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Abstract—In this paper, a new technique for offline writer identification is presented, using connected-component contours

(COCOCOs or CO3s) in uppercase handwritten samples. In our model, the writer is considered to be characterized by a stochastic

pattern generator, producing a family of connected components for the uppercase character set. Using a codebook of CO3s from an

independent training set of 100 writers, the probability-density function (PDF) of CO3s was computed for an independent test set

containing 150 unseen writers. Results revealed a high-sensitivity of the CO3 PDF for identifying individual writers on the basis of a

single sentence of uppercase characters. The proposed automatic approach bridges the gap between image-statistics approaches on

one end and manually measured allograph features of individual characters on the other end. Combining the CO3 PDF with an

independent edge-based orientation and curvature PDF yielded very high correct identification rates.

Index Terms—Writer identification, connected-component contours, edge-orientation features, stochastic allograph emission model.
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1 INTRODUCTION

AUTOMATIC, offline writer identification enjoys a renewed
interest [1], [2], [3], [4], [5]. Leading a worrisome life

among the “harder” forms of biometric person identifica-
tion such as DNA typing [6], [7], fingerprint classification
[8], [9], and iris identification [10], it appears that the
identification of a person on the basis of a handwritten
sample still remains a useful application. Contrary to other
forms of biometric person identification used in forensic
labs, automatic writer identification often allows for
determining identity in conjunction with the intentional
aspects of a crime, such as in the case of threat letters. This
is a fundamental difference from other biometric methods,
where the relation between the evidence material and the
details of an offense can be quite remote. The target
performance for writer-identification systems is less im-
pressive than is the case in DNA or iris-based person
identification. In forensic writer identification, as a rule of
thumb, one strives for a near-100 percent recall of the
correct writer in a hit list of one hundred writers, computed
from a database in the order of 104 samples, the size of
search sets in current European forensic databases. A hit-list
size of one hundred suspects is based on the pragmatic
consideration that such a number of cases is just about
manageable in the criminal-investigation process.

Recent advances in image processing, pattern classifica-

tion, and computer technology at large allow for a substantial

improvement of current procedures in forensic practice.

There exist three groups of script-shape features which are
derived from scanned handwritten samples in forensic
procedures:

1. Fully automatic features computed from a region of
interest (ROI) in the image.

2. Interactively measured features by human experts
using a dedicated graphical user-interface tool.

3. Character-based features which are related to the
allograph subset which is being generated by each
writer.

Of these features, the first group has been treated with
some skepticism by practitioners within the application
domain, given the complexity of real-life scanned samples
of handwriting which are collected in practice. Indeed,
automatic foreground/background separation will often
fail on the smudged and texture-rich fragments, where the
ink trace is often hard to identify. However, there are recent
advances in image processing using ”soft computing”
methods, i.e., combining tools from fuzzy logic and genetic
algorithms, which allow for advanced semi-interactive
solutions to the foreground/background separation process
[2]. Under these conditions, and assuming the presence of
sufficient computing power, the use of automatically
computed image features (group 1, above), is becoming
feasible. Before dealing with the methods and results in
detail, we will introduce the rationale and the general
model of the proposed approach.

It is generally assumed that uppercase characters contain
less writer-specific information than does, e.g., connected-
cursive handwritten script. This assumption is corroborated
by the observation that the automatic classification of
uppercase isolated characters is easier than the recognition
of connected cursive script. However, much of the
difference in recognition performance between uppercase
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characters versus free-style words can be attributed to the
character segmentation problem, proper. Fig. 1 shows four
factors causing variability in handwriting [11].

The first factor concerns the affine transforms (Fig. 1a),
which areunder voluntary control by thewriter. Transforma-
tions of size, translation, rotation, and shear are a nuisance,
but not a fundamental stumbling block in handwriting
recognition orwriter identification. In particular, slant (shear)
constitutes a habitual parameter determined by pen grip and
orientation of the wrist subsystem versus the fingers [12].

The second factor concerns the neurobiomechanical
variability (Fig. 1b) which is sometimes referred to as
”sloppiness space:” the local context and physiological state
determines the amount of effort which is spent on
character-shape formation and determines the legibility of
the written sample. In realizing the intended shape, a writer
must send motor-control patterns which compensate for the
low-pass filtering effects of the biomechanical end effector.
This category of variability sources also contains tremors
and effects of psychotropic substances on motor-control
processes in writing. As such, this factor is more related to
system state than system identity.

The third factor is also highly dependent on the
instantaneous system state during the handwriting process
and is represented by sequencing variability (Fig. 1c): the
stroke order may vary stochastically, as in the production of
a capital E. A four-stroked E can be produced in 4! � 24 ¼
384 permutations. In the production of some Asian scripts,
such as Hanzi, stochastic stroke-order permutation are a
well-known problem in handwriting recognition (even
though the training of stroke order at schools is rather
strict). Finally, spelling errors may occur and lead to
posthoc editing strokes in the writing sequence. Although
sequencing variability is generally assumed to pose a
problem only for handwriting recognition based on
temporal (online) signals, the example of posthoc editing

(Fig. 1c) shows that static, optical effects are also a possible
consequence of this form of variation.

The fourth factor, allographic variation (Fig. 1d), refers
to the phenomenon of writer-specific character shapes,
which produces most of the problems in automatic script
recognition, but at the same time provides the information
for automatic writer identification. In this paper, we will
show how writer-specific allographic shape variation
present in handwritten uppercase characters allows for
effective writer identification.

1.1 Theory

There exist two fundamental factors contributing to the
individuality of script, i.e., allographic variation: genetic
(biological) and memetic (cultural) factors.

The first fundamental factor consists of the genetic
make up of the writer. Genetic factors are known or may
be hypothesized to contribute to handwriting style
individuality:

. The biomechanical structure of the hand, i.e., the
relative sizes of the carpal bones of wrist and fingers
and their influence on pen grip.

. The left or right handedness [13].

. Muscular strength, fatiguability, peripheral motor
disorders [14].

. Central nervous system (CNS) properties, i.e.,
aptitude for fine motor control and the CNS stability
in motor-task execution [15].

