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ABSTRACT

This paper evaluates the performance of edge-based direc-
tional probability distributions as features in writer identifi-
cation in comparison to a number of non-angular features. It
is noted that angular features outperform all other features.
However, the non-angular features provide additional valu-
able information. Rank-combination was used to realize
a sparse-parametric combination scheme based on nearest-
neighbor search. Limitations of the proposed methods per-
tain to the amount of handwritten material needed in order
to obtain reliable distribution estimates. The global features
treated in this study are sensitive to major style variation
(upper- vs lower case), slant, and forged styles, which ne-
cessitates the use of other features in realistic forensic writer
identification procedures.

1. INTRODUCTION

Image-based writer identification has a number of require-
ments differing from many other applications in pattern recog-
nition. For searching suspects, queries are performed in
databases of the order of

�����
handwritten samples. The pro-

cess is never fully automatic, due to a wide range of scan-
quality and foreground/background separability problems.
Three image-related information sources are usually inte-
grated in operational systems: 1) automatic feature extrac-
tion from a region of interest (ROI), using general image
information, 2) manually measured script features by foren-
sic experts, and 3) character-dependent shape information.
This paper will focus on category 1), which is only appli-
cable if good preprocessing has been performed and a crisp
image of ink on a homogeneous background is available in
gray scale. The target performance in the application do-
main is to reduce a list of

�����
suspects to a top-hit list of

one hundred candidates, with a probability of near to 1.0
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that the correct writer is in this reduced hit list. In this re-
spect writer identification is akin to the application area of
Information Retrieval. Given the time-variant contents of
the sample databases and the interactive manner in which
feature groups are used, there are disadvantages to the use
of parameter-greedy methods such as the multi-layer per-
ceptron and the support-vector machine. Additionally, the
number of samples per class (i.e., writer) is very limited,
limiting the extent to which the statistical within-writer pa-
rameters can be estimated. It is important to note that no sin-
gle feature will be powerful enough for the defined perfor-
mance target, necessitating the use of classifier-combination
schemes. Again, in the combination stage, trained meta
classifiers are impractical here. In this paper we will present
two new and useful features for writer identification and re-
port on results using nearest-neighbor matching with a se-
quential rank-combination scheme [1] using several com-
mon feature groups.

2. DATA

We evaluated the effectiveness of different features in terms
of writer identification using the Firemaker data set [2]1.
A number of 251 Dutch subjects, predominantly students,
were required to write four different A4 pages. On page
1 they were asked to copy a text presented in the form of
machine print characters. On page 2 they were asked to de-
scribe the content of a given cartoon in their own words.
Pages 3 and 4 are not used here. The recording conditions
were standardized: the same kind of paper, pen and support
were used for all the subjects. This is an idealized situa-
tion compared to the conditions in practice. However, it is
also true that the detection of the correct writer on the ba-
sis of the character shapes proper is the core function which
is to be evaluated with this data set. The response sheets
were scanned with an industrial-quality scanner at 300 dpi,
8 bit / pixel, gray-scale. Our experiments are entirely image-

1This database has been collected with the help of a grant from the
Dutch Forensic Institute NFI, The Hague, The Netherlands



Table 1. Feature groups used for writer identification and
the used distance function �������� ��
	 between two samples ��
and �� . Feature group 8 (WR) is a ’pseudo’ feature vector,
containing writer parameters which are often known in the
application context: Style may be one of Handprint, Cursive
or Mixed.

Feature Explanation Dim. ������� ����
f1 ACF Autocorrelation in horizontal raster 100 Euclid.
f2 VrunB PDF of vertical run lengths of ink 100 ���
f3 HrunW PDF of horizontal run length of ’white’ 100 ���
f4 Brush Ink-density PDF at stroke endings 225 ���
f5 ����� � Edge-direction PDF 16 Euclid.
f6 ������� � � � � Hinge angle combination PDF 464 ���
f7 ����� � � � � � Horiz. edge-angle co-occurrence 512 ���
f8 WR Writer: handedness, sex, age, style 16 Euclid.

based, no on-line information is available (e.g. speed of
writing, order of different strokes).

