
Recognition of Handwritten Numerical Fields in a

Large Single-Writer Historical Collection

Marius Bulacu Axel Brink Tijn van der Zant Lambert Schomaker

Artificial Intelligence Institute, University of Groningen, The Netherlands

(bulacu, a.a.brink, tijn, schomaker)@ai.rug.nl

Abstract

This paper presents a segmentation-based handwriting

recognizer and the performance that it achieves on the nu-

merical fields extracted from a large single-writer historical

collection. Our recognizer has the particularity that it uses

morphing during training: random elastic deformations are

applied to fabricate synthetic training character patterns

yielding an improved final recognition performance. Two

different digit recognizers are evaluated, a multilayer per-

ceptron (MLP) and radial basis function network (RBF),

by plugging them into the same left-to-right Viterbi search

framework with a tree organization of the recognition lexi-

con. We also compare with the performance obtained when

no dictionary is used to constrain the recognition results.

1. Introduction
Archives around the world are in possession of kilome-

ters of bookshelves with valuable historical documents. A

very large portion is handwritten, as machine-printing was

not always as convenient and widespread as today. Gain-

ing electronic access to this wealth of information is only

possible by building Google-like search engines. The chal-

lenge relies in converting the scanned document images into

a searchable representation. Handwriting recognition has

therefore the potential of becoming the cornerstone deter-

mining the success of such ambitious undertakings. In re-

sponse to a query, the users are offered access to the scanned

images to be able to fully research the original documents

and also directly appreciate their graphical beauty. How-

ever, handwriting recognitionwill be the driving technology

enabling the search and retrieval process.

Handwritten word recognition is dominated by the

segmentation-free generative approach using hidden

Markov models (HMMs). The alternative approach,

followed also in this paper, uses a split-and-merge strategy:

possible segmentation points are generated in excess and

the correct subset is chosen by a search process based

on the recognition scores produced by a discriminative

character recognizer [4, 5, 6, 8]. This segmentation-based

approach can capitalize on the experience accumulated in

isolated character recognition.

An established method to improve the performance of

pattern recognition systems is to use synthetic training data

[2, 7, 9]. In this paper, we investigate the utility of artifi-

cial data in building a segmentation-based handwriting rec-

ognizer. The tests are carried out on the numerical fields

extracted from a large single-writer historical collection.

2. The KdK dataset
Our research is performed on the archive of Kabinet der

Koningin (KdK) - the Cabinet of the Dutch Queen [1]. This

collection is in the custody of Nationaal Archief in The

Hague and covers almost 200 years (1798-1988). It is very

relevant historically because it holds a record of all impor-

tant forms of government intervention in the Netherlands

(laws, decisions, official appointments). All these state de-

cisions are described by a short summary paragraph (see

Fig. 1). Large portions of the KdK are written by a single

writer (the clerk in office). Our goal is to build a search en-

gine to allow users to find and retrieve only the paragraphs

with the relevant content from the entire collection.

The KdK documents have an administrative nature and

numerical fields are heavily used for identifying and ref-

erencing the official decisions. Recognizing these numeri-

cal fields is an important step, because they can be effec-

tively used as hyperlinks, providing a good entry to the

KdK collection. Each KdK paragraph is identified by the

year (1903), month, day and decision number. Page refer-

ences are used in the header / footer of the KdK documents.

Layout analysis [3] allows the accurate extraction of three

types of numerical fields which will be used in this paper:

days, decision numbers and page references (see Fig. 1).

The other numbers dispersed throughout the text require a

separate approach as they must be recognized together with

the content of the paragraphs. The three types of numerical

fields were extracted from the complete document images,

deslanted at a fixed angle (45◦) and separate training / test
sets were defined for use in experiments.

