuropsychology. These methods give knowledge into a particular form of intel-
ligence, the human form. Another part is the study of performance of algorithms
for complex tasks, which are sometimes considered to require ‘intelligence’ to
solve. This approach can be seen as studying intelligence apart from the human
form.

Both parts augment each other, as human ways of solving problems can often
be implemented in computers. On the other hand, knowledge about algorithms
for complex tasks yield knowledge about the underlying problem and the diffi-
culties that can arise in solving it. Such knowledge can help define bounds on
the methods possibly used by humans to solve the problem, helping the research
for understanding the human mind.

This thesis definitely falls in the second category. It is concerned neither
with questions about the nature of human selective search nor with simulating
the current models that have been made of it. It is concerned with the problem
of selective search in itself and the analysis of the difficulties that arise in it.
As such, this thesis can be labelled as ‘Advanced Informatics’, but inspired by
human performance.



8 CHAPTER 1. INTRODUCTION



Chapter 2

Chess psychology

2.1 Introduction

In order to understand the human and computer chess approach, both must
be studied. In this chapter we summarize the current understanding in hu-
man chess thinking. Before any theorizing can be attempted, data is needed.
The main methods of gathering data in this area are introspective reports of
thinking chessplayers, and chessrelated memory tasks. As the scientific under-
standing of human thought processes is still limited (except perhaps for basic
visual information processing), theories in this particular field will most likely
be inaccurate. Therefore the emphasis will be more on the data in this chapter.

Introspective reports were the main source of data for de Groot [10], and
present some interesting results. These reports were obtained by instructing
various chessplayers to think ‘aloud’ during the analysis of a newly presented
chess position. The subjects were six contemporary grandmasters, four mas-
ters, two lady players, five experts and five class A through C players. The
grandmasters were world-class players, with former world champions Euwe and
Alekhine among them. The total number of reports gathered was 46. It is often
said that a picture says more than a thousand words, and the same can be said
for the reports obtained like this. Therefore we have put one such report from
de Groot in Appendix A.

2.2 Statistics from reports

A conspicuous characteristic of the reports is that players tend to return to
the starting position many times, and start thinking from there. These returns
act as a natural way to divide the thinking process into episodes, and a lot of
analysis is aimed at these episodes. One variable obtained from these episodes is
the sequence of starting moves in each episode. For example, de Groot’s subject
C2’s thought consisted of 9 episodes, and the first moves of each episode were
1. Nxd5; 1. Nxd5; 1. Nxd5; 1.h4; 1. Rc2; 1. Nxd5; 1.h4; 1.Bh6; 1.Bh6. The

9



10 CHAPTER 2. CHESS PSYCHOLOGY

move 1.Bh6 was played.
As can be seen from this data, not every episode starts with a new move:

the move 1.Nxd5 is considered three consecutive times. De Groot calls this
phenomenon ‘immediate reinvestigations’, and it occurs an average of 2.4 times
in all the reports. The number of first moves that are unique is 4.5 on average.

Sometimes an episode starts with a move that was investigated before, al-
though not immediately before. Named ‘non-immediate reinvestigations’, it
happens on average 1.9 times per subject, but with considerable variance be-
tween subjects and positions (e.g. position C had an average of 3.8). De Groot
goes to some length to emphasize this “is restricted not to certain persons who
might have the habit of ‘hesitating’ and ‘going back and forth’ from one solv-
ing proposition to the other, but rather to situations where the subject - any
subject - finds it difficult to come to a decision.”[his italics]. Among reasons for
non-immediate reinvestigation, de Groot mentions:

• Subject has detected an error in his previous calculations.

• Subject’s general expectations have dropped, he is forced to get back and
to reconsider other lines.

• Subject may be inspired by some new idea for strengthening or reinforcing
the old plan.

In all those cases, it is new information that prompts a subject to reinvestigate.
Another statistic calculated from the reports is the number of unique posi-

tions reached when all variations mentioned in the report are played through.
De Groot found that this number did not change very much through skill levels,
even though skill level was strongly correlated to decision quality. The conclu-
sion was that differences in skill are not due to search thoroughness but rather to
evaluation accuracy and/or better focus of search effort, at least in the positions
used.

2.3 Planning

The moves that appear in the reports are not random. Most of the times, they
are conceived with a certain goal in mind. This goal is acquired in the first stage
of thought. The verbal report from this stage is structurally different from the
later part, and takes about 20%-25% of the total time. This is more lengthy
than in normal games, because the positions are totally new to the subjects.
How exactly these goals are acquired is unknown, but it seems clear that better
players have better goals than worse players. De Groot notes: ‘G5 has a more
nearly complete grasp of the objective problems of position B1 [after 10 seconds
exposure], than do subjects C2, C5, W2 and even M4 after an entire thought
process of ten minutes or more!’, where G5 is a grandmaster and the others are
not.

The goals that are formulated at the start of the thought process are not
set in stone. For instance, in one position G5 at first considers an attack on



2.4. CHUNKING 11

the enemy king the best option. When that does not give the desirable results,
he considers a new goal, namely blockading enemy pawns, and spends half the
analysis with this goal. In the end, this does not yield desirable results either,
so he returns to the original plan.

Goals can differ greatly in their concreteness, both in what they hope to
achieve and in the means for achieving it. In the protocol in Appendix A, the
subject says ‘Now let’s look in some more detail at the possibilities for exchange’.
The goal is quite unclear, it is more a ‘let’s see what happens’ kind of attitude.
The means are quite clear though, all exchanging moves. Other times the goal
is crystalclear, but the means are not that clear. Quotes from subject M5 in a
position with mating threats: ‘It must be possible to checkmate the Black King’
(singular goal), and ‘Lots of possibilities will have to be calculated’ (multiple
means).

When the means of achieving a goal are unclear, more calculation needs to
be carried out to see wether the goal is achievable. Indeed, in the last example,
the position with mating threats, the subject was searching for a mate almost
his entire analysis. In the end, he did not find the mate (it was possible though),
and opted for a quiet move. A natural question to ask is: What is the relative
importance between raw search ability and accurate goal-finding for chess skill?
De Groot did not find any difference in raw search ability between skill levels,
but he did find large differences in the accuracy of the goal. Therefore he
naturally attributed more importance to recognition of the correct goals.

This hypothesis was later elaborated into the recognition theory of chess
skill. It roughly claims that “what distinguishes chess mastery ... is that mas-
ters frequently hit upon good moves before analyzing the consequences of the
various alternatives. Rapid move selection must therefore be based on pattern
recognition rather than on forward search”[16]. There is quite some evidence in
favor of this theory: first, de Groot could not find any macroscopic differences
in search behaviour between experts and novices. Second, strict time limits,
which hinder deep search mostly, do not impair playing strength much. Gobet
and Simon [13] show that Kasparov, the world champion at the time, lost only a
marginal amount of ability when playing against 4 to 8 players simultaneously.
Third, masters did see solutions of combinatory positions significantly more of-
ten than novices when only 10 seconds thinking time was allowed, which is not
enough to do any search of consequence.

2.4 Chunking

A more specific version of the theory is given by Chase and Simon [8]. It
makes use of the fact that strong chess players appear to store chess positions
in chunks, rather than piece by piece. Using chunks to improve memory is
well-known in cognitive psychology, but here the chunks are used in another
fashion as well. Associated with each chunk is a set of plausible moves, it is
theorized. Thus, the set of chunks acts as some sort of production system, with
a chess position activating particular chunks, and the chunks in turn activating



12 CHAPTER 2. CHESS PSYCHOLOGY

particular candidate moves. The extensiveness and quality of the chunks present
in long term memory is the deciding factor in chess skill, according to this theory.

Holding discredits this theory by noting that observed chunks in memory
tasks do not appear to correspond to important chess relationships or good
moves. While this is a valid point, it can only be aimed at a simple version of
the theory, a version where these relationships are represented by the chunks
in isolation. But pieces can be member of different chunks, or, said differently,
chunks can overlap. Under the method used to obtain chess chunks this phe-
nomenon was impossible to detect. Also, sometimes a piece was contained in a
‘chunk’ of its own (a degenerate case). It seems impossible to derive good moves
from just the position of one piece on the board. Therefore, the chunks must
interact somehow.

How chunks interact to generate good move candidates, is similar to the
problem of how chess pieces interact to generate good move candidates. So it
appears the recognition theory explains nothing. This is not necessarily the case,
however. The process of chunking is essentially a proces of abstraction. This
process may be several layers deep, with chunking as the first layer. The higher
layers of abstraction may better reflect the problems of a position, and suggest
plans accordingly. This could be translated back down into actual moves. Plau-
sible as it may sound, such a theory has no experimental evidence for it yet,
and it seems very hard to get such evidence in the future.

Even though there is much unclear about the nature of chunks, Chase and
Simon give an estimate of their number. On the basis of a computer simulation,
they estimate that between 10.000 and 100.000 chunks are needed. This figure
is repeated without discussion in a lot of publications. However, a number of
assumptions are implicitly made in this estimation. First, in the simulation
the same configuration at a different location constituted different chunks. For
example, two pawns next to each other can be present on 42 positions on the
board, and all 42 of these could be different chunks. Also, black and white
were considered to have different chunks. Eliminating these two sources of
redundance could easily reduce the number to 2.500 or less, as Holding notes.
However, if larger numbers of pieces are chunked together by chessplayers, the
number of possible chunks could skyrocket again.

So far, chunks have been modeled as a small set of pieces on particular lo-
cations. Recently, a totally different conception of chunks has been proposed
by Hyötyniemi and Saariluoma [18]. Their inspiration comes from connection-
ist models and the possibilities these models have for representing knowledge
in a different way. They represent the chessboard with 768 bits, one for every
possible piece-location combination. In the previous model, a chunk is such a
position with only a few pieces present, but here it is a fuzzy representation
where any number of pieces can be (partially) present. Because of this fuzzy-
ness chunks can be partially present as well. They present an example where
their model has similar performance to humans, and claim that their model
could more naturally explain other results as well. Although their investiga-
tions are far from complete, their model presents yet another point of view on
the chunking debate.



2.5. SEARCH 13

Although the means are unclear, it is clear that better players are better
planners. Their plans are more to the point, and this ability seems to contribute
much to their skill. The other factors, like search ability and evaluation ability,
will be considered next.

2.5 Search

All this attention on the way chess players recognize good moves has occluded
another part of the equation, search. Because de Groot did not find differences
in the search behaviour between skilled and unskilled players, it was assumed
there were none for a long time. However, not finding something does not mean
it is not there. Holding notes that the position used in de Groot’s research
does not require deep search to be solved, and indeed de Groot himself provides
‘thought pathway’ to a solution to the position that contains only 17 steps.

That a difference in searching ability does exist, was shown by Campitelh
and Gobet[7]. They maintained that the position used by de Groot was too
simple for his subjects and did not require much search to reach a conclusion.
They gathered reports on a more difficult position and noted their subjects that
there was a unique solution to the position. Thus motivated, the amount of
visited positions (in thought) was much larger than in any previous study, but
also highly correlated with skill. The only weakness of the study is that only 4
subjects were tested, but it seems reasonable to conclude that stronger players
can search deeper if it is needed.

Although this indicates that better players can search deeper, how much this
ability contributes to skill is not known. Gobet does not provide an analysis
of this question in the first mentioned paper, but some clues can be found in
another study by Gobet[12]. This study is a partial replication of de Groots
original study. Due to the bigger sample used, Gobet finds differences between
skill levels in more variables, but he notes that “The average values obtained ...
do not diverge significantly from de Groot’s sample.”

The interesting part of the study in this context is the application of statis-
tics. From the reports, a lot of variables were collected, mostly the same vari-
ables de Groot collected. For each variable, its power in predicting the quality
of the chosen move was calculated. Three such variables (time taken, average
depth of search and maximal number of reinvestigations) were found to be sig-
nificant, and taken together they could account for 35.1% of the variance in
quality of the choice of move. This was more than the Elo rating, the gener-
ally accepted indicator of chess skill, which accounted for 29.2%. When the
three variables were partialled out of the result, the Elo rating still accounted
for 17.6% of the variance. Gobet’s conclusion is “that search alone does not
account for the quality of the move chosen, and that other factors, probably
including pattern recognition, play an important role.”



14 CHAPTER 2. CHESS PSYCHOLOGY

2.6 Evaluation

When a goal has been chosen, and a search is being carried out, the last positions
reached in the search need to be evaluated. Before we can look in more detail at
how humans evaluate positions, the phenomenon of ‘evaluation’ itself needs to
be studied. For this discussion, we will take a more computer-oriented approach,
because its more mathematical nature lends itself better for analysis.

The earliest solution to the evaluation problem is due to Shannon [25], who
proposed to associate a number to each position. The position with the high-
est number would be the best, from white’s perspective. This idea cannot be
entirely attributed to Shannon, as common chess lore assigns numbers to the
various pieces which denote their value. However, Shannon formalized the idea
and mentioned the possibility of adding many other features of a chess position,
each feature having a small decimal value, where 1 is the value of a pawn. There
are many possible features, but the following have been used extensively:

• Mobility

• Center control

• King’s safety

• Double pawns

• Backward pawns

• Isolated pawns

• Pair of bishops

Many of these features are taken directly from human experience; two of them
are even present in the verbal report in Appendix A, isolated pawns and pair of
bishops. With so many features, most positions have different evaluations so it
becomes possible to choose between them.

With this kind of evaluation, we have created a kind of a definitional problem:
chess positions have only 3 definite game-theoretic outcomes. So what do these
evaluations mean then? It is surprising that no previous authors have explored
this question. Most of them just say the evaluation is an indication of ‘quality’
of a position, without further explication of the term. Van den Herik [29] even
notes there is a definitional problem with the evaluation of the KBNK(King,
Bishop and Knight versus King alone) ending (it is always won), but leaves the
issue at that.

One possible answer to the question goes as follows. Although each chess
position has a definite outcome, the player does not necessarily know what it
is. The evaluation is some kind of estimate of this outcome. Therefore, the
evaluation should correlate with the probability that the position is actually
won, lost or drawn. This means that among the highly evaluated positions, only
a few are actually drawn or even lost, and vice versa for the lowly evaluated
positions. This option can be formulated mathematically:



2.6. EVALUATION 15

� � �����
� � � �
� � �����
� � � �
� � � �
� � � ���
� � � �
� � � �

Figure 2.1: A position with two possible winpaths.

∑

pos∈positions

evalpos · outcomepos > 0

where eval is an evaluation function that is suitably normalized to a [−1, 1]
range, and outcome gives the gametheoretic outcome of the position: 1 for a
win, 0 for a draw, -1 for a loss.

Another option is that the evaluation is an estimate of the distance to win.
This option is mainly useful in endings, where one side may have difficulties in
making progress. It can also occur in the midgame, when a player discards a
move not because it is bad, but because it does not take him any closer to his
goal. In this case both the distant, foreseen position and the current position
may be won, but both are still estimated to require the same number of moves
for winning. Going to the foreseen position would not bring the player closer to
his goal, so the move is discarded.