The second factor consists of memetic or culturally
transferred influences [16] on pen-grip style and the
character shapes (allographs) which are trained during
education or are learned from observation of the writings of
other persons. Although the term memetic is often used to
describe the evolution of ideas and knowledge, there does
not seem to be a fundamental objection to view the
evolution and spreading of character shapes as a memetic
process: the fitness function of a character shape depends
on the conflicting influences of 1) legibility and 2) ease of
production with the writing tools [17], which are available
within a culture and society. The distribution of allographs
over a writer population is heavily influenced by writing
methods taught at school, which in turn depend on factors
such as geographic distribution, religion, and school types.
For example, in The Netherlands, allographic differences
may be expected between Protestant and Catholic writers,
writers of different generations, and immigrant writers.

Together, the genetic and memetic factors determine a
habitualwritingprocess,with recognizable shapeelements at
the local level in the writing trace, at the level of the character
shape as a whole, and at the level of character placement and
page layout. In thispaper,wewill focusonthe local level in the
handwritten traceandon thecharacter level.

The writer produces a pen-tip trajectory on the writing
surface in two dimensions (x, y), modulating the height of
the pen tip above the surface by vertical movement (z).
Displacement control is replaced by force control (F) at the
moment of landing. The pen-tip trajectory in the air
between two pen-down components contains valuable
writer-specific information, but its shape is not known in
the case of offline scanned handwritten samples. Similarly,
pen-force information is highly informative of a writer’s
identity, but is not directly known from offline scans [18].
Finally, an important theoretical basis for the usage of
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Fig. 1. Factors causing handwriting variability: (a) Affine transforms are
under voluntary control. However, writing slant constitutes a habitual
parameter which may be exploited in writer identification. (b) Neurobio-
mechanical variability refers to the amount of effort which is spent on
overcoming the low-pass characteristics of the biomechanical limb by
conscious cognitive motor control. (c) Sequencing variability becomes
evident from stochastic variations in the production of the strokes in a
capital E or of strokes in Chinese characters, as well as stroke variations
due to slips of the pen. (d) Allographic variation refers to individual use of
character shapes. Factors (b) and (c) represent system state more than
system identity. In particular, allographic variation (d), is a most useful
source of information in forensic writer identification.



handwritten shapes for writer identification is the fact that
handwriting is not a feed-back process which is largely
governed by peripheral factors in the environment. Due to
neural and neuromechanical propagation delays, a hand-
writing process based upon a continuous feed-back
mechanism alone would evolve too slowly [19]. Hence,
the brain is continuously planning series of ballistic move-
ments ahead in time, i.e., in a feed-forward manner. A
character is assumed to be produced by a ”motor program”
[20], i.e., a configurable movement-pattern generator which
requires a number of parameter values to be specified
before being triggered to produce a pen-tip movement
yielding the character shape [21], [22], [23] by means of the
ink deposits [24], [25]. Although the process described thus
far is concerned with continuous variables such as dis-
placement, velocity, and force control, the linguistic basis of
handwriting allows for postulating a discrete symbol from
an alphabet to which a given character shape refers.

1.2 A Model

Assume there exists a finite list S of allographs for a given
alphabet L. Each allograph sli is considered to be the ith
allowable shape (style) variation of a letter l 2 L which
should, in principle, be legible at the receiving end of the
writer-reader communication line [26]. The source of
allographic variation may be located in teaching methods
and individual preferences. The human writer is thus
considered to be a pattern generator, stochastically selecting
each allograph shape sli when a letter l is about to be
written. It is assumed that the probability density function
pwðSÞ, i.e., the probability of allographs being emitted by
writer w, will be informative in the identification of writer w
if it holds that

w 6¼ v) pwðSÞ 6¼ pvðSÞ; ð1Þ

where w and v denote writers, S is a common allograph
codebook, and pð:Þ represents the discrete PDF for allograph
emission. This (1) will be realizable if, for handwritten
samples u emitted by w and characterized by

~xxwu ¼ pwuðSÞ; ð2Þ
and assuming that the sample u is representative

~xxwu � pwðSÞ; ð3Þ
it holds that

8a; b; c; w; v 6¼ w : �ð~xxwa;~xxwbÞ < �ð~xxwa;~xxvcÞ; ð4Þ

where � is an appropriate distance function on PDFs ~xx, v,
and w denote writers, as before, and a; b; c are handwriting-
sample identifiers. Equation (4) states that, in feature space,
the distance between any two samples of the same writer is
smaller than the distance between any two samples by
different writers. In ideal circumstances, this relation would
always hold, leading to perfect writer identification. Note
that, in this model (1), the implication is unidirectional: in
case of forged handwriting, pwðSÞ does not equal pvðSÞ, but
writer w imposes as v (w ¼ v).

A problem at this point is that an exhaustive list S of
allographs for a particular script and alphabet is difficult to
obtain in order to implement this stochastic allograph-
emissionmodel. Clustering of character shapeswith a known
letter label is possible and has been realized [27]. However,
the amount of handwritten imagedata forwhichno character

ground truth exists vastly exceeds the size of commercial and
academic training sets which are labeled at the level of
individual characters. At this point in time, a commonly
accepted list of handwritten allographs (and their commonly
accepted names, e.g., in Latin, such as in the classification of
species in the field of biology) does not exist, as yet. In this
respect, it is noteworthy that for machine-print fonts, with
theirminute shape differences in comparison to handwriting
variation, named font categories exist (e.g., Times-Roman,
Helvetica, etc.), whereas we do not use generally agreed
names for handwritten character families.

Therefore, it would be conducive to use an approach
which avoids expensive character labeling at both training
and operational stages. Contrary to character segmentation
in handwriting, connected components can be detected
reliably and in a nonparametric manner. The question then,
is whether such suballographic text fragments might be
usable for writer identification.