In the KdK collection, often the digits are connected by

ligatures or are broken. Consequently, a strictly connected-

component-based approach would fail. We adopted a gen-

eral segmentation-based approach applicable to complete

words or sentences (text lines). The three types of numerical

fields used in this paper actually represent an initial testbed

for our handwriting recognizer, with augmenting difficulty

2009 10th International Conference on Document Analysis and Recognition

978-0-7695-3725-2/09 $25.00 © 2009 IEEE

DOI 10.1109/ICDAR.2009.8

808

decision
numbers

days

page
references

Figure 1. Example of a KdK document showing extensive use of numerical fields (highlighted). We indicate the three types of
fields used in the recognition experiments reported in this paper: days, decision numbers and page references. Samples of extracted

fields are shown in the right panel to emphasize the need for adopting a generic cursive handwriting recognition approach.

due to the increasing pattern complexity and size of the

recognition lexicon: days (’1’ to ’31’), decision numbers

(’1’ to ’300’) and page references (’1’ to ’3000’).

3. Heuristic over-segmentation - Viterbi search

We built our handwriting recognizer following a

segmentation-based (split-and-merge) approach [5]. Three

processing stages are involved (see Fig. 2):

1) Over-segmentation: a heuristic method is used to

define a larger set of potential segmentation points with

the goal that it contains, as a subset, the real segmentation

points between the characters. The ink is therefore split into

graphical entities (graphemes) that are smaller than a com-

plete character. Often the upper / lower word contours are

used for this purpose. In our case, the ink is projected onto

the horizontal axis and the minima of the smoothed profile

define the possible segmentation points. These points are

ordered from left to right and are used to define the nodes

in a graph. The different combinations of ink segments that

can form a letter are encoded in the arcs of this graph (e.g.

from node i to node n with 1 ≤ n − i ≤ 5). We use min /
max widths to define these directed links, which we encode

in the adjacency matrix of the segmentation graph.

2) Character recognition: all candidate characters,

as defined by the links of the segmentation graph, are

passed to a classifier that must generate recognition scores

for all character classes involved. The recognition scores

rec[i, n, char] can be posterior (log)probabilities or pattern
matching distances. We adopt here a formalism based on

additive costs that are minimized for the correct class. Any

character recognizer can be used at this stage. We will com-

pare two neural networks: a multilayer perceptron (MLP)

and a radial basis function network (RBF). Not only the

recognition performance, but also the rejection performance

of the character classifier is important, because the majority

of the pattern candidates obtained by merging ink segments

do not correspond to real characters.

As input to the neural networks, we use normalized

28x28 bitmaps (MNIST) [5]. Character deslanting using

the principal axis is followed by shifting the center of mass

of the ink to the center of the 28x28 template. The same

number of units (784-200-10) was used for both networks.

3) Left-to-right search: the best (minimum cost) se-

quence of characters matching the input image is found us-

ing dynamic programming (Viterbi search). Two situations

can be distinguished here, depending on whether or not a

lexicon is used to constrain the recognition result.

When no lexicon is used, it is sufficient to store only

the best recognition result for each character candidate

mrec[i, n] = minchar(rec[i, n, char]) together with its
class label. A minimum Viterbi cost vcost[n] is then com-
puted iteratively at each node n of the segmentation graph

in left-to-right order (see Fig. 3):

vcost[n] = min
i∈Inc(n)

(vcost[i] + mrec[i, n]) (1)

pback[n] = argmin
i∈Inc(n)

(vcost[i] + mrec[i, n]) (2)

where Inc(n) is the set of incoming links to node n.

The Viterbi costs must in fact be normalized with respect

to the path length in order to avoid the tendency towards

shorter solutions that naturally accumulate smaller costs.

The optimal path is found by following the backtracking

pointers pback[n] from the end node to the begin node of
the segmentation graph. The recognition string is obtained

by reading off the labels along the Viterbi path. The correct

segmentation is thus a byproduct of the recognition process.

This lexicon-free approach is relevant for sentence recogni-

tion, where an exhaustive lexicon cannot be assumed.

809

21 3 4 EB

’9’ +0.998

’0’ +0.996

’2’ +0.096
’1’ +0.999

’8’ +0.999

’5’ +0.948

’4’ +0.997
’3’ +0.957

’6’ +0.999
’7’ −0.703

’3’ ’7’ ’4’

Figure 2. Schematic description of the segmentation-
based handwriting recognizer applied to a numerical field.