Still another option is that the evaluation is an estimate of the difficulty
of reaching a desired outcome against the current opponent. An example can
clarify this proposal: if someone is playing against a much stronger opponent, he
may try to keep the position as quiet as possible, with as few tactical possibilities
for both players. The reasoning is that the stronger player can better take
advantage of them, so if the player wants to reach a draw, this is easier in
a quiet position with a small advantage for the opponent, than in a volatile
position that is about equal. The stronger opponent may follow the opposite
line of reasoning, seeking complications that he would consider bad if he was
playing against an equal opponent.

Here follow some examples where different evaluation meanings lead to dif-
ferent results.

In position 2.1, a relatively simple position, several grandmasters gave rad-
ically different continuations for white. It is due to van den Herik. The main



16 CHAPTER 2. CHESS PSYCHOLOGY

subgoal in this position is to move the white king to the white pawn; black
will try to prevent this. Most grandmasters proposed 1. Kf8, which is followed
by 1. ... Kf6 2. Ke8 Ke6 3. Kd8 Kd6 4. Kc8 Kc6 5. Kb8 Kd6. At the
last move, black may not block white at b6 because the white pawn can then
walk to promotion unimpeded. After this, white can easily move to his pawn.
Another grandmaster proposed 1. Ng4 Kg5 2. Kg7, which will lead to results
quicker. Aside from difference in speed, there are other, more subtle, differences
in the two approaches. If white plays 1.Ng4, his pawn becomes unprotected.
If the pawn is taken it is a draw, so white has to take care to protect it again
when the black king attacks it. Though it may seem only a tiny worry, things
like these can and have been forgotten if white is in time-trouble. Also, this
option requires a bit more computation than simply moving the king around.
So, summarizing, both 1.Kf8 and 1.Ng4 are winning strategies, but 1.Kf8 is a
little safer, and 1.Ng4 a little shorter.

Another example is the theoretical ending of KBNK. If the stronger player
does not give away pieces, it is always won. However, when the stronger player
always plays the first move from a list of moves that lead to a won position, and
the opponent makes the move that takes longest under optimal play, it is quite
possible that the stronger player never wins. Therefore, in this case knowledge
of the gametheoretical outcome is not necessarily enough to win.

Sometimes a player chooses to ignore a move that leads to a position the
player knows is won. A clear example is when the resulting position is the
KNNKp (king and two knights versus king and pawn) ending (see for instance
[17]). There are some easy criteria for when such a position is won, but the
winning itself can be extremely difficult. As a result, a player can know when
such a position is won, but also know that he probably is not able to do so.
A position where it is not clear if it is game-theoretically won, but where the
player knows how to play, is preferable in this case.

Another example where the estimate of game-theoretical win chances is not
the most important feature of a position, is when a player is in time-trouble
in a complex position. Consider the case where the player makes the move
with the highest estimate of leading to a winning position. If the position
remains complex, the player needs time to calculate the consequences of his
next moves. But the player is in time-trouble, so he is likely to make a mistake
somewhere along the road. A better strategy therefore is to simplify the position
so extensive calculation is unnecessary. Even if the estimated probability that
the position is game-theoretically won is somewhat lower, the player is much less
likely to make a mistake, so this strategy can result in a better overall outcome.

It is especially with this difference in complexity that we will be concerned
in the experimental part of this work. It is related to a technique that is already
used in almost all chess programs, quiescence search. Although its name suggests
a search technique, it can be seen as a hybrid between search and evaluation.
The idea is that an evaluation function of the kind given in the start of this
chapter is not able to give a sensible evaluation of some positions. For instance,
if an exchange of queens is in progress, a pure count of material will put one side
a queen ahead. The accompanying evaluation has no basis in the position itself,



2.7. HUMAN EVALUATION 17

but it is very hard to compute an accurate evaluation in this kind of situation
statically. Therefore, a small search must be conducted. Only a very limited
set of moves is considered, such as capturing unprotected pieces or pieces that
are worth more than the capturing one. The outcome of this search is taken as
the evaluation of the position.

2.7 Human evaluation

Data on how humans actually evaluate positions is scarce. The most detailed
examples of evaluation in the verbal reports go something like “White has the
pair of Bishops, at least one very good Bishop. His Knight on g5 is in trouble;
weakened position.”, “the first thing that strikes me is the weakness of the
Black King’s wing, particularly the weakness at f6”. Perhaps surprisingly, the
evaluation of weaker players (in the 1500-2000 Elo range) can be modeled well
by computing a linear sum of a variety of positional features. Holding [16] found
a correlation of .91 between human judgment and the judgment of CHESS 4.5,
a chess computer using just such an evaluation function. It is unknown if this
correlation extrapolates to higher skill levels.

More can be concluded about the quality of the evaluation. The position
in Appendix A used by de Groot is a good example. For 4 out of 5 grand-
masters, the position after 1.Bxd5 exd5 was sufficiently good to decide to make
this move. Most experts and class players did not even consider the move (a
failure in planning), but E1, who did, made considerable calculations follow-
ing this move, could not find a satisfactory line and decided on another move.
So the grandmasters could choose the best move on the basis of their superior
evaluation ability.

Data gathered by Holding [15] shows that evaluation quality steadily rises
through skill levels. He asked 50 players, class A through E, to rate 10 test posi-
tions. The higher rated players were significantly better at predicting, through
their evaluation, which side had the better game. Another result was that higher
rated players were more confident in their evaluations.

A complicating factor in these evaluation experiments is the blurry line be-
tween pure evaluation and search. Players can not help looking at possible moves
when they see a position, and what they see influences their judgment. Hold-
ing measured this influence by splitting the dataset on the move choice players
made. In a better position, if the move judgment was actually the correct one,
the evaluation was significantly higher than if a worse move was chosen. The
conclusion is that the evaluation must partially depend on the moves that are
seen.

In this chapter, we have seen a glimpse of human thought processes in chess.
Relative to computers, humans have very high-quality but costly evaluations.
In order to be able to see far enough ahead, humans also have the ability to
search selectively without overlooking good continuations most of the time. It
seems reasonable to assume the information from the evaluation is used to guide
the selective search effectively, but quantitative data about this relation is not



18 CHAPTER 2. CHESS PSYCHOLOGY

present. The human tendency to formulate subgoals (plans) is probably also
important to make selective search possible.

In the next chapter, we will look at how computer programs decide on their
move. The two approaches are very different; given the better human perfor-
mance in domains other than chess, there is still a lot to learn from the human
approach.



Chapter 3

Computer chess algorithms

3.1 Conventional algorithms

In this section we will describe some of the most used algorithms in the adverse-
rial search domain. These algorithms are widely available on the world wide
web, including pseudocode, so we will not give pseudocode here.

3.1.1 Alpha-beta

Minimax is the algorithmic implementation of the idea to look at all your moves,
and then at your opponents’ moves after every single move you made, and so on.
The name stems from the fact that the algorithm maximizes over the values of
the options of the current player and minimizes over the options of his opponent.
A common reformulation of this idea is negamax, which always maximizes the
negation of these values. The results are the same, but it allows for a simpler
implementation. The largest flaw of the algorithm is the exponential complexity.
With a branching factor b and a search depth d the complexity is O(bd).

The alpha–beta algorithm produces the same results as minimax, but has a
much lower complexity. As a result, no programs use minimax anymore. The
basic intuition can best be expressed with an example. See figure 3.1. The
maximizing player must move from A and has searched node B and found it
has a value of 4. It is currently busy evaluating node C. One of its children,
node D, has a value of 3. In this situation, the value of node E does not matter
anymore. If its value is more than 3, the opponent will choose node D and then
the value of C is 3. If its value is less than 3, the opponent will choose node E,
and the value of node C will be less than 3 as well. Whatever the value of E,
node B is the better choice. Consequently, node E does not have to be searched.

This idea is implemented by keeping track of two values, alpha and beta,
which denote the worst-case values for both players. In the example, the worst
case value of A for the maximizer is 4. Because the value of C is already lower
than that, node E can be safely cut.

19



20 CHAPTER 3. COMPUTER CHESS ALGORITHMS

This pruning technique works best if the best move happens to be the first
to be evaluated. Under optimal circumstances, when the first evaluated move
is always the best, this reduces the complexity of the search to O(

√
bd), or,

alternatively, a search twice as deep in the same time. This theoretical result
can be approached very closely, see for instance [24].

The next natural question to ask is: how to get the best move in front? One
option is to use various domain-dependent heuristics. In chess, for instance,
checking and capturing moves are often better, so it’s a good idea to consider
them first. Another idea is to do a preliminary search and use the results to
order the moves. Due to the use of hashtables (see next paragraph), the overhead
of this method is not as big as it might seem. The importance of these node
ordering techniques must not be underestimated. Van den Herik [29] says about
this: “Chessprogrammers probably even put more energy in this part of their
chess program ... than in the functions for evaluating positions” [translated
from dutch].

Many positions in the search tree can be reached by more than one sequence
of moves. To avoid evaluating such positions again, it is a good idea to keep track
of the positions that are already evaluated. For these positions, the evaluation
value must be stored. The part of the program responsible for this is called
the hashtable, after a data structure that allows O(1) membership testing and
retrieval of the evaluation value. Sometimes they are also called transposition
tables, but this is not technically correct most of the times, because the need to
evaluate positions more than once can have more causes than transpositions in
move sequences. The preliminary search mentioned in the previous paragraph
is an example of this.

As already mentioned, a preliminary search can be used to determine the
best move ordering. The best preliminary search probably is one that is just
one ply shallower than the main search. To provide the preliminary search with
a good move ordering, another preliminary search can be made, again just one
ply shallower. This can be repeated until the preliminary search is only 1 ply
deep. The resulting algorithm is called iterative deepening. At first glance it
may seem a very inefficient algorithm, but actually it is not. Even with a very

A

B C

D E

value: 4

value: 3 value: ?

Figure 3.1: An example of α−−β pruning



3.1. CONVENTIONAL ALGORITHMS 21

good move ordering in place, the effective branching factor of a search in chess
is still about 8. This means that a depth n− 1 search takes about 8 times less
time to complete than a depth n search. An n − 2 depth search takes even 64
times less time. The overhead of all these preliminary searches is slightly less
than 1

7 of the time of the final search. On average, the speedups from better
node orderings are much bigger.

Another trick to reduce the amount of searched nodes is the so-called null-
move heuristic. Its assumption is that there is always some move that is better
than not to move at all. When searching, we first see what happens if we do not
make a move. If the resulting value is good enough to make the node irrelevant
to the rest of the search, we can dispense with the real search. This works
because usually there is some move that has an even better result than not
moving at all. In chess this is the case until deep into the endgame, but in other
games it is more problematic.

In essence, these are the techniques that are currently used by the worlds
best chess programs [6]. In chess, they are enough to reach world-championship
level, but in other games they are just enough to reach amateur level, such
as Go. In playing the game the results are good, but these techniques do not
contribute anything to models of human chess playing. It is widely agreed that
human chess players use completely different methods of deciding their moves.
In this sense the chess research program has failed, because it has not yielded
new insights into human reasoning or learning, which was the original goal.

3.1.2 Problems with alpha–beta

Junghanns [19] discusses a number of problems with the original alpha–beta al-
gorithm. Many of the techniques from the previous section are aimed at correct-
ing some of these short-comings, although they cannot solve them completely.
The problems are:

• Heuristic Error: Alpha-beta assumes evaluations to be correct. As seen
in the discussion of the meaning of evaluation, this notion of ‘correct’ in
itself is already problematic. But it generates another problem, in that
only one faulty evaluation can cause a wrong decision.

• Scalar Value: All domain-dependent knowledge is compressed into a scalar
value at the leaves. As discussed in the meaning of evaluation, there is
more relevant information present. Compression into a total ordering of
preference (usually implemented by a number) discards potentially usable
information.

• Value Backup: Non-leaf nodes are valuated as the simple maximum (or
minimum) of their descendants. However, information about other nodes
than the best is important as well. If the second-best node is much worse
than the best, an error in judgement can have serious repercussions. On
the other hand, if there are many approximately equal continuations, one



22 CHAPTER 3. COMPUTER CHESS ALGORITHMS

� ����� �
� � � ���
� � � �
� � � �
� � � � �
� � � �
� � � � �
� � 	 ��


Figure 3.2: A position where the horizon effect can cause problems

incorrect judgement does not have much influence. A simple value prop-
agation rule like taking the maximum cannot take this into account.

• Expand Next: Alpha-beta searches the tree in a depth-first order. It is
very hard to use information from other parts of the tree to decide which
node to expand next; in fact, only the alpha and beta values can make
the algorithm stop searching a certain node, and when such a decision is
reached the node cannot be revisited ever again. This is rather inflexible.

• Bad Lines: Alpha-beta gives a guaranteed minimax value of a tree of a
certain depth. To be able to do this, even patently bad moves must be
searched to that depth. The computations can probably better be spent
elsewhere.

• Insurance: This is the opposite of the ‘bad lines’ problem. As alpha–beta
proves the minimax value, it never misses anything within the minimax
depth. Selective algorithms can incorrectly judge a move as irrelevant
and therefore miss the best continuation. Therefore, insurance is a strong
point for alpha–beta and a potential problem for selective algorithms.

• Stopping: The alpha–beta algorithm does not deal with the problem of
when to stop searching. Most of the time, a position is searched to a
specific depth, so time spent on each position is independent of the im-
portance of the move-choice in that position.

• Opponent: Minimax algorithms assume the opponent plays according to
the same algorithm as itself. Therefore, they cannot use any information
about known weaknesses of an opponent.

Another problem with minimax search not mentioned by Junghanss is the
horizon effect. It is best illustrated with an example, see figure 3.2, where
black is moving. Assume black searches 6 plies deep. If he does ‘nothing’ (e.g.



3.2. SELECTIVE ALGORITHMS 23

moving the king around), white will capture the knight. If black moves 1. ...
b5 however, he can take the white pawn while white is moving to the knight.
The problem is that white can capture both, but he needs more than 3 moves
for it, so a 6 ply search will come to the conclusion he can only capture one of
them. Because the knight is more valuable, it is best to go for the knight, as
far as minimax is concerned. However, if white is not affected by the horizon
effect, he will just take the pawn (2. axb5), and the whole process starts again.
Black thinks that white will move to the knight, so 2. ... a4, 3. Kf1 a3, 4.
Kg1, axb2, 5. Kxh1 is the best black thinks he can do with his moves at this
moment. Of course, white would not play 4. Kg1, but 4. bxa3. Note that at
move 3, black would see his mistake because white now only needs 2 moves to
capture the knight, so now white can capture the pawn as well as the knight.
A very devious white player can foresee this and move 3.Ke2 instead of 3.Kf1,
just to keep the capture of the knight at the horizon (this is a nice example of
using knowledge about weaknesses of the opponent to one’s advantage, and this
very thing has been known to happen in the early days of computer chess!).

The problem is that black thinks that the only way for white to capture the
knight is to move to it right now. Black thinks that any other action by white
saves the knight, which of course is not the case. But black acts on the thought
and tries to capture some pawns while white is busy capturing his knight.

