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Abstract

In this study we address the problem on how to more accurately learn un-
derlying functions describing our data, in a Support Vector Machine setting.
We do this through Support Vector Machine learning in conjunction with a
Weighted-Radial-basis function. The Weighted-Radial-Basis function is sim-
ilar to the Radial-Basis function, in addition it has the ability to perform
feature space weighing. By weighing each feature differently we overcome the
problem that every feature supposedly has equal importance for learning ourk
target function. In order to learn the best feature space we designed a feature-
variance filter. This filter scales the feature space dimensions according to the
relevance each dimension has for the target function, and was derived from the
Support Vector Machine’s dual objective -definition of the maximum-margin
hyperplane- with the Weighted-Radial-Basis function as a kernel. The “fit-
ness” of the obtained feature space is determined by its costs, where we view
the SVMs dual objective as a cost function. Using the newly obtained feature
space we are able to more precisely learn feature spaces, and thereby increase
the classification performance of the Support Vector Machine.
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Notation:

• Ψj , jth support vector machine (SVM).

• Φi, ith activation function.

• y, instance label where y ∈ {−1, 1}

• ŷ, predicted label where ŷ ∈ {−1, 1}

• x, instance where x ∈ Rn

• x, instance used as support vector (SV) and x ∈ Rn.

• D, dataset where D = {(x, y)1, .., (x, y)m}.

• D′ = {d ∈ D|ŷ 6= y}

• ωj , weights used in kernel space where ωj ∈ Rn and j corresponds to
one particular SVM.

• 〈α · β〉, dot-product / inner-product

• 〈α · β · γ〉, when all arguments are vectors with equal length then the
function is defined as:

∑n
i=1 αi ∗ βi ∗ γi
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Chapter 1

Introduction

Artificial Intelligence (AI) is one of the newest sciences, and work in this
field started soon after the second World War. In today’s society life without
AI seems unimaginable, in fact we are constantly confronted with intelligent
systems. On a daily basis we use Google to search for documents and images,
as a break we enjoy playing a game of chess against an artificial opponent.
Also imagine what the contents of your mailbox would look like if there were
no intelligent spam filters: V1@gra, V—i—a—g—r—a, via gra and the list
goes on and on. There are 600,426,974,379,824,381,9521 different ways to spell
Viagra. In order for an intelligent system to recognize the real word “viagra”
it needs to learn what makes us associate a sequence of symbols - otherwise
known as “a pattern”- with viagra.

One branch of AI is Pattern Recognition. Pattern Recognition is the re-
search area within AI that studies systems capable of recognizing patterns in
data. It goes without saying that not all systems are designed to trace un-
wanted emails. Handwriting Recognition is a sub field in Pattern Recognition
whose research has enjoyed several practical applications. These applications
range from determining ZIP codes from addresses [17] to digitizing complete
archives. The latter is a research topic within the Artificial Intelligence and
Cognitive Engineering group at the university of Groningen. The problem
there is not simply one pattern but rather 600km of book shelves which need
to be recognized and digitized [1]. Such large quantities of data simply can-
not be processed by humans only and require the help of intelligent systems,
algorithms and sophisticated learning machines.

1.1 Support Vector Machines

Support Vector Machines, in combination with Kernel Machines, are “state of
the art” learning machines capable of handling “real-world” problems. Most

1http://cockeyed.com/lessons/viagra/viagra.html
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2 CHAPTER 1. INTRODUCTION

of the best classification performances at this moment are in hands of these
learning machines [15, 8]. The roots of the Support Vector Machine (SVM)
come from statistical learning theory, as first introduced by Vapnik [25, 4].

The SVM is a supervised learning method, meaning that (given a collection
of binary labeled training patterns) the SVM algorithm generates a predictive
model capable of classifying unseen patterns to either category. This model
consists of a hyperplane which separates the two classes, and is formulated
in terms of “margin-maximization”. The goal of the SVM is to create as
large as possible a margin between the two categories. In order to generate
a strong predictive model the SVM algorithm can be provided with different
mapping functions. These mapping functions are called “Kernels” or “kernel
functions”. The Sigmoid and Radial-Basis function (RBF) are examples of
such kernel functions and are often used in a Support Vector Machine and
Kernel Machine paradigm. These kernels however do not take into account
the relevance each feature has on the target function. In order to learn the
underlying function that describes our data we need to learn the relevance
of the features. In this study we intend to extend the RBF kernel by adding
to it the ability to learn more precisely how the features describe our target
function. Adding a weight vector to the features in the RBF kernel results
in a Weighted-Radial-Basis function (WRBF). In [21] the WRBF kernel was
used in a combination with a genetic algorithm to learn the weight vector. In
this study we will use the interplay between the SVM’s objective function and
the WRBF kernel to determine the optimal weight vector. We will show that
by learning the feature space we can further maximize the SVM’s objective
function which corresponds to greater margins, which answers the following
question:

How can a Support Vector Machine maximize its predictive capabilities through
feature space learning?

1.2 Outline

The problem of margin-maximization is formulated as a quadratic program-
ming optimization problem. However the basic mathematical concepts are
best explained using relatively simple linear functions. Therefore we start
the theoretical background with Chapter (2) on linear discriminant functions.
In this Chapter we introduce the concepts of separating hyperplanes, and
how to solve classification problems that are of linear nature. The SVM
will be introduced in Chapter (3), alongside its derivation and concepts we
have implemented the SVM algorithm (PySVM) of which a snippet can be
found in the appendix. We will use PySVM to give illustrative examples on
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different types of kernels and the concepts of hard margin and soft margin
optimization. Chapter (4) focuses on the concept and theory behind ker-
nels. Furthermore we will give a short introduction to the notion of “Mercer
kernels” and will show that the WRBF kernel is a Mercer kernel. Chapter
(5) begins with describing how the WRBF kernel is able to learn the target
function through “error minimization” and “margin maximization”. We will
present the feature-variance-filter algorithm which allows the WRBF to more
accurately learn the feature space. The experiments in Chapters (7,8,9,10)
that we have conducted are introduced in section (6.1). These experiments
range from feature selection to feature weighing. The final two Chapters will
address conclusion and future work.
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Part I

Theoretical Background
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Chapter 2

Linear Discriminant
Functions

2.1 Introduction

Linear Discriminant Functions (LDFs) are methods used in statistics and
machine-learning, and are often used for classification tasks [9, 18, 11, 22].
A discriminant function realizes this classification by class separation, often
referred to as discriminating a particular class, hence “Linear Discriminant
Functions”. Principle Component Analysis [9] and Fischer Linear Discrimi-
nant [9] are methods closely related to LDFs. LDFs posses several properties
which make them very useful in practice: (1) Unlike parametric estimators,
such as “maximum-likelihood”, the underlying density probabilities do not
need to be known; we examine the “space” in which the data thrives and
not the probabilities coinciding with its features and occurrences. (2) Linear
Discriminant Functions are fairly easy to compute making them suitable for
a large number of applications.

This chapter consist of the following: (1) defining the basic idea behind linear
discriminant functions and their geometric properties; (2) solving the linear
separable case with two examples; and (3) solving for the linear inseparable
case.

2.2 Linear Discriminant Functions and Separating
Hyperplanes

2.2.1 The Main Idea

A discriminant function that is a linear function of the input x is formulated
as:

7



8 CHAPTER 2. LINEAR DISCRIMINANT FUNCTIONS

g(x) = wtx + b (2.1)

Where wt is a weight vector and b the bias which describes displacement.

Figure 2.1: Affine hyperplane in 3D environment. The
hyperplane separates space into two separate regions
{R1, R2}. These regions are used to classify patterns
in that space.

Equation (2.1) describes the well known hyperplane, graphically represented
in figure (2.1). It can be seen that the affine hyperplane1 H divides the space
S(x1, x2, x3) into two separate regions, {R1, R2}. These two regions form
the basis for our classification task, namely we want to divide S in such a
manner that in a binary classification {1,−1} problem all the positive labels
are separated from the negative labels by H. In a linear separable binary
classification task this means there exists no region r ∈ R in which more than
one particular class is positioned.

2.2.2 Properties

The regions {R1, R2} as described in the previous subsection are often referred
to as the positive and negative side of H, denoted as R+ and R−. The offset
of a point x in S not lying on H can have either positive or negative offset
to H, determined by the region it is positioned in. The latter is similar
to: R+ = {x|g(x) > 0} and R− = {x|g(x) < 0}, making equation (2.1)
an algebraic distance measurement from a point x to H, and a membership
function where x can be member of {R−, R+, H}. Figure (2.2a) illustrates
properties for any point x in space S(x1, x2, x3) which can be formulated as:

1An affine hyperplane is a (d-1)-dimensional hyperplane in d-dimensional space
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x = xp + r
w

||w||
(2.2)

(a) All points in Space can be
formulated in terms of distance
|r| to the hyperplane. The sign
of r can then be used to deter-
mine on which side it is located.

(b) Vectors (x) that satisfy
wtx′ = −b give the displace-
ment of the hyperplane with re-
spect to the origin.

Figure 2.2: By describing points in terms of vectors, it
is possible to give these points extra properties. These
properties describe its location and offset with respect
to certain body.

Where xp is a vector from the origin to the hyperplane such that the hy-
perplane’s “grabbing point” has a 90 ◦ angle towards x. This perpendicular
vector ensures that we have the shortest distance from H to x. Since we
know that for any point on H it holds that: wtx + b = 0, we can derive:
r = g(x)

||w|| , this we show later. We are particularly interested in this r, since
its magnitude describes the distance to our hyperplane, and we use its sign
for classification. Inserting the new formulation for x (equation (2.2)) in the
discriminant g we obtain r. Equations (2.3) through (2.8) show its derivation
and figure (2.2a) gives a graphical impression on the interplay between x and
xp, r.
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g(x) = wtx + b (2.3)

g(xp + r
w

||w||
) = wt

(
xp + r w

||w||

)
+ b (2.4)

= wtxp + rw
tw
||w|| + b (2.5)

=

[
rw

tw
||w||

]
+

[
wtxp + b

]
(2.6)

All points located on the hyperplane (wtx + b = 0) have zero distance, and
therefore trivial rearranging on (2.6) leads to (2.7).
Notice that by definition:

wtw

||w||
=

∑
wiwi√∑
wiwi

=
√∑

wiwi = ||w||

so that,

g(x) = r||w|| (2.7)

giving the offset from r to H,

r =
g(x)

||w||
(2.8)

Equation (2.8) shows how we can finally calculate the offset of a point to the
hyperplane.

Another property is the displacement of H to the origin O. Knowing that
w is a normal of H, we can then use the projection for any vector x′ satisfying
wtx′ = −b on w to calculate this displacement. For vectors x1 and x2 their
dot product is given by:

x1 · x2 = xt1x2

= ||x1|| ||x2|| cosα (2.9)

Using equation (2.9) and figure (2.2b) we can see that the projection of x on
the unit normal2 of w is the length from O to H. Since w is not per se a unit
vector we need to re-scale ||w||||x|| cosα = −b, giving the offset O = b

||w|| .

2.3 Separability

2.3.1 Case: 1 Linearly Separable

This subsection lays the foundation for finding hyperplanes capable of sep-
arating the data. A set of points in two dimensional space containing two

2a unit normal is vector with length 1 and is perpendicular to a particular line or body.
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(a) Toy example: this toy-
example shows how a hyper-
plane can separate the classes
{+,−} such that each class is
located at most one side of the
hyperplane.

(b) Solution space θ: the solu-
tion space θ contains all those
vectors (w) who’s solution re-
sults in perfect class separation.

Figure 2.3: In a linear separable classification task the hy-
perplane often can take multiple positions. The locations
the hyperplane takes are influenced by different w.

classes is said to be linearly separable if it is possible to separate the two
classes with a line. For higher dimensional spaces this holds true if there
exists a hyperplane that separates the two classes. The toy example of figure
(2.3a) shows how a hyperplane can be constructed that perfectly separates
the two classes {+,−}.

As one can see, it is possible to draw multiple lines in figure (2.3a) that
separate the two classes. The latter indicates that there exist more than one
w that perfectly separates the two classes. Therefore our solution space θ is
described as follows:

{wi|
wi

tx + b > 0,x ∈ R+,

wi
tx + b < 0,x ∈ R−,

wi ∈ θ} (2.10)

and shown in figure (2.3b).
“The vector w we are trying to find is perpendicular to the hyperplane. The
positions w can hold is our solution space, the hyperplane is merely the result
of wtx = −b”.
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In the next two subsections illustrative examples will be given on how to find
such a vector wi ∈ θ.

Finding a solution

There are an enormous amount of procedures for finding solution vectors for
the problems presented in this section [9] [18]. Most basic algorithms start
by initializing a random solution, rand(w), and try to improve the solution
iteratively. By defining a criterion function J on w where J(w) 7−→ R,
we are left by optimizing a scalar function. In every step a new solution
is computed which either improves J(w) or leaves it unchanged. A simple
and very intuitive criterion function is that of misclassification minimization.
Typically we want to minimize J(w) where J presents the number of elements
in D′, the set containing misclassified instances.

Algorithm 1: Fixed Increment Single-Sample Perceptron

Input: initialize w, i ← 0
repeat

k ← (k + 1) mod n
if yk misclassified then

w← w + η xkyk
end

until all samples correctly classified ;
return w

Fixed-Increment Single-Sample Perceptron

One of the most simple algorithms to find a solution vector is that of the Fixed-
Increment Single-Sample Perceptron [9], besides its simplicity it is very intu-
itive in its approach. Assume we have a data set D = {(x1, y1), .., (xn, yn)}
where xi describes the features and yi its corresponding label. Now let d ∈ D
and test whether or not if our w correctly classifies d. Whenever d is mis-
classified we will shift w towards d. This procedure will be done until the set
D′ containing all misclassified instances is empty. Equation (2.11) shows how
the final solution for w can be written as a sum of previous non-satisfactory
solutions.

w(i) = w(i− 1) + η(yi − f(xi))xi (2.11)

The perceptron function f maps an input vector xi to a negative or positive
sample f(x) 7−→ {−1, 1} and is defined as:

f(x) =

{
1 if wtx + b > 0
−1 else

(2.12)
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Equations (2.11) and (2.12) form the basis for the Fixed Increment Single-
Sample Perceptron described in algorithm (1).

Example:

We are given the following: D = {(1, 2,−1), (2, 0,−1), (3, 1, 1), (2, 3, 1)}, where
the last feature describes the corresponding class {1,−1} (Appendix(C.1)
shows a python implementation of the Fixed Increment Single-Sample Per-
ceptron). The initial starting points were respectively initialized with w =
(−2,−2), w = (0, 0) .

(a) Initial w = (−2,−2) (b) Initial w = (0, 0)

Figure 2.4: The Fixed Increment Single-Sample Perceptron
algorithm with different starting conditions for w. This al-
gorithm will terminate when all patterns are located on the
correct side of the plane. To the naked “eye” this separa-
tion is a poor generalization of the “real” location of the
patterns.

As can be seen in figure (2.4) both hyperplanes separate the data using differ-
ent solution vectors. The reason for this is that Fixed Increment Single-Sample
Perceptron is not trying to minimize some objective function, but instead de-
pends solely on constraints. This corresponds to the previous figure (2.3b) and
equation (2.10). Other commonly used algorithms are: Balanced Winnow,
Batch Variable Increment Perceptron, Newton Descent, Basic Descent[9].

Linear Programming

Linear programming (LP) is a mathematical way of determining the best so-
lution for a given problem. The problems we have thus far encountered are of
a linear nature, which can often be solved using “out of the box” optimization
software. The LP technique of linear optimization describes a linear objec-
tive function, subjected to linear equalities and or linear inequalities. The
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following is a typical linear program (canonical form):

Minimize ctw (2.13)

Subject to Aw ≤ y (2.14)

where ctw describes the problems objective function and Aw ≤ y its corre-
sponding constraints. This objective function often refers to cost or income
which one wants to minimize or maximize. Most mathematical models are
restricted to some sort of requirements, described as constraints to the prob-
lem. We have already seen how to solve a linear separating hyperplane using
the Fixed Increment Single-Sample Perceptron, however understanding this
linear program will help us understand the inner workings of our main goal,
“the Support Vector Machine”. In [6] more exact details can be found, here
we give an short example.
Assume that in a binary classification task we have stored our instances in two
matrices, K and L, where each matrix corresponds to a particular class. The
rows indicate instances and the columns represent features. Now we want to
separate the instances in K and L by computing a hyperplane such that the
K instances are located in R+ and the L instances in R−. The hyperplane is
once again defined by: f(x) = wtx+b. The fact that we “want” the instances
to be located in different regions results in the inclusion of the constraints to
our solution for w and b. These constraint then become:

Constraints (2.15)

0 > wtK + b, R+

0 < wtL+ b, R−

As for an objective function we need to make sure that the search space is
bounded and not infinite. Choosing minimize||w||13 + b with an additional
constraint that all elements in w and b are greater then 0 we have limited
the search space. Combining the objective function with its corresponding
constraints lead to the following LP:

Minimize (2.16)

||w||1 + b

Constraints

0 > wtK + b

0 < wtL+ b

w, b � 0

where our hyperplane/discriminant function is defined by f(x) = wtx + b

3the first norm is given by:
∑n

i=1 |wi|
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Example Using Convex Optimization Software

There are a large variety of “Solvers” that can be used to solve optimization
problems. The one that we will use for a small demonstration is CVXMOD4

which is an interface to CVXOPT5. The previous linear program in equation
(2.17) is not sufficient to handle real world problems. Since w can only take
on positive numbers our hyperplane is restricted. In [6] they propose the
following w = (u − v) with u,v ∈ (Rn+), making it possible for w ∈ Rn

while still bounding the search space. The latter leads to the following LP:

Minimize (2.17)

||u||1 + ||v||1 + b

Constraints

u > wtK + b

v < wtL+ b

u,v, b � 0

The program we constructed for this example is listed in the appendix (C.2)
and was performed on the following patterns:

K =


0 1
1 0

0.5 1
0 2

 and L =


3 1
2 3
1 3

2.4 0.8


Figure (2.5a) shows that the solution is indeed feasible. However graphical
illustration shows that some points are very close to the hyperplane. This
introduces more risk of misclassifying an unseen pattern. This problem is
solved by adding the constraint that there needs to be a minimum offset from
a pattern to the hyperplane. For the K patterns the constraints become:

u > wtK + b+margin (2.18)

Where the margin describes the minimum offset to the hyperplane.

In figure (2.5b) we see that the distance between the hyperplane and the
targets have increased. The “approximate” maximum margin can be found
by iteratively increasing the margin until no solution can be found.

2.3.2 Case: 2 Linearly Inseparable

Applying the previous LP for finding an optimal hyperplane on a linear in-
separable data set results in a far from optimal hyperplane, as seen in figure
(2.6).

4CVXMOD Convex optimization software in Python
5CVXOPT Free software package for convex optimization based on the Python
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(a) Using the LP from equation
(2.18) on the patterns K and L gave
the following solution. Even though
all patterns are correctly classified,
the hyperplane is unnecessary close
to some patterns.

(b) Adding an additional margin
to constraints of the LP in equation
(2.18) results in better class separa-
tion. The Hyperplane is less close
to the patterns than in figure (2.5a).

Figure 2.5: Using linear programs to solve linear sep-
arable data.