If each allograph sli is composed of a nonempty set of
connected components cj, i.e., sli ¼ fc1; c2; . . . ; cmg, then let us
assume that a finite set or codebook C of connected
components for all possible allographs can be estimated. If
we assume, additionally, that the shape of a connected
component is informative of the allographic character variant
of which it is an element, then, for the probability function

~��wu ¼ pwuðCÞ ð5Þ

of connected components derived from handwritten sam-
ples u by writer w it holds, analogously to (4), that

8a; b; c; w; v 6¼ w : �ð~��wa;~��wbÞ < �ð~��wa;~��vcÞ ð6Þ
again, under the assumption that samples u will be
representative:

~��wu � pwðCÞ; ð7Þ

which needs to be demonstrated empirically. A potential
problem concerns the phenomenon of touching characters.
For the approach proposed in this paper, this would not
constitute a real problem if the tendency to produce
connecting or overlapping letter combinations is typical for
awriter. An exploration of the available data is needed in any
case. In the next section,wewill describe the construction of a
connected-component codebook C, the computation of an
estimate of the writer-specific pattern-emission PDF pwðCÞ,
and an appropriate distance function� for PDFs.

1.3 Design Considerations

In the application domain, a sparse-parametric approach
has several advantages [28] because new data can easily be
incorporated without retraining. In the current study, this
goal is not met due to the use of a codebook which will be
based on a self-organized map containing a considerable
number of parameters. However, in the processing pipe-
line, the use of domain-specific heuristics is kept to a
minimum. There are no rule-based image enhancements.
The amount of image and contour normalizations will be
kept to a minimum, as well. Simple distance computation
will be used, avoiding expensive usage of weights (as in
multilayer perceptron or support-vector machine based
trained similarity functions). As regards the target applica-
tion, it should be noted that the proposed approach is size
invariant. However, in the case of forged handwriting, the
forger tries to change the handwriting style, usually by
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changing the slant and/or the chosen allographs. Using
detailed and manual analysis, forensic experts are some-
times able to correctly identify a forged handwritten
sample. However, the proposed algorithm aims at recover-
ing the correct known sample from a database for a query
sample of which the writer is unknown, under the
assumption that both were produced with a comparable
and natural writing attitude.

2 METHODS

2.1 Data

From the Firemaker1 database of handwritten pages of
250 writers, ”Page 2” was being used, i.e., the set which
consisted of a copied text in uppercase handwriting. This
text consists of two sentences, with a total of 65 text chunks,
i.e., words and money amounts (Table 1), scanned at 300 dpi
gray scale, on lineated paper with a vanishing line color
(yellow). The number of words amounts to a paragraph of
text. The text has been designed in forensic praxis to cover a
sufficient amount of different letters from the alphabet
while remaining writable for the majority of suspects. Fig. 2
shows a fragment of such a paragraph by a single writer.

A set of 100 paragraphs by as much writers was used for
training purposes. The remaining set of 150 paragraphs by
as much but different writers was used for testing writer
identification. Processing entails three steps:

. Stage 1. Computing a codebook of Connected-
component Contours in uppercase handwriting.

. Stage 2. Computing writer-specific feature vectors.

. Stage 3. Writer identification.

Whenever the word ”feature” is used in the sequel, it

should be interpreted as meaning ”writer-feature vector.”

2.2 Stage 1: Computing a Codebook of
Connected-Component Contours in
Uppercase Handwriting

The images of 100 paragraphs were processed in order to
extract the connected components representing the hand-
written ink. The gray-scale image was blurred using a
3� 3 flat smoothing window and, subsequently, binarized
using the midpoint gray value. For each connected
component, its contour was computed using Moore’s
algorithm, starting at the left-most pixel in a counter-
clockwise fashion. The resulting contour-coordinate se-
quence was resampled to contain 100 (X, Y) coordinate
pairs. The resulting fixed-dimensional (N = 200) vector

will be dubbed COnnected-COmponent COntour (COCO-
CO or CO3). Fig. 3 shows a number of such patterns.

The 100 paragraphs yielded 26,896 CO3s. These were
presented to a Kohonen [29] self-organizing feature map
(SOFM) of 33� 33 (1,089) nodes, thus yielding an a priori
uniform coverage of about 25 samples per Kohonen node.
The goal of this procedure is to yield an accurate table of
CO3 shapes, rather than aiming at topology preservation.
Hence, an ample number of 500 epochs was used to train
the network. The network bubble size varied from a radius
of 33 (full network) at the beginning of training, to 0 (one
node) at the end of training. The learning rate was 0:9 at the
beginning of training, ending at 0:015 at the end of training.
Usually, in training Kohonen self-organizing maps, linear
cooling schedules are used. However, if the goal is to obtain
a veridical, least rms-error between the ensemble of
possible patterns and the finite set of Kohonen cells, it has
proved to be beneficial to use a steeply decaying tempera-
ture [30]. A Kohonen relaxation process can be roughly
divided into three stages: 1) chaotic oscillation, 2) structural
consolidation, and 3) fine tuning (Fig. 4). The use of a linear
temperature cooling schedule is useful for obtaining maps
with topology-preserving characteristics on a limited
number of epochs. However, using a nonlinearly and
steeply decaying function of bubble radius and learning
rate results in a prolonged fine-tuning stage, yielding a
reliable codebook after the presentation of a sufficiently
large number of training epochs.

It should be noted that overfitting is not an issue here: In
Kohonen self-organized maps, the degree of overfitting is
mainly determined by the number of cells. Taking these
considerations into account, a fast cooling schedule was
used, on the basis of the following power function (8):
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TABLE 1
Uppercase Dutch Text Containing All Letters

of the Alphabet and All Digits

Fig. 2. An example fragment of a paragraph by onewriter (female, age 22,
right handed, Dutch, black ball-point pen).

Fig. 3. A number of Connected-Component Contours (COCOCOs), with
the body displayed in gray, and the starting point for the counter-
clockwise contour coordinates (black border) depicted with black discs.
Note that inner contours such as in the A-shape, upper right, are not
incorporated in the CO3 vector.

1. This data setwas collected thanks to a grant of TheNetherlands Forensic
Institute for the NICI Institute, Nijmegen, Schomaker & Vuurpijl, 2000.



rk ¼ ðr1=sm � r
1=s
0 Þ

k

m
þ r

1=s
0

� �s

; ð8Þ

where sð> 0Þ is the steepness factor, r is a decreasing
training parameter (here, learning rate or Kohonen bubble
radius), k ¼ ½0;m� is the epoch counter, and m is the last
training epoch. If s ¼ 1, rk is a linear function. A steepness
factor of s ¼ 5 was used. This relatively high steepness
speeds up the self-organizing process by reducing the
duration of the initially irregular state space evolution.