3. FEATURES

Table 1 shows the feature groups used in this study and the
distance function used in plain nearest-neighbor matching.
Experiments have been performed with Hamming distance,
Minkowski up to 5th order, Hausdorff and for the probabil-
ity distribution functions, !�" and Bhattacharyya. Only best-
performing distance functions will be used here. Features
f1-f3 are known from literature, feature f4 is by the first au-
thor, f5 is known from literature but adapted to edges, fea-
tures f6 and f7 are new features by the second author. We
believe that the use of empirical probability-density func-
tions (PDFs) is a more sensitive way of representing a writer’s
uniqueness than enforcing a parametric distribution model.
Furthermore, the use of PDFs in general allows for a homo-
geneous feature vector for which excellent distance func-
tions exist.

3.1. Edge-direction distribution (f5)

The distribution of the writing directions is characteristic of a writer’s
style. The polar probability density function was used in an on-line
study of handwriting [3] to describe differences between upward
and downward strokes. It was also used off-line [4] as a prelimi-
nary step to handwriting recognition that allows a partition of the
writers by unsupervised fuzzy clustering in different groups. The
edge-direction distribution is strongly influenced by slant, which
may have been forged since it is a geometric property which is
under voluntary control. However, slant normalization by shear
is an easy step to perform in cases of doubt. Here, we will test
the performance of this feature, assuming that a reference sam-
ple and a questioned sample were written with a comparable slant
(non-forged conditions). Computation of this feature starts with
conventional edge detection: convolution with two orthogonal dif-
ferential kernels (Sobel), followed by thresholding. This proce-
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Fig. 1. Two handwriting samples from two different subjects. We
superposed the polar diagrams of the edge-direction distribution#%$'&)( corresponding to pages 1 and 2 contributed to our data set by
each of the two subjects.

dure generates a binary image in which only the edge pixels are
”on”. We then consider each edge pixel in the middle of a square
neighborhood and we check, using the logical AND operator, in
all directions emerging from the central pixel and ending on the
periphery of the neighborhood for the presence of an entire edge
fragment. All the verified instances are counted into a histogram
that is normalized to a probability distribution #%$'&)( which gives
the probability of finding in the image an edge fragment oriented
at the angle & measured from the horizontal. In order to avoid re-
dundancy, the algorithm only checks the upper two quadrants in
the neighborhood because, without on-line information, we do not
know which way the writer ”traveled” along the found oriented
edge fragment. The orientation is quantized in * directions, * be-
ing the number of bins in the histogram and the dimensionality
of the feature vector. A number of 16 direction performed best
and will be used in the sequel. A more detailed description of the
method can be found elsewhere [5].

As can be noticed in fig. 1, the predominant direction in #%$'&)(
corresponds, as expected, to the slant of writing. Even if idealized,
the example shown can provide an idea about the ”within-writer”
variability and ”between-writer” variability in the feature space.

3.2. Edge-hinge distribution (f6)

In order to capture the curvature of the ink trace, which is very
typical for different writers, another feature is needed, using local
angles along the edges. The computation of this feature is similar
to the one previously described, but it has added complexity. The
central idea is to consider the two edge fragments emerging from a
central pixel and, subsequently, compute the joint probability dis-
tribution of the orientations of the two fragments of this ’hinge’.
The final normalized histogram gives the joint probability distribu-
tion #%$'&%+-,.&)/-( quantifying the chance of finding in the image two
”hinged” edge fragments oriented at the angles &0+ and &1/ respec-
tively. The orientation is quantized in 16 directions for a single
angle, as before. From the total number of combinations of two
angles we will consider only the non-redundant ones ( & /32 & + )
and we will also eliminate the cases when the ending pixels have
a common side. Therefore the final number of combinations is



� $�� * ,���(���� *�� * $�� * �
	 ( . The edge-hinge feature vector will
have 464 dimensions (16 directions considered). A more detailed
description of the method can be found elsewhere [5].