Figure 2.6: Using the linear program in equation
(2.18) results in multiple misclassifications. Taking
the first norm for w as an objective is not suitable for
linear inseparable data sets.
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In situations as seen in figure (2.6) the previous LP is insufficient. By defin-
ing a criterion function that minimizes the number of misclassified instances,
min J’(x), where J’ is the set of misclassified instances by x, we will intro-
duce another variable called ‘slack’. This slack variable will be used to fill
up the negative space that a misclassified instance has towards the optimal
hyperplane.

(a) Minimizing the number of
misclassified instances by intro-
ducing slack variables. Even
though the hyperplane sepa-
rates the data with only one er-
ror, its position is not optimal
in terms of maximum margin.

(b) Minimizing the number of
misclassified instances not only
with slack variables but adding
additional margins, thereby de-
creasing the risk on misclassifi-
cation of unseen data.

Figure 2.7: The introduction of margin and slack improves
the position of the hyperplane.

It is possible to define an interesting classifier by introducing slack variables
and minimum margins to the hyperplane. If we were to introduce slack with-
out a margin then the border would always be on top of those patterns which
harbors the most noise (figure (2.7a)). Figure (2.7b) is graphical representa-
tion of a classifier where margin was added. This classifier is capable of finding
solutions for linear inseparable data allowing misclassifications. Students fa-
miliar with the most famous support vector machine image (figure (3.1)), see
some familiarities with figure (2.8). Figure (2.8) is the result of minimizing
the numbers of misclassified instances and trying to create a largest possible
margin. In the chapter on Support Vector Machines we will see how Vap-
nik defines a state of the art machine learning technology that translates the
problem of “misclassification minimization” to “margin-maximization”.
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Figure 2.8: By introducing a slack variable the strain the hyperplane has
on the data-points can be reduced, allowing the search for greater margins
between the two classes. By introducing margin variables it is also possible
to increase this margin.



Chapter 3

Support Vector Machines

3.1 Introduction

In the previous chapter on Linear Discriminant Functions we saw that it was
possible to compute hyperplanes capable of perfectly separating linear separa-
ble data. For the linear inseparable case slack variables where used to achieve
acceptable hypothesis spaces. Misclassification minimization and Linear pro-
grams where described as approaches for creating hypothesis spaces. The
novel approach that Vapnik [25] introduced is that of risk minimization, or as
we will come to see margin maximization. The idea behind is as follows: high
accuracy on the train-data does not guarantee high performance on test-data,
a problem which has been the nemesis of every machine learning practitioner.
Wiping proposed that it is better to reduce the risk of making a misclassifi-
cation instead of maximizing train-accuracy. This idea on risk-minimization
is in a geometric setting, the equivalent to that of margin-maximization. In
Section (2.3.2) we saw that by adding an additional margin to our optimiza-
tion problem, we could more clearly separate the patterns. The problem there
however was that all the patterns had influence on the location of the hyper-
plane and its margins. The Support Vector Machine counter attacks that
problem by only selecting those data patterns closest to the margin.

The goal of this chapter is to get a deeper understanding on the inner work-
ings of a Support Vector Machine. We do this by: (1) introducing the concept
of margin; (2) explaining and deriving a constrained optimization problem;
(3) implementing our own Support Vector Machine; and (4) Introducing the
concept of soft margin optimization.

This chapter will not cover geometric properties already explained in Chapter
(2).

19
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3.2 Support Vector Machines

Just as in Chapter (2), the goal of a Support Vector Machine is to learn
a discrimination function g(x). The function g(x) calculates on which side
an unknown instance is located with respect to the decision-boundary. The
main difference between Support Vector Machines and the examples we have
seen in Chapter (2) is the way this boundary is obtained. Not only is the
problem formulated as a quadratic problem instead of linear, the objective
is formulated in terms of a margin. The SVMs objective is to maximize
the margin, given by 2

||w|| , between the support vectors and the decision-

boundary. The idea of margin-maximisation is captured in figure (3.1). The
resulting function g(x) of an optimized Support Vector Machine is nothing
more than a dot-product with an additional bias. Those who are familiar
with Support Vector Machines might protest, and note the use of different
non linear similarity measures. These however are not part of the Support
Vector Machine, and should be regarded as being part of a Kernel Machine.
The distinction between the two will become more apparent when we will make
our own Support Vector Machine in section (B.1). The intuitive idea behind
the Support Vector Machine is as follows: assume that we have a data set D
containing two classes {+1,−1}. We saw in Chapter (2) that every d ∈ D had
its contribution to the final formulation of the discriminant function g(x). The
fact that every instance has its influence on the margin causes mathematical
problems. If we are interested in defining a margin then it would be more
natural to only include those instances closest to the boundary. The Support
Vector Machine algorithm will add a multiplier α to every d ∈ D and its value
(R+) denotes the relevance of that instance for the boundary/hyperplane.

dx ∈ D label α features

d1 1 0.00 x1

d2 1 0.8 x2

d3 -1 0.1 x3

d4 -1 0.7 x4

Table 3.1: The dx ∈ D that make up the decision boundary have a non-
negative α multiplier. The SVM paradigm returns the most optimal α values,
corresponding to the largest margin.

The α multipliers are of course not randomly chosen. In fact those patterns
that have non-zero alpha’s are positioned on-top of the decision boundary.
These support vectors will have an absolute offset of 1 to the hyperplane.
The latter is what gives the Support Vector Machine its name, all the non-
zero alpha’s are supporting the position of the hyperplane, hence the name
“Support Vectors”.

The support vectors in figure (3.1) are marked with an additional circle. It
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Figure 3.1: The non-zero α multipliers pin the hyper-
plane to its position. The task of the Support Vector
Machine is to find a set of non-zero α’s that make up
the largest boundary ( 2

||w||) possible between the two
classes.

is clear in figure (3.1) that the hyperplanes position depends on those d ∈ D
that have non-negative α’s.

3.2.1 Classification

The classification of an unknown instance x is calculated as a sum over all
similarities x has with the support vectors (xi). This similarity measure is the
dot-product between x and the support vectors. In equation (3.1) we see how
the support vector coefficients (α) regulate the contribution of a particular
support vector. The summed combination of similarity (〈xi ·x〉) and support
vector strength (αiyi) will determine the output for a single support vector.

g(x) =

l∑
i=1

αiyi〈xi · x〉+ b (3.1)

with l being the number of Support Vectors
and yi the label of the corresponding Support Vector

The Sign of the output function in equation (3.1) determines to which class
x is regarded. Equation (3.1) can only be used for binary classification. In
order to solve multi-class problems [14] a multitude of SVMs need be used.
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3.3 Hard Margin

From the first two sections we saw that the Support Vector Machine: (1)
maximizes the margin which is given by 2

||w|| ; and (2) for that it needs to
select a set of non-zero α values.

To increase the margin ( 2
||w||) between the two classes, we should minimize

||w||. The objective here is to minimize ||w||. However w can not take on
just any value in RN : it still has to be an element in our solution space. The
solution space is restricted by the following:

{〈xi ·w〉+ b ≥ 0 | yi = 1} (3.2)

{〈xi ·w〉+ b ≤ 0 | yi = −1} (3.3)

Equation (3.2) and (3.3) are the constraints that ensure that positive patterns
stay on the positive side of the hyperplane and vise-versa. Together they can
be generalized in the following canonical form:

{yi(〈xi · w〉+ b) ≥ 1} (3.4)

The latter combined leads to the following quadratic programming problem:

minimize ||w||
subject to {yi(〈xi ·w〉+ b) ≥ 1} (3.5)

This is known as the primal form.

As mentioned in the previous section the Support Vector Machine controls
the location of the hyperplane through the α multipliers. We will rewrite the
Primal form into its counter part, known as the Dual form, for the following
reasons: (1) the data points will solemnly appear as dot-products. This will
simplify the introduction of different feature mapping functions. And (2) the
constraints are then moved from equation (3.4) to the Lagrangian multipliers
(α’s), making the problem more easy to handle.

Optimizing ||w|| includes the norm of w, which involves a square root. With-
out changing the solution we can change this to 1

2 ||w||
2. The factor 1

2 is there
for mathematical convenience.

We start with the primal:

minimize
1

2
||w||2

subject to {yi(〈xi ·w〉+ b) ≥ 1} (3.6)

If we have the following quadratic optimization problem,
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minimize x2

subject to x ≥ b (3.7)

then this corresponds with the following Lagrangian formulation.

minxmaxα x2 − α(x− b)
subject to α ≥ 0 (3.8)

The constraints in equation (3.7) have moved to the objective in equation
(3.8). As a result the former constraints are now part of the objective and
serve as a penalty whenever violated. Using this formulation allows us to
use less strict constraints. Transforming the primal, equation (3.5), into a
Lagrangian formulation leads to:

minwbmaxα
1

2
||w||2 −

∑
j

αj [yj(〈xj ·w〉+ b)− 1]

subject to αj ≥ 0 (3.9)

Equation (3.9) sees the first introduction of the α value’s which eventually
will correspond to support vectors. For convenient reasons we can rewrite
equation ((3.9)) to:

minwbmaxα
1

2
||w||2 −

∑
j

αj [yj(〈xj ·w〉+ b)] +
∑
j

αj

subject to αj ≥ 0 (3.10)

Wishing to minimize both w and b while maximizing α leaves us to determine
the saddle points. The saddle points correspond to those values where the rate
of change equals to zero. This is done by differentiating the Lagrangian-primal
(Lp) equation (3.10), with respect to w and b and setting their derivatives to
zero:

∂Lp

w
= 0 ⇒ w −

∑
j

αjyjxi = 0 (3.11)

w =
∑
j

αjyjxi (3.12)

∂Lp

b
= 0 ⇒ −

∑
j

αjyj = 0 (3.13)

∑
j

αjyj = 0 (3.14)
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By inserting equations (3.12) and (3.14) into our Lp:

maxα −1

2

∑
j

αjyjxj
∑
j

αjyjxj +
∑
j

αj (3.15)

equals to :

maxα
∑
j

αj −
1

2

∑
ij

αjyjxjαiyixi (3.16)

Equals to:

maxαLDual =

l∑
i=1

αi −
1

2

l∑
i,j=1

αiαjyiyj〈xi · xj〉

subject to αj ≥ 0∑
j

αjyj = 0 (3.17)

which is known as the Dual form.
The value of the dual form is negative in the implementation used in the
experiments.
Equation (3.17) gives a quadratic optimization problem resulting in those α’s
that optimize the margin between two classes. This form for optimization is
called “Hard Margin optimization”, since there are no patterns located inside
the margin. Notice that the last term in the dual form is simply the dot-
product between two data points. Later on we will see that in this formulation
we are able to replace 〈xi · xj〉 with other similarity measures. One of the
most widely used optimization algorithms used in Support Vector Machines
is Sequential Minimal Optimization (SMO) [20]. SMO breaks the “whole”
problem into smaller sets, after which it solves each set iteratively.

3.4 Soft Margin

In section (3.3) we saw the creation of a maximal or hard margin hypothesis
space. Hard margin in the sense that no patterns are allowed in the margin
space 〈−1, 1〉. However “real-life” data sets are never without noisy patterns
and often can not be perfectly separated. In 1995 Vapnik and Cortes intro-
duced a modified version on Support Vector Machines: the soft margin SVM
[4]. The soft margin version allows patterns to be positioned outside their
own class space. When a pattern is located outside its target space it receives
an error ε proportional to the distance towards its target space. Therefore the
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before discussed initial primal objective saw the extension of an error term
(Slack):

1

2
||w||2 ⇒ 1

2
||w||2 + C

∑
j

εj

hard margin soft margin (3.18)

The penalty C is a meta-parameter that controls the magnitude of the contri-
bution ε and is chosen beforehand. Allowing misclassified patterns in the ob-
jective function (equation (3.18)) is not enough, the constraints each patterni
has on the objective should also be loosened:

{yi(〈xi · w〉+ b) ≥ 1− εi} (3.19)

The error term ε is defined in distance towards the patterns target space and
therefore is bounded, ε ≥ 0. This leads to:

minimize
1

2
||w||2 + C

∑
j

εj

subject to {yi(〈xi ·w〉+ b) ≥ 1− εi|εi ≥ 0} (3.20)

The primal version of equation (3.20) also has its dual counter part. The
derivation is quite similar to that of the hard margin SVM in equation (3.5),
extensive documentation and information can be found in almost all books
on Support Vector Machines [5, 24]. For their work on the soft margin SVM
Cortes and Vapnik received the 2008 Kanellakis Award1.

3.4.1 C-SVC

The Cost Support-Vector-Classifier (C-SVC) is an algorithm used in soft mar-
gin optimization. Soft margin optimization received lots of attention in the
machine learning community since it was capable of dealing with noisy data.
The most commonly used soft margin optimization algorithms are C-SVC and
ν-SVC [24, 5]. The quadratic optimization problem using C-SVC effects the
constraints on the support vectors, and has the following form:

maxαLDual =
l∑

i=1

αi −
1

2

l∑
i,j=1

αiαjyiyj〈xi · xj〉

subject to 0 ≤ αj ≤ C∑
j

αjyj = 0 (3.21)

1The Paris Kanellakis Theory and Practice Award is granted yearly by the Association
for Computing Machinery (ACM) to honor specific theoretical accomplishments that have
had a significant and demonstrable effect on the practice of computing.
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By giving the support vectors an upper-bound of C the optimization algorithm
is no longer able to stress the importance of a single instance. In hard margin
optimization instances located near instances of the opposite class often would
obtain extreme α values in order to meet its constraints.

3.4.2 C-SVC Examples

In this section we will compare the hard margin and soft margin classifiers.
The concept of soft margin is easiest explained with examples. Figure (3.2)
shows the result of a hard margin optimization of a simple data set containing
one noisy pattern where an RBF kernel is used.

Figure 3.2: In the middle of this figure one sees an awkward
shaped decision-boundary, which is caused by the most left
triangle instance. It is reasonable to assume that this partic-
ular instance is a “noisy” pattern and should be considered
so. For the hard margin optimizer it is impossible to create
a more homogeneous space (without the lump in the mid-
dle) since all the support vectors must have a distance of 1
to the decision boundary.

In section (3.4.1) the idea behind soft margins, and how these algorithms
can suppress the influence of noisy patterns was explained. Applying the C-
SVC algorithm on the simple data set from figure (3.2) gives us the following
hypothesis space, figure (3.3).
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Figure 3.3: The hypothesis space generated using a soft mar-
gin gives a more homogeneous space. If the most left triangle
is regarded as a noisy pattern then this hypothesis space is
a great improvement over that in figure (3.2) and is almost
identical to that of figure (B.1d). The Cost parameter here
is set to 1.

Through soft margin optimization, see figure (3.3), we obtain a completely
different hypothesis space. The obtained decision boundary is much smoother
and gives a better description of the “actual” class boundary.

The concept of soft margin optimization does not only work on radial-
basis kernels, it can be applied to all kernels. In the following example we
have replaced the RBF kernel with a third degree polynomial (figure (3.4)).
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(a) The most left triangular in-
stance is causing the stress on
the decision-boundary in hard
margin optimization giving it an
unnatural contour.

(b) Applying the soft margin
optimization using C-SVC it is
possible to relieve the stress the
most left triangular instance has
on the decision-boundary.

Figure 3.4: The decision boundary takes on smoother contours in soft margin
optimization.



Chapter 4

Kernel Functions

4.1 Introduction

One might have noticed the simplicity of the problems presented in the previ-
ous two chapters. The focus of the latter Chapters was on the theories behind
SVMs and LDFs, which are best presented using intuitive examples rather
than real-world examples. In this Chapter however we will show the limited
computational performance of a linear learning machine, and how “kernels”
can help to overcome this. The hypothesis space in real-world problems can
often not be simply described by a linear combination of attributes, but more
complex relationships between the attributes needs to be found. The latter
laid the foundation of multi-layers of linear thresholded functions, resulting
in Neural Networks [11]. For linear machines the usage of “Kernels” offers an
alternative solution for getting a more complex hypothesis space. As will be-
come clear in the next sections, a kernel or combination of kernels can project
data into a higher dimensional feature space, thereby increasing the compu-
tational power of the linear machine. The majority of these kernels assume
that each dimension in feature space is equally important, there is however
no guarantee that this holds true. Therefore we will introduce a feature space
capable of distinguishing the importance between the different features. For
SVMs using a kernel merely results in replacing the dot product in the dual-
form by a chosen kernel. The usage of “Kernels” has a number of benefits:
(1) the input space does not need to be pre-processed into our “new” space;
(2) it is computationally inexpensive to compute; (3) the number of features
does not increase the number of parameters to tune; and (4) kernels are not
limited only to SVMs.

The structure of this chapter is as follows: (1) we give a toy-example of how a
complicated problem can more easily be solved in a “new” space; (2) we give
a more formal definition of kernels and feature mapping; (3) we explain the
notion of a “valid kernel”; and (4) introduce a new type of kernel.

29
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4.2 Toy Example

Intuitively a linear learning machine should have problems with quadratic
functions describing our target function. Therefore we will show that for a
linear learning machine it is impossible to learn the correct target functions
without transforming the input space.

Consider the following target functions:

f(x, y) = x2 + y2 ≤ 1 (4.1)

g(x, y) = x2 + y2 ≥ 3 (4.2)

At first glance (figure (4.1)) the latter quadratic equations {f, g} seem easily

Figure 4.1: It is a trivial task “For the naked-eye” to
separate the two functions f and g. A linear classifi-
cation algorithm has virtually no means to correctly
distinguishing the two.

distinguishable in a homogeneously spread space. Although it looks effortless
for humans, this is impossible for linear learning machines. As can be seen
in figure (4.1) there is not a linear combination of x and y that can separate
the two functions/labels. Figure (4.2) shows the result of adding one extra
feature/dimension, namely the distance to the origin:

(x, y) 7−→ (x, y, z) (4.3)

with z being
√
x2 + y2
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Figure 4.2: In some certain cases it can be easier to solve
a problem when it is projected into a different space. In
this situation adding an additional feature z =

√
x2 + y2 to

figure (4.1) makes linear separation possible as can be seen
from the gap in the vertical axis.

In figure (4.2) one can see that it is possible for an SVM or other linear
machines to separate the two functions. In this toy-example we found a sim-
ple relationship between x and y, namely their combined length, which made
it possible to linearly separate {f, g}. In practice this is not always as easy as
it might look, since we often do not know which space projection is best for
our data set. Therefore the choice of kernel is still often a heuristic.

4.3 Kernels and Feature Mappings

The example in the section (4.2) gave a nice introduction to how a relatively
“simple” mapping can lead to a much better separation between different
classes. In this section we will take a more formal look at the definition of a
kernel.

As explained earlier, in order to correctly classify “real-world” data we
need to be able to create a more complex hypothesis space. The function in
equation (4.4) shows how an input space with size N can be transformed to
a different space.

g(x) =

N∑
i=1

wiφi(x) + b (4.4)

where φ : X → F can be a non linear mapping.
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Definition 1. We call φ a feature mapping function from X → F with X
being the input space and F the feature space, such that F = {φ(x) : x ∈ X}

As we have seen in the previous chapter the activation of an SVM given a test
sample is a follows:

g(x) =
l∑

i=1

αiyi〈xi · x〉+ b (4.5)

with l being the number of support vectors.
In order to calculate the similarity between a test and a train sample in a
different “space” we replace the dot product -〈xi · x〉 in equation (4.5)- with
its counter part in feature space:

f(x) =

l∑
i=1

αiyi〈φ(xi) · φ(x)〉+ b (4.6)

with φ being a mapping function defined by definition (1).
The method of directly computing the inner-product is called kernel function.