At the end of training, the resulting SOFM contained the
patterns as shown in Fig. 5. This table is considered to
constitute the codebook C necessary for computing the
writer-specific CO3 emission probabilities used for writer
identification, as described in Section 1. The training
procedure lasted 28 hours and 19 minutes on a personal
computerwith a 600MHzCPU. The computational complex-
ity isO½Nepochs �Nsamples �Ncells �NðX;Y Þ�. The Kohonen train-
ing reduced the initial rms error of 0.036 per coordinate x or y
of the contour to an rms error of 0.010 at 500 epochs. When
using the resulting codebook for a nearest-neighbor search of
connected-components contours of all writers, a PDF can be
computed for this Kohonen network as a communication
channel with 33 � 33 ¼ 1; 089 discrete symbols, yielding an
overall entropy of

P1;089
i¼1 ��i logð�iÞ ¼ 9:8 bits.

2.3 Stage 2: Computing Writer-Specific Feature
Vectors

Similar to an approach reported elsewhere [31], the writer is
considered as a signal-source generator of a finite number
of basic patterns. In the current study, such a basic pattern
consists of a CO3. An individual writer is assumed to be
characterized by the discrete probability-density function
for the emission of the basic stroke patterns. Consequently,
from a database of 150 writers, for each of the writers, a
histogram was computed of the occurrence of the nodes in
the Kohonen SOFM of CO3s in his/her handwriting, as
determined by Euclidean nearest-neighbor search of a
handwritten CO3 to the patterns which are present in the
SOFM. The pseudocode for the algorithm is as follows:

~�� 0
forall i 2 K
f

~xxi  ð~xxi � �xÞ=�r

~yyi  ð~yyi � �yÞ=�r
~ffi  ðXi1; Yi1; Xi2; Yi2 . . . ; Xi100; Yi100Þ
k argminl jj~ffi � ~��ljj
�k  �k þ 1=N

g
Notation: ~�� is the PDF of CO3s, K is the set of detected
connected components in the sample. Scalar vector elements
are shownas indexeduppercase capitals. Steps: First, thePDF
is initialized to zero. Then, each connected-component
contour ð~xxi;~yyiÞ is normalized to an origin of 0; 0 and a
standard deviation of radius �r ¼ 1, as reported elsewhere
[30], [32]. The CO3 vector ~ffi consists of the X and Y values of
the normalized contour resampled to 100 points. In the table
of prenormalizedKohonen SOFMvectors�, the index kof the
Euclidean nearest neighbor of ~ffi is sought and the corre-
sponding value in the PDF �k is updated (N ¼ jKjÞ to obtain,
finally, pðCO3Þ. This PDF is assumed to be awriter descriptor
containing the connected-component shape-emission like-
lihood for uppercase characters, by a given writer (5).

2.4 Stage 3: Writer Identification

Each of the 150 paragraphs of the 150 writers is divided
into a top half (set A) and a bottom half (set B). Writer
descriptors pðCO3Þ are computed for set A and B,
separately, for each writer. Using the �2 distance measure
(9), for each writer descriptor in set B, the nearest
neighbor in set A was searched.

�2
ij ¼

Xn
k¼1

ð�ki � �kjÞ2

�ki þ �kj
; ð9Þ
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Fig. 4. Three conceptual “stages” during the training of a Kohonen self-
organized map: (a) Chaotic oscillation, (b) structural consolidation, and
(c) fine tuning. If the goal is to obtain a codebook vector set, the fine-
tuning stage can be prolonged relative to the number of epochs by using
a power function for the learning rate decay (8). This will lead to lower
final rms error values than is the case in using a linear decay, provided
an ample number of epochs is used.

Fig. 5. A Kohonen self-organized map of 33� 33 Connected-Component
Contours (COCOCOs) from 26k samples, derived from the text written
in Table 1 by 100 different writers. Some CO3 represent whole
uppercase characters whereas others represent character fragments.
Each CO3 is normalized in size to fit its cell.



where i and j are sample indices, k is the bin index, n
represents the number of bins in the PDF, and � represents
the probability of a CO3 codebook entry, as in (5).

The advantage of using the �2 distance measure is that
differences in low-probability regions in the PDF are
weighed more importantly than is the case in simple
Euclidean, but also in the Bhattacharya distance measure
for PDFs. Fig. 6 shows density plots for sample combina-
tions originating from the same writer (Fig. 6a) or
originating from two different writers (Fig. 6b). Samples
were selected for this figure on the basis of visual clarity.

3 RESULTS

Using an independent test set of N = 150 writers, a number
of performance comparisons were performed. Tests will be
organized as follows: For each writer from the test set, a
paragraph labeled A and a distinct paragraph labeled B will
be entered into the test. The purpose of testing is to find a
corresponding paragraph B from a query A, and vice versa,
for each writer. A single test on 150 writers was typically
performed in 7s on a personal computer with a 600 MHz
CPU (gcc, Linux). This corresponds to 328ms per sample.
The computational complexity is O½ðNsamples � 1Þ �Ncells �
NðX;Y Þ� for a single-sample query.

The tests named “AB” refer to a leave-one out approach,
where all A and B samples are lumped together in one set,
taking a query sample out, one by one. Thismeans that for an
“A” query, the pair “B” sample written by the same subject

will be the target, the distractors being the remaining 149 “A”
samples and the 149 “B” samples of the other writers.
Consequently, the “AB” sets constitute a reasonably-sized
problem with 300-1 patterns to be searched in the set. The a
priori hit probability thus equals 1/299.

The tests named “A versus B” are based on traditional
disjoint sets, where the target set only contains a single
sample from each writer. Consequently, the number of
distractors for a query is much lower: 150-1, and the a priori
probability of a hit equals 1/150. As a consequence, the
disjoint “A vs B” tests will yield better results than the more
realistic leave-one out “AB” tests.