Often, a lexicon containing all the legal words is avail-

able and can be used to constrain the recognition results

yielding improved performance. The optimal Viterbi cost

must be computed for all the words in the dictionary (eqs

1 and 2 must be modified to take account of character lev-

els and labels). The best matching word with the minimum

cost is selected as the final recognition result.

In the lexicon-driven approach, the search for the opti-

mal solution can become the bottleneck, especially for large

lexica and long word zones. Attaining speed without com-

promising performance is possible by organizing the lexi-

con as a tree (see Fig. 4). In this way, repeated computation

is avoided for the common prefix shared by several words.

The segmentation graph and the lexical tree are two dis-

crete structures and the search for the optimal path can be

performed using an elegant recursive algorithm (Alg. 1) that

enforces an ordered one-to-one correspondence between the

tree nodes and a subset of the graph nodes.

B Eni i+1i−1

pback[n]

mrec[i,n]

Inc(n)

vcost[n]vcost[i]

...

Figure 3. Lexicon-free Viterbi search for the optimal
(minimum cost) recognition path (see eqs 1 and 2).

0

1

9

1

2

0

1

9

3

4

9

0

1

Figure 4. Tree organization of the recognition lexicon:
’1’ to ’31’ used for the day (of the month) fields.

In the results section, we will compare the recognition

rate obtained by lexicon-free versus lexicon-driven search.

We are also interested in the speed up obtained from using

a lexical tree versus a flat lexicon.

4. Digit morphing

In contrast with the EM algorithm (Baum-Welch) for

HMMs, training the basic character recognizer for a

segmentation-based handwriting recognition system is a

tricky issue without a standard solution. Our approach was

to collect a base set of digit images segmented by hand and

to augment this data by generating synthetic examples us-

ing random geometric distortions. We were incited by the

record performance in digit recognition reported in [7].

Algorithm 1 Depth-first recursive search for the minimal-

cost path complying both with the lexical tree and the seg-

mentation graph. In the first call of the recursive function,

tnode is the root of the lexical tree, gnode is the first node

of the segmentation graph and cost = 0. The finalcost

array is initialized to∞.

function rsearch(tnode, gnode, cost)
/* Recursion stops - cost minimization */

if isleaf(tnode) and isend(gnode) then
if cost < finalcost[tnode.word] then

finalcost[tnode.word] = cost

end if

return

end if

/* Move to the next node in the tree and the graph */

for all tchild in tnode.children do

for all gnext in gnode.links do

/* Cost accumulation */

newcost = cost + rec[gnode, gnext, tchild.char]
/* Search the rest of the word - recursive call */

rsearch(tchild, gnext, newcost)
end for

end for

end function

810

Figure 5. Examples of morphed digits used in training:
the original pattern on the left, followed by five randomly

distorted versions (28x28 normalized bitmaps).

For every pixel (i, j) of the template image, a random
displacement vector (∆x, ∆y) is generated. The displace-
ment field of the complete image is smoothed using a Gaus-

sian convolution kernel with standard deviation σ. The field

is finally rescaled to an average amplitude A. The new

morphed image (i/, j/) is generated using the displacement
field and bilinear interpolation i/ = i + ∆x, j/ = j + ∆y.

This morphing process is controlled by two parameters: the

smoothing radius σ and the average pixel displacement A.

Both parameters σ and A are measured in units of pixels.

An intuitive interpretation is to imagine that the charac-

ters are written on a rubber sheet and we apply non-uniform

random local distortions, contracting one part, while maybe

expanding another part of the character (see Fig. 5). This

random elastic morphing is more general than affine trans-

forms, providing a rich ensemble of shape variations. We

applied it to our base set of labeled digits (∼130 samples per

class) to obtain a much expanded training dataset (from 1 up

to 80 times). The expansion factor f controls the amount of

synthetic data: for every base example, f − 1 additional
morphed patterns are generated and used in training.