Definition 2. A kernel function K has the form:

K(x,y) = 〈φ(x) · φ(y)〉 (4.7)

where x,y∈ X
with φ being a mapping function defined by definition (1).

In literature the activation values described in equations (4.5) and (4.6) are
often formulated as:

g(x) =

l∑
i=1

αiyiK(xi,x) + b (4.8)

with K being a kernel function.

Equation (4.8) presents the role of a kernel in a Support Vector Machine.
In this form it is possible to interchange different types of kernels K.

4.4 Kernel Types

As we saw in chapter (3) the original hyperplane algorithm was a linear clas-
sifier. In the 90’s Vapnik and others suggested a way to create non-linear clas-
sifiers through the introduction of the “kernel trick”. This “trick” merely sug-
gested the replacement of the 〈xi,xj〉 in equation (3.17) with different types
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Polynomial (homogeneous) k(xi,xj) = (xi · xj)
d

Polynomial (inhomogeneous) k(xi,xj) = (xi · xj + 1)d

Radial Basis Function k(xi,xj) = exp(−γ‖xi − xj‖2)
Gaussian Radial Basis Function k(xi,xj) = exp

(
−‖xi−xj‖2

2σ2

)
Hyperbolic Tangent k(xi,xj) = tanh(κxi · xj + c)

Table 4.1: Different types a non-linear kernels that are
often used in Support Vector Machines.

of kernels. Only the similarity space k changes while the maximum-margin
hyperplane algorithm is kept intact. This results in a maximum-margin hy-
perplane even though the input-space does not necessarily need to be linear.
Table (4.1) shows the most familiar kernels used in machine learning.

4.5 Valid (Mercer) Kernels

As previously mentioned, a kernel creates a more complex hypothesis space.
And there are two approaches for computing such spaces: (1) design a certain
inner product space after which one computes the corresponding kernel; and
(2) design a kernel on intuition and test its performance. The latter option is
of interest to this section; in particular: “what properties of a kernel function
are necessary to ensure that there indeed exists a mapping for such a feature
space”. In order to test this we need to test if the kernel is “valid”. Definition
(3) describes what we mean when a kernel is referred to as a valid or Mercer’s
kernel.

Definition 3. We say that a kernel K is valid when:

∃φ such that K(x,y) = 〈φ(x), φ(y)〉 (4.9)

where φ is a map function by definition (1).

Note: we must make sure that K(x,y) describes some feature space!
One way of looking at this is as follows:
The angle or projection between two vectors tells us how similar the two vec-
tors are, at least in “dot-space”. In order to keep that similarity measure we
need to make sure that every space we transform our data towards must be
fabricated out of “dot-spaces”.



34 CHAPTER 4. KERNEL FUNCTIONS

There are three conditions that need to be guaranteed for definition (3) to
hold.

Condition (3.1): Symmetry

The symmetric case is more or less trivial since it follows from the definition
of the inner product [5] on page (32).

K(x, y) = 〈x · y〉 = 〈y · x〉 = K(y, x) (4.10)

Also it makes sense that the similarity between two instances is not depending
on the order.

Condition (3.2): Cauchy-Schwarz Inequality

K(x,y)2 = 〈φ(x) · φ(y)〉2 ≤ ||φ(x)2|| ||φ(y)||2 (4.11)

= 〈φ(x) · φ(x)〉〈φ(y) · φ(y)〉 = K(x,x)K(y,y) (4.12)

The Cauchy-Schwarz inequality is best understood if we again see the inner
product as a similarity measure, equation (4.13).

〈x · y〉 = ||x||| ||y|| cos γ (4.13)

When two vectors have maximum similarity, their angle γ = 0 ◦. It is only
in this case of parallel vectors that 〈x · y〉 = ||x||||y||. In all other cases, if
γ > 0 ◦ and γ < 180 ◦ then, | cos γ| < 1. The difference between equations
(4.12) and (4.14), is that of the function φ. We know however that: (1) for
every valid kernel-function there exists an inner product space; and (2) that
the Cauchy-Schwarz inequality holds for all inner products. Hence equation
(4.12) holds.
From the fact that | cos γ| ≤ 1, it is easy to see that equation (4.14) holds.

〈x · y〉 ≤ ||x||| ||y|| Cauchy-Schwarz inequality (4.14)

The first two properties need to hold and are considered general properties
of inner products but they are not sufficient for a kernel being a “Mercer”
kernel. The last condition comes from a theorem by Mercer; hence the name
Mercer kernel.

Condition (3.2): A Semidefinite Kernel

The following proposition needs to hold for a symmetric function on a finite
input space to be a kernel function [5]:
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Proposition 1. Given a symmetric function K(x,y), and a finite input space
v such that v = {v|v ∈ Rn, n < ∞}, , then K(x,y) is a kernel function if
and only if

K = (K(vi,vj))
N
i,j=1 (4.15)

is positive semi-definite.

Definition 4. A matrix M is called positive-semidefinite if ∀v such that v ∈
Rn and n <∞.

v′Mv ≥ 0 (4.16)

In order to show that our kernel matrix is positive-semidefinite we need to
show that: z′Kz ≥ 0. “Note: given that our function is symmetric!”

z′Kz =
n∑
i

n∑
j

ziKijzj (4.17)

=

n∑
i

n∑
j

ziφ(xi)φ(xj)zj (4.18)

=

n∑
i

n∑
j

zi

[
n∑
k

φ(xi)kφ(xj)k

]
zj (4.19)

=

n∑
i

n∑
j

n∑
k

ziφ(xi)kφ(xj)kzj (4.20)

=

n∑
k

 n∑
j

zjφ(xj)k

2

(4.21)

We can see that equation (4.21) is in fact a sum of squares, which by definition
is ≥ 0. Therefore z′Kz ≥ 0. The latter conditions and propositions give body
to the well known Mercer theorem:

Theorem 1. (Mercer)
Given a kernel function, K(x,y) then it said to be valid by definition (3), if
and only if v ∈ Rn and n < ∞. The kernel matrix K ∈ Rn×n is symmetric
and positive-semidefinite.
where K = (K(xi,yj))

N
i,j=1
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4.6 Creating a Kernel

In this section we will demonstrate the validity of the kernel that is proposed in
this work to improve the classification performance of an SVM. As mentioned
during the introduction not every feature is equally important in describing
our target class. Therefore we are interested in a feature space which not
only maps data to higher dimensions, but in addition has the ability to give
different importance to these features.

The following two definitions are directly taken from [5] on page (42-43),
and for a deeper understanding and proofs we refer to their book [5] Chapter
(3). The basic idea is to decompose a complex kernel into less complex kernels,
thereby showing their validity.

Definition 5. Let K1 and K2 be kernels over X ×X ,X ⊆ Rn, a ∈ R+, f(·)
a real-valued function on X. Furthermore we use a feature mapping function
φ, given by:

φ : X → Rm (4.22)

with K3 a kernel over Rm × Rm, and B a symmetric positive semi-definite
n× n matrix. Then the following functions are kernels:

1. K(x, z) = K1(x, z) +K2(x, z)

2. K(x, z) = aK1(x, z)

3. K(x, z) = K1(x, z)K2(x, z)

4. K(x, z) = f(x)f(z)

5. K(x, z) = K3(φ(x), φ(z))

6. K(x, z) = x′Bz

Definition 6. Let K1 be a kernel over X×X, x, z ∈ X, and p(x) a polynomial
with positive coefficients. Then the following functions are also kernels:

1. K(x, z) = p(K1(x, z))

2. K(x, z) = exp(K(x, z))

3. K(x, z) = exp(−||x− z||2/σ2)
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4.6.1 Weighted-Radial-Basis Function

The kernel which we will decompose,to show its validity, is the weighted-
radial-basis function (WRBF), with constant w and σ:

Kwrbf (x, z) = exp

(
− 1

σ

n∑
i=1

wi(xi − yi)2
)

(4.23)

As mentioned w and σ are constants, and therefore not dependent on either
x or y. The wi in equation (4.23) is the variable that controls the influence
of the ith dimension. If we were to set wi to zero for a certain dimension than
the contribution that dimension has on all instances would be equal, and thus
in practice neglected.
First we will decompose K, equation (4.23), into smaller kernels.

K(x,y) = exp

(
− 1

σ

n∑
1

wi(xi − yi)2
)

(4.24)

= exp

(
− 1

σ

n∑
1

wi
[
x2i + y2i − 2xy

])
(4.25)

= exp

(
− 1

σ

n∑
1

wix
2
i

)
exp

(
− 1

σ

n∑
1

wiy
2
i

)

exp

(
1

σ

n∑
1

wi2xiyi

)
(4.26)

The step above is approved by step 3 in definition (5) which tells us that
multiplying two valid kernels results in a new valid kernel. This leaves us
showing that less complex kernels need to be kernels.

In the second step we will show that the first two kernels in equation (4.26) are
kernels. Since kernels exp

(
− 1
σ

∑n
1 wix

2
i

)
and exp

(
− 1
σ

∑n
1 wiy

2
i

)
only either

depend on x or y, then by definition step 4 in (5) we know that together they
form a kernel if f(·) is a real-valued function on X. Given of course is that
our input space X is real-valued, then every real-valued scalar multiplication
of our input space should be real-valued. This holds true if the following
constraints are met:

• σ is a real-valued scalar

• w is a real-valued vector

Having shown that from the first two functions we can create a valid kernel,
this leaves us with the last part of equation (4.26), namely: exp

(
1
σ

∑n
1 wi2xiyi

)
.

Using equation (4.28) we show that the we can rewrite the last kernel in the
following form:
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exp
(
a(x′Wy))

)
(4.27)

with a = 2
σ .

We do this by transforming our weight vector w to a matrix W,

n∑
1

wixiyi = x′Wy (4.28)

were W is diag(w).

diag(w) = Wi,j =

{
if i = j wi
else 0

(4.29)

Equation (4.27) is a kernel by definition (6.2) if and only if a(x′Wy)) is a
kernel. Now by combining step 2 and 6 from definition (5) we see that this is
indeed the case. There are however two details we must not forget: W must
be a symmetric positive semi-definite matrix, and a ∈ R+.

Definition 7. A symmetric positive semi-definite matrix has the following
properties

1. symmetric

2. non-negative eigenvalues

If we assume that the values of our initial w are all positive then it is easy
to see that (1) it is symmetric since all values Wi 6=j , are zero; and (2) the
eigenvalues of a diagonal matrix are the diagonals themselves, assuming that
Wi,i ≥ 0 then so must be its eigenvalues.

Note: every dimension in feature space will have its own wi, by ensuring
that a dimension is not allowed to receive a negative wi we stay true to the
kernel definition!
We have shown that Kwrbf , equation (4.23) is Mercer kernel if the following
constraints are met:

1. w ∈ R+n

2. σ ∈ R+

Conclusion

Simply mapping data into higher dimensional feature space is a naive ap-
proach, since we know that not every feature has equal contribution to the
target class. In section (4.6) we have shown that the WRBF is a valid Mercer
kernel capable of overcoming these problems. Using a WRBF kernel allows us
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to create a feature space in which it is more easy to solve a particular problem,
this since it gives us ability to stress or mask certain features. The second
part of this work focuses on choosing different configurations in feature space
weighing, and how this leads to classification improvement.
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Chapter 5

Error Minimization and
Margin Maximization

5.1 Introduction

Section (4.6.1) introduced the Weighted-Radial-Basis function (WRBF). We
intend to use this kernel in a standard SVM/Kernel-Machine paradigm. With
this combination -of an SVM with WRBF- we aim at improving the SVM’s
predictive capabilities, to that over an SVM with RBF. Equation (5.1) shows
the difference between the two kernels. The weights coefficient wi for the
features is what distinguishes the WRBF from the RBF. By choosing differ-
ent weight configurations we are able to change the SVM’s dual-objective.
We intend to show that configurations that have a positive effect on the ob-
jective also should have a positive effect on the accuracy. We propose two
different approaches for finding the most optimal weight configurations: error-
minimization and margin-maximization. Where error-maximization is trying
to correct for misclassified instances, it is margin-maximization that stays
more true to the philosophy behind SVMs [25], obtaining the largest margin
possible between the different classes. This Chapter provides the mathemat-
ical derivations for both approaches, and discusses its implementation.

exp

(
− 1

σ

n∑
1

(xi − yi)
2

)
→ exp

(
− 1

σ

n∑
1

wi(xi − yi)
2

)
rbf(x,y) → wrbf(x,y) (5.1)

We adopt the following structure: (1) Introduction to the concept of feature-
space weighing using a WRBF kernel; and (2) Finding weight configurations
through error-minimization and margin-maximization.

43
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5.2 Improving the Dual-Objective

Vapnik showed that by optimizing the dual-objective function the Support-
Vector-Machine is able to obtain the largest margin possible. From this we
can deduce that: “Assume we are given a set of train-data, then any model
Mn is non-maximal if there exists another Mn+1 for which the SVM achieves
a higher dual-objective”. This last statement does not state that the test-
accuracy will be improved, it is rather a measurement of optimization. We
believe that if we can find a weight configurations that increases the dual
objective that this corresponds to a larger margin.

The following example will show that by changing w in the WRBF kernel
we are able to improve the margin between the two boundaries which make up
the eventual classification. The following plots/hypothesis have been created
using our own software program, PySVM (see section (B.1)).

(a) Data set used. (b) Dual-Obj: -116.08 wx = 1, wy = 1

Figure 5.1: The red-circle data points cross the blue triangles
in an angle not equal to 90 ◦. By doing so we have ensured
that the two-feature dimensions are unequally important.
The x-axis contains less information on the labels compared
to the y-axis.

Figure (5.1b) shows the hypothesis space generated using the WRBF with
w = (1, 1). Choosing ones for all weights resembles the behavior of the RBF
kernel. Starting with these initial values is a good idea since it provides the
RBF’s hypothesis space. The hypothesis space shows diagonal activation for
the triangle class. However these labels are projected almost uniformly over
the x-axis, and there exist no triangles in either the upper-right or lower-left
corner. By altering w we are able to rotate the hypothesis space. Figures
(5.2a,5.2b) show the different hypothesis spaces where the importance of the
x-axis (least informative) was emphasized.
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(a) Dual-Obj: -158.98 wx = 2, wy = .5 (b) Dual-Obj: -204.93 wx = 4, wy = .25

Figure 5.2: Both hypothesis spaces show the result of rotat-
ing the hyperplane towards the x-axis. This rotation causes
extra strain on the system resulting in a lower-optimum
(Dual-Objective) compared to the initial weights. This re-
sults in 4 separate regions which were not at all apparent in
figure (5.1a)

The strain caused by rotating the hyperplane towards the wrong axis can
be seen in the objective value in table (5.1). Table (5.1) shows how the
objective function changes with different rotations of w. This strain is caused
by the stress the high activation of the support-vectors have on the whole
system. By comparing the support vectors of the three different hypothesis
spaces in table (5.2) we clearly see the effect incorrect rotation has on the
support vectors. Even though some SVs obtain a slightly lower coefficient,
the increase in the others is substantial larger.

w dual-objective

wx = 1 wy = 1 -116.08
wx = 2 wy = .5 -158.98
wx = 4 wy = .25 -204.83

Table 5.1: Emphasizing the wrong features leads
to more costs / lower objective since the strain
on the SVs increases. This stress is illustrated
in table (5.2) . (note that the obtained dual-
objective values are given by libsvm).

In the first two altered hypothesis spaces figures (5.2a,5.2b), the x-axis/first-
dimension carried more weight than the second. As stated earlier it is the
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label Support-Vector αw=(1,1) αw=(2,. 1
2
) αw=(4,. 1

4
)

4 -1. 0.066 2.71 1.40 1.01
4 -0.33 0 59.96 86.48 114.56
4 0.33 0.0067 49.93 68.97 88.267
4 1. 0 1.53 1.21 0.97
© -0.33 0.33 65.0 88.74 115.61
© 0.33 -0.33 53.02 71.2 89.43

Table 5.2: illustrates the stress gained on the sup-
port vectors when the wrong features carry increas-
ingly more weight. This can be seen through the in-
creasement on the Lagrange multipliers which in some
cases have gained twice their value.

y-axis that carries the most information on the locations of our classes, and
of course we intend to improve the SVM’s hypothesis space. Rotating the
hyperplane in the other direction shows the WRBF’s capability of improving
the SVM’s objective functions.

(a) Dual-Obj: -63.66 wx = .5, wy = 2 (b) Dual-Obj: -25.72 wx = .25, wy = 4

Figure 5.3: Hypothesis spaces using a RBF kernel with
different w. The dual-objective function gets more
and more optimized when the weights converge to the
y-axis.

Both figures (5.3a,5.3b) illustrate the effect w has on the hyperplane when
it is rotated towards the y-axis. It can be seen that not only have we found
a higher optimum, but we have lost one SV in the process. We expect that
a feature-space in which it is easier to create separating hyperplanes requires
less support vectors, and lower SV coefficients.
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label Support-Vector αw=(1,1) αw=( 1
2
,2) αw=( 1

4
,2)

4 -1. 0.066 2.71 7.28 8.07
4 -0.33 0 59.96 22.46 0
4 0.33 0.0067 49.93 31.73 15.97
4 1. 0 1.53 0 0.002
© -0.33 0.33 65.0 37.16 16.50
© 0.33 -0.33 53.02 28.69 10.8776

Table 5.3: illustrates the effect on the SVs when the
most informative features carry the most weight. Most
SV coefficients have drastically been reduced or in
some cases even removed.

w dual-objective

wx = 1 wy = 1 -116.08
wx = .5 wy = 2 -63.66
wx = .25 wy = 4 -25.71

Table 5.4: illustrates the effect on the dual objective
when the most informative features carry increasingly
more weight. The dual objective tends to converge to
zero, this can be viewed as cost reduction because of
the dual objective’s negative sign.
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5.2.1 Influences of Hyperplane Rotation

From the previous examples and figures we saw that it is possible to im-
prove Vapnik’s optimization formulation by rotating the hyperplane. Not
only did the dual-objective increase, but two other properties became appar-
ent: (firstly) It was shown that the need for high support-vector coefficients
decreases when a more suitable space has been obtained. High α’s are needed
at points where there exists tension between the two classes. By releasing this
tension we improve the objective and decrease the need for high multipliers.
(secondly) The mean value of the SV multipliers are seen to decreases. In a
more homogeneous spread space the need for specific activation becomes less
relevant thus evening out the differences between the multipliers.

w dual-objective αµ ασ
wx = 4 wy = .25 -204.83 68.312 48.79
wx = 2 wy = .5 -158.98 52.99 37.25
wx = 1 wy = 1 -116.08 38.69 26.306
wx = .5 wy = 2 -63.66 25.46 10.25
wx = .25 wy = 4 -25.71 10.28 6.03

Table 5.5: Emphasizing the correct features leads to dual objective improve-
ment.

The next part of this Chapter focuses on the mathematical derivations we
need in order to find the perfect rotation for a given problem.

5.3 Error Minimization

The key idea behind error minimization is that of reducing misclassified in-
stances in our training data, which can be done using techniques such as
gradient descent. With gradient descent we search through our hypothesis
space for a w that best fits our training data. This embodies the fact that
we need an error function for defining misclassified instances after which we
update our w. This process is repeated until there is no more improvement.