As a measure of base-line performance, the PDF of edge-
orientation angleswas used (“feature f0”), which is known to
be an informative feature for writer and handwriting style
identification [33], [34]. Then, the performance on our newly
introduced feature pðCO3Þ (“feature f1”) will be introduced.
Finally, the performance of a recent edge-based orientation
and curvature feature (“feature f2”) will be presented, in
isolation, and in combined use with “f1.” Table 2 gives an
overviewof the features used. The edge-based features f0 and
f2 will be explained in the next section.

3.1 Histogram (PDF) of Edge-Directions (Feature f0)

It has long been known from online handwriting research
[35], [33] that the distribution of directions in handwritten
traces, as a polar plot, yields useful information for writer
identification or coarse writing-style classification [34].

We developed an offline and edge-based version of the
directional distribution [36], [37], [28]. Computation of this
feature starts with conventional edge detection: convolution
with two orthogonal differential kernels (Sobel), followed by
thresholding. This procedure generates a binary image in
which only the edge pixels are ”on.” We then consider each
edge pixel in the middle of a square neighborhood and we
check, using the logical AND operator, in all directions
emerging from the central pixel and ending on the periphery
of the neighborhood for the presence of an entire edge
fragment. Fig. 7 shows how the local angles are determined
from the character edges. All the verified instances are
counted into a histogram that is normalized to a probability
distribution pð�Þwhich gives the probability of finding in the
imageanedgefragmentorientedattheangle�measuredfrom
the horizontal. In order to avoid redundancy, the algorithm
only checks the upper two quadrants in the neighborhood
because, without online information, we do not know which
way the writer ”traveled” along the found oriented edge
fragment. Theorientation is quantized inndirections,nbeing
thenumber of bins in thehistogramand thedimensionality of
the feature vector. A number n ¼ 16 directions (5-pixel long
edge fragments) performed best andwill be used in the test.

The distribution of the writing directions is characteristic
of a writer’s style. Using edges to extract it is a very effective
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Fig. 6. Density plots of pðCO3Þ. Each cell presents the probability density
of the CO3s in the 33� 33 Kohonen codebook. The maximum probability
is depicted in black, a probability of zero is represented as white.
(a) shows, for a number of writersw (i.e., the rows), the densities for a set
A (left column), a set B (middle column), and the densities of CO3s which
are both present in set A and B (right column, “Common”). (b) shows the
densities for the case where A and B are samples from two different
writers w and v 6¼ w, yielding a much lower density in the third column
(“Common”) than is the case in the left panel.

TABLE 2
An Overview of the Features Used in the

Tests and Their Dimensionalities



method because edges follow the written trace on both sides
and they are thinner, effectively reducing the influence of
trace thickness. As can be noticed in Fig. 8, the predominant
direction in pð�Þ corresponds, as expected, to the slant of
writing. Even if idealized, the example shown can provide
an idea about the ”within-writer” variability and ”between-
writer” variability in f0 feature space.

We must mention an important practical detail: our
generic edge detection does not generate one-pixel wide
edges, but they can usually be one to three pixels wide and
this introduces smoothing into the histogram computation
because the ”probing” edge fragment can fit into the edge
strip in a few directions around a central main direction.
This smoothing taking place in the pixel space has been
found advantageous in our experiments.

Table 3, columns “f0” show the results for the edge feature
“f0”orpð�Þ, using the�2 distance function, forhit lists of size1
to 10. From a Top-1 performance of 34 percent on the leave-
one out test, to a Top-10 performance of 79 percent can be
expected for this simple feature (n=299 samples, 150writers).
Using disjoint sets “A versus B,” these performances are
55 percent to 90 percent, respectively (n = 150 samples, i.e.,
150writers). TheuseofHammingdistanceyields comparable
results, Euclidean distance yielded worse results.

3.2 Histogram (PDF) of CO3s (Feature f1)

Subsequently, the identificationperformanceon theCO3 PDF
was measured. The computation of this feature vector has
been described in theMethods section. Table 3, columns “f1”
show the results for the pðCO3Þ feature. Performances vary
from Top-1 72 percent to a Top-10 rate of 93 percent for the
leave-one out “AB” test. Again, disjoint sets yield a higher
performance (Top-1 of 85 percent to Top-10 of 99 percent).
Also, here, the use of Hamming distance yields comparable
results, Euclidean distance yielded worse results. These
results clearly outperform the simple edge-based feature
“f0” andappear to be very promising.However, for use in the
application domain, such results are not sufficient. The target
performance indicated by forensic experts would be “99 per-
centprobabilityof finding the correctwriter in theTop-100hit
list, on a database of 20,000 samples.” Therefore, the use of
other orthogonal feature groups is necessary. Therefore, we
will combine the “f1” feature with another edge-based
feature that we recently developed [36]. This feature (f2)
captures both writing slant and curvature, by estimating
“hinge” angles along edges of script. Consequently, this
complementary information will be expected to boost
performances. Fig. 9 shows an example of a good hit list,
with the target sample on the first position, and a homo-
geneous impression of script style. Fig. 10 shows an example
of a hit listwhichdoesnot contain the target sample,while the
samples reveal a heterogeneity of style.

3.3 Histogram (PDF) of “Edge-Hinge” Angles
(Feature f2)

In order to capture both slant and the curvature of the ink
trace, which are known to be discriminatory between
different writers, we have designed another feature [36],
using local angles along the edges. The computation of this
feature is similar to the computation of “f0,” but it has added
complexity. The central idea is to consider in the neighbor-
hood, not one, but two edge fragments emerging from the
central pixel and, subsequently, compute the joint probability
distribution of the orientations of the two edge fragments
constituting the legs of an imaginary hinge. All the instances
found in the image are counted and the final normalized
histogram gives the joint probability distribution pð�1; �2Þ
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Fig. 7. Schematic description of the determination of edge orientation �
for feature f0 and edge-hinge orientations �1 and �2 for feature f2 on the
edges of a character a. More details can be found in [36], [37], [28].

TABLE 3
Nearest-Neighbor Writer-Identification Performance in Percent
of Correct Writers, as a Function of Hit-List Size (�2 Distance),
for Basic Feature f0 (Edge Orientation PDF), and the Proposed

PDF of Connected-Component Contour Pattern Presence

The 95 percent confidence limits are +/- 3.5 percent for N = 150 at a
performance of 95 percent. The reader is referred to Table 2 and the text
for further details.