3.3. Horizontal co-occurrence of edge angles (f7)

This feature is an variant of the edge-hinge feature, in that the com-
bination of angles is computed along the rows of the image. For
the angle of a found edge fragment � , the co-occurrence probability
is computed with the angles of fragments � which are horizontally
displaced from � .

3.4. Run-length distributions (f2 and f3)

Run lengths, first proposed for writer identification by Arazi [6],
are determined on the binarized image taking into consideration ei-
ther the black pixels corresponding to the ink trace or, more benefi-
cially, the white pixels corresponding to the background. Whereas
the statistical properties of the black runs mainly pertain to the ink
width and some limited trace shape characteristics, the properties
of the white runs are indicative of character placement statistics for
a writer. There are two basic scanning methods: horizontal along
the rows of the image and vertical along the columns of the image.
Similar to the edge-based directional features presented above, the
histogram of run lengths is normalized and interpreted as a prob-
ability distribution. Our particular implementation considers only
horizontal run lengths of up to 300 pixels (f3) and vertical run
lengths (f2) of up to 100 pixels (the height of a written line). This
feature is not size invariant. However, size normalization is not an
issue in interactive writer search. An advantage of the use of run
lengths is that these features provide orthogonal information to the
directional features.

3.5. Autocorrelation (f1)

The autocorrelation function detects the presence of regularity in
writing: regular vertical strokes will overlap in the original row
and its horizontally shifted copy for offsets equal to integer mul-
tiples of the local wavelength. This results in a large dot product
contribution to the final histogram for periodic signal components:
Every row of the image is shifted onto itself by a given offset and
then the normalized dot product between the original row and the
shifted copy is computed. The maximum offset (’delay’) corre-
sponds to 100 pixels. All autocorrelation functions are then accu-
mulated for all rows and the sum is normalized to obtain a zero-lag
correlation of 1.

3.6. Brush function: Ink density at stroke endings (f4)

It is known that axial pen force (’pressure’) is a highly informative
signal in on-line writer identification [7]. In ink traces of ball-point
pens, there exist lift-off and landing shapes in the form of blobs or
tapering [8]. These shape phenomena are due to the ink-depositing

process by a ball-point pen during take off from and landing on pa-
per. Force variations will be reflected in the saturation and width
of an ink trace. In order to capture the statistics of this process,
a convolution window of 15x15 pixels was used, only accumulat-
ing the local image if the current region obeys to the constraints
for a stroke ending. This constraint is determined by requiring a
supraliminal ink intensity in the central window, co-occurring with
a long run of white pixels along minimally 50% of the perimeter
of the window, which is interrupted by an ink strip of at least 5
% of the window perimeter. After summing all luminances, the
accumulator window is normalized to a volume of 1, yielding a
PDF for ink presence at stroke endings in any direction. This fea-
ture is clearly not size invariant: the window of ��

/
pixels was

chosen because it captures 6-7 pixel-wide ink traces. This feature
thus aims at writer identification on the basis of stroke-brush pat-
terns, assuming that a suitable normalization of size with a com-
parable ink-trace thickness between known and questioned sample
has been realized in preprocessing.

4. SINGLE-FEATURE GROUP RESULTS

Table 2 shows the identification performance of the feature
groups using hit list sizes of one to ten. It is very clear that
the angular features (f6, f7) outperform the traditional fea-
tures (f1, f2, f3), whereas the proposed Brush feature (f4)
performs moderately well (53% Top1). The dimensionality
of the feature vectors is high indeed, and PCA analysis con-
firmed that a reduction to 10% of the original dimensions
may still yield reasonable results. Such computations, how-
ever, are in conflict with the sparse-parametric philosophy
which is proposed here. Since the results on the single fea-
ture groups are well below the application target, and since
the feature groups are theoretically reasonably independent,
it can be expected that classifier combination may produce
improved results. However, for aforementioned reasons, a
non-parametric or sparse- parametric procedure is needed
here.