5.3.1 Error Definition

First we define the set containing misclassified instances: D′ = {d ∈ D|error(ŷ, y) >
0} with d = {x, y} and ŷ being the predicted label. Since we are only inter-
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ested in wrong classified samples, we define the error as :

error(ŷ, y) =


0 if y = 1, ŷ ≥ 1

0 if y = −1, ŷ ≤ −1

(ŷ − y)2 Otherwise

(5.2)

Equation (5.2) describes the amount of error one instance has, for the whole
misclassified set this would be:

E =
1

2

∑
d∈D′

error(yd, ŷd)
2 (5.3)

5.3.2 Gradient Descent Derivation

In order to find a better solution for our w we need to find the direction of
our error. We accomplish this by taking the gradient of the error-function
E with respect to the variables which we want to optimize, ∇E(w), where
∇E(w) is given in [16] by:

∇E(w ∈ Rn) =

[
∂E

∂w1
, ..,

∂E

∂wn

]
(5.4)

Figure (5.4) shows how the error landscape would look for w ∈ R2. Intuitively
∇f(x) gives the rate of change, which in this specific case is the error. Of
course we do not want to increase the error but rather decrease it. This
means that we need to update our w in the opposite direction resulting in the
following update rule:

w← w +

[
−η ∂E

∂w

]
(5.5)

with η corresponding to the learning rate.

General Case:

First we will give the general derivation of the gradient descent after which
the solutions for the WRBF and WTanh are presented.

We start with our defined error function (5.3), which for the set of mis-
classified instances equals to (y − ŷ)2. Let Ψ be our output function:

ŷ = Ψ(x) (5.6)
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Figure 5.4: Error of different locations in the hypothesis
space. The arrows describe the negative error/rate of change
w has with respect to our target function. The horizon-
tal plane describes the Hypothesis and the vertical axis de-
scribes the corresponding error.

Now differentiating E with respect to w gives us (for simplicity we do not
insert the subscript d):

E =
1

2

∑
d∈D

(y − ŷ)2 (5.7)

∂E

∂wi
=

∂

∂wi

1

2

∑
d∈D′

(y −Ψ(x))2 (5.8)

=
∑
d∈D′

∂

∂wi

1

2
(y −Ψ(x))2 (5.9)

=
∑
d∈D′

∂(y −Ψ(x)))

∂wi
(y −Ψ(x)) (5.10)

Equation (5.10) shows the final general result of our gradient descent and
can be used for squared error minimization.
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5.4 Weighted-RBF

The activation of the Radial Basis Function with homogeneous weights in
kernel/feature space is defined as:

K(x,x) = e−γ
∑n

j=1 wj(xj−xj)
2

(5.11)

The SVM classifies an instance x as:

sign(Ψ(x)) =
m∑
i=1

αiyiK(x,xi) (5.12)

where m is the number of support vectors for the corresponding SVM and αi
the coefficient for ith support vector.
Since we use D′ instead of D it is possible to directly insert equations (5.11)
and (5.12) into equation 5.10.

∂(y −Ψ(x))

∂wi
=

∂

(
y −

m∑
j=1

αjyje
−γ

∑n
k=1 wk(xk−xk)

2

)
∂ωi

(5.13)

= −
m∑
j=1

−γαjyj(xi − xi)
2e−γ

∑n
k=1 wk(xk−xk)

2
(5.14)

Which results in:

∂E

∂wi
=

∑
d∈D

[
(y −Ψ(x))

∑m
j=1 γαjyj(xi − xi)

2e−γ
∑n

k=1 wk(xk−xk)
2
]

(5.15)

=
∑

d∈D

[
(y −Ψ(x))

∑m
j=1 γαjyj(xi − xi)

2K(x,xj)
]

(5.16)

Equation(5.16) shows the final derivation which can be used for a gradient
descent procedure for finding optimal weights.

5.5 Weighted-Tanh

The beginning of the derivation is equal to that of the weighted-RBF. There-
fore we will start at:

∂E

∂wi
=
∑
d∈D

∂(y −Ψ(x)))

∂wi
(y −Ψ(x)) (5.17)

In this case we should redefine K since we are deriving the derivative of the
Wtanh-kernel with respect to w.
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K(x,x) = tanh(γ · 〈w · x · x〉+B) (5.18)

∂(y −Ψ(x))

∂wi
=

∂(y−
∑m

j αjyj tanh(γ·〈w·x·x〉+B)

∂wi
(5.19)

= −
∑m

j
γαjyj(xi·xi)

cosh2(γ·〈w·x·x〉+B)
(5.20)

Which results in

∂E

∂wi
=

∑
d∈D −

[
(y −Ψ(x))

∑m
j

γαjyj(xi·xi)

cosh2(γ·〈w·x·x〉+B)

]
(5.21)

(5.22)

5.5.1 Margin-Maximization

This chapter started with the concept of Error-Minimization. After having
trained a Support-Vector-Machine (SVM), the misclassified instances were
used for correcting the error caused by w. The approach of Margin-Maximization
is slightly different. Instead of optimizing w in the error/misclassification-
domain we intend to use the dual-objective function, equation (3.17), used
in SVM training. This objective function describes the margin between the
training patterns and the hyperplane (figure (3.1)). The objective of the SVM
is to create the largest margin possible. We intend to improve this optimiza-
tion/maximization by choosing w such that the SVM can increase its maxi-
mization. To achieve this we need to find the direction of the improvement
with respect to w:

maximize
∂dual

∂w
(5.23)

To make it more comprehensive it will be solved in two steps:

∂dual

∂w
=
∂dual

∂K
× ∂K

∂w
(5.24)

with K being kernel-function Kwrbf (xi,xj) Solving the first part of equation
(5.24):

∂dual

∂K
=

∂

 l∑
i=1

αi −
1

2

l∑
i,j=1

αiαjyiyjexp

(
−γ

s∑
r=1

wr(xi,r − xj,r)
2

)
∂ [exp (−γ

∑s
r=1 wr(xi,r − xj,r)2)]

= −αiαjyiyj (5.25)
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We dropped the 1
2 for simplicity. And for the second part:

∂K

∂w
=

∂exp
(
−γ

∑s
r=1 wr(xi,r − xj,r)

2
)

∂w
(5.26)

For one particular dimension wn:

∂K

∂wn
= −γ(xi − xj)

2exp

(
−γ

s∑
r=1

wr(xi,r − xj,r)
2

)
(5.27)

Combining equations (5.25) and (5.27) forms the filter function for instances
i and j:

∂duali,j
∂wn

=

[
− αiαjyiyj

]
×
[
− γ(xi,n − xj,n)2

]
×
[
exp

(
−γ

s∑
r=1

wr(xi,r − xj,r)
2

)]
= γαiαjyiyj

∣∣∣∣
1

(xi,n − xj,n)2
∣∣∣∣
2

K(xi,xj)

∣∣∣∣
3

(5.28)

Note: equation (5.28) can be used as an update rule: w = w − η ∂duali,j∂w

Equation (5.28) consists of three different parts:

(part 1) γαiαjyiyj , describes the magnitude and direction. This direction
is caused by yi ∗ yj , depending on class similarity this is either 1 or −1. It is
the α′s that determine the importance of the comparison.

(part 2) (xi,n−xj,n)2, shows the similarity of the instances i, j with respect to
the dimension n. The higher the similarity the lower the second part becomes.
Therefore this part emphasizes dissimilarity on single feature-space level.

(part 3) K(xi,xj), describes the total similarity of the instances xi and xj .

Upon studying all the different parts together we notice that it can be used
to control the role of variance between instances that have an overall similar-
ity. By detecting which feature-space dimensions have variance under overall
similarity, we are able to exploit that concept.
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Chapter 6

Experiments

6.1 Introduction

The first experiment in our series is of an explorative nature. Gaining ex-
perience [13, 2] in using the Support Vector Machine is essential for un-
derstanding its behavior. Therefore Chapter (7) consists of straightforward
SVM training and testing using an unmodified version of [3]. After ev-
ery test the main properties of the SVM system will be stored and ana-
lyzed. The study of the effect on the pre-calculation of the meta-parameters
was included. Since all the tools needed for this experiment were already
available, we decided that such an extension would be easily integrated.

Figure 6.1: Illustration depicting
Pythagoras performing harmonics ex-
periments with stretched vibrating
strings. From Franchino Gafori, Theo-
rica Musice (Milan, 1492).

In the following experiment, in
Chapter (8), we will demonstrate our
novel feature-variance filter. With
this we aim to filter out those fea-
tures most informative for a partic-
ular class. We will apply a feature
selection method which suppresses
those features that show high vari-
ance and strong similarity. We ex-
tend the idea of filtering in the exper-
iment in Chapter (9). Here however
we move from “feature selecting” to
“feature weighing”. The Weighted-
Radial-Basis function is used for Fea-
ture weighing. Using this metric we
are able to give different weighings
for each individual feature. In Chap-
ter (10) we extend the train algo-
rithm with an controller. This controller measures the rate of change on
the dual objective function and will ensure that the most fit model will be
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used for final testing. The feature-variance filter algorithm works on the con-
cept of margin maximization and was covered in Chapter (5).

Chapter (5) also suggest the approach of error minimization for feature-space
learning. We conducted extensive studies on error minimization. However,
due to bad performances, we decided not to include these results in the ex-
periment section. Error minimization suffers from two main defects. The
first is the concept itself: in order to reduce the amount of error you need to
have misclassified instances in your training model. As we will come to see in
Chapter (7) the high training accuracies coming from SVM optimization re-
sult in just a few training-errors. Correcting the model on only a few instances
however reeks of over fitting, and bring us to the second problem: in order
to detect over fitting you need to leave out a subset of your actual training
data. This affects the number of training data available used to estimate the
underlying function describing the data.



Chapter 7

Data Exploration and
Performance Analysis Of a
Standard SVM
Implementation

7.1 Introduction

Upon reading articles and books one finds oneself wondering if the authors
had an instinctive idea on how to “tackle” their problem, and if the experi-
ments were conducted according to a well thought-out plan. This of course
is almost never the case: new problems and opportunities arise constantly
during exploring and testing, such that research becomes an iterative process.
In order to get a good idea of a problem it is a good idea to start-off by
examining the data, and by conducting test performances with several algo-
rithms and/or data sets. Since our goal is to improve the Support Vector
Machine it should be of no surprise that we need to test the current perfor-
mance using a well-known SVM library [3]. During this step we will examine
and analyze some properties of an SVM. We consider the characteristics of
an SVM, without diving into formalities and details; it is more an overview
of ideas and intuitions. This overview of performances is vital for our main
goal -“improving classification accuracy using SVM”- therefore we need well
documented comparison data. This Experiment will mainly be used to un-
derstand and work with the Support Vector Machine rather then presenting
novel scientific ideas.

59



60CHAPTER 7. DATA EXPLORATION AND PERFORMANCE ANALYSIS OF A STANDARD SVM IMPLEMENTATION

7.2 Properties and Measurements

One of the most important properties of any classifier is undoubtedly its
accuracy. The interesting part is, of course, how it achieves these accuracies.
If we take a look at the definition of an SVM classification (equation (7.1)),
we see that SVM classification is made out of many different gears.

g(x) =
l∑

i=1

αiyiK(xi,x) + b (7.1)

(1st Gear) The αi is the gear which gives the SVM its name, the “support
vector“. Every SVM has l supporting gears which make up the support vec-
tors. If we denote the l variables as the complexity of the system then there
could exist a relation between complexity and accuracy. In a Linear Vec-
tor Quantization system [9] one could argue that the L prototypes present
different target functions, where classification is based on distances to those
prototypes. The complexity of such a system can be expressed in L. By
having just a few prototypes one reduces the complexity of that system. One
argument is that the less complex (prototypes) the system is the more it gen-
eralizes. For our system this could mean that an SVM with a small number
of l could outperform the more complex ones.

(2nd Gear) Another variable that we observe is the K. This gear maps our
data into a different space in which the SVM has a greater chance of separating
the data. Different mapping functions should yield different behaviors, if we
were to find a K2 mapping function that increases the predictive power of an
SVM then we would be able to improve its accuracy.

(3rd Gear) Not all parts of a system are transparent, and can not be observed
directly. For example the values coinciding with the αi are determined by
an optimization algorithm. It is therefore important to understand how this
works, and if improvements in this optimizing algorithm are possible.

7.3 First Steps

At the current moment the Radial Basis Function is most often used in SVMs.
This mapping function -which is described in almost every machine learning
book- is controlled by two variables γ and C. Both variables influence the
activation of the RBF, and are called Meta-Variables. As mentioned in the
previous Chapter, in order to improve a system we need to know the role of
each individual part. The first research we will conduct is therefore of an
explorative nature. We will use several different data sets and gather the
following information: (1) test-accuracy; (2) training-accuracy; (3) number of
support vectors; and (4) optimal meta parameters C and γ.



7.3. FIRST STEPS 61

In classification algorithms it is not uncommon to pre-calculate the Meta-
Variables since it is too time consuming to do this for every experiment. The
drawback of this method is that in pre-calculation often the whole data set is
used, thereby violating the notion of unseen data on test accuracy.

7.3.1 The Exploration Experiment Design

In this first, explorative experiment, we examine the performance as well as
different properties of our Support Vector Machine on different data sets.
Comparing test and train accuracies can help to detect over-fitting. Fur-
thermore we would like to test whether or not pre-calculation on the Meta-
Variables has an effect on the accuracy.

Every data set is tested 1000 times, which corresponds to 1000 reshuffles
of the test and train sets. The train set consist out of 80% of the original data
and the test fills up the last 20%. Both algorithms will perform computations

Trial A B δ = A-B

1 p1 p1
2 p2 p2
3 p3 p3
n pn pn

x̄δ

Table 7.1: Paired sample t test.

on the same data set as can been seen in table (7.1). By ensuring that both
algorithms are applied to the same data set, we are able to calculate their
differences (x̄δ) and the standard deviation (sδ) on those differences. Our null
hypothesis is that there are no difference between the two populations:

H0 = µδ = 0 (7.2)

H1 = µδ 6= 0 (7.3)

We choose for a two-sided test since the relation between the two algorithms
is uncertain, even though we expect that pre Meta-parameter optimizing out-
performs the normal. We present both t and the confidence level. All the
classification and Meta-Variables finding software used comes with the de-
fault LIBSVM [3] package.

7.3.2 Comparing Properties

The second part of this research takes a first glance at the underlying prin-
ciples of a Support Vector Machine namely: the support vectors and the
meta-variable influences. We are interested in the following: (1) What is
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the relationship between accuracy on number SVs; (2) What is the relation-
ship between accuracy and meta-variables; and (3) What is the relationship
between number SVs and meta-variables.

Accuracy vs number SVs

The support vectors are used for prototype matching, where every SV gives
a level of similarity. Therefore we have reasons to believe that the number of
SVs used has influence on the accuracy.

Accuracy vs Meta-Variables

In the case of the Radial-Basis-Function Kernel in an SVM setting we need
to provide two Meta-Variables, γ and C. The γ gives the influence radius of
RBF and the C is used to control the optimization. Since we are also testing
whether or not pre-meta calculation leads to different classification it would
be interesting to see their inner-relationship.

number SVs vs Meta-Variables

One of the more interesting relationships is that of meta-variables and SVs.
We know that γ increases the radius, it might be the case that for larger radii
a smaller amount of SVs is needed to cover the feature-space,

7.3.3 Correlation

In order to find relationships between our data points we propose to calculate
there correlation coefficients as follows (documentation numerical python):

The relationship between the correlation coefficient matrix, P, and the co-
variance matrix, C, is
Pij =

Cij√
Cii∗Cjj

Covariance indicates the level to which two variables vary together. If we
examine N-dimensional samples, ‘X = [x1, x2, ...xN ]T ‘, then the covariance
matrix element Cij is the covariance of xi and xj. The element Cii is the
variance of xi.

7.4 Results

Tables (7.2-7.9) report the results found. For every table the first two rows
describe the mean and standard error for a given parameter. These parameters
consist of:

• %Acctest: accuracy acquired on the test set.

• %Acctrain: accuracy acquired on the train set.
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• #SV s: the number of support vectors used.

• %SV s: total percentage of support vectors used.

• C: the cost used in softmargin optimization.

• γ: determines the width of the RBF kernel.

Both rows have entries Const and Var, these describe how the gridsearch
was performed. With Const gridsearch was performed on the whole data set
(including test data), whereas in Var only the train data was used. All tables
end with a statistic on the differences between accuracies acquired on the test
set. A two sided Paired sample t test was performed using a 5% confidence
interval.

Table 7.2: Breast-Cancer-Wisconsin

%Acctest %Acctrain #SV s %SV s Cost γ

µ

Const. 96.76 97.15 61.75 11.03 8.0 0.008
Var. 96.41 97.24 76.14 13.6 1119.6 0.09

σ

Const. 1.37 0.34 3.51 0.63
var. 1.46 0.5 34.31 6.13 5121.4 0.21

T
-
t
e
s
t p t σ ci alpha df

< 0.01 14.234 0.775 <0.30,0.397> 0.05 999

Table 7.3: Ecoli

%Acctest %Acctrain #SV s %SV s Cost γ

µ

Const. 82.39 87.54 185.39 68.92 128 0.008
Var. 85.96 90.64 141.03 52.43 1179.5 2.6

σ

Const. 5.31 1.56 4.89 1.82
var. 4.17 1.72 16.5 6.13 5235.4 3.05

T
-
t
e
s
t p t σ ci alpha df

< 0.01 -25.652 4.3901 <-3.8336,-3.2888> 0.05 999

Table 7.4: Glass

%Acctest %Acctrain #SV s %SV s Cost γ

µ

Const. 68.54 77.59 143.51 83.44 32.0 0.125
Var. 67.72 88.91 128.67 74.81 6508.8 0.97

σ

Const. 7.15 1.82 4.53 2.63
var. 7.37 6.12 12.38 7.2 11375.0 1.85

T
-
t
e
s
t p t σ ci alpha df

< 0.01 4.7455 5.4737 < 0.48176,1.1611> 0.05 999
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Table 7.5: Hepatitis

%Acctest %Acctrain #SV s %SV s Cost γ

µ

Const. 83.03 95.61 64.97 52.4 2.0 0.125
Var. 80.66 96.17 67.5 54.44 1597.0 0.17

σ

Const 6.1 1.09 4.03 3.25
var. 6.51 3.89 23.41 18.88 6466.6 0.2

T
-
t
e
s
t p t σ ci alpha df

< 0.01 16.599 4.517 <2.0907,2.6513> 0.05 999

Table 7.6: Ionosphere

%Acctest %Acctrain #SV s %SV s Cost γ

µ

Const. 94.42 99.18 79.79 28.39 8.0 0.125
Var. 93.53 98.78 114.06 40.59 11.5 0.25

σ

Const 2.5 0.29 4.88 1.74
var. 2.66 1.15 39.36 14.01 23.85 0.19

T
-
t
e
s
t p t σ ci alpha df

< 0.01 13.905 2.03 <0.767,1.019> 0.05 999

Table 7.7: Iris

%Acctest %Acctrain #SV s %SV s Cost γ

µ

Const. 95.25 96.15 72.17 60.14 128 0.008
Var. 94.28 96.35 54.58 45.49 2759.3 0.34

σ

Const 3.8 1.0 2.98 2.49
var. 5.71 3.04 22.81 19.01 7930.2 0.81

T
-
t
e
s
t p t σ ci alpha df

< 0.01 6.218 4.9335 <0.664,1.276> 0.05 999

Table 7.8: Pima-Indians-Diabetes

%Acctest %Acctrain #SV s %SV s Cost γ

µ

Const. 77.11 78.09 321.14 52.22 3967.8 0.0005
Var. 76.65 78.93 337.15 54.82 3967.8 0.09

σ

Const 2.95 0.86 8.36 1.36
var. 2.99 1.37 25.04 4.07 9474.4 0.17

T
-
t
e
s
t p t σ ci alpha df

< 0.01 9.623 1.491 <0.361,0.546> 0.05 999
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7.4.1 Conclusion

All the results described by tables (7.2-7.9) support the rejection of our null-
hypothesis. This rejection literally means that there is no supporting evidence
that the results with meta-variable pre and non-pre calculation are drawn from
the same population. In order to perform the most fairest of classification we
should use non-pre meta-variable calculation. Observing the data we notice
one perhaps counter intuitive data point. For the ecoli data set we see that the
pre-calculation of the meta-variables leads to a lower classification accuracy.
It is not part of this research to investigate this phenomena therefore at best
we can guess at the cause.