Fig. 8. Two uppercase handwriting samples from two different subjects.
We superposed the polar diagrams of the edge-direction distribution
pð�Þ (feature f0) corresponding to paragraphs A and B contributed to our
data set by each of the two subjects.



quantifying the chance of finding in the image two ”hinged”
edge fragments oriented at the angles �1 and �2, respectively
(see Fig. 7).

As already mentioned in the description of “f0,” in our
case, edges are usually wider than 1-pixel and, therefore,
we have to impose an extra constraint: We require that the
ends of the hinge legs should be separated by at least one
”nonedge” pixel. This makes certain that the hinge is not
positioned completely inside the same piece of the edge
strip. This is an important detail, as we want to make sure
that our feature properly describes the shapes of edges
(and, implicitly, the shapes of handwriting at a low level)
and avoids the senseless cases.

In contrast with feature “f0” for which spanning the
upper two quadrants (180�) was sufficient, we now have to
span all the four quadrants (360�) around the central
junction pixel when assessing the angles of the two
fragments. The orientation is now quantized in 2n direc-
tions for every leg of the ”edge-hinge.” From the total
number of combinations of two angles (4n2), we will
consider only the nonredundant ones (�2 > �1) and we
will also eliminate the cases when the ending pixels have a
common side. The final number of combinations is
C2

2n � n ¼ nð2n� 3Þ. For n ¼ 16, the edge-hinge feature
vector will have 464 dimensions.

In Table 4, columns “f2” display the writer-identification
performance for the hinge feature vector. Clearly, this is a
powerful feature. Itsvirtueresides in the local computationon
the imageand,assuch, it canbedirectlyappliedalso tocursive
(lowercase)handwritingwhencharactersegmentationisvery
difficult. However, a weakness is the strong dependence on
natural slant. The performance ranges fromTop-1: 83 percent
to Top-10 97 percent using the �2 distance measure on the
leave-one out set “AB.” Again, the disjoint-set test “A versus

B” yields a higher performance (Top-1: 91 percent to Top-10:
98 percent). The Hamming distance delivers comparable
results (Table5).There seemstobeacomplementarybehavior
for these distance functions. Choosing the optimum for the
Top-1 performancewill yield a lower performance at the 10th
position in the list or vice versa, depending on the choice of
Hamming or �2 distance and the particular data set.

794 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 6, JUNE 2004

Fig. 9. An example of a successful hit list. The query sample is at the
top. The nearest neighbor is the sample directly below it, which is
correctly from the same writer. The distance value increases with left-to-
right reading order down the hit list.

Fig. 10. An example of an unsuccessful hit list. The query sample is at the
top. None of the nearest neighbors are from the correct writer of the query
sample. The distance value increases with left-to-right reading order
down the hit list. As can be seen, this query attracts samples from many
styles. The probability of such an undesirable case is less than 7 percent
for a hit list of 10 samples, assuming a 1 versus 299 test (cf. Table 3,
column “f1”).

TABLE 4
Nearest-Neighbor Writer-Identification Performance in Percent
of Correct Writers, as a Function of Hit-List Size (�2 Distance),
for the Edge-Hinge Feature f1, and for a Combined Feature

Vector of f1 and f2

The 95 percent confidence limits are +/- 3.5 percnet for N = 150 at a
performance of 95 percent. The reader is referred to Table 2 and the text
for further details.



Finally, the effect of combining the main feature of this
paper, theCO3 PDF, with the hinge feature “f2” is tested and
displayed in Table 4, columns f1 [ f2, for the �2 distance
measure, and similarly for the Hamming distance, Table 5.
The combined feature vector used consists of an adjoined f1
and f2, yieldinga1,553-dimensionalvector.No feature-group
weighing has been performed. Extensive optimization tests
yieldedonlymarginal improvements.All axes are thus scaled
as probabilities. The CO3 dimensions outnumber the hinge
dimensionswith a ratio of roughly 2:1. For the�2 distance, the
range of Top-1 to Top-10 performance is 81 percent to
98 percent for the leave-one out test “AB,” and 94 percent to
100 percent for the disjoint test “A versus B.” For the
Hamming distance, the Top-1 results for leave-one out are
better than the results for �2, i.e., 87 percent compared to
81 percent, with little difference at Top-10.

4 DISCUSSION

Results indicate that theuseof connected-component contour
shapes inwriter identification on thebasis of uppercase script
yields valuable results. We think that the reason for this
resides in the fact that, ultimately, writing style is determined
by allographic shape variations. Small style elements which
are present within a character are the result of the writer’s
physiological make up as well as education and personal
preference. Experiences on style variation in online hand-
writing recognition show evidence that the amount of shape
information at the level of the characters is increasing
monotonously as a function of the number of writers (Fig. 1
in [38]). Other image properties which are determined by
slant, curvature, and character placement yield additional
information to the overall character-shape elements of
allographs, but these features require a thorough normal-
ization and they are sensitive to simple forging attempts
(slant, size). However, as we have shown, the combination of
character-shape elements and image properties such as the
edge-hinge angular joint probability distribution function
will yield usable classification rates. We can anticipate on a
number of objections which could potentially be raised with
respect to the proposed approach and the experimentswhich

have been performed. We will try to refute these potential
objections or put them into a different perspective in the next
paragraphs.

Objection 1. The data are academic and clean, written on
the same paper type, and using a single brand of ball-point
pen, by 250 Dutch subjects. The test set contains 150 writers
(300 samples): This is hardly representative of conditions
seen in the application domain.

Reply. It is true that the data are uniform in many senses.
Additionally, the same texts have beenwritten by all subjects.
However, it is also an advantage of the current experiment
that the results can be attributed to the differences in writing
style, proper. For any robust writer-identification algorithm,
one would hope that an unknown sample can be identified if
it has beenwritten on similarmaterial by the samewriter. For
the connected-component contours, only a clear black/white
image has to be realized. The ink trace must be thick enough
to avoid singularities in the behavior of the Moore contour
follower. Many heuristics have been developed over the
years to improve on this. The edge-based approaches are
fairly size insensitive. However, a size normalization and
optionally, a normalization of slant, may be an option in a
realistic application context. Most scans have to be processed
anyway, to remove background textures. However, it is
granted that an experiment on nonacademic data, including
the required preprocessing, needs to be performed in future
studies. Examples of difficult material include: a photograph
of a threat written with a lipstick on a mirror, faint traces on
carbon copies of bills, smeared and textured hotel registra-
tion forms containing a combination of handwrittenmaterial,
and machine-print text.