3.2 Selective algorithms

Over time, a number of selective search schemes has come up, which we will
discuss in this section. In essence, the only thing a selective search algorithm
needs to do is tackle the ‘bad lines’ problem. In order to do so many algorithms
also address other problems as well.

3.2.1 Pruning or Growing?

All selective search algorithms must decide which nodes not to search. There
are two distinct methods of reaching these decisions. First of all, there is the
method proposed by Shannon, which is a function that is given a position and a
move, and returns a ‘yes’ or ‘no’ answer. This method can be seen as ‘pruning’
the tree, and pruned branches will never grow again. The pruning decision must
be reached with information present at the node itself.

Opposed to this method is the method of growing. This method can be
seen as a function that takes the entire current search tree as an argument, and
returns the node to expand. In contrast with the pruning method, no branch
is pruned permanently; other branches just have priority over it, but that may
change in the future. The advantage is that much more information can be used
to decide where to search next. The disadvantage is that all this information
needs to be managed and stored.

An example where the advantage of the growing method can be seen clearly
is a position where there are two possible continuations. Both seem very good,



24 CHAPTER 3. COMPUTER CHESS ALGORITHMS

but one of them is just a little bit better, so that one is searched first. A little
while into the search, it seems the evaluation of the first move was all wrong,
it is much worse than we expected. Therefore we abandon the search and start
searching the other move. There things turn out to be even worse than for the
first move. At this point, the difference between pruning and growing methods
becomes clear. Pruning methods can now only search on at the latest position
or stop searching and make the first move. Growing methods can switch back
to the first option without any loss.

A different example comes from Conitzer and Sandholm [9], slightly adapted
by us. Their main interest was to investigate computational hardness of meta-
reasoning problems, and the following problem, in a more generalized version,
turns out to be NP-hard. In the problem a robot can dig for precious metals
(i.e.make a move) at different sites. To aid its decision where to dig, it can also
perform tests wether the metals are present or not (i.e. the search actions). The
probability that there is gold at location A is 1

8 , that of finding silver at site
B 1

2 , copper at site C 1
2 and tin at site D 1

2 . Finding gold has value 5, finding
silver value 4, copper value 3, tin value 2, while finding nothing has value 0.

If the robot cannot perform tests at all, it should dig at site B for an expected
value of 2. If it has time for just one test, it should test for silver at site B. If
silver is present, it should dig it up, if not it should try to dig for copper. This
strategy has an expected value of 2 3

4 . The strategy of searching for gold and
digging for silver if there is none has an expected value of 23

8 . When the robot
can do two tests, it becomes more complicated. It is still best to search for silver
first, but the next search action depends on the outcome. If silver is found, it
is safe to search for gold, because even if no gold is found, the robot can dig up
the silver. If no silver is found, it is better to search for copper and if it is not
found the robot should dig for tin and hope for the best. This strategy yields
an average value of 3 1

16 , while just searching for gold and silver regardless of
outcome yields 3 1

32 .
In this simple example, pruning methods can in principle still determine the

correct search order (and stop if search becomes useless), because the conditional
search action (search for tin or gold, depending on the outcome of silver) occurs
in the same node, the root. If they occurred in children from different parents,
pruning methods would not be able to conduct the search in the most efficient
way. This is in essence the same phenomenon as the first example. The recurring
theme is that pruning methods must either search a move completely or not at
all.

We will now look shortly at some specific selective search algorithms, and
in-depth at the Bayesian Search algorithm as that is the algorithm we have used
for most of our experiments.

3.2.2 Adhoc selectivity

The first computer chess programs used selective searching. There was only one
reason for this: there was no time for even a minimal full search (see [29, page
120], page 120). A variety of heuristics was used for this purpose, generally



3.2. SELECTIVE ALGORITHMS 25

the same as the move-ordering heuristics for alpha–beta described above. This
method was never really successful, and when alpha–beta was invented and
more computing power came around, it was quickly abandoned [28].

3.2.3 Probcut

A more successful approach was taken by Buro [5], with the ProbCut algorithm.
The idea here is to use a shallow search as an estimate of the outcome of a deep
search. With some statistical techniques a confidence interval of this estimate
is computed. If this entire interval is outside the alpha–beta interval, the search
can be relatively safely stopped. If not, a deep search is carried out anyway.
Buro tested this algorithm on othello, where it was very succesfull, but attempts
to implement it in chess have failed so far [19]. An important thing to note is
that the same confidence interval is used for all positions in the game. No
attempt is made to use different intervals for different types of positions. As
such, this heuristic is not position-dependent, only game-dependent.

3.2.4 Best First Search

Korf and Chickering [20] introduced Best First Search in 1995. It expands the
current principal variation, the ‘best’ node. The idea is that as the value of this
node determines the value of the root, it is important to know its value more
accurately. There are a few problems with the Best First approach though. If
the evaluation of a node is a serious underestimation of its actual value, the
algorithm will never find this out. Hence, it can even terminate without finding
the optimal move. Korf and Chickering themselves also note that the algorithm
does better with a more accurate evaluation function. Their experiments also
suggest that with a less accurate evaluation function it is better to use the
algorithm on top of a standard minimax tree.

Another problem is that much of the selectivity characteristics depend on
the so-called tempo effect. It refers to the fact that the player who is on move
can usually improve his position. This changes the value of the node, which
has a high probability of changing the principal variation. After all, if the value
increases a lot, the minimizer will likely try another move somewhere up the
tree. The problem lies in the fact that this tempo effect is actually an inaccuracy
of the value function. The value function should reflect the actual value of a
position as closely as possible; if the value after an 1-ply search is on average
higher than the static evaluation, the evaluation function contains a bias against
the player-on-move. If this bias is very high, the search degrades towards a
breadth-first search. If there is no bias, the search becomes very selective. Korf
and Chickering did not look at the effects of bias, so experimental data on it is
not available.



26 CHAPTER 3. COMPUTER CHESS ALGORITHMS

3.2.5 Randomized Best First Search

In order to fix the first problem with Best First Search Shoham and Toledo [26]
introduced Randomized Best First Search. In essence this algorithm tries to
expand nodes according to the probability that they are the best. This ensures
that moves currently viewed as sub-optimal may be expanded as well, according
to an estimation of the chance they are actually optimal.

The algorithm for doing this works recursively: at every (sub)tree, the prop-
erties of its subtrees are examined and a choice is made in which subtree a
node is expanded. In that subtree the same procedure is carried out, until a
leaf is encountered, which is then expanded. The properties of the subtree that
are examined are the number of direct children it has, the (total) number of
expanded nodes in the tree and the current negamax value of the tree. Each
combination of these properties is associated with a probability distribution.
This probability distribution associated with a subtree is sampled once, and the
subtree with the best sample is expanded. This ensures that better subtrees
have a higher chance of being examined further.

The last thing the algorithm needs are the probability distributions. For this,
they used a large set of positions; each position was searched to depth 10 to
determine its ‘real’ value. They then expanded nodes one by one in each position
and recorded the difference between the minimax values and the ‘real’ values
along the way. These differences were fitted by a normally distributed random
variable; every node-expansion-count/number-of-moves combination has its own
random variable.

Of course, an order in which the nodes are expanded is needed. For this,
they used the algorithm itself, initialized with a trivial distribution. This is
then repeated a few times, initialized with the resulting random variables, until
it converges.

There are a few important things to note about this algorithm. First of all,
the only position-specific data that is used for the probability distribution is the
number of available moves. In terms of chess, this means that any information
regarding pieces that can be captured, checks that can be given, and general
(in)stability of the position is not used. The starting position, which has 20
moves, gets exactly the same distribution as some endgame position where white
happens to have 20 moves. This is of course a point of the algorithm that can
be improved.

Another important thing is that only information about the size of the sub-
tree is used, but no information about the shape of the subtree. The size of the
subtree can be used to determine the quality of the backed up minimax value.
If a subtree is large, its value is the result of a large search, so the difference
between this value and the ‘real’ value should not be very large. However, in
some cases the size can be a misleading indicator of this difference. For instance,
say we have a very promising move in the current position. Naturally, the algo-
rithm expands many positions that come after this move, because it looks like
it is the best. After searching thousands of positions, we find out that the move
is not so good after all, and the principal variation changes to the next best



3.2. SELECTIVE ALGORITHMS 27

move, which has received little attention. At this point, the algorithm thinks
that the current backed-up minimax value is quite stable. The position has been
expanded thousands of times. In reality, however, the value depends on a much
smaller amount of nodes.

3.2.6 B*

B* was developed by Berliner [4], and has the most similarities to human chess
thinking from the algorithms described in this thesis. It is inspired by the
psychological notion of ‘threat’ in a position.

The driving force for search decisions is not to determine accurate values
for all moves, but to prove that the current best move candidate is better than
all alternatives. This is done by giving all nodes an optimistic and realistic
value, with the optimistic value as the value of the position if all threats are
achievable. The rule to backup values from children to their parent is simple.
The optimistic value of the parent is the maximum of the optimistic values of
the children, the realistic value the maximum of the realistic values.

When the best move candidate has a higher realistic value than the optimistic
value of every other move, a condition named ‘separation’ is achieved (the value
range of the best move is separated from the others). When this occurs, no more
search is necessary and the move can be carried out. To achieve separation, two
strategies are possible. One, called ‘ProveBest’, attempts to increase the realistic
value of the best node. The other, called ‘DisproveRest’, attempts to decrease
the optimistic values of the other nodes. Both strategies work by expanding
nodes in best-first manner.

Palay [22] extended this algorithm to use probability distributions instead of
simple ranges. This addresses the scalar value-backup problem as described by
Junghanns. Here, the left parent node is clearly better than the right. However,
if no distributions are used, the backed up values for both are the same. If
distributions are used the left one is better. This chance not only influences
which move is initially seen as the best, but also changes the way nodes are
expanded. The distributions can be used to calculate more precisely which
child has the highest chance of achieving separation. This change improved the
effectiveness of the algorithm greatly.

At first, Berliner used some simple heuristics to determine optimistic values.
Palay had a more principled approach: he gave the player on move two moves
in a row, and used the value obtained by such a search as the optimistic value.
This value can be seen as the threat value, as that which will happen if the
opponent does not respond to the first move. Still a lot of exceptions had to be
made in case of checks, but it seems to be a good approach.

The resulting algorithm did quite well on a set of chess problems that was
used as a benchmark at the time. Those problems were mainly tactical in nature
however, and the more strategic ones were difficult for B*. Therefore, some work
must still be done in order to make the algorithm play a decent complete game.



28 CHAPTER 3. COMPUTER CHESS ALGORITHMS

3.2.7 Conspiracy numbers

A conspiracy number of a node was defined by McAllester [21] to be the min-
imum number of leaves whose value has to be changed in order to change the
value of that node by a certain amount. Such change can occur due to further
searching. These nodes can be seen as conspiring to change the value, hence
the name. As an example, see figure 3.3. The current value of the root is 3, but
only nodes F or G need to change to 2 or 1 to change the value of the root to
those respective values. In order to change the root to 0, two conspirators are
needed. Both a node from the left hand side and the right hand side need to
change to 0 in order to change the value of the root to 0. To change the root
value to 4, only F needs to increase its value to 4 or more.

A

B C

D E F G

1 2 3 4

1 3

3

Figure 3.3: An example tree

If the size of the conspiracy to change the root by a small amount is large,
it is unlikely that the evaluation of the root is wrong. Therefore, it makes sense
to search in such a way to make the smallest such conspiracy larger. McAllester
presents an algorithm, conspiracy number search, that implements these ideas.
It searches the smallest conspiracies, until the smallest conspiracy is greater
than some predefined number.

A problem with this algorithm is that it does not take into account what con-
spiracies are more likely than others. As can be seen in figure 3.3, all nodes are
member of multiple conspiracies of size 2. If those were the smallest conspiracies
available, the search would be more or less random.

3.3 Bayesian search

In this section we will describe the Bayesian Search algorithm developed by
Baum and Smith [1]. This description has three parts. In the first, we will
give the rationale for the algorithm, in the second some algorithmic issues are
identified and in the third part we will give a large example of a run of the
algorithm.



3.3. BAYESIAN SEARCH 29

3.3.1 Philosophy

The point of search is to overcome the inaccuracy of the evaluation function.
The standard way of doing this is to search indiscriminately to a certain depth.
This method has its merits, but lacks scalability, as was discussed in the previous
chapter. It should be possible to do things better.

Even though the inaccuracy of the evaluation function is the reason for
searching, some positions are evaluated with a higher accuracy than others.
This notion has some validity in chess psychology, but how might it be inter-
preted game-theoretically? If the interpretation of the evaluation function is a
probabilistic estimate of the chance of winning, what does the (in)accuracy of
this estimate mean?

One naive answer is to say that an inaccurate estimate should either have
been much lower or much higher, and not so for the accurate one. Let’s narrow
down this line of thought with an example: a position P has an estimated
probability of 80% to be a win. This estimation is inaccurate, so it should be
either (with a 50% chance) much lower (60% probability of being a win) or
much higher (100% probability of being a win). This is useless however: any
probability of 80% can be interpreted in this way, there is no way to destinguish
the ‘accurate’ and ‘inaccurate’ versions of 80%.

A practical way out of this problem is to interpret it as the amount the value
will change as a function of further search. In this interpretation, an accurate
evaluation means that a search from such a position will not change the value
of the position much. An inaccurate one means that large changes are likely.
The advantage of this option is that it can be used directly for guiding search:
do not search the accurate positions, as it is unlikely such a search will change
anything.

There is more to it than just this, however. Imagine there is a very inaccurate
position somewhere in a tree. Somewhere above this position one of the players
can make another move, which is much better. Searching the inaccurate position
does not do much good, because it is not very likely the result will influence
the value of the position above. So the shape of the tree needs to be taken into
account as well when deciding where to search.

The Bayesian Search algorithm proposed by Baum and Smith deals with all
this. It is rather complicated and takes the rest of this section to describe.

Their accuracy function estimates the change in the evaluation of a position
after a relatively shallow exhaustive search. The estimate is represented as
a discrete probability distribution. For purposes of where to search (or, which
nodes to expand), the estimate is assumed to be perfect, meaning that searching
the position will indeed result in the given values with the given probabilities.
An example initial tree is given in figure 3.4.

The distributions higher up the tree can be calculated from the distributions
at the leaves with equation 3.1. Note that the minus is due to the negamax sign
convention.



30 CHAPTER 3. COMPUTER CHESS ALGORITHMS

¹¸

º·
A

¡
¡

¡
¡

@
@

@
@

¹¸

º·
B

(1 1
2
, 3 1

2
)

¹¸

º·
C

(2 1
2
, 4 1

2
)

¹¸

º·
D

(0 2
3
, 5 1

3
)

Figure 3.4: Example tree with probabilities at its leaves

P (Vparent ≤ −x) =
b∏

i=1

(
P (Vchildi ≥ x)

)
(3.1)

This equation is concerned with cumulative probability functions and not with
the given probability distributions, but it is trivial to convert the two to each
other. The distributions calculated in this way mean the same thing as the dis-
tributions at the leaves, except that all the descendant leaves must be searched
to know the exact value of the node, instead of just the node itself.