7.5 Correlations

Upon studying tables (7.10-7.17) we found no interesting relationships. We
see that the accuracy on test is most of the time negative correlated with the
accuracy on train. This may be explained by the fact there is overfitting to the
training set. We see that number of SVs usually is positive correlated with γ:
gamma controls the radius of influence of RBF, if the RBF influence decreases
then logically more SVs are needed to generate the hypothesis space. Tables
(7.10-7.15) report the results:

Table 7.9: Congressional Voting Records

%Acctest %Acctrain #SV s %SV s Cost γ

µ

Const. 96.11 99.37 130.17 37.40 2.0 0.125
Var. 95.79 97.98 58.48 16.80 1146.4 0.025

σ

Const 1.94 0.26 4.96 1.42
var. 2.03 1.06 29.46 8.47 4754.1 0.039

T
-
t
e
s
t p t σ ci alpha df

< 0.01 7.335 1.3992 <0.239,0.4124> 0.05 999

Table 7.10: Breast-Cancer-Wisconsin

%Acctest %Acctrain SV s Cost γ

%Acctest 1.0 -0.871 0.233 0.037 0.105
%Acctrain -0.871 1.0 -0.2 -0.024 -0.09
SV s 0.233 -0.2 1.0 -0.194 0.605
Cost 0.037 -0.024 -0.194 1.0 -0.09
γ 0.105 -0.09 0.605 -0.09 1.0
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Table 7.11: Ecoli

%Acctest %Acctrain SV s Cost γ

%Acctest 1.0 -0.019 0.154 0.048 -0.027
%Acctrain -0.019 1.0 0.02 -0.05 0.083
SV s 0.154 0.02 1.0 0.023 0.083
Cost 0.048 -0.05 0.023 1.0 -0.19
γ -0.027 0.083 0.083 -0.19 1.0

Table 7.12: Glass

%Acctest %Acctrain SV s Cost γ

%Acctest 1.0 -0.669 0.136 0.011 0.119
%Acctrain -0.669 1.0 -0.119 0.001 -0.095
SV s 0.136 -0.119 1.0 -0.374 0.446
Cost 0.011 0.001 -0.374 1.0 -0.275
γ 0.119 -0.095 0.446 -0.275 1.0

Table 7.13: Hepatitis

%Acctest %Acctrain SV s Cost γ

%Acctest 1.0 -0.264 0.059 0.041 -0.014
%Acctrain -0.264 1.0 -0.07 -0.04 -0.006
SV s 0.059 -0.07 1.0 -0.286 0.98
Cost 0.041 -0.04 -0.286 1.0 -0.216
γ -0.014 -0.006 0.98 -0.216 1.0

Table 7.14: Ionosphere

%Acctest %Acctrain SV s Cost γ

%Acctest 1.0 -0.25 0.174 -0.037 0.14
%Acctrain -0.25 1.0 -0.025 0.004 0.006
SV s 0.174 -0.025 1.0 -0.269 0.937
Cost -0.037 0.004 -0.269 1.0 -0.149
γ 0.14 0.006 0.937 -0.149 1.0

Table 7.15: Iris

%Acctest %Acctrain SV s Cost γ

%Acctest 1.0 -0.355 -0.031 0.064 -0.091
%Acctrain -0.355 1.0 0.122 -0.036 0.129
SV s -0.031 0.122 1.0 -0.215 0.001
Cost 0.064 -0.036 -0.215 1.0 -0.142
γ -0.091 0.129 0.001 -0.142 1.0
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Table 7.16: Pima-Indians-Diabetes

%Acctest %Acctrain SV s Cost γ

%Acctest 1.0 -0.787 0.305 -0.01 0.066
%Acctrain -0.787 1.0 -0.321 0.007 -0.091
SV s 0.305 -0.321 1.0 -0.295 0.307
Cost -0.01 0.007 -0.295 1.0 -0.206
γ 0.066 -0.091 0.307 -0.206 1.0

Table 7.17: Congressional Voting Records

%Acctest %Acctrain SV s Cost γ

%Acctest 1.0 -0.466 0.001 0.01 -0.094
%Acctrain -0.466 1.0 0.067 -0.046 0.122
SV s 0.001 0.067 1.0 -0.206 0.951
Cost 0.01 -0.046 -0.206 1.0 -0.15
γ -0.094 0.122 0.951 -0.15 1.0
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Chapter 8

Feature Selection

8.1 Introduction

One of the dis-advantages of using regular kernels is the fact that they base
their similarity on the inner-product. The inner-product cannot distinguish
between important and unimportant/noisy features, and thus regards them
equally important. To assign equal importance in SVMs is strange, since
we have no a priori knowledge that this will provide the largest margins!
In machine learning and relative fields feature selection is a technique used
to determine a subset of an initial set of features. One desires a subset of
features if the subset either improves computational complexity or increases
the performance. Stepwise regression is an example of an often used technique
which can be used for feature selection. Its greedy algorithm either adds the
current best feature or removes the worst. The stopping criterion for adding
or removing features is in machine learning often done using cross-validation
methods. Other more advanced techniques are branch and bound [26] and
piecewise linear networks.

The Weighted-Radial-Basis Kernel introduced in chapter (4) can also be
used for feature selection. In this experiment we will add irrelevant features
to an existing data set, after which we try to obtain the data set’s origi-
nal features. In section (5.5.1) we obtained an update function for w in the
Support-Vector-Machine Kernel-Machine paradigm. Its complete form is de-
scribed in equation (8.1):

wr = γαiαjyiyj(xi,r − xj,r)
2Kwrbf (xi,xj)

Kwrbf (xi,xj) = exp

(
−γ

s∑
r=1

wr(xi,r − xj,r)
2

)
(8.1)

where xi, xj describe instances and r denotes a particular feature. In this
method does not require a learning rate.
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Equation (8.1) consists of three different parts, who’s combination leads to a
feature-variance filter. The different parts being:

• magnitude: (γαiαjyiyj)

• variance: (xi,r − xj,r)
2

• similarity: Kwrbf (xi,xj)

Equation (8.1) allows us to find variance in features among instances that
share similarity. We can control this variance by changing the similarity space
Kwrbf . This control of Kwrbf is done through the weight vector w, which can
stress or reduce the importance of each feature. Given instances xi,xj and a
particular feature k, the following update is applied:

wk ← wk + magnitude(xi,xj)

× variance(xi,k,xj,k)

× similarity(xi,xj) (8.2)

By controlling the magnitude we can adjust the behavior of the feature se-
lection technique. First, however, we will reduce the magnitude to yiyj by
removing αi, αj and γ. These variables come from the Support Vector Ma-
chine, and for simplicity we neglect them here. By adjusting w during feature-
selection we automatically adjust K, this, however effects our selection and
is biased towards the ordering of the data. We therefore substitute Kwrbf

with Krbf in our feature-variance-filter. The Krbf is the standard Radial-
Basis function given by exp

(
−γ

∑s
r=1(xi,r − xj,r)

2
)
. The latter leads to our

feature-variance-filter:

feature-variance-filter(xi,xj , r) = yiyj(xi,r − xj,r)
2Krbf (xi,xj) (8.3)

where xi, xj describe instances and r denotes a particular feature.

From equation (8.3) we see that only the Kernel-Machine is needed for feature
selection where it is even possible to substitute different kernels. By changing
the magnitude (m) given by yiyj we can distinguish four different types of
behavior:

1:Opposing

m(y1, y2) =

{
1 if y1 = y2
−1 else

(8.4)
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Using the opposing behavior one reduces same class variance while increasing
opposite class variance.

2:Unsupervised

m(y1, y2) = 1 (8.5)

In unsupervised learning the labels of the classes are unknown and the feature-
variance is obtained without taking into account the different classes.

3:Same-Class

m(y1, y2) =

{
1 if y1 = y2
0 else

(8.6)

In the same-class case the feature-selection scheme will only take into account
instances belonging to the same class.

4:Opposite-Class

m(y1, y2) =

{
0 if y1 = y2
1 else

(8.7)

The opposite-class feature-selection scheme will only take into account in-
stances belonging to different classes.

8.2 Experiment Setup

We intend to keep this experiment as simple as possible and focus only on
the problem at hand, “feature-selection”. We will use the data sets previously
utilized in chapter (7). For experimental reasons, we will add the same amount
of noise as there are features in a data set. The latter leads to new data sets
consisting of 50 % original and 50 % randomly sampled data. The goal in
our experiment/algorithm is to obtain the original features, and is defined in
algorithm (2). The feature-variance-filter is of the form described in equation
(8.3), and will perform on all the four different types of behaviors. Algorithm
(2) ends by returning the percentage of the original features located in the
first half of the sorted array. All experiments are executed 10-fold, in each
of which the noise features are re-sampled.

8.3 Results

Tables (8.1) through (8.4) were obtained using algorithm (2) and were imple-
mented using the Kernel-Machine in PySVM. In our first rough approach to
see whether or not our algorithm is able to pick up noise features we see the
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Algorithm 2: Feature-Selection

input : a data set D of size n, fvf = feature-variance-filter
output: percentage of original features obtained

for i← 1 to n do
for j ← i to n do

for f ← 1 to number of features do
wf ← wf + fvf(Di, Dj , f)

end

end

end
sorted = argsort(w)
m = number of features

2
return (count in sorted[1, ..,m] ≤ m)/m)

low performance obtain by the opposite-class learning type seen in table (8.2).
The other 3 learning types showed an average original feature retrievement of
≈73 %. Even though this retrieval seems fair we have to be cautious on its
implications. For example “we know“ how many features we are looking for.
In later experiments the system will be complete autonomous, in the sense
that we will not inform of the signal to noise ratio.

8.4 Conclusion

The Opposite-Class experiment leads to the worst performance, and will not
be taken into account. Even though some single entries in table (8.2) show
good performances, the overall performance is too low. Although opposing
behavior shows the highest scores, it is the same-class behavior with the
highest average. Table (8.1) shows that the average of opposing suffers from
the glass data set (32.86 %) entry. This could be caused by the high class
count in glass, we don’t see the other behaviors suffer from it. Both the
Unsupervised table (8.4) and Same-Class show good overall feature-selection.
In Unsupervised feature-selection we see that both iris and ecoli have the
lowest averages. The reasons for this might be that both classes are multi-
class data sets.

From all the tables we see that hepatitis causes the most problems for
obtaining the original features. Reasons for this could be the type of fea-
tures and/or missing values. Some features are binary others contain a set of
possibilities such as age {10, 20, 30, 40, 50, 60, 70, 80}. These non-continuous
features might cause similarity and feature-selection problems.

Algorithm (2) is very simple in its approach and has low computational
complexity since it only takes (n+ 1) ∗ (n/2) iterations making it suitable for
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Noise
O
r
i
g
i
n
a
l

bcw ecoli glass hepat ionos iris pimaI votes mean

bcw × 73.33 85.56 43.33 93.33 92.22 88.89 88.89 80.79
ecoli 85.71 × 94.28 88.57 95.71 98.57 91.43 81.43 90.81
glass 24.44 38.89 × 64.45 15.55 12.22 33.33 41.11 32.86
hepat 73.68 65.26 62.63 × 80.52 85.79 69.47 62.63 71.43
ionos 88.24 68.24 85.88 41.47 × 100.0 99.41 63.53 78.11
iris 90.0 72.5 82.5 52.5 97.5 × 97.5 95.0 83.93

pimaI 85.0 72.5 82.5 43.75 96.25 100.0 × 87.5 81.07
votes 83.13 68.75 80.0 45.0 87.5 87.5 87.5 × 77.05

mean 75.74 65.64 81.91 54.15 80.91 82.33 81.08 74.3 74.51

Table 8.1: The feature-variance filter used with the opposing filter strategy.
In this strategy variance all label comparisons will be used. Instances having
opposite label get a negative learning rate compared to instances belonging
to the same class.

Noise

O
r
i
g
i
n
a
l

bcw ecoli glass hepat ionos iris pimaI votes mean

bcw × 45.56 23.33 23.33 64.45 67.78 25.55 27.78 39.68
ecoli 42.86 × 31.43 31.43 65.71 61.43 38.57 37.14 44.08
glass 82.22 65.56 × 32.22 94.45 98.89 76.67 76.67 75.24
hepat 49.47 44.21 30.53 × 63.68 69.47 40.0 51.05 49.77
ionos 69.71 69.12 63.24 35.59 × 86.18 80.0 49.41 64.75
iris 35.0 37.5 12.5 20.0 52.5 × 20.0 22.5 28.57

pimaI 68.75 58.75 36.25 15.0 85.0 81.25 × 48.75 56.25
votes 67.5 56.25 49.38 43.13 69.38 71.25 54.38 × 58.75

mean 59.36 53.85 35.24 28.67 70.74 76.61 47.88 44.76 52.14

Table 8.2: The feature-variance filter with Opposite-Class strategy only com-
pares instances that do not belong to the same class.
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Noise

O
r
i
g
i
n
a
l

bcw ecoli glass hepat ionos iris pimaI votes mean

bcw × 68.89 83.34 43.33 90.0 90.0 88.89 88.89 79.05
ecoli 78.57 × 72.86 31.43 95.71 100.0 84.28 85.71 78.37
glass 88.89 61.11 × 41.11 91.11 93.33 88.89 88.89 79.05
hepat 71.58 64.73 62.1 × 81.05 83.68 67.37 60.53 70.15
ionos 89.12 69.71 87.65 40.3 × 99.71 100.0 68.53 79.29
iris 85.0 77.5 52.5 22.5 97.5 × 70.0 80.0 69.29

pimaI 86.25 73.75 47.5 30.0 90.0 100.0 × 67.5 70.71
votes 84.38 71.88 76.88 47.5 86.88 88.13 85.0 × 77.23

mean 83.4 69.65 68.97 36.59 90.32 93.55 83.49 77.15 75.39

Table 8.3: Same-Class :: here the feature-variance filter only takes the variance
into account obtained from classes having the same label.

Noise

O
r
i
g
i
n
a
l

bcw ecoli glass hepat ionos iris pimaI votes avera

bcw × 71.11 84.45 41.11 91.11 88.89 88.89 88.89 79.21
ecoli 74.29 × 37.14 34.28 85.71 87.14 47.14 47.15 58.98
glass 86.67 70.0 × 37.78 91.11 98.89 77.78 82.22 77.78
hepat 69.47 69.47 57.36 × 80.53 84.74 66.31 60.0 69.7
ionos 91.47 73.53 88.24 41.77 × 100.0 100.0 70.88 80.84
iris 80.0 70.0 22.5 22.5 87.5 × 57.5 47.5 55.36

pimaI 83.75 63.75 43.75 21.25 96.25 100.0 × 53.75 66.07
votes 80.63 73.13 78.13 49.38 86.25 88.75 85.63 × 77.41

mean 80.9 70.14 58.8 35.44 88.35 92.63 74.75 64.34 70.67

Table 8.4: Unsupervised :: in this strategy the labels are neglected and the
overall variance is obtained.
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large data sets.
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Chapter 9

Uncontrolled Feature
Weighing

9.1 Introduction

The experiment presented in this Chapter is a continuation of the experiment
conducted in Chapter (8) on Feature Selection. In the Feature Selection ex-
periments we removed the Support-Vector-Machine from the equations and
isolated the algorithm. By isolating this we were able to determine whether or
not our feature-variance-filter had the ability to detect noise. In this experi-
ment we want to incorporate the Support-Vector-Machine and the correspond-
ing WRBF kernel with our feature-variance-filter algorithm (algorithm (2)).
This means that we will move from feature-selection to feature-weighing. In
the previous algorithm all feature-space dimensions were of equal importance
in the feature-variance-filter. We intend to use the Support Vector Machine
to determine which of these dimensions are important for hypothesis space
generation. Incorporating that information into the feature-variance-filter
algorithm, we attempt to increase the performance of the Support-Vector-
Machine. From chapter (3) we know that the non-zero α values correspond to
the support vectors that the Support Vector Machine uses for its Hypothesis
space. These α’s can be interpret as cost to our objective function, which
we would like to minimize. These costs will form an additional coefficient in
our novel feature-variance-filter. Our belief is that: “the higher the cost of an
instance, the more influential it is”. We expect that by altering the weights
lower costs emerge and an increase in the performance of the Support Vector
machine.

77
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9.2 Setup

The general setup for this experiment is identical to that of the Feature Se-
lection experiment. Once again we will compile all possible combinations of
data sets. Each new combination is an original data set containing f features,
and f random sampled features (noise) from the second data set. Each of
these combinations is re-sampled 100 times, and tested. The Support-Vector-
Machine and Kernel-Machine depend on two variables C and γ. Both of
these parameters will be set to 1. By controlling these meta-variables and
keeping them constant we can -more accurately- assess the performance of
our feature-variance-filter. One experiment consists of 100 iterations of our
feature-variance-filter, equation (9.1), after which the Support Vector Machine
will be re-trained.

feat-var-filter(xi,xj , r) = αiαjyiyj(xi,r − xj,r)
2Kwrbf (xi,xj) (9.1)

where xi, xj describe instances and r denotes a particular feature. The α and
y are the support vector multiplier and label.
Algorithm (2) utilized in the previous experiments requires a small modifica-
tion, and leads to algorithm (3). Since we are interested in the actual relevance
of a dimension in feature-space -instead of an ordering of importance- algo-
rithm (3) adjusts the weight vector.
As a result the following variables will be noted:

• accuracies on test-set containing 20% of the data set for both the tra-
ditional RBF and WRBF

• Dual-objective function for both RBF and WBF

• Number of support-vectors used for both RBF and WBF

Algorithm 3: Feature-Weighing

input : a data set D of size n, where d ∈ D = (x, y, α)
input : weight vector w, fvf = feature-variance-filter
input : learning rate η
output: updated weight vector w

initialize v with zero values.
for i← 1 to n do

for j ← i to n do
for f ← 1 to number of features do

vf ← vf + fvf(Di, Dj , f)
end

end

end
return w − v ∗ η



9.3. RESULTS 79

9.3 Results

The results are divided into three different groups, opposing, unsupervised and
same-class. In each of these groups there are two types of results, the cut and
uncut versions. The uncut versions display all the results without looking
at any variables that might indicate bad performance. Since we iterate 100
times without any stopping criteria it is possible for the learning algorithm
to perform extreme poorly. We expect that we can detect poor performances
by consulting the dual-objective function. This is the function the Support
Vector Machine optimizes, and returns the cost obtained. For there to be an
improvement we need to reduce these costs. If there is no reduction we will
remove this entry. These costs are obtained before we do the actual perfor-
mance measure and not after we have obtained the accuracies of both RBF
and WRBF. Our findings can be found at: http://www.ai.rug.nl/ aukepiet/re-
sults/feature weighing.tar.gz.