This is a cheap method relying on random numbers and

basic computer graphics. In this way, a virtually infinite vol-

ume of training samples can be fabricated. This stratagem

is very successful and does not increase the load at recog-

nition time for parametric classifiers. Essentially, we turn

the tables around and, instead of trying to recognize a char-

acter garbled in an unpredictable way by the writer in the

instantaneous act of handwriting, we generate the deforma-

tions ourselves, while training a neural network to become

immune to such distortions.

One important question is whether the artificial patterns

look natural and are therefore statistically representative for

the normal perturbations encountered in handwriting. An

empirical answer can be given showing that, for a reason-

able choice of morphing parameters, using synthetic train-

ing data does increase the final recognition performance.

5. Results
In this section, we analyze how the recognition rate at

the level of complete numerical fields is influenced by sev-

eral factors. The tests were performed on 6740 numerical

fields extracted from the KdK book of the year 1903 (∼1000

pages produced by a single writer).

10
8

6
4

 65

 70

 75

 80

 85

 90

 95

Recognition

rate (%)

Smoothing

radius (σ) Average pixel

displacement (A)

0.0 1.0 2.0 3.0 4.0

Figure 6. Surface plot showing the recognition rate as a
function of the morphing parameters σ and A (for an MLP

digit recognizer and f = 50): the improvement is from the

square mark (no morphing) to the round mark (operational

point used further in our experiments).

Extensive retraining-recognition experiments were run

in order to determine how the performance depends on the

morphing parameters σ and A. Fig. 6 clearly shows that

using morphing during training significantly improves per-

formance with respect to the baseline where morphing is

not used. The broad peak attests that the choice of the op-

timal morphing parameters is not critical. We used σ = 8
andA = 2.5 further in our experiments. The corresponding
operation point is marked on the surface plot.

As can be seen on the right part of the figure, there is also

the potential of destroying performance by using large dis-

placementswith reduced smoothing: the patterns are simply

pulverized by the strong and uncorrelated distortion field.

In an experiment run on the MNIST digit set, the error

rate was reduced from 1.4% to 0.9% by using morphing in

training an MLP with the same architecture as the one used

on the KdK data (confirming the results reported in [7]).

Fig. 7 shows how the recognition rate depends on the

amount of synthetic data used to train the digit recognizer.

Improved performance is obtained both for the MLP and

RBF, whether or not a lexicon is used in recognition. Ini-

tially the RBF performs better than the MLP, but the situ-

ation is reversed with increasing amounts of artificial data.

The MLP takes better advantage of the examples generated

by morphing. All curves from Fig. 7 show that beyond an

expansion factor of about 50, a saturation is reached and

adding more training data by digit morphing does not result

in significant improvements of the numerical field recogni-

tion rate. Using a lexicon to constrain the recognition gives

an improvement of ∼3% compared to lexicon-free results.

811

 92

 90

 88

 86

 84

 82

 80

 78

 80 50 30 20 15 10 5 1

N
u

m
e

ri
c
a

l
F

ie
ld

 R
e

c
o

g
n

it
io

n
 R

a
te

 (
%

 t
o

p
-1

)

Training set size expansion by morphing (factor f)

MLP - with lexicon
MLP - no lexicon

RBF - with lexicon
RBF - no lexicon

Figure 7. Top-1 recognition rate versus training set ex-
pansion factor f . Two digit classifiers (MLP and RBF) are

used in two settings (with / without a recognition lexicon).

The recognizer is about 2x faster when recursive search

is used with a tree organization of the lexicon as compared

to a flat lexicon. The complete test dataset is recognized in

approx 20 seconds on a present day CPU (Xeon 1.9 GHz).

The speed gains will become important in word recognition

with a large lexicon (50 - 100 thousand words).

Table 1 gives the final recognition percentages achieved

for the three types of numerical fields extracted from the

KdK images (see Fig. 1). The recognition rate decreases

with increasing length / lexicon size of the numerical field.