5. RANKED VOTING METHODS

In ranked voting methods the voters are asked for a prefer-
ence ranking of the candidates. A monotonous transform
from likelihoods or distances to the ranking is assumed to
exist. Although conversion to rank constitutes a loss of in-
formation, it also evades problems in scaling the voters con-
fidences. The Borda count method needs a complete pref-
erence ranking from all voters over all candidates. It then
computes the mean rank of each candidate over all voters.
The classes are reranked by their mean rank and the top
ranked class wins the election. Note that the Borda count is
the ranked variant of the sum rule in classifier combination.
Many variants exist but the use of the average ranks often
produces good results [1]. A problem in the current context



Table 2. Top-N recognition rate (%), for individual feature
groups. The numbers between parentheses in the last col-
umn show the results for a pseudo feature vector contain-
ing some general writer parameters (handedness, age, sex,
coarse writing style) which are known. There are 501 hand-
written samples in each individual query: 1 target and 500
distractors. Confidence interval: ��� % at � � % recognition.

TopN f1 f2 f3 f4 f5 f6 f7 (f8)
1 12 27 20 53 33 71 76 (33)
2 20 34 29 61 44 77 83 (41)
3 25 39 34 67 51 81 85 (49)
4 29 43 38 71 56 84 86 (56)
5 33 46 41 74 60 87 87 (62)
6 35 48 45 76 64 88 88 (66)
7 38 50 47 77 67 89 88 (71)
8 40 51 49 80 69 89 89 (74)
9 41 53 51 80 71 90 90 (78)
10 44 54 54 81 73 90 90 (80)

is that the individual feature groups yield different perfor-
mances, such that rankings cannot be easily aligned. The
following crude scheme proved quite effective. A cascade
of classifiers is used, at each step merging the new ranking
with the existing ranking: ����	��
�������	��
�� � ��� ��	 ���� and��� ��� � . Feature groups are sorted from low Top1 perfor-
mance to high Top1 performance and the Borda cascade is
executed in this order. The results are evaluated and clas-
sifiers are reshuffled until a monotonously increasing Top1
performance is result. This usually requires only a limited
number of bubble-sort moves. Table 3 shows the results of
this procedure, with a stable improvement in performance
as feature groups are being added, from left to right. The
first and weakest feature may contribute to the final perfor-
mance in the order of 1%, using eight features. Strong fea-
tures in the late stages in this Borda cascade dominate the
final performance. In order to assess the influence of edge-
based features alone, a test was performed using a Borda
combination of f5, f6 and f7. Results indicated a Top-1 per-
formance of 72% and Top-10 performance was 90%.

6. CONCLUSION

Although results are below the requirements in the appli-
cation domain, they are quite robust. Results on weighted
combination schemes not reported here showed that with
extensive efforts, performances above 94% Top-10 are quite
unlikely for these data and features. A kernel-based dis-
tance function will be our next effort, but it is with hesita-
tion, since the sparse-parameter methods have distinct ad-
vantages. It is evident that global descriptors of ROIs will
never suffice in writer identification. Detailed character-
shape knowledge is needed, as well, especially in case of
forged writing styles. Although edge-based orientation fea-

Table 3. Top-N recognition rate (%), cumulative over fea-
ture groups using cascaded Borda rank combination. The
numbers between parentheses in the last column show the
results in case some general writer parameters are known,
as well. Please refer to Tables 1 and 2 for more details.

TopN f1 +f2 +f3 +f4 +f5 +f6 +f7 (+f8)
1 12 36 43 64 75 77 81 (88)
2 20 45 54 74 81 82 86 (94)
3 25 50 61 79 85 85 89 (97)
4 29 55 65 82 87 88 90 (98)
5 33 58 68 85 89 90 91 (98)
6 35 60 71 86 90 91 91 (98)
7 38 63 72 88 90 92 93 (98)
8 40 64 75 90 92 92 93 (98)
9 41 66 77 90 93 93 93 (98)
10 44 66 79 91 93 93 94 (99)

tures are powerful, slant may be forged easily: Only a com-
bination of approaches will yield reliable results in practice.
Elsewhere [5], results on the stability of the features with
respect to the amount of text or ink will be reported.
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