In regard to the limited amount of data, it is clear thatmore
research is needed with sets in the order of 104 samples. It
should be noted that, with search sets of this magnitude, the
presence of administrative and labeling errors which are
accumulated during the enrollment process starts to play a
problem, even in the case of the powerful biometric methods
which are based on (bio)physical traits [39]. The resulting
”adventitious matches”—in forensic jargon—will pull the
achievable performance asymptote below the exact 100 per-
cent. In order to explore the consequences of using large
search sets, simulated data were generated, with random
values fromaGaussiandistributionwith the samemeans and
standard deviations as in the original feature vector f1 [ f2
(Ndim = 1,553). At 6,000 samples, a drop of 7 percent in Top1
performance was observed. However, experiments with real
data are needed to provide reliable estimates of the
performance as a function of data set size. It should be noted
that, in a practical case, the search set size can often be
reduced on the basis of nonhandwriting evidence. About
6.6 bits of information are needed to reduce an existing data
base of 30,000 samples to a search set of 300 samples, the size
used in the current experiments. Restrictive constraints
concern known information on writer handedness, age
category, sex, nationality, etc.

Objection 2. Although the approach presented appears
to be probabilistic through the use of probability density
functions, no use is made of Bayesian statistics, which seem
to be perfectly suitable to this problem.

Reply. A naive Bayesian approach, discounting the
probabilities of evidence conjunctions in the joint PDF could
be used here, indeed. Given a Kohonen SOFM codebookC of
connected-component contours (n ¼ 33 � 33),
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TABLE 5
Nearest-Neighbor Writer-Identification Performance in

Percent of Correct Writers, as a Function of Hit-List Size
(Hamming Distance), for the Edge-Hinge Feature f1,

and for a Combined Feature Vector of f1 and f2

The 95 percent confidence limits are +/- 3.5 percent for N = 150 at a
performance of 95 percent. The reader is referred to Table 2 and the text
for further details.



P ðwjC1; C2; . . . ; CnÞ ¼

¼ P ðwÞ � P ðC1jwÞ
P ðC1Þ

� P ðC2jwÞ
P ðC2Þ

� . . . � P ðCnjwÞ
P ðCnÞ

;
ð10Þ

the posterior probability of finding a writer w, given the set
of found connected-component contours Ci, equals the
product of the prior probability of finding a writer with all
conditional probabilities of finding a connected-component
contour Ci given this writer, divided by the prior
probabilities of finding evidential shapes Ci in the en-
semble. As regards P ðwÞ, the probability of finding a writer
in the set was the same for all writers, in the current
experiment. In the application domain, however, one may
argue that it is not a desirable property if, e.g., the
probability of deciding for a writer A equals the fivefold
of the probability of deciding for a writer B, because writer
A has five samples and writer B has only one sample in the
database: One would like to take the identification decision
on the basis of shape evidence, alone. Other sources of
identity evidence should be incorporated in procedures
which are outside the realm of writer identification on the
basis of script shapes, proper. In regard to normalization by
P ðCiÞ and taking the normalized product of conditional
probabilities, results in any case indicated a dramatic
reduction in writer-identification performance.

Objection 3. In how far is the Kohonen self-organized
map of connected-component contours representative of all
possible writing styles? Only 100 writers were used here:
This can hardly be called representative for the ensemble of
possible uppercase allographs.

Reply. The size of script sample collections in forensic
practice may be 20k-70k. Indeed, it would be better to use
more training data, and the size of theKohonen networkmay
have to be enlarged. However, inspection of Fig. 5 will reveal
that if one searches for recognizable fragments of variations
on letters in the alphabet, not all of them seem to be present.
Rather than representing an exhaustive list of all possible
shapes, the Kohonen network spans up a shape space. The
CO3s of anunseen allographwill find their attractor shapes in
the map: It is the overall shape of the resulting probability
density function that will characterize the writer.

Objection 4. Currently, powerful methods for class
separation exist, such as the multilayer perceptron (MLP)
and the support-vector machine (SVM). One would expect
that the use of these methods will yield higher perfor-
mances than reported on the simple distance measures and
nearest-neighbor search.

Reply. The use of a technique like the SVM is not trivial
in the writer-identification problem. The amount of writers
in a realistic problem may exceed the number of 20,000.
Training writer-specific SVMs, using, e.g., a one-versus-
others training scheme becomes prohibitive. A more
realistic solution would entail the use of a trained distance
function between two given sample feature vector.
Although the idea of trained distance functions as such is
appealing, preliminary experiments revealed that the
results where not much better than those obtained by
nearest-neighbor search. The number of contrasting classes
(writers) is large, and it is difficult to find a distance
function which suits all local sample configurations with a
smooth margin separating “near” (same-identity) from
“far” (different-identity) samples. At this moment, the
combination of a comparable or lower performance with
the additional cost of training efforts and additional

parameters seems unattractive. However, more research
is needed here, indeed.

We want to point out, nevertheless, that an SVM or MLP
traineddistance function offers a very effective solution to the
writer-verification problem when the question is: Are these
two given samples written by the same person? The SVM
seems to be the ideal classifier to give the yes/no answer to
this question of authentication in a one-to-one comparison.

Objection 5. The proposed edge-based features, here
and in other studies [36], [28], [37] may perform well, but
the first attempt at disguising identity by a forging writer is
to alter the habitual slant angle.

Reply. As stated in the introduction, the goal of the
proposed method is to correctly identify a writer on the
basis of handwritten samples produced under natural
conditions. The introduction of the connected-component
contour PDF is in fact inspired by the goal to complement
the information derived from exact edge orientations with
allographic style information. Connected components are
usually small, and the contour feature, which consists of
normalized x, y coordinates, is quite robust to naturally
occurring slant variations. For structural slant deviation in a
suspected sample, the shear transform can be applied in
order to align the average slant of an unknown sample with
a standard slant value. Such a normalization can be realized
automatically on the basis of the modal edge orientation if a
handwritten sample contains a sufficient amount of char-
acters. Such methods are widely applied in automatic
handwriting recognition. After such a slant normalization,
residual writer-specific information may be expected to be
present in an edge-orientation (polar) PDF.