¹¸

º·
A (5 1

3
, 4 1

3
, 3 1

6
, 2 1

6
)

¡
¡

¡
¡

@
@

@
@

¹¸

º·
B

(1 1
2
, 3 1

2
)

¹¸

º·
C

(2 1
2
, 4 1

2
)

¹¸

º·
D

(0 2
3
, 5 1

3
)

Figure 3.5: The same tree as in figure 3.4, but with probabilities calculated for
the non-leaf nodes, i.e. the root.

This also applies to the root. So if all leaves could be searched, the value of
the root would be known. The best move would be known as well. However,
what move should be taken if there is no more time to search? It is the child
with the highest expected value. This position can be searched further next
turn, so the exact value will be known then. The expectation of this exact value
is by definition the current expected value of this child. This reasoning adds
the assumption that we are indeed able to search positions down the tree fully
on subsequent turns.



3.3. BAYESIAN SEARCH 31

The current concepts yield a natural criterion for stopping search. If the
program searches the current tree, the result will be the expected value of the
root. If the program does not search, the result will be the maximum expected
value of the children. The difference between these two values is named Uall by
Baum and Smith, short for the utility of expanding all leaf positions. Uall can
be seen as a measure of the information present in a tree, information that can
be gained if the tree is searched. If Uall is low, there is little reason to search,
and if it is high, search will be profitable.

This does not give any means yet for deciding where to search. For that a
measure of the usefulness of a single expansion is needed. Just as it is possible
to calculate the usefulness of expanding all leaves, it is possible to calculate the
usefulness of expanding any subset of leaves, under the assumption that a move
is made right after. Taking a single leaf as the subset, this gives a measure for
expansion priority.

This measure has it’s problems though. Many programs expand millions
or even billions of positions before moving, and only one expansion of them is
the last, obviously. So the assumption that the program must make a move
after expanding one node is violated. Besides this theoretical problem, there
is a practical problem as well, as can be seen in figure 3.6 (reproduced from
Baum and Smith). In this tree, only T needs to be expanded according to
this expansion strategy. Expanding either V or W doesn’t have any immediate
influence on the move. Expanding both V and W can have a large influence
however, and expanding one of these nodes is more important if the program
can make more expansions.

¹¸

º·
R

¡
¡

¡
¡

@
@

@
@

¹¸

º·
S

(1
2 1

)
¹¸

º·
T

( 9
16 1

2
, 7

16 1
2
)

¹¸

º·
U

¢
¢

¢¢

A
A
AA

¹¸

º·
V

(1 1
4
, 0 3

4
)

¹¸

º·
W

(1 1
4
, 0 3

4
)

Figure 3.6: Example game tree



32 CHAPTER 3. COMPUTER CHESS ALGORITHMS

As there will most likely be further search after an expansion, a better idea
is to look at Uall, the measure of the usefulness of search, after the expansion.
If it rises, further search will be useful, so this is a good thing. If it falls, further
search won’t be necessary, which is a good thing as well. Only if it remains
relatively equal, the expansion was not useful. So the proposed measure is to
take the absolute of the possible changes in Uall.

To get a feeling for the effects of this measure, here it will be calculated for
figure 3.6. First we need to know Uall for our current tree. The expected values
of the root and the best child are needed for that: the expected value of the
root is 1

16 · 1 + 15
32 · 9

16 + 15
32 · 1

2 = 287
512 and and of S 1

2 · 1 = 1
2 respectively, which

gives a Uall of 287
512 − 256

512 = 31
512 . Now there are really just 2 options: expanding

either T or V (W has the same result as V ).
T will be considered first. If it turns out to be 7

16 , Uall becomes 17
32 − 1

2 =
16
512 . If it turns out to be 9

16 , Uall becomes 151
256 − 9

16 = 14
512 . Weighted for the

probabilities of either event, the average absolute change in Uall is 16
512 .

Now if V is expanded, and found to have a value of 0, Uall becomes 1
32 . If

it turns out to be 1 however, Uall will rise to 76
512 , because the expansion of W

becomes vital now. Again weighted for the probabilities, the average absolute
change is 45

1024 . All these computations are far from complete, but in the end of
this chapter a complete run through the algorithm will be presented.

In this example the algorithm would choose to search move V , due to it’s
interactions with leaf W . The ability to take into account these interactions is
the strongest property of this algorithm.

3.3.2 Algorithmics

The previous section described what Baum and Smith’s algorithm does, and
why it does it. How it does it is a non-trivial question. The (naive) algorithm
used in the examples would have a very high complexity. It would calculate
the chance distributions for all nodes in the tree, an O(n) operation, in order
to calculate the expected values of the root and its children. It would have to
do this for every possible outcome of every leaf, making it an O(n2) algorithm
(assuming the branching factor is more than one, so the number of leaves is
proportional to the number of nodes). This would be enough for only one
expansion. n expansions would therefore need O(n3) time, whereas conventional
search methods like alpha-beta only need O(n). This is a fatal flaw of any
algorithm, but Baum and Smith describe two tricks to get the complexity back
to O(n), both tricks gaining a factor n.

The first trick is rather simple. Instead of expanding one leaf at a time,
expand a fixed fraction of all leaves. If 1

q is the fraction, n
q leaves will be

expanded. The cost of calculating which nodes are most relevant to expand
can then be divided among these leaves. This reduces the complexity of the
complete algorithm by a factor of n, and increases it by a factor q. But q is
a constant factor, so it can be conveniently disregarded. Baum and Smith call
this the ‘gulp trick’, because the algorithm ‘gulps’ a group of nodes in one go,
instead of just one.



3.3. BAYESIAN SEARCH 33

The feat the second trick performs is the calculation of all utilities simulta-
neously, so it only needs O(n) time to calculate the utilities of n nodes. Two
facts make this possible. First, Uall is a linear quantity of the probabilities of
the root and its children. This means that if one probability rises by δ and
another is lowered by δ, the change in the outcome of the function is linear in
δ, and can easily be computed. The second fact is that the probabilities of a
non-leaf node is a linear quantity of the probabilities of its children. So if the
influence of changes of probabilities of a non-leaf node are known, the influence
of changes in its children can be computed as well. How this is done exactly is
shown in the large example in the next paragraph.

This can be reiterated to the leaves of the tree. Important here is that
information in a node higher up in the tree can be used for all its descendants.
So every node in the tree needs to be visited only once, which means this part
of the algorithm is only O(n).

All leaves now have information about the influence of changes in their prob-
abilities on the function that needs to be calculated, in this case Uall. Remember
that expanding a node is modelled as drawing a value from the probability dis-
tribution of that node. This can be viewed as a change in the probabilities of
the node: the drawn value gets a probability of 1, and the other possible values
get probabilities of 0. So for each value the new Uall can be calculated, and thus
δUall

as well. Now take the weighted average of these changes in Uall, and the
calculation is complete.

The last part of the algorithm takes constant time per node, so O(n) in
total. This means the entire algorithm takes O(n) as well.

3.3.3 Full example

In this section we will give a full example of all the steps in the Bayesian Search
algorithm. We start out with the search tree in figure 3.7, and work our way
through all the steps taken by the algorithm. Note that the negamax sign
convention is used, so all the values in a node are relative to the player who has
the move in that node. All the final computed values are shown in tables 3.1 to
3.4, and we explain how these values are computed in the following paragraphs.

The first thing that needs to be done is to propagate the distributions up
the tree. We start down in the tree, with node E. Its children have four spikes
in total, each of which must be represented. All these spikes are put in a table,
flipped (due to negamax), and sorted from high to low. This can be done
efficiently because the spikes at the children are sorted as well, so only the last
stage of a merge sort is needed.

Now the probabilities that node E actually has one of these values needs to
be computed. There is a 50% chance node H has a value of -6, and in that event
node E has a value of 6 as well. Therefore the first spike has a 50% chance.
The chance that E has a value of 5 is more complicated. This is the case if
node G has a value of 5, and no other node has a value higher than 5. The first
event has a 50% chance of occuring and the second one as well, and because
the probabilities are independent, the total chance is the product of 50% and



34 CHAPTER 3. COMPUTER CHESS ALGORITHMS

A

B

-1: 0.5
-2: 0.25
-3: 0.25

C

-2: 0.5
-3: 0.25
-5: 0.25

D

E F

6: 0.5
0: 0.5

G

-4: 0.5
-5: 0.5

H

-2: 0.5
-6: 0.5

Figure 3.7: An example Bayesian Search tree

50%, 25%. By the same reasoning the chance that E has value 4 is 25% as well.
The chance that the value of E is 2 is zero, as there is a 100% chance node G is
higher than that. The cumulative probabilities could be computed by equation
3.1, with equation 3.2 the probabilities can be computed directly.

P (evalN = x) = P (evalc = x) ·
∏

i 6=c

P (evali < x) (3.2)

the subscribt N refers to the current node, while c refers to the child from which
the spike at that location originates.

The same procedure is used to compute the distribution of node D, but here
a problem arises: two spikes have the same location. Because neither is smaller
than the other, the total probability would drop below 1 if the formula is used
exactly. To remedy this problem we consider one of the values as larger than the
other anyway, in other words we impose a total ordering on equal spike values.
What this total ordering looks like does not matter, as long as the same one is
used throughout the algorithm. In our example we treated values from lefthand
nodes as higher than values from righthand nodes. If the spikes come from the
same node, the ordering from that node is used.

We now have distributions for all nodes in our tree. Our next step is to



3.3. BAYESIAN SEARCH 35

compute the expected values of these distributions for the root node and its
children. Nodes A,B,C and D have expected values of 4.21875, -1.75, -3 and
-2.625 respectively. If we have to make a move now, it would be to node C for
an expected value of 3. Note that this is different from minimax that uses as
evaluations the expected values at the leaves. In that case there would be no
preference between node C and D.

If we can search our tree however, we would find the exact value of A, which
would be 4.21875 on average. Therefore, we can expect to gain 1.21875 points
(the Uall metric) on our evaluation scale if we search further. This is much, so
we start the procedure that computes how important each individual node is to
expand.

Instead of computing the change in Uall on a node-by-node basis, we compute
for each spike in the tree their so-called influence coefficient, a number that
denotes the change in Uall if the spike changes by 1. Of course a spike cannot
change by 1, because then the probabilities would sum to more than 1. However,
Uall is a linear function of the heights of spikes, so if one spike increases by 0.5
and another decreases by the same amount, the change in Uall is the sum of the
effects of these changes individually.

The influence coefficients at the root are simple, they are the same as the
locations of the spikes. For example, if a spike at location 2 increases by 1 in
probability, the expected value would go up by 2 as well.

The situation is more complicated for the children. We will use node B as an
example. First, what would happen to A if we increase the chance of B being -3
by 1? We’ll just use equation 3.2 to recompute the probabilities, disregarding
the fact that the probabilities at B sum up to 2. The probabilities of the spikes
with a location higher than 3 is doubled, as the chance that B is smaller than
them is now 2 instead of 1. This yields an influence of 3 9

32 . The probability of
the spike at 3 with B as origin goes up by a factor 5 from 3

32 to 15
32 , because the

first factor in the equation goes up by a factor of 5 and the other factor doesn’t
change. This change has an influence of 1 1

8 , so the total influence becomes 4 13
32 .

The influence for the next spike of B, at -2, is still more complex to compute.
Spikes higher than 3 are still doubled, but spikes lower than 3 and higher than
2 are not. In this case, the factor due to spike B (in the right hand side of the
equation) does not go up from 1 to 2, but rather from 0.75 to 1.75. The prob-
abilities of these spikes are increased by a factor of 4

3 , which gives an influence
of 3

8 . The probability of the spike at 2 with B as origin behaves the same as the
one at 3, so it gives an influence of 1

4 . Adding these numbers to the influence
due to the changes at spikes higher than 3 (3 9

32 ) gives 4 5
32 .

The other spikes at B, C and D are computed in the same way. These
influences, however, only measure the change in the expected value of the root.
Uall is defined as the difference between this expected value and the expected
value of the best child. Changing spikes of another child than the best has no
influence on the expected value of the best child, only the spikes of the best
child have. Therefore, at child C, we need to take into account that changes in
its spikes affect the expected value of the root as well as that of its best child.
To do so we add the locations of the spikes to the influences.



36 CHAPTER 3. COMPUTER CHESS ALGORITHMS

We have now computed all the influence coefficients, so we can now start
to compute the QSS(Q step size, expected absolute change in the utility) for
every node expansion. Expanding a node means that it takes a value from its
distribution. This means the spike at its location goes up to 1 and the spikes
at the other locations go down to 0. The effects of this change on Uall can be
readily computed with the influence coefficients. Take for example node B. Let’s
say B gets value -1 upon expansion. The spike at -1 is then increased by 0.5, for
an increase of 2.078125 of Uall. Both other spikes are decreased by 0.25 however,
for a decrease of 4.15625 · 0.25 + 4.40625 · 0.25. The total is −0.0625. For the
other spikes these values are −0.0625 and 0.1875. As we are interested in the
absolute amount of change the minusses are removed (if we did not, the utility
would be 0 by definition). Now all these values are summed according to their
probabilities of occurring, which leads to a leaf expansion utility of 0.09375.

When all the expansion utilities are computed, the leaves are sorted accor-
ingly. A fixed fraction is expanded (the ‘gulp trick’), e.g. the best 25% of the
leaves, rounded up. As there are 5 leaves, 2 of them will be expanded, C and
F. For their children, new spikes are computed and the entire algorithm starts
anew, until Uall becomes too low to justify further search. At that moment the
best move is made.

The choice to expand C and F is intuitatively reasonable. If F turns out to
have a value of 0, the probability that node C is the best increases dramatically,
so that move can probably be played. If node C turns out to have a value of 5,
this probability increases a lot as well. The other nodes do not have so much
influence.

A last note of warning to the future implementor: the probabilities of spikes
can become very small, in fact so small that numerical difficulties arise, at least
when using IEEE floating point numbers to represent the real numbers. In such
a case it is advisable to set spikes with very low probabilities (e.g. < 10−12) to
zero probability. Also care needs to be taken not to divide zero by zero; in such
a case the zero factors must be removed beforehand from both numerator and
denominator.

Source Evaluation Probability Influence
H 6 1/2 3 1/8

G 5 1/4 3 11/16

G 4 1/4 4 1/16

H 2 0 4 9/16

Table 3.1: Node E



3.3. BAYESIAN SEARCH 37

Source Evaluation Probability Influence
F 0 1/2 3 1/8

E -2 0 3 1/8

E -4 1/8 4 1/2

E -5 1/8 5
E -6 1/4 5
F -6 0 5

Table 3.2: Node D

Source Evaluation Probability influence
D 6 0 6
D 6 1/4 6
C 5 3/16 5
D 5 3/32 5
D 4 3/32 4
B 3 3/32 3
C 3 3/32 3
B 2 1/16 2
C 2 1/8 2
D 2 0 2
B 1 0 2
D 0 0 2

Table 3.3: Node A

Node Expansion utility
B 0.09375
C 0.53125
F 1.09375
G 0.09375
H 0.34375

Table 3.4: Expansion utilities of various nodes



38 CHAPTER 3. COMPUTER CHESS ALGORITHMS



Chapter 4

Experiments

4.1 Generating distributions

4.1.1 Decision trees

Baum and Smith [2] used decision trees to generate their parametrized random
variable function. The procedure they followed was as follows. First, they
handcrafted various features for the domain in question (they used Othello).
They fitted the values of these features on a large database of games, with
linear regression. After that, they used various tests to remove and change
features that were irrelevant. With this evaluation function, they evaluated a
set of positions and computed the value after a search of a number of plies. The
difference between these two numbers can be seen as the change in opinion that
results from deeper search.