The RBF is outperformed by the MLP, which realizes a gain

of ∼8% due to morphing (top-1 ∼91%). In our case, the

top-5 recognition rate (∼97%) is an important indicator, as

the recognition results will be used for document retrieval

in a Google-like search engine for the KdK collection.

Applying the recognizer described here on handwritten

words requires investigation of a number of possible im-

provements: using ascender / descender information, us-

ing feature extraction rather than normalized bitmaps for

character recognition, improving the reject performance by

introducing an additional reject unit in the output layer of

the network with softmax output normalization, global dis-

criminative training by alternating character segmentation

by forced-alignment with neural network training sessions.

Results will be reported in upcoming papers.

6. Conclusions
The empirical results have shown that it is beneficial

to use synthetic data to train the character recognizer of a

segmentation-based handwriting recognition system. We

used a smooth random deformation field emulating local

elastic distortions of the digit patterns to generate additional

data expanding the training set up to 80 times. AnMLP ben-

efits more from the morphed samples. By using a lexicon to

constrain the results, we reached, on realistic data extracted

from a large single-writer historical collection, recognition

rates that are usable in document retrieval.

Table 1. Recognition rate on whole numerical fields (ex-
tracted from the KdK documents - year 1903). The same

search framework is used (employing a lexical tree) in com-

paring two different digit classifiers (MLP and RBF) trained

on a dataset expanded f = 50 times using morphed digits.

Num. field No. of Recog. rate (%) top-1 / top-5

(lexicon size) instances RBF MLP

days 2921 92.0 95.1

(31) 98.9 99.6

decision nos 2897 91.8 91.5

(300) 97.9 98.5

page refs 922 68.6 75.7

(3000) 84.9 86.8

Overall 6740 88.7 90.9

96.6 97.3

Improvement due +3.7 +7.9

to morphing +2.1 +3.2

Efficient recognition of handwritten numerical fields is

essential in several concrete applications: reading post

codes for mail sorting, reading courtesy amounts for bank

check processing, reading numerical identifiers for form

recognition. The experience reported in this paper has also

bearing to general handwritten word or sentence recognition

and the relevance extends to the wider area of historical doc-

ument analysis as, quite often, these bureaucratic archives

make intense use of numerical references and dates.

References
[1] NL-HaNA, 2.02.14, Archief van het Kabinet der Koningin,

Den Haag (Netherlands), year 1903.
[2] H. Baird. The state of the art of document image degrada-

tion modeling. In Proc. of 4th DAS, pp 1–16, Rio de Janeiro,

Brazil, 2000.
[3] M. Bulacu, R. van Koert, L. Schomaker, and T. van der

Zant. Layout analysis of handwritten historical documents for

searching the archive of the Cabinet of the Dutch Queen. In

Proc. of 9th ICDAR, pp 357–361, Curitiba, Brazil, 2007.
[4] G. Kim and V. Govindaraju. A lexicon driven approach to

handwritten word recognition for real-time applications. IEEE

Trans. on PAMI, 19(4):366–379, 1997.
[5] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceedings

of the IEEE, 86(11):2278–2324, 1998.
[6] U. Pal, K. Roy, and F. Kimura. A lexicon driven method for

unconstrained Bangla handwritten word recognition. In Proc.

of 10th IWFHR, pp 601–606, La Baule, France, 2006.
[7] P. Simard, D. Steinkraus, and J. Platt. Best practices for con-

volutional neural networks applied to visual document analy-

sis. In Proc. of 7th ICDAR, pp 958–962, Edinburgh, Scotland,

2003.
[8] Y. Tay, P. Lallican, M. Khalid, C. Viard-Gaudin, and S. Kn-

err. An analytical handwritten word recognition system with

word-level discriminant training. In Proc. of 6th ICDAR, pp

726–730, Seattle, USA, 2001.
[9] T. Varga and H. Bunke. Offline handwriting recognition using

synthetic training data produced by means of a geometrical

distortion model. IJPRAI, 18(7):1285–1302, 2004.

812