Objection 6. The proposed approach is, in the end,
hybrid: The CO3 PDF is apparently not powerful enough
and an additional edge-orientation feature has to be called
in to achieve performances which become interesting.

Reply.As discussed in the Introduction, the identification
of writers is not as easy as is DNA-based, fingerprint-based,
or iris-based identification of individuals. This is mainly due
to the fact thatproperties of theworkingbrainare involved, as
contrasted with the low-level biochemical or biomechanical
information that can be used in these other techniques.Under
these conditions, a pragmatic use of all the available shape
information seems to be preferable. In order to put the
performances in perspective, for the Firemaker set, the
following additional findings may be presented:

. Using the edge-hinge (f2) feature, but computed
separately for the upper and lower halves of written
text-lines and subsequently concatenated [37], per-
formances of 79 percent on Top-1 and 96 percent on
Top-10 are reported on the same uppercase hand-
writing samples used for the present study. The
reported performance was obtained under difficult
testing conditions: All 250 writers were included in
the test set (since no training was needed) and
searches were performed in the leave-one-out “AB”
manner. This shows that a combination of this
method (“f2-split”) with pðCO3Þ may yield even
better figures than reported here for a homogeneous
f2 computation over the sample as a whole.

. For the predominantly lowercase text samples from the
Firemaker set and under similarly difficult testing
conditions, the following results have been reported
[37]: a Top-1 and Top-10 performance of 78 percent
and 95 percent, respectively, for feature “f2-split.”
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. Using an existing system for forensic writer identifi-
cation (X) and a subset of predominantly lower-case
text by 100writers, Top-1 andTop-10 performances of
34 percent and 90 percent were realized.

. Another existing practical system for forensic writer-
identification (Y), showed a Top-1 and Top-10
performance of 65 percent and 90 percent, respec-
tively, on image-based statistics and 45 percent and
81 percent on features measured by script experts. It
is important to note that the number of writers
(distractors) in these experiments (100) is two-third
of the number of writers used for testing the system
presented in the current study (150), which makes
the identification easier for the systems X and Y.

Objection 7. It is unclear how the proposed approach
performs on these data in comparison to other known image
features.

Reply.Table6showsperformancesofanumberof features
on this same data set (AB), in leave-one-out mode. Feature e
representsaone-dimensional feature, i.e., thenumberofbytes
in the Lempel-Ziv compressed 1-byte gray-scale image of a
paragraphsample,dividedbythenumberofblack(ink)pixels
after contrast normalization. This simple featurewith a value
range of 2-15 bits=inkpixel provides a baseline performance
well above chance level (Top10: 19 percent). The wavelet-
based features (w1-w7) are computed on the basis of Davis’
Wavelet package [40], using coefficientsHL1; HH1; LH1; . . . ;
HL11; HH11; LH11, yielding33rectangleswithcoefficientsper
paragraph of written text. For each coefficient rectangle, the
relativeenergy, skew,andkurtosiswerecomputed,yieldinga
99-dimensional feature vector. Only best results per feature
group are shown, such as Daubechies 14 (Table 6, w6). The
performanceof thewavelet (energyanddistribution) features
is low. It may be predicted that compute-intensive Gabor
wavelets (not tested)may performbetter than the “technical”
wavelets usedhere, asGaborwavelets aremore similar to our
edge-angular features. However, it is as yet unclear whether
the periodicity in the Gabor wavelet would provide an
additional source of information in writer identification.
Features v, r, h, b are described elsewhere ([36], [28], [37]). The
”brush” feature [28] showsan interestingperformance (Top1:

69 percent). However, unlike the features proposed in the
currentpaper, thebrush feature requires that the same typeof
pen is used for writing the known and unknown sample, due
to its focus on the ink-deposition pattern at stroke endings.
Performances for features f0, f1, f2 as described elsewhere in
this paper are duplicated here for ease of comparison.

Taking all of these points in consideration, we are quite
confident that the results presented here on the combined
use of connected component contours and edge-hinge
angles will be robust and replicatable.

5 CONCLUSION

This paper presents a theoretically founded approach for the
use of a connected-component contour codebook for the
characterization of a writer of uppercaseWestern letters. The
use of the connected-component contour (CO3) codebook
and its probability-density function of shape usage has a
number of advantages. Nomanual measuring on text details
is necessary, representing an advantage over interactive
forensic feature determination. The feature is largely size
invariant. A codebook has to be computed over a large set of
uppercase samples, but this is an infrequent processing stage.
Writer-identification performance on this new feature is
promising, and could be improved using better distance
measures. However, as we have illustrated, the combination
with another strong feature concerning the edge-orientation
distribution has proven to be highly effective. In thismanner,
we have used two major and complementary features in
image processing: edges and the shapes of connected
components, covering the angular and Cartesian domains,
respectively. Current experiments concern the use of theCO3

codebook approach for writer identification on the basis of
regular mixed-style scripts, obtaining promising results.

The goal remains to realize sparse-parametric solutions
[28] for writer identification since there is limited room for
extensive training and retraining, and the use of an
abundance of weights entails a risk of biased system
solutions. Again, it should be stressed that it is not the goal
of this paper to introduce a single and ultimate solution.
However, the use of automatic and computation-intensive
approaches in this application domainwill allow formassive
search in large databases, with less human intervention than
is current practice. By reducing the size of a target set of
writers, detailed manual and microscopic forensic analysis
becomes feasible. It is important to note also the recent
advances [1], [41] that have been made at the detailed
allographic level,when character segmentationor retracing is
performed by hand, followed by human classification. In the
foreseeable future, the toolbox of the forensic expertwill have
been thoroughly modernized and extended. Besides their
forensic applicability, the methods described in this paper
may have interesting potential applications in the field of
historic document analysis. Examples are the identification of
scribes on medieval manuscripts or identification of the
printing house on historic prints.
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