These differences are used to create a probabilistic evaluator, in the form of
a decision tree. The following recursive procedure was used:

- Repeatedly split the dataset in two sets, set A that has a certain feature,
set B does not.

- Do a Kolmogorov-Smirnov test with set A and set B.

- After doing this for all features, check if the feature with largest K-S
significance is statistically significant, and if so, add this feature to the
decision tree and call this procedure with set A and set B separately.

A Kolmogorov-Smirnov test computes the largest difference between the
cumulative probabilities of the outcomes of the two sets.

After this procedure, each leaf in the decision tree had about 200 datapoints
in them. The Bayesian Search algorithm needs about 2-10, so they needed a way
to reduce this data. This was done by choosing the k spikes in such locations
that the first 2k non-trivial moments (mean, deviation, skewness, curtosis etc.)
are the same. They refer to Golub [14] for details on how to do this.

39



40 CHAPTER 4. EXPERIMENTS

In our opinion, there are several problems with this approach. First, we
like to note that this approach takes a lot of time from the experimenter (pro-
gramming and selecting features). It also requires some expert knowledge of
the game. Second, decision trees have inherent difficulties with non-linear data.
This problem can be reduced by using good features, but it does not disap-
pear. Another problem with decision trees is that they do not scale well for
increasingly complex problems. For each extra feature that must be taken into
account, the tree doubles in size and the dataset must be doubled as well to
remain at the same significance level.

4.1.2 Neural networks

Neural networks do not have the drawbacks of decision trees. We experimented
with various schemes. In all these schemes, ‘neural network’ can be equated
with a standard 3-layer network that uses a sigmoid activation function for the
hidden layer, and a linear activation function for the outputs. We will now
discuss some of the issues encountered during the testing of various schemes.

First of all, it is possible to use different networks for different spikes or to
use one network for all the spikes at the same time. In the first case each spike
has its hidden nodes all to itself, whereas in the second approach there is only
one network which shares its hidden nodes among all spikes. Because the first
approach is slower, and in preliminary experiments it did not seem to matter
much to the quality, we took the second approach in all further experiments.

We recognized two ways in which spikes can be represented. A spike can be
represented by two output nodes, one of which denotes the height of the spike,
the other denoting the location. Another option is to use just one node, which
represents the height. In that case the location is set beforehand.

The learning rule for the first approach is as follows: first, obtain the dis-
tribution by running the network on an input. Now determine which of the
spikes is closest to the actual outcome. This spike is called the ‘winner’. Next,
the spikes of the network are changed by supervised learning in the following
way: The height of the winning spike is updated towards 1, and its location is
updated towards the location of the actual outcome. The heights of the losing
spikes are updated towards 0, and their locations not updated at all. At every
learning step, all spikes are updated either towards 0 or 1 and the size of the
step is dependent on the learning rate. In order to prevent the last few learning
steps to dominate the heights of the spikes, the learning rate must be lowered
towards 0 during the learning period. This is not specific to this setup, however,
and declining learning rates were used throughout our experiments.

Experiments showed that this procedure converged in the non-parametric
case (all inputs have the same random variable associated with them). However,
in the parametric case problems occurred. It still correctly learned the heights
of the spikes, but the locations got stuck. Consider, as example of this problem,
a parametrized random variable with two subvariables, a high variance one
and a low variance one. Which random variable is actually used in a datapoint
depends on its parameters. In this scenario one spike typically tends to represent



4.1. GENERATING DISTRIBUTIONS 41

an extreme of the high variance random variable. It reaches the correct location
before it can recognize which random variable is used, so it will predict this
location for both random variables. Even if the network as a whole learns to
distinguish between the two subvariables, it will never ‘win’ again when the low
variance random variable is encountered, so its location will not change. This
actually occured in our experiments: the height was learned correctly (it should
be zero and it was), but the location was stuck on the location of the high
variance extremes.

A possible solution to this problem might be to update the locations of a
network even if it loses. This will ensure that a network will never get stuck
in empty space, but it may also cause convergence to incorrect values. The
probabilities generated by such networks will tend to be a bit tighter than
warranted by the data. A fix for this might be to stop updating the locations
of losers after some time. Because of these problems, we did not pursue this
approach any further.

The learning rule for the second approach, with outputs representing heights
of spikes at predefined locations, is similar to that of the first. First a winning
output is determined, according to the locations of the spikes that were set
beforehand. The winner is updated towards 1, the losers towards 0. This
eliminates the need to learn locations of spikes, but a lot of outputs are needed
to cover all possible outcomes. Most likely there will be more outputs than the
desired number of spikes, so we need a method to compress the data. We used
a weighted version of the K-Means algorithm for this, with the preset locations
as datapoints, and their calculated heights as weights.

The standard K-Means initializes by choosing random datapoints. In our
case, this frequently led to bad local optima, so another approach was needed.
Fuzzy K-Means could be a solution to this, but it turned out it slowed down the
entire algorithm by a degree of magnitude, which was unacceptable. After some
experimentation with initialization schemes, we used one where 1/n of the data
is assigned to each cluster (which is trivial to do in the one-dimensional case,
but not in multi-dimensional problems that are usually presented to K-means).
It is fast and gives adequate results.

An advantage of this approach is that it is easy to generate differing amounts
of spikes. After all, the amount of clusters is just a parameter to K-Means. This
makes it easy to generate more spikes for nodes near the root, where the extra
precision is more important than the overhead, while generating fewer spikes
for nodes down the tree. We did not experiment with this option however.

An option that is present for both schemes is to use a separate value function,
and to interpret the values from the spikes as relative to the value calculated by
the value function. It has advantages as well as disadvantages:

- It allows the spike generator to specialize on the ‘risk’ in a position, while
the value function specializes on the average quality of the position.

- In the second scheme, it allows for fewer output neurons. Without a
value function, the entire range of outcomes must be covered; with a value
function, only the deviations from it need to be covered.



42 CHAPTER 4. EXPERIMENTS

- It is possible to only run the value function if no spikes are needed, which
is faster.

- Learning is more problematic, because learning of the spikes can only start
when the value function has become relatively stable.

- When spikes are needed, two networks must be run, which is slower.

In our experiments, we used both approaches, depending on the domain. In
domains with a small set of possible outcomes, fixed locations are used, while
in domains with an open-ended set of possible outcomes relative locations are
used.

4.1.3 Errorfunctions

All these ways to generate discrete probability distributions need to be compared
quantitatively somehow. There is no easy answer, however, on how to compare
them. The quality of the decision tree approach by Baum and Smith was not
measured at all, because it was implicitly assumed their method is optimal for
the current task. Unfortunately it is impossible to use this method ourselves, as
it needs a lot of samples from a single random variable to accurately determine
its moments, but we only have 1 per random variable. This is due to the fact
that we decided not to categorize the positions, but instead let every position
have its own random variable.

So we need a method for quantifying the performance of a set of random
variables, even though we have only one actual value for each. It is intuitively
plausible that two things need to be minimal. First, there must be a spike close
to the actual outcome. To get an error measure out of this, the square distance
between the actual outcome and the closest spike is calculated. In formula:

∫ ∞

−∞
p(x) ·mini((x− loci)2)dx

Secondly, the higher the spike at the closest location is, the better. To
measure this aspect of the quality, the following formula is used.

∫ ∞

−∞
p(x) · − ln(spikeheightclosest)dx

Taking the logarithm may look a little strange, but this measure is actually
minimal when the spikes represent the actual probabilities that actual value is
closest to that spike. The negative logarithm is the standard error function in
use in the field of probability density estimation.

These error functions cannot both be minimal at the same time: The dis-
tance function is minimized when there are infinite spikes, one at every real
value, and the heightfunction is minimized when there is only one spike. There-
fore, any practical function must make a trade-off between these two errors.



4.1. GENERATING DISTRIBUTIONS 43

0-1 1-2 2-3 3-4 4

1

0.5

Figure 4.1: A random variable (the boxes) where optimizing different aspects
yields different results. The dotted lines minimize distance-error and the dashed
lines minimize height-error.

An obvious way to do this is to use a fixed number of spikes. While this
eliminates the limiting cases, there is still room for variation. See for instance
figure 4.1.

The optimum for the spikeheights is shown as the dotted line, the optimum
for distance the solid line. So even with a fixed number of spikes, a choice must
be made about the relative importance of the two error functions.

For the Bayesian Search algorithm, it is important that outliers are correctly
represented. By their nature, outliers are few and far between. This means that
they contribute relatively much to the distance error, because of the large dis-
tance, and relatively little to the heighterror, because they are few. Figure 4.1
underwrites this conclusion: when minimizing the distance error, the two outly-
ing areas are accurately represented. Therefore it is probably more important to
minimize distance rather than height, but it is likely that some tradeoff between
these two options is the best.

4.1.4 Experiments

The two experiments described in this section are intended to show some of
the weaknesses of the decision tree approach and that neural networks can do
better. In both experiments, the positions consist of a number of uniformly
distributed numbers between 0 and 1. If these features are higher than 0.5 on
average, the outcome of the position is taken from a high variance distribution,
if they are lower than 0.5 on average a value from a low variance distribution
was taken. This task is designed to be difficult for decision trees, because the
average featureheight depends on most of the features.



44 CHAPTER 4. EXPERIMENTS

The splitting questions the decision tree was allowed to make are of the type
‘is feature X higher than 0.5 or not?’. If feature X had been queried before and
we are now in the subtree with only high values of X, 0.5 was changed into 0.75,
etc. We could have given the decision tree the freedom to split the data on any
height of X, but this would have come at considerable computational expense
and, given the task at hand, would not have helped anyway.

We worked with 20.000 examples, and the decision tree was allowed to split
data until the datasize at a node went below 200 (about the same number as
Baum and Smith), after which K-Means was run on the remaining dataset. The
results of K-means was used as the probability distribution for that category.
Because after each question the dataset is halved, only 6 questions can be posed
until the dataset is reduced from 10.000 to under 200. This means that if there
are more than 6 features, the decision tree cannot look at all of them. The
importance of this is that the required size of the original dataset grows expo-
nentially with the number of features, if all features are relevant. In order for the
decision tree approach to be succesfull in environments with many dimensions,
it must rely on the human ability to extract a managable amount of relevant
features out of all those dimensions, without losing valuable information. In
this constructed example it is easy to do just that, of course: just reduce the
positions into a single boolean value, which is true if and only if the features of
the position are higher than 0.5 on average. But we do not think it is that easy
in most other domains.

In our first experiment, the low variance distribution had a 0.5 probability
of being 1 and a 0.5 probability of being -1. For the high variance distribution
those values were 2 and -2. Both the decision tree and the neural network could
output three locations. The specific neural network approach was the one with
the varying locations. Using fixed locations would have been unfair because the
environment has fixed locations as well. The network had 5 hidden nodes and
used an alpha-value of 0.1, which was reduced by 1% after every pass through
the training set. The network was trained over 100 passes, because after 100
passes the network was practically converged. Overfitting did not occur.

The results can be seen in table 4.1. It shows the average error over 5
repetitions of the experiment, with as errormeasure the average of the sum of
the distance and height errors. All these differences are significant at a degree
higher than 0.0001, except for the difference when 6 features were used, where
the degree of significance was 0.0184.

Number of features 6 9 12 15 18
Decision tree error 0.123 0.145 0.200 0.186 0.223
Neural network error 0.059 0.021 0.024 0.033 0.039

Table 4.1: Performance on the discrete distribution problem.

In a second experiment both discrete probability distributions were replaced
by uniform ones. This increases the distance error a lot, because the values can
now be anywhere instead of at four fixed locations. It makes the recognition



4.2. RANDOM GAME TREES 45

task more difficult as well, because positions in the high variance group will have
values indiscernible from low variance values 50% of the time. The learning
methods for both neural networks and decision trees remained the same. The
experiment was repeated 5 times as well.

Again, the values in table 4.2 show that neural networks can handle this kind
of task better. The significance of the difference varied more and the difference
was not even significant in the 15 feature case, which is due to an outlier in the
neural network results. Neural networks are unpredictable (much more so than
the decision trees) and do very badly sometimes. It is easy however to filter
out these bad apples. If we would have done so, the results would show larger
differences.

Number of features 6 9 12 15 18
Decisiontree error 0.386 0.418 0.428 0.441 0.445
Neural network error 0.360 0.372 0.388 0.403 0.387
Significance 0.0021 0.0001 0.0053 0.0972 0.0008

Table 4.2: Performance on the uniform distribution problem.

4.2 Random Game Trees

4.2.1 Introduction

Normal two-player games such as chess, checkers or othello, have several draw-
backs for the experimental scientist. The first is that they can take much time
to implement, time that can be better spent elsewhere. The second is that eval-
uation functions for these games are kept secret due to the commercial value of a
good game playing program. This hinders the scientific criterion of reproducibil-
ity. Finally, the game trees corresponding to these games are fixed. Controlled
variation of certain properties, like the branching factor, is not possible. This
makes experimentation more difficult in general.

These reasons were put forth by Korf and Chickering[20] as the reason to use
incremental random game trees, which do not have these drawbacks. They were
first used by Fuller, Gaschnig and Gillogy[11] and a number of other researchers
did also use them to evaluate various aspects of search algorithms (see the paper
by Korf and Chickering for further references).

In essence, random game trees are pseudorandomly generated trees. In their
basic form, the nodes in random game trees have a fixed number of children
(except the leaves, of course), and also have a pseudorandom number associated
to them. At each leaf node, the numbers of all its ancestors are added together
(in this case, a node is ancestor to itself). The resulting number is the outcome
of the game in that position. To get evaluations for internal nodes, for use
by a search algorithm, the numbers of the ancestors of that interior node are
added together. This makes the evaluation of nodes progressively more accurate
towards the end of the game, a property observed in many actual games.



46 CHAPTER 4. EXPERIMENTS

In comparison to other games, they are easy to implement. Variation of the
properties of this model is also easy, e.g. the branching factor is just a parameter.
And if some extra care is taken in the generation of the pseudorandom numbers,
the tree is also exactly reproducible, as will be described in the next paragraph.