9.3.1 Opposing Classes

Noise

O
r
i
g
i
n
a
l

bcw ecol glas iono iris pima vote mean

bcw × -0.03 -1.08 0.33 -3.79 0.44 0.52 -0.6
ecol 14.51 × -2.88 7.85 9.34 -2.91 35.32 10.21
glas 0.17 -3.67 × 4.03 4.66 -3.26 2.72 0.77
iono 0.0 0.0 0.0 × 0.0 0.13 0.0 0.02
iris 4.43 1.53 0.83 2.07 × -0.06 10.3 3.18

pima -2.78 -1.49 -2.66 -1.43 -3.05 × -3.46 -2.48
vote 0.19 3.7 3.75 0.0 0.0 3.15 × 1.8

mean 2.75 0.01 -0.34 2.14 1.19 -0.42 7.57 1.84

Table 9.1: Opposing ::Difference measured between RBF and WRBF kernels
in accuracy, positive values indicate higher WRBF accuracies.

bcw ecol glas iono iris pima vote mean

#
S
V
s RBF 380.48 240.65 170.74 280.87 86.34 515.51 347.67 288.89

WRBF 283.51 236.99 171.36 280.85 70.42 516.97 342.9 271.86

O
b
j RBF -110.97 -251.35 -224.38 -121.6 -67.11 -257.9 -151.48 -169.25

WRBF -784.65 -210.84 -226.27 -121.66 -44.52 -284.72 -144.9 -259.65

Table 9.2: Learning different feature-spaces results in changes to the number
of support vectors used, and the objective function.
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Noise
O
r
i
g
i
n
a
l

bcw ecol glas iono iris pima vote mean

bcw × 0.64 -0.27 0.46 -0.44 0.65 0.49 0.25
ecol 14.51 × -0.75 7.85 9.34 0.99 35.32 11.21
glas 2.16 0.0 × 3.57 3.86 -1.19 3.72 2.02
iono 0.0 0.0 0.0 × 0.0 0.75 0.0 0.13
iris 4.43 2.22 0.92 2.07 × -0.06 10.3 3.31

pima 0.0 -0.49 -0.11 0.0 0.0 × 0.0 -0.1
vote 0.5 7.52 8.53 0.0 0.0 9.57 × 4.35

mean 3.6 1.65 1.39 2.32 2.13 1.79 8.31 3.03

Table 9.3: Opposing ::Difference measured between RBF and WRBF kernels
in accuracy, positive values indicate higher WRBF accuracies. All data points
which showed no improvement in the objective are filtered out.

bcw ecol glas iono iris pima vote mean

#
S
V
s RBF 380.23 240.44 142.72 280.85 86.34 234.71 231.68 228.14

WRBF 301.89 234.84 142.88 280.57 70.32 236.78 222.73 212.86

O
b
j RBF -110.88 -252.17 -185.35 -120.95 -67.11 -132.5 -98.51 -138.21

WRBF -91.03 -205.89 -181.65 -120.04 -44.03 -131.82 -84.92 -122.77

Table 9.4: Learning different feature-spaces results in changes to the number
of support vectors used, and the objective function.

We can conclude from tables (9.1) that our novel approach saw an average
accuracy increase of 1.84 %. This result is already very promising since we
have added no “smart” selection methods, meaning: when should we choose
the WRBF over the RBF.

The results showed that that: in none of the cases our feature-variance-
filter was able to pick-up the real features for the ionosphere data set. The
means displayed in table (9.2) are somewhat misleading. There are some ex-
treme values that clearly are outliers. The following entry is taken from the
breast-cancer-wisconsin data set:
100 94.964 94.964 -56.294696 -263311.364977 1 1 255 155
The fourth and fifth are respectively the objective-function for RBF and
WRBF. The extreme values for WRBF are nearly 10.000 times greater clearly
effect the whole mean drastically.

Table (9.3) and (9.4) give the averages after data points were removed in
which the final objective function showed no cost reduction. This effect saw
a ≈ 3 % accuracy increase using the WRBF.
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9.3.2 Unsupervised

In the unsupervised experiment the feature-variance-filtering no longer de-
pends on labels, thus simulating unlabeled data patterns. The averages ob-
tained posses a high level of similarity to the Opposing label experiment, but
they appear to be a little lower. Comparing the entry iris of table (9.1) and
(9.5) we see that unsupervised even out-scores supervised. Tables (9.7) and
(9.8) show the results after removing experiments which showed increase in
costs. Again we see a ≈ 1.5 % increase in accuracy.

Noise

O
r
i
g
i
n
a
l

bcw ecol glas iono iris pima vote mean

bcw × -0.57 0.05 0.24 0.26 0.29 0.28 0.09
ecol 1.95 × -13.97 0.98 6.65 -7.26 12.27 0.1
glas -1.29 -9.89 × -0.05 -3.98 -3.88 2.03 -2.84
iono 0.0 0.01 0.0 × 0.0 0.07 0.0 0.01
iris 2.73 0.7 2.7 2.7 × -4.77 6.7 1.79

pima -0.62 -0.11 -0.11 0.0 × 0.0 0.03 -0.14
vote 0.0 3.73 2.27 0.0 0.0 1.23 × 1.21

mean 0.4 -0.88 -1.29 0.55 0.42 -2.05 3.04 0.03

Table 9.5: Unsupervised ::Difference measured between RBF and WRBF ker-
nels in accuracy, positive values indicate higher WRBF accuracies.

bcw ecol glas iono iris pima vote mean

#
S
V
s RBF 382.21 239.0 171.15 281.0 79.64 514.85 347.91 287.97

WRBF 354.04 233.18 170.65 280.87 67.11 516.09 344.75 280.96

O
b
j RBF -114.39 -244.79 -225.37 -122.46 -62.09 -255.49 -150.53 -167.87

WRBF -108.52 -298.15 -1934.49 -122.4 -49.3 -257.01 -146.23 -416.58

Table 9.6: Learning different feature-spaces results in changes to the number
of support vectors used, and the objective function.

9.3.3 Same Class

In this experiment we allowed the feature-variance-filter to only learn from
instances carrying the same class label. Event though the uncut accuracies
show some negative performances (table 9.9), the cut values show an average
improvement of ≈ 2 % ((table 9.11). The glass entry showed improvement
over both Opposing and unsupervised. Comparing table (9.10) and (9.12) we
see that the number of support vectors and dual-objective function show the
most improvement of the three experiments.
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Noise
O
r
i
g
i
n
a
l

bcw ecol glas iono iris pima vote mean

bcw × 0.1 0.42 0.23 0.24 0.49 0.18 0.28
ecol 7.3 × 0.74 4.34 8.97 1.19 14.22 6.13
glas -3.01 -1.02 × -0.88 0.0 -2.38 5.21 -0.35
iono 0.0 0.48 0.0 × 0.0 0.55 0.0 0.17
iris 2.73 1.89 2.62 2.7 × 0.45 7.76 3.02

pima 0.0 -0.07 0.0 0.0 0.0 × 0.04 -0.01
vote 0.0 7.88 3.2 0.0 0.0 1.7 × 2.13

mean 1.0 1.32 1.0 0.91 1.32 0.29 3.92 1.63

Table 9.7: Nolabels ::Difference measured between RBF and WRBF kernels
in accuracy, positive values indicate higher WRBF accuracies. All data points
which showed no improvement in the objective are filtered out.

bcw ecol glas iono iris pima vote mean

#
S
V
s RBF 382.2 238.8 142.59 281.0 79.67 513.85 289.9 275.43

WRBF 352.04 231.39 141.81 279.83 65.53 513.97 285.51 267.15

O
b
j RBF -114.41 -244.74 -188.58 -123.25 -62.14 -255.13 -123.86 -158.87

WRBF -101.39 -218.74 -185.17 -120.47 -42.91 -255.1 -117.19 -148.71

Table 9.8: Learning different feature-spaces results in changes to the number
of support vectors used, and the objective function.

Noise

O
r
i
g
i
n
a
l

bcw ecol glas iono iris pima vote mean

bcw × -2.12 -0.53 -0.36 0.5 0.13 0.2 -0.36
ecol 4.66 × -11.57 2.11 1.46 -17.63 8.63 -2.06
glas 1.97 -11.47 × -0.36 1.14 -6.43 0.88 -2.38
iono 0.0 0.05 0.12 × 0.0 -0.02 0.0 0.02
iris -2.7 1.5 -2.0 1.53 × -0.4 5.2 0.52

pima 0.0 0.0 -0.44 0.0 0.0 × 0.01 -0.07
vote 0.0 3.88 2.2 0.0 0.0 0.27 × 1.06

mean 0.56 -1.17 -1.75 0.42 0.44 -3.44 2.13 -0.47

Table 9.9: Opposing ::Difference measured between RBF and WRBF kernels
in accuracy, positive values indicate higher WRBF accuracies.

9.4 Conclusion

Applying our novel feature-variance-filter on the different data set compo-
sitions we obtained higher accuracies in both cut and uncut results. Even
though the three different types of filtering were slightly different, all showed
an overall improvement. In the unsupervised experiment we saw that both
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bcw ecol glas iono iris pima vote mean

#
S
V
s RBF 366.21 229.82 171.45 281.0 77.2 524.66 347.91 285.47

WRBF 333.66 225.07 171.21 280.86 66.14 524.97 346.23 278.31
O
b
j RBF -107.34 -237.74 -224.49 -121.83 -61.59 -252.84 -151.27 -165.3

WRBF -373.69 -269.88 -749.27 -121.76 -65.24 -253.83 -148.61 -283.18

Table 9.10: Learning different feature-spaces results in changes to the number
of support vectors used, and the objective function.

Noise

O
r
i
g
i
n
a
l

bcw ecol glas iono iris pima vote mean

bcw × 0.44 0.21 -0.03 0.55 0.48 0.12 0.29
ecol 6.53 × 2.99 5.25 6.43 0.0 11.72 5.49
glas 2.19 0.0 × 2.01 6.35 5.55 1.06 2.86
iono 0.0 0.57 0.6 × 0.0 -0.07 0.0 0.18
iris 3.43 1.5 -1.68 1.8 × 2.3 8.93 2.71

pima 0.0 0.0 0.0 0.0 0.0 × 0.01 0.0
vote 0.0 8.77 5.23 0.0 0.0 0.34 × 2.39

mean 1.74 1.61 1.05 1.29 1.9 1.23 3.12 1.99

Table 9.11: Opposing ::Difference measured between RBF and WRBF kernels
in accuracy, positive values indicate higher WRBF accuracies. All data points
which showed no improvement in the objective are filtered out.

bcw ecol glas iono iris pima vote mean

#
S
V
s RBF 366.29 196.38 143.15 281.0 77.26 524.22 289.91 268.32

WRBF 337.07 189.43 142.83 280.14 64.2 524.21 286.56 260.63

O
b
j RBF -107.47 -203.18 -187.4 -122.0 -61.57 -252.36 -125.19 -151.31

WRBF -95.86 -182.93 -184.85 -120.41 -43.41 -252.36 -118.89 -142.67

Table 9.12: Learning different feature-spaces results in changes to the number
of support vectors used, and the objective function.

glass and pima-indian diabetes show a decrease in accuracy.
In the opposing experiment we saw several compositions where the WRBF

outperformed the RBF by 8 % or more.
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Chapter 10

The Main Experiment:
Controlled Feature Weighing

10.1 Introduction

This final experiment embodies the main experiment of this project. Here we
demonstrate that by learning different weights for each individual feature -the
strength each feature/dimension has on the similarity measure- we are able
to obtain higher classification accuracies. These higher accuracies are due to
feature-space transformation for which a lower cost could be obtained. We
will show that cost reduction -optimizing the dual objective- leads to greater
margins as first described in section (5.2). In short: “if the transformed
feature space allows a higher double objective (greater margins) then we have
reduced the risk of misclassification”. In the main experiment we extended
the experiment in chapter (9) by adding a controller between the Support-
Vector machine and the Kernel Machine. This controller ensures that the best
configuration -svm model with the highest objective- will be used for the final
test and train.

The three different types of learning, i.e, (1) opposing, (2) same-class and
(3) unsupervised show similar results, therefore in the sections to come we
will focus only on one learning type at a time.

This chapter has the following structure: We (1) compare the difference in
counts between the WRBF and RBF, (2) use win or lose strategy and apply
this using a binomial test, (3) introduce and perform the Wilcoxon Ranked-
sums test. This non-parametric statistical test ranks the difference in scores
allowing it to be used for non-normal distributed data. Through ranking these
differences this test is stronger than the win or lose strategy. (4) show the
relationship between cost reduction and higher accuracy increasement, (5)
combine and discuss the results and (6) present the conclusions.

85
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10.2 Comparing the Number of Correctly Classi-
fied Instances

The most easy and intuitive approach for comparing two classifiers operating
on the same problems is plotting their compared performance. Figure (10.1)
illustrates the compared performances between the RBF (x-axis) and WRBF
(y-axis) algorithms. The data points presented (4200 observations) are the

Figure 10.1: illustrates the comparison between the number
of correctly classified instances by the RBF (x-axis) and the
WRBF (y-axis). The red dashed line represents “equal” per-
formance. All possible data combinations between original
and noise suggests that the WRBF has classified the most
instances correct, this since most data points are located at
the left-side of the equality line. All 4200 observations are
drawn from the opposing learning strategy.

test results -the number of correctly classified instances- on all combinations
of “original” and “noise” data sets. The red dashed diagonal line represents
equal scores between the two algorithms. We observe a large amount of ob-
servations on the left-side of this equality line suggesting that the WRBF has
classified more instances correct than the RBF.

Table (10.1) gives a more detailed view on the scores obtained. It is shown
by the first column that the observations are ordered by “original” data set.
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Data Set WRBF RBF Total WRBF - RBF

bcw 78731 74735 83400 3996
eco 30963 28638 40200 2325
gla 11525 11365 25200 160
ion 26837 26685 42000 152
iri 16574 16072 18000 502
pim 64303 64263 91800 40
vot 34960 32581 52200 2379

Table 10.1: gives an overview on the number of correct
classified instances by algorithms WRBF and RBF out of
a total -third column- number of test instances. The Data
shown is ordered by “Original” -instead of original plus noise
table (A.3)- and is coherent with the assumption made in
figure (10.1), that the WRBF algorithms has classified more
instances correct than the RBF.

The WRBF - RBF column states that the WRBF has classified more instances
correct -all data set entries- than the RBF approach. If we were to zoom in on
each “original plus noise” entry -see table (A.3) for detailed information- then
the RBF outperformed the WRBF in 3 out of the 42 data sets, with 11 ties.
The latter performances indicate that if there is a difference in performance
-in 31 observations- then in most cases the WRBF performs better. However
in order to make statistical claims we first need do some analysis.

Analysis Introduction

In [7] the machine learning community has been accused of ignoring the sta-
tistical validity for the comparison of two or more algorithms on multiple
data sets. They warn against the misusage of T-test (Paired). As stated in
[7] -describing the same context as our experiment- the t-test suffers from 3
weaknesses.

(1) Commensurability: the question arises whether or not comparing the
magnitude in the differences between different data sets “makes at all sense”.
This since we know that comparing the averages between the classifiers on
different data sets make no sense, then why should the differences?

(2) Sample Size: using the paired t-test requires that the differences be-
tween the algorithms on the different data sets are normally distributed, with
a minimum of 30 samples, both premises are often violated.

(3) Outliers: the t-test is affected by outliers causing some skewness on
the distribution.

Therefore they state that: if the performance differences on data sets from
which we pair the differences suffers from one of the 3 weaknesses mentioned,
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the paired t-test becomes incorrect and misleading.

In [7, 23, 10] they recommend the usage of non-parametric alternatives
to the paired t-test, such as the Wilcoxon Signed-Rank Test, Friedman Test
and a more simple comparison method of win or lose in conjunction with a
Binomial distribution.

As mentioned in previous experiments our data set collection might suffer
from a fourth weakness, namely independence. We have to consider the fact
that by combining multiple data sets we might have caused a bias for one
classifier over the other, since the “original” data set features will appear in
several data sets. To counter attack this weakness we will perform analysis
on: (1) assume that there exist only 7 data sets -combine all the noise- and
(2) assess every combination -original plus noise- individually.

The Sign Test: “Win or Lose”

A very simple, yet often used method is to simply count the number of data
sets on which an algorithm is the overall winner. The algorithm with the most
counts can be regarded as the “better”.

These counts can also be used in inferential statistics, where they are used
in conjunction with a binomial distribution. Let A and B be algorithms and
measure their performances on a set of data sets. One observation is measured
as: which algorithm has won the most trials (folds) for a particular data set.
If n is the number of data sets for which A and B compute independent
answers ,we are observing Bernoulli trials, then we can use the binomial test
for comparison. Let s (success) be the number of times (A > B) , and
f (failure) the number of time (B > A). In our experiment this s would
be: (WRBF > RBF ). Consider the idea that algorithms A and B are
approximately equal ,the probability of A > B is equal to B < A, then
the expected value E(s) = 0.5n. Suppose we want to test whether or not
WRBF > RBF and denote a win on data set ni as a success, then our
statistic becomes:

P (s ≥ observed value|p(success) = 0.5) (10.1)

Equation (10.1) describes the probability that the WRBF wins over RBF ,
given the number of observed successes, assuming equal chance between suc-
cess and failure. Which can easily be computed and is given by:

f(s, p, n) =
n!

s!(n− s)
ps(1− p)n−s (10.2)

As one might observe we are not testing whether or not there is a signif-
icant difference between the performances of A and B on an individual data
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set. Even though this is often done ,filtering out what authors believe to be
“random wins/losses”, its practice is highly questionable.

Let us assume that we are comparing two spam filtering algorithms A
and B 600,426,974,379,824,381,952 times. Of all these comparisons algorithm
A was better than algorithm B, however never significant. What would the
chance of this happening be with equal p? Could A be that lucky? In short:
“we are not interested if A was significantly better than B on data set i”,
rather we investigate whether or not winning n out of the N data sets is
significant.

Applying the Sign Test: “Binomial Test”

In this section we will apply the previously discussed sign test to compare the
differences between the WRBF and RBF algorithm. We will only take into
account the results gained from the “same-class” learning algorithm, since the
two other show only positive results, making it impossible for us to show the
weakness of this test. In the final section we will discuss the results of the
other two -”unsupervised” and “opposite-class”- learning algorithms.

Number of instances: 4198
P (s >= observed value|p(success) = 0.5)
Data set αone−sided αtwo−sided n s f s > f

bcw 0.0 0.0 383 299 84 +
eco 0.0 0.0 556 520 36 +
gla 0.0 0.0 368 295 73 +
ion 0.0 0.0 55 54 1 +
iri 0.0 0.0 331 251 80 +
∗pim 0.87 ≈ 1 13 4 9 -
vot 0.0 0.0 287 274 13 +

Total 0.0625 0.125 7(n) 6(s) 1(f)

Table 10.2: gives the scores -win or lose- of the original data sets
when comparing the WRBF against the RBF applying the “same-
class” learning type. The n, s and f columns respectively are
the number of unequal (WRBF <> RBF ) correct classification,
number of successes (WRBF > RBF ) and the number of failures
(WRBF < RBF ) . The acquired loss by WRBF -marked by *-
on pim results in a non-significant improvement over the RBF.
The underlined entry -13- at pim shows that the loss endured was
based on small n, nevertheless it has equal amount of influence as
the high n entry winnings.