There are various methods of assigning pseudorandom numbers to nodes.
A program could just assign the numbers of a pseudorandom sequence as they
are required by the search algorithm (most programming languages contain
one, usually under the name “random”). This makes the tree unreproducible,
because the search algorithm decides where the next random number will be put
in the tree. This is unacceptable. Another option is to determine the number of
the node under a breadth-first ordering and use this number to set the seed of the
random number generator. These trees are reproducible, but unfortunately not
very random. Korf and Chickering found this out experimentally, and reasoned
that the sequence of first numbers of random number generators with successive
seeds probably does not have the same properties as the sequence produced by
the random number generator itself. The solution they finally adopted was to
compute the nth number (the number in breadth-first ordering) of the sequence
directly. They also provided an algorithm to reduce the complexity of this
operation to O(log n), so the final tree could be generated fast enough to be
practical and had all the desirable characteristics.

4.2.2 Extending random game trees

Our main interest is to investigate methods that generate probability distri-
butions on the basis of the features of a position. In the above description of
random game trees, this is not possible, as for evaluation purposes, different
nodes are indiscernible. They all have their associated number generated in the
same way, just like their descendants. This is fine for search algorithms that
are meant to be domain-independent anyway, but it is not when the learning
of the evaluation function is the goal. There just is not very much to learn if
there really is only one position. Evaluating search algorithms that make use
of more knowledge than a scalar evaluation is impossible as well, as there is no
more information available in a node.

Therefore, we have extended the random tree model with nodes that have
features. In the simplest case, these features are completely random in each
node, but have influence on the numbers associated with its children. For in-
stance, if some feature X is high, its pseudorandom number is somewhat higher
on average as well, and a higher number means a better position for the maxi-
mizer. Mathematically this looks like equation 4.1.

numbern = X +
I∑

i∈I

fn
i · Ii + bias (4.1)

where n is the node under consideration, X means a uniformly distributed
random variable between −0.5 and 0.5 (which is generated by a pseudorandom
number generator initialized with a hash of the features of the node, so it is



4.2. RANDOM GAME TREES 47

reproducible), fn is n’s feature vector, and I is the influence of each feature on
reward, and bias is a normalization factor to ensure the number is 0 on average
over the set of all nodes.

These correlations between features and numbers have an influence on the
value of a node, and current methods in learning evaluation functions (see [3]
for an application of such methods) can estimate this very well, as we confirmed
experimentally.

Although the positions are now different with respect to their values, their
probability distributions are still the same. A way of changing this is to make the
range of the numbers larger if some feature is high. This extends the equation
to

numbern = X · (
I∑

i∈D

fn
i ·Di + biasdeviation) +

I∑

i∈I

fn
i · Ii + bias (4.2)

where D is the influence of each feature on the size of the interval and
biasdeviation is a baseline value, to ensure a minimal range.

This has no direct influence on the evaluation function, as nodes with large
intervals can be either very bad or very good. Nevertheless it would be valu-
able information for a search algorithm, because the evaluation function is less
accurate in such nodes.

In the previous cases, the features of a position only had influence on the
numbers of their children. These children themselves have completely random
features again. Therefore any influence a feature has is limited to only one
number, while the outcome of the game is decided by lots of numbers. Because
of this small influence the use of such knowledge to a search algorithm is quite
limited. What is needed are features that have influence over a long range of
numbers.

To do this the features of a position are not uniformly distributed, but
instead depend on the values of the features of its parent. One simple way to
do this is to take the value of the parent feature and add a small, uniformly
distributed random variable to it. This looks like equation 4.3.

fchild
i = fparent

i + X · deviation (4.3)

Deviation is the amount a feature can drift between moves; e.g. if deviation
is 20, the feature can increase or decrease by up to 10. Note that the random
variable X is another one than those used in previous equations. It comes from
a sequence of random variables associated with each node, so for accuracy it
could be subscripted with an index, but for clarity the subscript is omitted.

The changes to the features of a position and its number are linearly depen-
dent of other features. This is not necessarily so. Any kind of update mechanics
can be used, which all have a specific influence on the value and the uncer-
tainty of the value of a position. In fact, any game tree can be encoded in this
framework, although this would be overly laborious for most real-life games.



48 CHAPTER 4. EXPERIMENTS

The main point however is that the probability distributions of positions can be
easily manipulated.

4.2.3 A specific model

Having explained the general layout of random game trees, we now present a
specific instantiation. We used it to assess the accuracy of our spike generation
methods described in the previous section, and used it to play games between
alpha-beta and Bayesian search as well.

In this specific type of game tree, each node in the tree contains 20 features,
each ranging from 0 to 1000. The first feature always starts at 0, and increases
by 1 after every move. This feature therefore acts as a move counter. Features
2 through 5 are directly correlated with the quality of the position: each feature
is multiplied with a constant and the result is added to the number of the
position. A correction factor is applied so that if all features would be 500, the
next number would be 0 on average. After each move, a number between [-50,
50] is added to each feature, with different numbers for different features.

The rest of the features do not have any direct correlation with the reward.
Instead, they are designed to influence the uncertainty of the position. This is
done by letting these features decide whether the next position has a chance
to be completely random. If the sum of these features is more than 500 times
the number of features (i.e. higher than average), this randomization has a 60%
chance of occuring, otherwise only a 10% chance. This results in a clear division
between certain and uncertain positions.

But perhaps some update equations and pseudocode can make this all a
bit clearer. In the next equations, the subscript on f denotes the number of
the feature, and the left hand sides always denote values assigned to the new
position, while the right hand side is associated with its parent. Rand(a, b)
denotes the next pseudorandom number from the sequence, scaled to an [a,b]
interval, and rounded if necessary. r denotes the number given to a child.

r ← rand(−0.5, 0.5) + (f2 + f3 + f4 + f5) ∗ 0.001− 2000 ∗ 0.001
f1 ← f1 + 1
fx ← fx + rand(−50, 50) for x ≥ 2 and x ≤ 5
fx ← fx + rand(−100, 100) for x ≥ 6 and x ≤ 20

if 1
14 (

∑20
i=6 fi) > 500

if rand(0, 1) < 0.6
fx ← rand(0, 1000) for x ≥ 2 and x ≤ 20

else
if rand(0, 1) < 0.1

fx ← rand(0, 1000) for x ≥ 2 and x ≤ 20



4.2. RANDOM GAME TREES 49

To give a sense what kind of game tree this generates, we will now consider
some specific positions. Take for instance a position where features 2-5 are on
average 800, and features 6-20 are on average 300. For all actions, the reward
lies in the [0.7-1.7] range, so this is a good position for the maximizing player.
Most likely, the child position is a good position for him as well, because the
sum of the features 2-5 is not going to change very much. The sum of the
features 6-20 does not change very much as well, so positions will only have
a 10% probability of being totally random for a while. There is of course a
low chance that this will happen anyway, but it is highly likely that it can be
avoided, as the maximizer has 3 actions at his disposal. These properties carry
over to all children, which makes it a very good position for him, because he
can be sure to keep earning reward for some time.

Now consider a position where features 2-5 are the same, but features 6-20
are on average 700. The first action taken will yield a high reward, but there
is a high chance the next position will be completely random. If this happens,
there is a 50% chance a quiet position (with low chance of random children) is
reached, because the position gets random features and half the positions have
a sum of their features that is less than average. This can be either good or
bad, but in the other 50% of the cases, the next position will have a high chance
of random children. In this case, the search can make a big difference in move
quality.

The difficulty in estimating the value of a position with high chance of ran-
dom children can be illustrated by the value function we generated on the basis
of this model. Although high-chance nodes and low-chance nodes occurred
equally often, the high-chance nodes were responsible for more than 80% of the
generalization error. This shows that there is really something useful to learn
for our spike estimator.

4.2.4 Experiments

To get data for our spike estimators, the following procedure was followed.
10.000 random positions were generated, and an 8 ply search was conducted on
them. The total of the numbers of the ancestors was used as the evaluation
of a position, and the final value of the search was stored as the real value of
the position. A neural network value function was fitted on this data. Note
that this looks a lot like temporal difference learning (see [27]), a well-known
procedure for generating value functions.

The resulting value function can be seen as a predictor of the numbers that
can be encountered during the next 8 plies. We deemed this to be too short-
sighted: it may lead a searcher to choose a move that has a good value for
the next 8 moves, but is bad for the rest of the game. To make the evaluation
function more far-sighted, the entire procedure was repeated in a way. We again
generated 10.000 positions and conducted an 8 ply search on them, but this time
the real value was the total of the numbers of the parent positions plus the value
of the leaf position, as calculated by the previous value function. In a sense, the
estimated effect of another 8 ply search was added on top of the 8 ply search.



50 CHAPTER 4. EXPERIMENTS

This two-step approach to estimate the 16-ply value is necessarily less accurate
than directly doing 16-ply searches, but the cost of such searches are prohibitive.

With this data, a spike generator with the following features was learned.
It had a neural network to estimate the expected outcome of a position and
a separate network to estimate deviations from the expected outcome. This
separate network had 20 preset spikelocations, spread out uniformly over an
interval that covered almost all occurring deviations.

With the data from an actual game tree, we again compared the perfor-
mance of our neural network approach with the decision tree approach. The
data from this model is reminiscent of the example we used to compare them
in the first place: both models have high variance positions and low variance
positions. There are differences as well, as the random game tree data tends to
be very skewed. The reason for this is that the player on move can choose the
best position of three, and taking the best result of three normally distributed
random variables is in itself not a normally distributed random variable, but has
a quite skewed distribution instead. Another difference is that the data from
the random game trees is much more chaotic.

Because the neural network had widely varying quality over different learning
runs, the following methodology was used. 10 different networks were trained
on a set of 4.000 examples. 3.000 different examples were used to estimate the
performance of each network on the actual problem (known as crossvalidation).
The network that did best on this second set was the winner, and its performance
was again rated on the last 3.000 examples. This procedure is necessary to assure
the performance estimate is unbiased. If we took the performance on the second
set as our measure, the performance would be better than warranted, because
the sampling error is biased. Of course we used the same procedure for decision
trees, but because they tend to have about the same quality, it did not improve
things much.

As actual errormeasure we again take the simple sum of the performance
measures proposed in the previous section. With 20 repetitions of the procedure
given in the last paragraph, the average performance of the decision trees was
1.44, with a standard deviation of 0.12, and for the neural network 0.97 and
0.12 respectively. This shows the neural network does significantly better.

We also tried matches between alpha-beta, Bayesian search with decision
trees and Bayesian search with neural networks, but this turned out to be prob-
lematic. Alpha-beta won almost everything. It turned out there were two prob-
lems for Bayesian search in the current setup. First, the value function it used
estimates the total of the numbers over the next 16 moves. In positions where
the numbers are positive, the moves further down the tree are considered better
than those close to the root, because there are more numbers incorporated in
the evaluation. In positions with negative numbers this effect is reversed, which
is just as bad. In essence, this evaluation function makes nodes at different
heights in the tree incomparable. Alpha-beta does not have a problem with
this, as it never compares evaluations at different heights.

Another problem is the branching factor of 3 that was used. The low branch-
ing factor was initially chosen because it makes the evaluation function less



4.2. RANDOM GAME TREES 51

accurate, so that there are significant deviations from it which the probability
distribution estimator can learn. However, when the branching factor is only 3,
not much selectivity is possible. In order for the selective search to be meaning-
ful, two reasonable alternatives must exist. This means that only 1 branch can
be pruned, which is about the same amount alpha-beta can prune.

4.2.5 Further extensions

To overcome these difficulties, we adapted our model. Three changes were made.
First, the branching factor was increased to 20. Second, we abandoned the idea
of associating numbers with positions. The outcome is decided at the end of the
game and the winner of such an end-position is determined by chance, with the
precise probability determined by the features of the position. If all the children
of a node are endpositions, and each individual child has a chance of only 10%
of being a win, there is still a 88% (= 1−0.920) chance of at least one child being
won. This means that the player who can make the last move has a tremendous
advantage. Because of this we decided to let the games have variable lengths,
the third change. One feature was used to implement this. This feature can
only increase after each move made, and when it reaches a certain threshold,
positions start having a chance of being an endposition. This chance steadily
rises until 100%, after which the game ends. Usually games end much sooner
though, because already at 10% there are on average two moves leading to an
endposition, one of which is probably won.

This new model has two interesting differences with the previous model.
First of all, positions can have only two game-theoretical outcomes. At endposi-
tions, the probabilities for either are precisely specified, and for non-endpositions
transition probabilities to other positions are precisely specified. This means it
is possible to analytically determine the chance for any position that it is a
game-theoretic win. Not only is this useful for selecting positions that have
approximately equal chances of winning (for creating a fair game between two
algorithms), but this measure can be used as an optimal value function as well.
Not optimal in the sense that it returns the game-theoretic outcome, but in the
sense that it gives the best possible estimate of the winchance that can be given
without doing further search.

The second difference lies in the interpretation of probabilities. In the pre-
vious model, positions have real numbers as game theoretical value. A spike
located at 0.8, with height 0.5, must be interpreted as ‘this position has game
theoretical value 0.8 with probability 50%’. In our second model, there are only
2 possible game-theoretical outcomes, but our spikes are not confined to those
two values. Now a spike located at 0.8 with a height of 0.5 means ‘there is a
50% probability for this position that, after doing a search, I will think it has an
80% chance of being game theoretically won’. If we currently think the position
has only a 50% chance of being game theoretically won, the rest of the spikes
must give chances averaging 20%, otherwise it would be inconsistent.

To create a value function for this game tree variant, we followed the same
general procedure as with the previous one. The 8 ply searches were replaced by



52 CHAPTER 4. EXPERIMENTS

4 ply ones, because 8 ply searches are prohibitavely expensive with a branching
factor of 20. We first chose to represent the probabilities with spikes at fixed
locations, not relative to a general evaluation function. It turned out however
that this approach converged on very bad values, for reasons unknown to us.
Therefore we returned to the option of training a neural network evaluation
function and another neural network describing the expected deviations from
the value provided by the first. The neural network evaluation function did
quite nice, on average it deviated less than 15% from the winchance given by
our optimal value function.

The deviations were more problematic however. There was one obvious flaw
in our early experiments, spikes could lie above 1 (or lower than 0), meaning that
there is a chance that such a position is ‘better than won’, which is impossible
of course. To fix this, we put those spikes at 1 (or 0) and changed the other
spikes to make sure the expected value of all the spikes together remained the
same. Positions where the expected value was higher than 1 (or lower than 0)
were given spikes at 0.95 (0.05) and 1.0 (0.0) with probabilities 10% and 90%
respectively. This made sure there was at least some utility in expanding those
leaves, but not too much. All this made sure Bayesian search would not spend
too much time deciding which one of two already won positions would be better.

Even with this change in place, Bayesian search still did worse than alpha-
beta. To prove that this was not due to a bug in our program, or to a inherent
difficulty in this domain for the Bayesian search program, we decided to hand-
craft a spike generator. It works as follows. It has 5 spikes for every position.
Two spikes are reserved for the extremes, 0 and 1. One of the remaining three
spikes is located at the evaluation of the optimal evaluation function. Next,
the minimum of the distances between this spike and the extremes is taken.
Another spike is located at the optimal evaluation plus half that distance, and
the last at the optimal evaluation minus half that distance. The heights are
calculated in the following way. The closer a position is to the end of the game,
the more height is given to the two extremes. The heights of the extremes are
set in such a way that the expected value of them is the optimal evaluation.
The rest of the height is divided over the other three spikes, with the middle
spike taking 50% and the two outlying spikes both taking 25% of what is left.
Figure 4.2 shows this graphically.