There is one row -marked by *- in table (10.2) in which the RBF outper-
formed the WRBF. One notices the small amount of data samples -namely
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13- in which there occurred differences between the two algorithms on the pim
entry. The low number of N data sets makes the binomial test vulnerable to
rejecting: “that there exists no differences between the two algorithms”. In
order to allow one mistake, and still assuming that the algorithms are dif-
ferent, we need at least 9 (N) data sets. Another weakness is the neglection
of the magnitude in differences between the different datasets. Even though
data entry eco (Ecoli) has a total of 520 wins over 36 losses it has equal
contribution to the statistic as pim (Pima Indians Diabetes).

10.3 Wilcoxon Signed-Ranks Test

The Wilcoxon signed-ranks (1945) is an non-parametric alternative to the
paired-t and binomial test. The test ranks the absolute differences in per-
formances between the classifiers and uses this ranking to draw statistical
conclusions (illustrated in table (10.3)). By ranking we have counter-attacked
the weakness the binomial test suffers from, since observations with small n -
pim entry in previous section- can never achieve high ranks. As mentioned the
differences are ordered according to their absolute values, in the case of ties
average ranks are assigned. Let di be the difference in performance between
algorithms A and B on the i-th of N data sets.

data set 1 2 3 4

diff -2 -3 1 4
⇒

data set 3 1 2 4

Rank 1 2 3 4

|diff| 1 -2 -3 4

Table 10.3: The Wilcoxon Signed-Ranks Test orders the
observations by the absolute difference in performance. In
doing so we compare the differences qualitatively: “better
scores count more”, however we ignore their absolute differ-
ences since we have moved from magnitudes to ranking.

Let R+ be the sum of ranks for the data set on which algorithm A outper-
formed B, and R− sums the opposite performance. Ranks of no difference,
di = 0, are divided evenly amongst A en B:

R+ =
∑
di>0

rank(di) +
1

2

∑
di=0

rank(di)

R− =
∑
di<0

rank(di) +
1

2

∑
di=0

rank(di)

The test continues by selecting the smaller of the sums, T = min(R+,R−).
Most statistical software programs or books contain the critical values for T
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and small N testing for significant differences. For large N (25 or more) the
statistic

z =
T − 1

4N(N + 1)√
1
24N(N + 1)(N + 2)

(10.3)

is distributed normally as shown in figure (10.2) and can be used to obtain
the critical values.

(a) N = 5 (b) N = 8 (c) N = 18

Figure 10.2: illustrates that the Wilcoxon ranked-sums test
rapidly converges to a normal distribution. By choosing
an N of 18 the smoothness of the distribution is already
apparent.

By setting the confidence of α to 0.05, we can reject the null-hypothesis if
the acquired z-score is smaller than -1.96.
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10.4 Applying the Wilcox Ranked-Sums Test

In order to compare the performances on our algorithms we first need to make
sure that the scores are comparable which is illustrated in table (10.4). The
first step (fifth column) is to obtain the differences (total correct classified test
patterns) between the WRBF and RBF. Secondly we divide it by the total
number of test patterns (fourth column) for that particular data set.

Number of instances: 4198

Data set WRBF RBF Total Diff D/T |D/T| Rank

bcw 78092 74926 83400 3166 0.0379 0.0379 5
eco 32321 28494 40200 3827 0.0951 0.0951 7
gla 12186 11458 25158 728 0.0289 0.0289 3
ion 26658 26539 42000 119 0.0028 0.0028 2
iri 17003 16378 18000 625 0.0347 0.0347 4

pim 64387 64409 91647 -22 -0.0002 0.0002 1
vot 34717 32604 52200 2113 0.0404 0.0404 6

R+ = 27.0 R−= 1.0 R0= 0.0 |R|= 28.0
T = min(R+,R−) = 1.0

Table 10.4: illustrates how to obtain the Wilcoxon ranked-
sums test. Column D/T describes the ratio on differences ,as
described in equation (10.4) between WRBF and RBF scores.
The last two columns show the ranking on these ratios,
higher obtained rankings have a bigger effect on the statis-
tical outcome. The R variables are summed values for their
class of win, lose and equal ranking as described in section
(10.3). The static (T ) describes the probability of obtaining
(1, 27) ranked-score. In order to dismiss the notion that both
algorithms are equal we need to have a T <= 2 (specific for
7 data sets) which is indeed the case.

The sixth column gives the ratio of differences computed for all data sets,

di =

K∑
k

N∑
i

WRBF (k, i)−RBF (k, i)

N
(10.4)

where K N respectively denote then number of folds and size of test data.
Both functions ((W )RBF (k, i)) give 1 for correct classification and zero oth-
erwise.

The T = 1 value obtained from table (10.4) rejects (two tailed significance
with 0.05 confidence) the hypothesis that algorithms WRBF and RBF can be
drawn from the same population, i.e., their scores are approximately equal.
The reason why Wilcoxon’s test and the binomial test differ in their findings
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comes from the lack of ordering in the binomial test. By ordering/rank-
ing the Pima-Indians Diabetes as the least important (there were only 13
observations) the Wilcoxon ranked-sums test can reject the H0 whereas the
binomial-test could not. It makes sense to stress the importance of those
observations which carry more instances than others. However, we must not
forget to investigate the possible bias towards merging all the noisy data sets.
Table (A.8) illustrates the Wilcoxon ranked-sum test when viewing combi-
nations of noise and original as separate data sets. For large N we can use
equation (10.3) to obtain the critical values. The Obtained z-score of -4.68 is
also sufficient for rejecting H0. There is no need to elaborate on the other two
algorithms since the WRBF always outperformed the RBF, when combining
all the noise, resulting both times in maximum ranking. Tables (A.6) and
(A.7) illustrate ranking performed on all combinations of noise and original.
In both comparisons, opposing and unsupervised, the obtained z-scores (re-
spectively -5.05 and -5.28) are also sufficient for rejecting the H0 hypothesis.

We have shown that for both data set comparisons -joined and separated
noise- the H0 -that their is no difference in performances between the WRBF
and the RBF algorithm- is rejected using the Wilcoxon ranked-sums test.

10.5 Cost Reduction And Accuracy

The task of the controller mentioned in the introduction is to ensure that
all the models ,the support vector machine’s output model, have lower or
equal cost than the initial RBF algorithm. These costs are the direct re-
sult of dual objective optimization, and form the backbone of our system.
The weight vector w we are modifying during our optimization process ma-
nipulates feature-space in such a manner that it should make the process of
maximum-margin hyperplane optimization more easy. How this “improved”
feature-space is obtained is not of any concern in this section, we only need to
know that through this cost-controlled learning we only have obtained equal
or better feature-spaces.

In this section we will demonstrate that there is a strong relationship be-
tween cost reduction and performance improvement. For this experiment we
combined all our observations into one big result set, resulting in 12598 ob-
servations. From each observation we extracted two variables,

∆acc = WRBFacc −RBFacc
∆cost = WRBFcost −RBFcost

(10.5)

allowing to compute the relationship -correlation coefficient- between accu-
racy improvement and cost reduction. We obtained the correlation coefficient
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r = 0.646 over all data sets and three different learning types (N= 12598).
This strong linear relation between accuracy improvement and cost reduction
is significant, two-sided with p < 0.0001, using the statistic t = r√

(1−r2)
(N−2)

.

From the latter we conclude that improving the objective of the Support
Vector Machine has strong positive effects on classification.

10.6 Conclusion

This chapter consists of three main parts (1) comparing counts between the
WRBF and the RBF, (2) testing whether or not there is significant difference
between the two algorithms and (3) how much of the performance increase
can be described to cost reduction.

On comparing the two figures (10.1, A.1) we see that the WRBF has classified
more instances correct than the RBF. Notice that in all three figures there are
no outliers on the RBF’s side of the equality line. This is one of the strong
properties of our novel algorithm, it virtually never performs worse than the
old method, on the other hand it shows some major improvements.

By introducing and applying the Wilcoxon Ranked-sum test we gave con-
vincing results that the two algorithms are performing significantly different.
Combining this notion and that of higher counts we conclude that our novel
system of feature space weighing clearly outperforms the standard system.

This chapter ended with the section on cost reduction and accuracy, illus-
trating the power behind cost reduction / optimizing the dual objective. By
combining all the data from the three different learning algorithms we showed
a significant relation between cost reduction and accuracy improvement. In
other words: we are optimizing the SVM more without any indication of over-
fitting. Therefore we are sure that other algorithms than the 3 provided can
benefit from this concept.
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Chapter 11

Discussion

11.1 Summary of the Results

In the first experiment the Support Vector Machine’s (SVM) performance
was tested on several different data sets. As a metric the Radial-Basis func-
tion was used in all experiments. Besides obtaining classification accuracies,
and properties of the SVM’s model, we also decided to test the effect of pre-
calculation of the meta-parameters. In pre-calculation we used the whole
available data set to acquire these meta-parameters. As expected the pre-
calculation of the meta-parameters had a significant effect on accuracy. In all
but one case, the pre-calculation lead to higher accuracies. Comparing the
differences between the meta-parameters obtained from train-sets, with those
of the pre-calculated, the reasons for the differences became clear. When
meta-parameters searching is done only on the train-set, the values for C and
γ take on extreme values.

In the second experiment the feature-variance filter was tested. The feature-
variance filter algorithm learns the relevance that each dimension in feature-
space has on the target function. We decided to first test the performance
on a “stripped-down” version, resulting in a feature selection method. With
this method we tested 4 different types of learning behaviors. By repeatedly
mixing two UCI data sets, where only the labels of one data set was kept,
we incorporated “real-world” noise as features to an existing data set. The
results from this experiment show that in 3 out of the 4 behaviors the algo-
rithm recovered approximately 73% of the original features.

In the third experiment we used the Weighted-Radial-Basis function (WRBF)
as a metric in our system. The WRBF metric has the ability to scale each
dimension in feature-space. Here we used the complete feature-variance fil-
ter as a learning medium between the SVM and the WRBF. By repeatitely
adjusting the WRBF after each SVM optimization -where the SVM uses the
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updated metric of the WRBF- we obtained the learned feature-space. The
final learned WRBF kernel was then used for training and classification. This
experiment saw an average increase in accuracy by approximately 2.5%.

In the fourth and final experiment we decided to address the shortcomings
of the learning algorithm that used in the third experiment. Even though
the feature-variance filter worked satisfactorily, the third lacked an intelligent
stopping criteria. This means that in the third experiment we repeated learn-
ing n times without looking at any performance measures, the nth solution
metric was simply chosen. In the fourth experiment we added a simple yet
effective update rule: a new metric was to be chosen over the old “if and
only if” the costs of the new metric were lower then the old metric. The
SVM’s objective function is defined in term of margin. However the value of
the objective corresponds to the cost of using support vectors. Each support
vector brings with it a certain cost, described by its coefficient. The intuition
behind it is as follows: if the newly obtained feature-space is better, then the
SVM should have less problems in computing a separating hyperplane, and
result in lower costs. From the results we can see that our novel approach of
feature-space learning significantly outperforms the standard SVM approach.

11.2 Conclusion

In this thesis a feature-space learning system was presented which can be
used in combination with a Support Vector Machine (SVM) [25]. The pri-
mary goal for this system was to learn the underlying function which described
our training data. By using a Weighted-Radial-Basis function [21] we were
able to give different weights to each dimension in feature-space. For finding
optimal weights we developed a feature-variance filter, capable of learning
these weights.

One of the most commonly used SVM libraries [3] was modified in order
to handle a feature-space weighted kernel. In order to be able to test large
quantities of data, programs where developed to allow distributed computing
within the university network.

The data sets used during the experiments were constructed from two ex-
isting data sets, where the label of one of the data sets was used as the target
function. By ensuring that not all features where equally informative, and
originated from two different data sets, we were able to test our feature-space
learning system. The results showed that our novel feature-variance filter was
not only successful in retrieving the original features, but it also significantly
outperformed the traditional SVM with Radial-Basis function. Our results
answer the research question posed in Chapter (1):
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How can a Support Vector Machine maximize its predictive capabilities through
feature-space learning?

The process of filtering dimensions in feature-space according to relevance
has been shown to be very effective when a Support Vector Machine is used
in conjunction with the Weighted-Radial-basis function. By consulting the
SVM’s objective function, and testing for improvement, we showed that sig-
nificant greater margins can be achieved between classes, in comparison to
the regular Radial-Basis function.

11.3 Future Work

In addition to feature-weighing variables the Weighted-Radial-basis function
has a radius (γ). This radius describes the width of influence the support
vectors have in feature-space. Since this variable is a constant coefficient, for
every dimension its influence can be moved to the feature-space weight vector.
The removal of γ has two mayor advantages, it: (1) drastically reduces the
complexity of the gridsearch; and (2) its value is obtained through gradient-
descent allowing infinite precision.

The “stripped-down” feature-variance filter can be used for feature selection
and requires little computation. A comparison study with other feature se-
lection methods can be conducted, testing whether or not it can be used for
fast feature selection.

Kernels are not limited to SVMs only, and are used in a wide range of machine
learning methods. Research could be done in how to incorporate the WRBF
in other methods than the SVM.
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Data Set WRBF RBF Total WRBF - RBF

bcw 78888 74693 83400 4195
eco 32778 29077 40200 3701
gla 12269 11630 25200 639
ion 26562 26427 42000 135
iri 16988 16369 18000 619
pim 64629 64625 91800 4
vot 35455 33719 52200 1736

Table A.1: illustrates the differences in counts
between the WRBF and the RBF kernel using
the unsupervised learning algorithm. All data
entries indicate that the WRBF outperformed
the RBF, even though on the pim data set one
could hardly speak of improvement.

Data Set WRBF RBF Total WRBF - RBF

bcw 78092 74926 83400 3166
eco 32321 28494 40200 3827
gla 12186 11458 25158 728
ion 26658 26539 42000 119
iri 17003 16378 18000 625
pim 64387 64409 91647 -22
vot 34717 32604 52200 2113

Table A.2: illustrates the differences in counts
between the WRBF and the RBF kernel using
the same class learning algorithm. The pim en-
try shows a small loss for the WRBF kernel, all
other data points indicate that the WRBF has
outperformed the RBF kernel.
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Data Set WRBF RBF Total WRBF - RBF

bcweco 13175 13170 13900 5
bcwgla 13278 13173 13900 105
bcwion 13240 13026 13900 214
bcwiri 13279 13198 13900 81
bcwpim 13199 13150 13900 49
bcwvot 12560 9018 13900 3542
ecobcw 4976 4666 6700 310
ecogla 5563 5568 6700 -5

ecoion 5034 4853 6700 181
ecoiri 5059 4716 6700 343
ecopim 5505 5503 6700 2
ecovot 4826 3332 6700 1494
glabcw 1894 1864 4200 30
glaeco 2440 2436 4200 4
glaion 1857 1834 4200 23
glairi 1527 1475 4200 52
glapim 2408 2383 4200 25
glavot 1399 1373 4200 26
ionbcw 4454 4454 7000 0
ioneco 4534 4503 7000 31
iongla 4493 4463 7000 30
ioniri 4374 4374 7000 0
ionpim 4563 4472 7000 91
ionvot 4419 4419 7000 0
iribcw 2735 2619 3000 116
irieco 2859 2796 3000 63
irigla 2840 2827 3000 13
iriion 2837 2757 3000 80
iripim 2822 2774 3000 48
irivot 2481 2299 3000 182
pimbcw 10569 10545 15300 24
pimeco 11132 11191 15300 -59

pimgla 11284 11209 15300 75
pimion 10723 10726 15300 -3

pimiri 10842 10839 15300 3
pimvot 9753 9753 15300 0
votbcw 5315 5315 8700 0
voteco 5959 5241 8700 718
votgla 6623 5721 8700 902
votion 5299 5299 8700 0
votiri 5303 5303 8700 0
votpim 6461 5702 8700 759

Table A.3: gives an overview on the number of correct clas-
sified instances using the opposing learning algorithm for
the kernels WRBF and RBF. Out of allt the observations
only 3 times did the WRBF loose to the RBF -underlined
entries- “suggesting” that the WRBF alogrithms is at least
not worse than the RBF algorithm.
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Data Set WRBF RBF Total WRBF - RBF

bcweco 13291 13235 13900 56
bcwgla 13239 13089 13900 150
bcwion 13226 13121 13900 105
bcwiri 13285 13151 13900 134
bcwpim 13193 13083 13900 110
bcwvot 12654 9014 13900 3640
ecobcw 5485 4934 6700 551
ecogla 5667 5567 6700 100
ecoion 5393 4494 6700 899
ecoiri 5574 5210 6700 364
ecopim 5661 5608 6700 53
ecovot 4998 3264 6700 1734
glabcw 1767 1664 4200 103
glaeco 2361 2324 4200 37
glaion 2165 1992 4200 173
glairi 2112 1941 4200 171
glapim 2464 2315 4200 149
glavot 1400 1394 4200 6
ionbcw 4345 4345 7000 0
ioneco 4432 4374 7000 58
iongla 4423 4415 7000 8
ioniri 4434 4434 7000 0
ionpim 4557 4488 7000 69
ionvot 4371 4371 7000 0
iribcw 2779 2738 3000 41
irieco 2830 2807 3000 23
irigla 2845 2830 3000 15
iriion 2845 2782 3000 63
iripim 2859 2836 3000 23
irivot 2830 2376 3000 454
pimbcw 10576 10572 15300 4
pimeco 11260 11260 15300 0
pimgla 11360 11360 15300 0
pimion 10882 10882 15300 0
pimiri 10661 10661 15300 0
pimvot 9890 9890 15300 0
votbcw 5187 5187 8700 0
voteco 6420 5806 8700 614
votgla 6794 6174 8700 620
votion 5279 5279 8700 0
votiri 5305 5305 8700 0
votpim 6470 5968 8700 502

Table A.4: gives an overview on the number of correct classi-
fied instances using the unsupervised learning algorithm for
the kernels WRBF and RBF. Out of allt the observations
the WRBF never lost to the RBF.
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Data Set WRBF RBF Total WRBF - RBF

bcweco 13240 13194 13900 46
bcwgla 13280 13207 13900 73
bcwion 13221 13062 13900 159
bcwiri 13273 13340 13900 -67
bcwpim 13190 13102 13900 88
bcwvot 11888 9021 13900 2867
ecobcw 5245 4595 6700 650
ecogla 5578 5333 6700 245
ecoion 5464 4904 6700 560
ecoiri 5557 4924 6700 633
ecopim 5607 5444 6700 163
ecovot 4870 3294 6700 1576
glabcw 2056 1866 4200 190
glaeco 2291 2225 4200 66
glaion 1973 1819 4158 154
glairi 1943 1716 4200 227
glapim 2391 2372 4200 19
glavot 1532 1460 4200 72
ionbcw 4447 4447 7000 0
ioneco 4419 4408 7000 11
iongla 4416 4371 7000 45
ioniri 4434 4434 7000 0
ionpim 4514 4451 7000 63
ionvot 4428 4428 7000 0
iribcw 2858 2695 3000 163
irieco 2813 2800 3000 13
irigla 2845 2838 3000 7
iriion 2840 2849 3000 -9
iripim 2821 2810 3000 11
irivot 2826 2386 3000 440
pimbcw 10853 10853 15300 0
pimeco 11172 11172 15300 0
pimgla 11216 11238 15300 -22

pimion 10685 10685 15300 0
pimiri 10943 10943 15300 0
pimvot 9518 9518 15147 0
votbcw 5253 5253 8700 0
voteco 6247 5515 8700 732
votgla 6263 5481 8700 782
votion 5248 5248 8700 0
votiri 5247 5247 8700 0
votpim 6459 5860 8700 599

Table A.5: gives an overview on the number of correct clas-
sified instances using the opposing learning algorithm for
the kernels WRBF and RBF. Out of allt the observations
only 2 times did the WRBF loose to the RBF -underlined
entries- “suggesting” that the WRBF alogrithms is at least
not worse than the RBF algorithm.
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Number of instances: 4200
Data set WRBF RBF Total Diff D/T |D/T| Rank

bcweco 13175 13170 13900 5 0.000359712 0.000359712 11
bcwgla 13278 13173 13900 105 0.007553957 0.007553957 26
bcwion 13240 13026 13900 214 0.015395683 0.015395683 29
bcwiri 13279 13198 13900 81 0.005827338 0.005827338 22
bcwpim 13199 13150 13900 49 0.00352518 0.00352518 15
bcwvot 12560 9018 13900 3542 0.254820144 0.254820144 42
ecobcw 4976 4666 6700 310 0.046268657 0.046268657 35
ecogla 5563 5568 6700 -5 -0.000746269 0.000746269 12
ecoion 5034 4853 6700 181 0.027014925 0.027014925 33
ecoiri 5059 4716 6700 343 0.05119403 0.05119403 36
ecopim 5505 5503 6700 2 0.000298507 0.000298507 10
ecovot 4826 3332 6700 1494 0.222985075 0.222985075 41
glabcw 1894 1864 4200 30 0.007142857 0.007142857 25
glaeco 2440 2436 4200 4 0.000952381 0.000952381 13
glaion 1857 1834 4200 23 0.00547619 0.00547619 21
glairi 1527 1475 4200 52 0.012380952 0.012380952 27
glapim 2408 2383 4200 25 0.005952381 0.005952381 23
glavot 1399 1373 4200 26 0.006190476 0.006190476 24
ionbcw 4454 4454 7000 0 0.0 0.0 4.0
ioneco 4534 4503 7000 31 0.004428571 0.004428571 19
iongla 4493 4463 7000 30 0.004285714 0.004285714 17
ioniri 4374 4374 7000 0 0.0 0.0 4.0
ionpim 4563 4472 7000 91 0.013 0.013 28
ionvot 4419 4419 7000 0 0.0 0.0 4.0
iribcw 2735 2619 3000 116 0.038666667 0.038666667 34
irieco 2859 2796 3000 63 0.021 0.021 31
irigla 2840 2827 3000 13 0.004333333 0.004333333 18
iriion 2837 2757 3000 80 0.026666667 0.026666667 32
iripim 2822 2774 3000 48 0.016 0.016 30
irivot 2481 2299 3000 182 0.060666667 0.060666667 37
pimbcw 10569 10545 15300 24 0.001568627 0.001568627 14
pimeco 11132 11191 15300 -59 -0.003856209 0.003856209 16
pimgla 11284 11209 15300 75 0.004901961 0.004901961 20
pimion 10723 10726 15300 -3 -0.000196078 0.000196078 8.5
pimiri 10842 10839 15300 3 0.000196078 0.000196078 8.5
pimvot 9753 9753 15300 0 0.0 0.0 4.0
votbcw 5315 5315 8700 0 0.0 0.0 4.0
voteco 5959 5241 8700 718 0.082528736 0.082528736 38
votgla 6623 5721 8700 902 0.103678161 0.103678161 40
votion 5299 5299 8700 0 0.0 0.0 4.0
votiri 5303 5303 8700 0 0.0 0.0 4.0
votpim 6461 5702 8700 759 0.087241379 0.087241379 39

R+ = 835.5 R−= -36.5 R0= 28 |R|= 903.0

T = min(R+,R−) = 50.5 z = -5.05

Table A.6: illustrates the ranking done using the
Wilcoxon Ranked-Sums test. The high difference be-
tween R+ and R− suggests that the algorithms are
significant different as confirmed by a -5.05 z-score.
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Number of instances: 4200
Data set WRBF RBF Total Diff D/T |D/T| Rank

bcweco 13291 13235 13900 56 0.004028777 0.004028777 15
bcwgla 13239 13089 13900 150 0.010791367 0.010791367 26
bcwion 13226 13121 13900 105 0.007553957 0.007553957 17
bcwiri 13285 13151 13900 134 0.009640288 0.009640288 24
bcwpim 13193 13083 13900 110 0.007913669 0.007913669 21
bcwvot 12654 9014 13900 3640 0.261870504 0.261870504 42
ecobcw 5485 4934 6700 551 0.082238806 0.082238806 38
ecogla 5667 5567 6700 100 0.014925373 0.014925373 28
ecoion 5393 4494 6700 899 0.134179104 0.134179104 39
ecoiri 5574 5210 6700 364 0.054328358 0.054328358 34
ecopim 5661 5608 6700 53 0.007910448 0.007910448 20
ecovot 4998 3264 6700 1734 0.25880597 0.25880597 41
glabcw 1767 1664 4200 103 0.02452381 0.02452381 30
glaeco 2361 2324 4200 37 0.008809524 0.008809524 23
glaion 2165 1992 4200 173 0.041190476 0.041190476 33
glairi 2112 1941 4200 171 0.040714286 0.040714286 32
glapim 2464 2315 4200 149 0.03547619 0.03547619 31
glavot 1400 1394 4200 6 0.001428571 0.001428571 14
ionbcw 4345 4345 7000 0 0.0 0.0 6.0
ioneco 4432 4374 7000 58 0.008285714 0.008285714 22
iongla 4423 4415 7000 8 0.001142857 0.001142857 13
ioniri 4434 4434 7000 0 0.0 0.0 6.0
ionpim 4557 4488 7000 69 0.009857143 0.009857143 25
ionvot 4371 4371 7000 0 0.0 0.0 6.0
iribcw 2779 2738 3000 41 0.013666667 0.013666667 27
irieco 2830 2807 3000 23 0.007666667 0.007666667 18.5
irigla 2845 2830 3000 15 0.005 0.005 16
iriion 2845 2782 3000 63 0.021 0.021 29
iripim 2859 2836 3000 23 0.007666667 0.007666667 18.5
irivot 2830 2376 3000 454 0.151333333 0.151333333 40
pimbcw 10576 10572 15300 4 0.000261438 0.000261438 12
pimeco 11260 11260 15300 0 0.0 0.0 6.0
pimgla 11360 11360 15300 0 0.0 0.0 6.0
pimion 10882 10882 15300 0 0.0 0.0 6.0
pimiri 10661 10661 15300 0 0.0 0.0 6.0
pimvot 9890 9890 15300 0 0.0 0.0 6.0
votbcw 5187 5187 8700 0 0.0 0.0 6.0
voteco 6420 5806 8700 614 0.070574713 0.070574713 36
votgla 6794 6174 8700 620 0.071264368 0.071264368 37
votion 5279 5279 8700 0 0.0 0.0 6.0
votiri 5305 5305 8700 0 0.0 0.0 6.0
votpim 6470 5968 8700 502 0.057701149 0.057701149 35

R+ = 837 R−= -0.0 R0= 66.0 |R|= 903.0

T = min(R+,R−) = 33.0 z = -5.28

Table A.7: illustrates the ranking done using the
Wilcoxon Ranked-Sums test. The high difference be-
tween R+ and R− suggests that the algorithms are
significant different as confirmed by a -5.28 z-score.
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Number of instances: 4198
Data set WRBF RBF Total Diff D/T |D/T| Rank

bcweco 13240 13194 13900 46 0.003309353 0.003309353 16
bcwgla 13280 13207 13900 73 0.005251799 0.005251799 21
bcwion 13221 13062 13900 159 0.011438849 0.011438849 25
bcwiri 13273 13340 13900 -67 -0.004820144 0.004820144 20
bcwpim 13190 13102 13900 88 0.006330935 0.006330935 22
bcwvot 11888 9021 13900 2867 0.206258993 0.206258993 41
ecobcw 5245 4595 6700 650 0.097014925 0.097014925 39
ecogla 5578 5333 6700 245 0.036567164 0.036567164 29
ecoion 5464 4904 6700 560 0.08358209 0.08358209 35
ecoiri 5557 4924 6700 633 0.094477612 0.094477612 38
ecopim 5607 5444 6700 163 0.024328358 0.024328358 28
ecovot 4870 3294 6700 1576 0.235223881 0.235223881 42
glabcw 2056 1866 4200 190 0.045238095 0.045238095 31
glaeco 2291 2225 4200 66 0.015714286 0.015714286 26
glaion 1973 1819 4158 154 0.037037037 0.037037037 30
glairi 1943 1716 4200 227 0.054047619 0.054047619 32
glapim 2391 2372 4200 19 0.00452381 0.00452381 19
glavot 1532 1460 4200 72 0.017142857 0.017142857 27
ionbcw 4447 4447 7000 0 0.0 0.0 6.0
ioneco 4419 4408 7000 11 0.001571429 0.001571429 13
iongla 4416 4371 7000 45 0.006428571 0.006428571 23
ioniri 4434 4434 7000 0 0.0 0.0 6.0
ionpim 4514 4451 7000 63 0.009 0.009 24
ionvot 4428 4428 7000 0 0.0 0.0 6.0
iribcw 2858 2695 3000 163 0.054333333 0.054333333 33
irieco 2813 2800 3000 13 0.004333333 0.004333333 18
irigla 2845 2838 3000 7 0.002333333 0.002333333 14
iriion 2840 2849 3000 -9 -0.003 0.003 15
iripim 2821 2810 3000 11 0.003666667 0.003666667 17
irivot 2826 2386 3000 440 0.146666667 0.146666667 40
pimbcw 10853 10853 15300 0 0.0 0.0 6.0
pimeco 11172 11172 15300 0 0.0 0.0 6.0
pimgla 11216 11238 15300 -22 -0.001437908 0.001437908 12
pimion 10685 10685 15300 0 0.0 0.0 6.0
pimiri 10943 10943 15300 0 0.0 0.0 6.0
pimvot 9518 9518 15147 0 0.0 0.0 6.0
votbcw 5253 5253 8700 0 0.0 0.0 6.0
voteco 6247 5515 8700 732 0.084137931 0.084137931 36
votgla 6263 5481 8700 782 0.089885057 0.089885057 37
votion 5248 5248 8700 0 0.0 0.0 6.0
votiri 5247 5247 8700 0 0.0 0.0 6.0
votpim 6459 5860 8700 599 0.068850575 0.068850575 34

R+ = 790.0 R−= -47.0 R0= 66.0 |R|= 903.0

T = min(R+,R−) = 80.0 z = -4.68

Table A.8: illustrates the ranking done using the
Wilcoxon Ranked-Sums test. The high difference be-
tween R+ and R− suggests that the algorithms are
significant different as confirmed by a -4.68 z-score.
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(a) unsupervised learning type (b) same class learning type

Figure A.1: illustrates the comparison between the number of correctly clas-
sified instances by the RBF (x-axis) and the WRBF (y-axis). The red dashed
line represents “equal” performance. All possible data combinations between
original and noise suggests that the WRBF has classified the most instances
correct, this since most data points are located at the left-side of the equality
line. This holds true for both learning algorithms.
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B.1 PySVM

One of our stated objectives was to provide a good introduction for students
not familiar with Support Vector Machines. The best way to understand a
complicated machine is to take it apart and rebuild it. That is exactly the
goal of this section. Students not interested in the engineering part can skip
this section.

We will construct a small Support Vector Machine in python (http://www.python.org/ ),
and use an “out of the box” optimization library (http://abel.ee.ucla.edu/cvxopt/))
to solve the “dual” in equation (3.17). The following Convex optimization
solvers are available in CVXOPT:

conelp: solves linear cone programs.

coneqp: solves quadratic cone programs.

cp: solves nonlinear convex problem.

cpl: solves nonlinear convex problems with linear objectives.

gp: solves geometric programs.

lp: solves linear programs.

qp: solves quadratic programs.

sdp: solves semidefinite programs.

socp: solves second-order cone programs.

options: dictionary with customizable algorithm parameters.

The problem that we are presented with is part of the quadratic optimization
problems. CVXOPT defines its quadratic solver as:

Solves a quadratic program

minimize (1/2)*x’*P*x + q’*x

subject to G*x <= h

A*x = b.

Upon comparing the objective function of the qp and the dual we see a strong
resemblance. The dual being :

maximize

l∑
i=1

αi −
1

2

l∑
i,j=1

αiαjyiyj〈xi · xj〉

and qp : minimize (1/2)*x’*P*x + q’*x

We need to rewrite the dual in the form of the qp. The qp has a minimizing
objective in contrast to the dual. By changing the sign of the dual we can
change it to a minimizing function:

minimize
1

2

l∑
i,j=1

αiαjyiyj〈xi · xj〉 −
l∑

i=1

αi (B.1)
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The α’s in dual and the x in qp are almost identical. We can rewrite the
double summation in the dual into the matrix form P used in the qp

l∑
i,j=1

αiαjyiyj〈xi · xj〉 = x′Px (B.2)

We can compute P by calculating the dot product for all combinations of pat-
ters multiplied by their label.

P = Matrix
for i = 0 to numPatterns do

for j = 0 to numPatterns do
P(i,j) = yiyj〈xi · xj)〉

end for
end for

The next problem with the objective function is the last term in the dual in

equation (B.1). We need to convert

[
−

l∑
i=1

αi

]
into [+q′x]. This problem is

simply solved by choosing q to be a vector with solemnly −1 at each index.
This leaves us only to rewrite the constraints. The dual has the following
constraints ∀αj > 0. From the constraints the qp has we only have to use the
first G ∗ x <= h. Setting G to −1 · In 1 and h to a zero vector we have solved
the constraints on qp in terms of the dual since:

G× x <= h <=> αj ≥ 0 (B.3)

B.1.1 C-SVC

Section (3.4) introduces the soft margin SVM. In order to achieve soft margin
optimization using pysvm we need to make two small adjustments. Equation
(B.3) describes the current constraints on the support vectors, αj ≥ 0. In
C-SVC optimization there is an additional constraint: 0 ≤ αj ≤ C. This
constraint C on α can be added by adding an additional set of rows to G
and h. The rows added for G are simple the identity matrix, whereas h is
extended with the Cost parameter. Giving the following constraints to qp:

1In is the n× n identity matrix
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G =



−1 0 · · · 0
0 −1 · · · 0
...

...
. . .

...
0 0 · · · −1
1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


and h =



1
...
1
C
...
C



B.1.2 Examples

Figure (B.1) illustrates how different types of hypothesis spaces can be con-
structed using PySVM. Both the Support Vector Machine and Kernel Machine
can be found in appendix (C.3) and (C.4)

(a) second degree Polynomial Kernel (b) Linear Kernel

(c) WRBF Kernel (d) RBF Kernel

Figure B.1: the PySVM Support Vector Machine with different kernel func-
tions.
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Listing C.1: Implementation of Fixed Increment Single-Sample Perceptron

#!/usr/bin/python

from scipy import *

from pylab import *

# M:= Features Y:= Label iw:= start l:= learning rate

M = mat([[1, 2, 1 ],[2, 0, 1 ],[3, 1, 1],[2, 3, 1]])

Y = mat([1, 1, -1, -1])

iw = mat([[-2,-2,2]])

l = 0.1

# Mapping to {1,-1}

def f(z,w):

if z * w.T > 0:

return 1

return -1

# Update rule

def update(label ,f,Z):

return float(l/2.0) * (label - f) * Z

# Itterative algorythm

def fixedIncSinSamPer(M,Y,w,l):

[rows ,cols] = M.shape

done = False

while not done:

done = True

for idx in xrange(rows):

dw = update(Y[0,idx],f(M[idx],w),M[idx])

if dw.any (): # misclassified

done = False

w = w + dw

return w

# Discriminant Functions wich is given by w’x + b = 0

def g(M,w):

[rows ,cols] = M.shape

for idx in xrange(rows):

print idx ,":", f(w,M[idx]), w*M[idx].T

# Calculate Linear Discriminant:

w = fixedIncSinSamPer(M,Y,iw ,l)

g(M,w)
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Listing C.2: Linear programming for solving linear seperability

#!/usr/bin/python

from cvxmod import *

# Datapoints

H = tp( matrix ([[0. ,1.] ,[1. ,0.] ,[0. ,1.] ,[0.5 ,1.] ,[0 ,2]]))

K = tp( matrix ([[3. ,1.] ,[2. ,3.] ,[1. ,3.] ,[2 ,3] ,[2.4 ,0.8]]))

# Variables to optimize

a = optvar("a",H.size [1])

b = optvar(’b’)

margin = 0.8

y = optvar("y" ,1,H.size [0])

z = optvar("z" ,1,K.size [0])

# Objective

l = problem( minimize( sum(y) + sum(z)))

# Adding the constraints

l.constr.append( y >= tp(a) * tp(H) + b + margin)

l.constr.append( z <= tp(a) * tp(K) + b - margin)

l.constr.append(a[1]==1)

l.constr.append(y>=0)

l.constr.append(z>=0)

l.solve ()

# Show g(X)

print value(tp(a) * tp(H) + b)

print value(tp(a) * tp(K) + b)
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Listing C.3: Support Vector Machine / CVXOPT

#!/usr/bin/env python

from cvxopt import *

from cvxopt.solvers import qp

from model import Model

class SupportVectorMachine:

def __init__(self , kf):

self.__kernelFunction = kf

.. ..

def data(self , labels , features ):

.. ..

def optimize(self):

# Initialize Variables

H = matrix (0.0 ,( self.__rows ,self.__rows ))

G = matrix (0.0 ,( self.__rows ,self.__rows ))

q = matrix (-1.,(self.__rows ,1))

h = matrix (0.,( self.__rows ,1))

# Short notation

kf = self.__kernelFunction

y = self.__labels

x = self.__features

# Compute H

for idx in xrange(self.__rows ):

for idy in xrange(self.__rows ):

H[idx ,idy] = y[idx] * y[idy] * kf(x[idx ,:], x[idy ,:])

# Compute G

for idx in xrange(self.__rows ):

G[idx ,idx] = -1.

# Solve

self.__solver = qp(H, q, G, h)

def model(self , km):

# Filter alpha’s

alpha = list(self.__solver[’x’])

.. ..

return Model(km,self.__kernelFunction , labels , alphas , svs)
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Listing C.4: Kernel Machine

from cvxopt import matrix

from math import exp

from math import tanh

class KernelMachine:

def __init__(self):

self.__linear_const = 1

self.__params = {}

def param(self ,key ,value):

self.__params[key] = value

def linear(self ,x,y):

return (x * y.T + self.__params[’linear_constant ’])[0]

def sigmoid(self ,x,y):

g = self.__params[’gamma’]

k = self.__params[’k’]

return ( g * x * y.T - k)[0]

def polynomial(self ,x,y):

degree = self.__params[’degree ’]

return ((x * y.T + 1)[0])** degree

def radialbasis(self ,x,y):

g = self.__params[’gamma’]

z = x - y

return exp(- (z * z.T)[0] / (2 * g**2) )

def wradialbasis(self ,x,y):

g = self.__params[’gamma’]

w = self.__params[’kw’]

o = 0.0

for idx in xrange(len(w)):

o += w[idx] * ((x[idx]-y[idx ])*(x[idx]-y[idx]))

return exp(-g * o)
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