-1 10

Evaluation

Figure 4.2: Example spikedistribution.

There are several reasons for this approach. The spikes at the extremes can
be seen as the chances a definite conclusion can be reached after search. This
chance naturally gets higher nearer to the end of the tree. The three other spikes



4.2. RANDOM GAME TREES 53

are representations of the random fluctuations that can occur when searching
the tree. Despite the ad-hoc nature, it worked very well, as can be seen in table
4.3.

This table shows the outcomes of 100 games between alpha-beta and Bayesian
search with the two spike generation approaches: the neural network and the
hand-crafted version. Alpha-beta used the same evaluation functions as Bayesian
search, i.e. it used the neural network evaluation function versus the neural
network spike generator and the optimal value function versus the hand-crafted
version. Bayesian search searched the same amount of nodes alpha-beta did on
average. These amounts were 442, 2538, 10648 and 49930 for search depths 3
to 6.

Algorithm 3 4 5 6
Neural network 37 35 47 31
Hand-crafted 59 64 86 89

Table 4.3: Performance of neural network spikes and heuristically generated
spikes versus alpha-beta.

The main conclusion that must be drawn from this data is that neural net-
work spike generators in the form used by us do not do well on this task. This
raises two important questions. The first is, why do these methods perform so
badly, and the second is, does this result generalize to other domains? For the
first question we offer an analysis in the next paragraph. To answer the second,
we have implemented a chess ending, which is described in the next section.
Chess really is a different domain from random game trees: first of all, the game
tree is actually a directed acyclic graph, and chess endings have a much richer
feature structure which makes it difficult to learn good values.

To understand why the neural network approach performs so badly, it is
important to know something about the underlying domain. Most of the posi-
tions in the game tree are either clearly won (more accurately: with very high
likelihood) or clearly lost. Even if a search starts out from an equal position,
the great majority of the searched positions are like that. When such a large
amount of positions have nearly but not quite the same chance of winning, small
inaccuracies can have large consequences. Bayesian search has more problems
with this than alpha-beta, as it assumes there is still useful information to be
gained by searching such positions. Alpha-beta just orders the positions dif-
ferently, which doesn’t matter much as most positions are clearly lost or won
anyway. Bayesian search is hurt twice by inaccurate value functions, once in
deciding which move to take (like alpha-beta) and once in deciding where to
search. Apparently the advantage of searching selectively does not overcome
this disadvantage in this experimental setup.



54 CHAPTER 4. EXPERIMENTS

4.3 Chess ending

4.3.1 Description

The final experiment was carried out in the game of chess, more specifically,
the chess ending of king, knight and pawn on the h-line versus a lone king.
There are several reasons this ending was chosen over others. First of all, there
are various features that indicate a position is safe, that is, these features are
easy indicators that a position is game-theoretically won. One such indicator is
the knight protecting the pawn from behind; this is always won no matter the
positions of the kings. States that don’t have these features may in fact have
faster ways of reaching the goal, as was seen in the example in Chapter 2, but
they may be lost as well (although the ending technically cannot be lost, we
consider failure to win as such). This ensures there is a meaningful notion of
‘risk’ in a position.

Secondly, there is a natural sequence of subgoals to win the ending, at least
for humans. These subgoals are

1. Protect the pawn with the knight,

2. Move the king to the pawn,

3. Move king and pawn to the 6th row (any further and you will stalemate
the enemy king),

4. Move the knight to threaten to attack the field of promotion,

5. Move the pawn to the 7th line; if the king moves away, promote him, if he
blocks the pawn, checkmate with the knight.

It could be interesting to see to what extent the various algorithms follow this
human line of play.

Thirdly, the size of the total ending is small enough to afford the creation
of a database of optimal evaluations, yet it is not so small as to make the task
trivial.

Lastly, the fact that it has been studied before, by van den Herik[29], makes
it more interesting as well. His knowledge-based approach yielded a sufficiently
accurate value function for a 3-ply selective search to be enough to win, although
a 5-ply search would probably win faster in most cases.

As the third advantage suggests, we made a database of the ending. Our
value functions were learned on the basis of this database. This will be impos-
sible in other, more complex cases, because if creation of a database is possible
there will be no need for an evaluation function, let alone a search algorithm.
But when it is not possible to create a database, temporal difference methods
are generally able to make a good evaluation function anyway. By using the
database instead, we made sure the outcomes of our experiment are not at-
tributable to the temporal difference method used. It saved a lot of time as
well, computer cycles and brain ‘cycles’ alike.



4.3. CHESS ENDING 55

The database contains the number of moves it takes under optimal play to
win a position or marks it as lost if black can prevent a win (these positions are
technically drawn, but we refer to them as lost). Using this database we want
to train a neural network evaluation function for this ending. There are three
things to consider when building such a neural network: the encoding of the
chess position into a representation suitable for a neural network, the values of
different positions and the encoding of these values in the output of the network.

4.3.2 Experimental setup

We start with the input representation of a position to a network. We chose
to represent all fields on the board as different inputs. This means that each
piece needs 64 neurons, except for the pawn, as the pawn can only have 6 legal
positions at the h-line. We did not handle promotion, when promotion had taken
place the correct game theoretical result was available to the algorithm. This
results in a total of 198 inputs, but only 4 of them are active at any single time.
Implemented correctly, only these four active neurons use up computer time, so
applying the network to an input or teaching it some input-output correlation is
not very expensive. The only drawback is that the number of learning episodes
the network needs is higher than with smaller input encodings, as there are
simply more weights to set.

Another possible input encoding is to represent the coordinates of a piece.
In this case each piece would need only 16 neurons, 8 for the x-coordinate, 8
for the y-coordinate. In principle, such a network can learn the same functions
as the first, but in practice the generalization behaviour is very different. As
an example, consider a position with the white king at h2, which is considered
good. In our first representation, this generalizes only to other positions with
the king at h2, i.e. the evaluation of those positions tends to increase. In the
second representation this generalizes to all positions with the king on the h-line
and to all positions with the king on the 2nd line. Whether this is a good thing
depends on the size and the nature of the actual correlations between these
positions. If most of the positions with the king on the h-line are good, it is a
good thing. If only the positions with the king on h2 are good, but those with
the king on h3 are bad, it would be bad.

It would be interesting to see if these correlations existed, but we did not look
at that. The main reason to use the first representation is that it assumes the
minimal amount of prior knowledge about the problem. If there are important
correlations in our data, our neural network should learn them itself, instead of
through a good input representation.

We now move on to values for different positions. Using the number of moves
until a position is won would not be a good option, as neural networks do not
handle large numbers as inputs or outputs well. This would make it difficult for
a network with one output representing the value of the position. To make such
evaluation functions possible the following scaling was used: a position won in
a single move would have an evaluation of +1. For each extra move required to
win, this value was decreased by 0.03. The longest optimal win takes 44 moves,



56 CHAPTER 4. EXPERIMENTS

and so the position it starts in would have an evaluation of -0.29. This is still a
long way away from the value given to a lost position, -1.

With the scaling of the output values fixed, the way probabilities of different
outcomes are handled needs to be decided. We used the approach of fixed spike
locations, not relative to a separate value function. As there are not so many
different possible values in this ending (won in 1-44 moves, or lost), we used
one output neuron for each of them. This output was then clustered back to
3 outputs by K-means. When testing this probabilistic value function versus a
normal value function, it turned out to be roughly as accurate: where the normal
value function had an average mean squared error of 0.10, the probabilistic
variant had about 0.11. We chose not to compare the quality of the spikes with
a decision tree approach. To build the decision tree would have cost us much
time, and the resulting comparison would be meaningless anyway, as it totally
depends on the amount of effort put into the decision tree.

We did not use all positions to train our evaluation function. Not only would
that be too time consuming, but it would also greatly overrepresent the easily
lost or won positions. In order to get a more representative set, the following
procedure was used. First all the won positions were put into groups according
to the number of moves it required to win them. From each of these groups, a
thousand positions were taken. All of these positions are won, but lost positions
are also needed. To generate these, all positions with white on move were taken
and a move was selected which led to a lost position. This results in a set of lost
positions with black on move, but it is not possible to do use the same procedure
to get lost positions where white must move. After all, in won positions with
black moving all moves must lead to a won position, otherwise the position was
not won in the first place. Therefore we also generated a set of lost positions two
moves away from a won white position, so white has his share of lost positions
as well. With this set of positions our evaluation functions were trained.

4.3.3 Comparison between alpha-beta and Bayesian search

We tested the relative performance of alpha-beta and Bayesian search. To do
this we used a thousand positions requiring between 20 and 40 moves to win.
Both algorithms had to play against the database in these positions and used
the same evaluation function. They had a lenient 60 ply move limit, so the
algorithms could make quite some suboptimal moves and still win. It turned
out they performed very badly. A closer look at the individual games revealed
that most of the times the algorithms were repeating moves about 10 plies before
the end, roughly the phase where white must move his knight to threaten to
attack the field of promotion, h8. The fact that the value function could not give
guidance here is probably due to the way the training examples were selected.
Although 1000 positions 10 ply from the end where present in the trainingset,
the majority of those require white just to move his pawn, because the enemy
king is on the wrong side of the board. The cases where the knight is needed
are only a minority among the positions won in 10 moves, but it is this minority
of positions that need to be played correctly during a game starting with a 20



4.3. CHESS ENDING 57

to 40 ply position.
We could revise our trainingset to accomodate for this phenomenon, but we

chose instead to relax the winning criterion. It was no longer required to win
a complete game in a position, but the position must be taken 10 ply closer to
completion. This decision stems from the fact that only the first part of the
game is interesting. Once the king has reached the pawn, all variations are the
same in essence.

Depth of search 3 4 5
Alpha-beta 27% 41% 28%
Bayesian Search 67% 59% 71%

Table 4.4: Performance on the KNNp(h)K ending, with the algorithms playing
white against optimal play from a database.

In table 4.4 the results of a 1000 games are shown. The listed depths are for
alpha-beta, the number of node-expansions available to Bayesian search was set
to the amount alpha-beta expanded on average. Over the entire line, Bayesian
search performs much better than alpha-beta.

There are a few things to note with this result however. First of all, alpha-
beta does not always do better with a deeper search. This is probably due in
part to the fact that we use different neural networks for the evaluations of
positions with white or black on move1. With an odd search depth, black is
always on move in evaluated positions, and with an even search depth, it is
white. Therefore it seems the evaluation of white positions is better than that
of black positions.

The reverse effect present in the Bayesian search data can be explained with
the fact that, given a fixed search depth, most of its node expansions occur
at the same depth. If this depth is one deeper than alpha-beta, the algorithm
would do good on odd depths and worse on even depths, which is what happens.

We must point out however that these analyses are tentative at best. Search
algorithms are temperamental beasts and it is in general very hard to figure
out why they work the way they work. They do prove however that Bayesian
search with neural network spike evaluators are in principle viable. The next
question to answer is whether temporal difference methods can train an eval-
uation function succesfully in this domain, but that question is left for future
work.

1The reason for this is that the ‘on move’-feature is very important for the evaluation.
If we would present it to the network as ‘just anothe feature’, the network would probably
not give enough weight to it. For alpha-beta this would not hurt that much, as it does not
compare nodes on different levels, but for Bayesian search it would.



58 CHAPTER 4. EXPERIMENTS



Chapter 5

Conclusions and future
work

5.1 Conclusions

This thesis made contributions in parametrized probability distribution gener-
ation and synthetic model generation. The conclusions that can be drawn from
this work will be described in the next to sections.

5.1.1 Generating spikes

In the preceding chapter we have seen some experiments comparing the quality
of spikes generated by neural networks and decision trees. The question whether
the neural network approach is better we can now answer with a qualified ‘yes’.
The following issues support this conclusion:

• Decision trees need expert knowlegde to work well. This is both a strength
and a weakness. It is a strength because the use of expert knowledge can
really improve performance. It is a weakness because expert knowledge
can be hard to obtain and hard to implement into the algorithm.

• Our experiments, in random game trees as well as in chess, showed that
a neural network does a lot better if no expert knowledge is present.

• Although it is not clear which network topology is best, all the topolo-
gies do reasonably well. It is probable that for most tasks a satisfactory
topology can be found.

• There is some danger in using our current error measure for assessing
the strength of an approach, because this does not always translate to
good performance. In our comparison between decision trees and neural
networks this does not play a role, however, because the decision trees
were effectively uninformed.

59



60 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

• It seems hard to imagine how a complex game like chess can be divided
into categories that define their risk. Neural networks can approximate a
more general class of functions, so they are bound to have less problems
in this respect.

Our conclusion is that neural networks have more potential for complex domains,
both due to the inherent problems of decision trees and the fact that neural
networks require less tuning.

5.1.2 Random game trees

In the previous chapter we have also seen several versions of random game trees.
While they are not important for search algorithms in themselves, in our opinion
they represent a methodological advance. They have several advantages over
real games, some of which have been mentioned in the literature before, some
not. They are:

• It is easy to create domains with easy-to-learn value functions or hard-to-
learn value functions.

• It is easy to create domains with varying amounts of uncertainty. The
actual cause of these uncertainties can be chosen as well. It can be due to
really different outcomes and their probabilities (in our first model), but
the uncertainties can also represent possible changes in the opinion of the
chances of a particular outcome as a result of further search (our second
model).

• Several other characteristics of the game tree are also easily changed: the
average branching factor, variance of the branching factor, the depth of
the tree, etc.

• Under certain circumstances the optimal value function can be computed
by dynamic programming. This is not optimal in the usual sense; it does
not tell you the game theoretical value of a node, but the expected value
without knowledge of the results of a search. In other words, it gives
you the best possible evaluation if no search is possible, but it does not
tell you everything. In most practical problems a game theoretic optimal
value function can not be created. Some of the knowledge can only come
from search. Random game trees can formalize this distinction, and the
‘optimal’ value function is the best that can be done for the evaluation
part.

5.2 Future work

As does most research, this thesis raises more questions than it answers. The
next paragraphs discuss the questions we have identified.



5.2. FUTURE WORK 61

5.2.1 Errormeasures

The most important theoretical issue is how the inaccuracy of the spikes affect
search quality. In general, there are two ways in which these inaccuracies can
influence search. The first one is that the area between spikes is not correctly
represented, e.g. there are spikes at 0 and 2, but the actual value is 1 most of
the time. This effect only changes the ordering of node expansions, and so only
yields some inefficiency. The other one is more serious, namely when the real
value lies further than the extreme spikes. Such nodes may have no expansion
utility while they can be crucial to the search. To avoid this, we want the spikes
to be as far apart as possible, but this reduces the efficiency of the expansion
ordering. This is a trade-off, and further research is necessary to see what the
best option is.

5.2.2 The covariance problem

In Chapter 2, we introduced the ‘value backup’ problem. It is concerned with
the fact that nodes with multiple good continuations ought to have a higher
evaluation than nodes with a single, but equally good, continuation. Simply
taking the maximum value does not take this into account. Any attempt to
cure this problem is bound to be troubled by the dual problem, the problem
that multiple good continuations might not be better than a single one after all.

The problem can be naturally described by looking at the evaluations of
positions as random variables. If these random variables are independent, the
probability product rule1 is the correct way to calculate the evaluation of the
parent. This rule becomes less accurate as the random variables become more
dependent however. Only when the variables are fully dependent2 the standard
maximum rule is the correct way to propagate evaluations.

Either situation can occur and the two models we tested can provide good
examples for both. In random game trees, if a position has more than one good
continuation, there is an almost 0 chance that the quality of these continua-
tions depends on a common successor state. This means the form of the tree
does not introduce any dependence among sibling positions. All properties of a
position, including whether it is a win or not, are designed to depend on inde-
pendent random variables. So the random variables of states looking alike are
independent so this cannot be a source of dependence among sibling positions
as well. Therefore, the random game tree model is an almost perfect example
of independence between positions. In random game trees, if a node has three
child nodes with a winchance of 50%, the parent has a 87.5% winchance.

The chess example is another story. Dependence must occur here, due to
the shape of the tree and some properties of the task. In a typical position, it is

1Taking the product of the winprobabilities of the children as the winprobability of the
parent, see [23]

2Meaning, if we have nodes with various chances of winning, say 0.6 and 0.2, their actual
outcomes depend on one underlying random variable. In this example, if its value is lower
than 0.2, both nodes are won, if between than 0.6 and 0.2, only the node with 0.6 chance is
won, and all are lost if it is over 0.6.



62 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

an important subgoal to move the king to the pawn. If the king needs to move
sideways to the pawn, it has 3 options, straight, diagonally up and diagonally
down. Most of the times, they lead to the same position after a few moves, so
the values of these options are almost completely dependent. If one of them
leads to a won position, the others do as well, and if one of them leads to a lost
positions, so do the others. So if these three positions would have an estimated
50% winchance by themselves, the parent would have a 50% winchance as well,
in contrast to the 87.5% in the random game tree model.

This varying amount of dependence, or covariance, among winchances of
nodes has led us to call this problem the covariance problem. In its full form
the problem is: how should information about covariance of nodes be estimated,
how should it be used in value-backup rules and how should it influence our
search decisions?

Alpha-beta, Bayesian search and probability product only have a stance
on the second problem, how to use the covariance for the value-backup rule.
Alpha-beta assumes complete dependence, probability product assumes com-
plete independence, while Bayesian search assumes a kind of middle ground:
short-term changes are seen as independent and long-term changes are seen as
dependent. Although Baum and Smith showed experimentally that their ap-
proach was better than either alpha-beta or probability product, their approach
does not deal with the first and third problems at all, so there is still important
work to do with regard to the covariance problem.

5.2.3 Work

Bayesian search assumes a 1-ply search is enough to find the actual value of a
node. This is of course a convenient fiction. Sometimes more search needs to
be done to find the actual value, sometimes less. Palay[22] already noted this
issue and called it the problem of ‘work’, because sometimes more work must
be done to clarify a given position.

The term ‘actual value’ is actually unwarranted here, because it is defined
as the resulting value after a search of a certain size. It is clear that different
amounts of search can result in different outcomes, so there is no ‘actual value’.

One way of looking at this problem is not to associate a single distribution
with a position, but a function mapping search depths to distributions. This
change would make search decisions much more difficult, because now combi-
nations of search depths need to be considered. For instance, maybe a shallow
search of positions A and B cannot influence the move decision, but a deep
search of A and a shallow search of B would. Search decisions need to be made
on the basis of not just probability distributions, but sets of probability distri-
butions with costs associated to them. This leads to a combinatorial explosion
so it is unlikely that the optimal decision can be found efficiently.

So the question becomes, can a usable approximation be found? And if it
can be done, how can the functions mapping search depths to distributions be
generated? It seems likely the first problem can only be solved in a limited way,
by limiting the number of considered search depths to a small number. In that



5.2. FUTURE WORK 63

case the answer to the second question is not very difficult: just create distinct
distributions for every considered search depth, in the same way as before.

5.2.4 Training methods

In our current neural network training methods, we have a winner-take all sys-
tem. If an actual value falls in between two spikes, the closest spike wins and
takes all credit. With fixed spike locations, this can lead to bias, e.g. if there
are two spikes located at 10 and at 20, but the actual value is 14 most of the
time, the expected value would go to 10, which is too low. If the spike at 10
would ‘win’ for only 60% and the one at 20 for 40%, this kind of bias would not
occur. Whether this approach would work for unfixed locations remains to be
seen.

In general, our training procedures are up for revision. They seem to work
fine, but they are a bit ad-hoc. It should be possible to either justify our methods
theoretically or generate other, more theoretically justified, approaches.

5.2.5 Online learning

In our experiments we first obtained a set of training examples, then we train
a value function and only then we test the result on the real problem. In many
cases it has been shown to be better to start with the real problem and learn
on the job, also known as online learning. In our case this has the following
specific advantages:

• There is no overrepresentation of some positions. The positions are en-
countered in the exact proportion as encountered in the real task (by
definition).

• The algorithm can learn from information actually found during search,
instead of learning values from a database. This gives more information
on the usefulness of a search.

• The algorithm can learn from information it found itself, instead of infor-
mation generated by alpha-beta. This is risky as well, as it may overlook
the best variation, but it gives more accurate information of the possible
information gained by search.

More research is needed in order to see whether these advantages occur in prac-
tice.



64 CHAPTER 5. CONCLUSIONS AND FUTURE WORK



Bibliography

[1] Eric B. Baum and Warren D. Smith. A Bayesian approach to relevance in
game-playing. Artificial Intelligence, 97:195–242, 1997.

[2] Eric B. Baum, Warren D. Smith, and Charles Garret. Experiments with a
Bayesian gameplayer. Technical report, NEC Research Institute, Princeton,
1996.

[3] Jonathan Baxter, Andrew Trigdell, and Lex Weaver. Knightcap: a chess
program that learns by combining TD(λ) with game-tree search. In Proc.
15th International Conf. on Machine Learning, pages 28–36. Morgan Kauf-
mann, San Francisco, CA, 1998.

[4] Hans Berliner. The B* tree search algorithm: A best-first proof procedure.
Artificial Intelligence, 12:23–40, 1979.

[5] Michael Buro. ProbCut: An effective selective extension of the alpha-beta
algorithm. ICCA Journal, 18(2):71–76, 1995.

[6] Murray Campbell, A. Joseph Hoane Jr., and Feng hsiung Hsu. Deep blue.
Artificial Intelligence, 134:57–83, 2002.

[7] Guillermo Campitelli and Fernand Gobet. Adaptive expert decision mak-
ing: Skilled chess players search more and deeper. ICGA Journal, pages
209–216, 2004.

[8] W. G. Chase and H. A. Simon. The mind’s eye in chess. In W.G. Chase,
editor, Visual Information Processing. New York: Academic Press, 1973.

[9] Vincent Conitzer and Tuomas Sandholm. Definition and complexity of
some basic metareasoning problems. In International Joint Conference on
Artificial Intelligence, pages 1099–1106, 2003.

[10] Adriaan D. de Groot. Thought and Choice in Chess. The Hague: Mouton,
1946/1978. 2nd english edition, first dutch edition published in 1946.

[11] S.H. Fuller, J.G. Gaschnig, and J.J. Gillogly. An analysis of the alpha-
beta pruning algorithm. Tech. Rept. Department of Computer Science,
Carnegie-Mellon University, Pittsburgh, 1973.

65



66 BIBLIOGRAPHY

[12] Fernand Gobet. Chess players’ thinking revisited. Swiss Journal of Psy-
chology, 57:18–32, 1998.

[13] Fernand Gobet and Herbert A. Simon. The roles of recognition processes
and look-ahead search in time-constrained expert problem solving: Evi-
dence from grandmaster level chess. Psychological Science, 7:52–55, 1996.

[14] G.H. Golub and J.H. Welsch. Calculation of Gauss quadrature rules. Math-
ematics of computation, 23, 1969.

[15] Dennis H. Holding. The evaluation of chess positions. Simulation and
Gaming, 10:207–221, 1979.

[16] Dennis H. Holding. The Psychology of Chess Skill. Hilldale, N.J., Erlbaum,
1985.

[17] David Hooper and Kenneth Whyld. The Oxford Companion to Chess.
Oxford University Press, 2nd edition edition, 1992.

[18] Heikki Hyotyniemi and Pertti Saariluoma. Chess - beyond the rules.
Finnish Artificial Intelligence Society, pages 100–112, 1999.

[19] Andreas Junghanns. Are there practical alternatives to alpha-beta? ICCA
Journal, 21(1):14–32, 1998.

[20] Richard E. Korf and David Maxwell Chickering. Best-first minimax search.
Artificial Intelligence, 84:299–337, 1996.

[21] David Allen McAllester. Conspiracy numbers for min-max search. Artificial
Intelligence, 35:287–310, 1988.

[22] Andrew J. Palay. Searching with Probabilities. Pitman Publishing, 1985.

[23] Judea Pearl. Heuristic search theory: A survey of recent results. In Proceed-
ings of the International Joint Conference on Artificial Intelligence, pages
24–28, 1981.

[24] Jonathan Schaeffer. The history heuristic and alpha-beta search enhance-
ments in practice. IEEE Transactions on pattern analysis and machine
intelligence, 11:1203–1212, 1989.

[25] Claude E. Shannon. Programming a computer for playing chess. Philo-
sophical Magazine, 41(314), 1950.

[26] Yaron Shoham and Sivan Toledo. Parallel randomized best-first minimax
search. Artificial Intelligence, 137:165–196, 2002.

[27] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. MIT Press, Cambridge, 1998.



BIBLIOGRAPHY 67

[28] Omid David Tabibi and Nathan S. Netanyahu. Verified null-move pruning.
Technical Report CAR-TR-980, CS-TR-4406, UMIACS-TR-2002-39, Cen-
ter for Automation Research, University of Maryland, 2002. Published in
ICGA Journal, Vol. 25, No. 3, pp. 153–161.

[29] H.J. van den Herik. Computerschaak, schaakwereld en kunstmatige intelli-
gentie. Academic Service, 1983.



68 BIBLIOGRAPHY



Appendix A

Transcript of an
introspective report

This appendix contains a transcript of Max Euwe’s own desciption of his thought
processes while looking at a position. The instruction was to speak out thoughts
as soon as they occured. The time taken in this process was 15 minutes.

First imporession: an isolated Pawn;

White has more freedom of movement.

Black threatens Qxb2. Is it worthwhile

to parry that? It probably is; if he takes,

then a3 is also attacked. Can White then

take advantage of the open file? Does not

look like it. Still again: 2. Nxc6 and then

by exchange the pawn at a3 is defended

by the Queen. Indirectly in connection

with the hanging position of the knight

at f6 and possibly because of the over-

burdening of the bishop at e7. But wait

a moment: no, Qxb2 is rather unpleas-

ant after all because the Bishop at a2 is

undefended. Can i do something myself?

Investigate that first: the pieces on f6 and

d5 are both somewhat tied down.

Let us look at the consequences of some

specific moves.

1. Nxd5, possibly preceded by

1. Nxc6. Then 1... Rxc6 is probably im-

possible because taking on d5. Black has

a number of forced moves, there may be a

possibility to take advantage of that. It’s

not yet quite clear.

Let us look at other attacks:

1. Bh6 in connection with f7 - but I don’t

really see how to get at it.

1. b4 in order to parry the threat - but

then exchange on c3 will give some dif-

ficulties in connection with 2...Bb5 - oh,

no, that is not correct, one can take back

with the Queen.

So far a somewhat disorderly preliminary

investigation. Now let’s look in some more

detail at the possibilities for exchange:

1.Nxc6 or 1.Nxd5 or maybe 1.Bxd5 or

maybe first 1.Bxf6.

1. Nxc6, Rxc6; 2. take on d5; for in-

stance 2.Nxd5, exd5; wins a Pawn, but

there may be compensation for Black on

b2. But better is 2...Nxd5; then 3.Bxd5,

Rxc1 is nearly forced, no, is it not, he can

play 3...Bxg5 as well. I see no immediate

advantage.

1...exd5 is not forced therefore; and even

if it were forced you couldn’t be quite

sure of winning. It’s happened before

69



70 APPENDIX A. TRANSCRIPT OF AN INTROSPECTIVE REPORT

����� �����
�
	�� �	��	
�����	��	��

� ����� �
� � � �

� ����� �
� � � �
���
�  ��!�"

Figure A.1: Position A from de Groot’s study.

that such a position proved less favorable

than it seemed to be. The point d5 is

reinforced by it, that is a disadvantage.

1. taking on d5.

1. Nxc6 at any rate gives the pair of Bish-

ops, if I don’t find anything better, I can

always do this.

1.Nxd5, Bxd5; is that possible? d7 is free

then. 2.Bxf6, Bxf6; 3.Nd7, Qd8 can then

be done.

1.Nxd5, Bxd5; 2.Bxf6, Bxf6 will probably

yield something. 1...Nxd5 is also possi-

ble; maybe better. Then 2. Bxd5, Bxg5

and now there are the possibilities to take

on c6, or to play something like f4.; once

again:

1.Nxd5, Nxd5; 2. Bxd5, Bxg5 - no, noth-

ing then, 3 Rxc6 does not help any; it

is a cute move but at the end of it all

everything remains hanging. Something

else: 2.Bxe7 - he just takes back. 1...exd5

is very favorable; he won’t do that, it

needn’t be investigated.

1. Nxd5, Nxd5 remains. 2.Bxd5, Bxg5;

3.Bxc6, Bxc1 is then possible. No, can

find no way to make anything out of

this. 1...Nxd5; Bh6, Rfd8; 3.Qf3 with

some threats; if Black now has to play his

bishop back to e8, then one gets a good

position.

1. Bxd5: this must be looked into. Does

that make any difference? 1.Bxd5, Bxd5

is again impossible because of 2.Nd7.

That is to say, we will have to look out

for 2...Bc4, but that we can probably

cope with: the worst that can happen

to me is that he regains the exchange,

but then I have in any case some gain of

time. 1.Bxd5, Nxd5; 2.Same difficulties

as just before. No, that is now impossible:

2.Nxd5 wins a piece.

1.Bxd5, Bxd5; 2.Bxf6, Bxf6; 3.Nd7, Qd8.

Lets have a closer look at that: 4. Nxd5,

exd5 and I’m an exchange to the good:

very strong.

1.Bxd5, exd5 is therefore forced. But

that’s good for white. The knight on f6

is weak, the bishop at e7 hangs - and

the bishop on c6 stands badly. On posi-

tional grounds one could already decide

on 1.Bxd5.

Is there some immediate gain?

1. Bxd5, exd5; it looks bad for black.

Probably some more accidents will soon

happen. Much is still up in the air. One

plays, for instance, 2.Qf3, Defending the

knight on f6 is not so easy; 2...Kg7 looks

very unpleasant. Yes, I play 1.Bxd5.


