How Much Handwritten Text Is Needed for
Text-Independent Writer Verification and Identification™

Axel Brink

Marius Bulacu

Lambert Schomaker

Dept. of Artificial Intelligence, University of Groningen
P.O. Box 407, 9700 AK Groningen, The Netherlands
a.a.brink@ai.rug.nl, bulacu@ai.rug.nl, schomaker@ai.rug.nl

Abstract

The performance of off-line text-independent writer
verification and identification increases when the docu-
ments contain more text. This relation was examined by
repeatedly conducting writer verification and identifi-
cation performance tests while gradually increasing the
amount of text on the pages. The experiment was per-
formed on the datasets Firemaker and IAM using four
different features. It was also determined what the in-
fluence of an unequal amount of text in the documents
is. For the best features, it appears that the minimum
amount of needed text is about 100 characters.

1. Introduction

The reliability of writer verification and writer iden-
tification depends on the amount of text in the hand-
written documents: the more text is present, the more
evidence is available. This is relevant for the foren-
sic application domain, where the amount of text varies
from snippets to complete letters. It is also particularly
relevant for automatic texture-based methods such as
Hinge, Fraglets, run-lengths, direction histograms etc.
[7] Such methods build a model of writer specific fea-
tures that can only be accurate when the number of mea-
surements is large, thus they need a sufficient amount of
text. This has been shown in previous studies: In [5], a
writer verification experiment yielded a performance of
63% using a single line of text per page, while the per-
formance on half a page was 95%. In [4], a writer iden-
tification experiment yielded 53%, 83% and 88% on a
single line, half a page and a full page, respectively, us-
ing the best feature. It showed a similar pattern for two
other features. These scores are illustrated in Figure 1.

*This paper was published in ICPR 2008. Available online:
http://figment.cse.usf.edu/"sfefilat/data/papers/WeBT6.2.pdf

=)
N
N

=]
N
*

©
<
o~

o

N

*
@
N
3~

@
N
I3

IS
3
R
IS
]
2

WlHinge
[EEdge-direction
[JHrunW

Line _Half pageFull page
ext amount

o
N
2
o
<
P

Writer verif. performance
Writer ident. performance

Q
B
Q
X

Half page
Text amount

(a) Writer verification using a (b) Writer identification using
combination of micro and macro three different features [4].
features [5].

Figure 1. Previous studies show that clas-
sification performance increases when
the amount of text increases.

The objective of this study is twofold. The first ob-
jective is to gain insight in the relation between text
amount and the performance of current writer verifica-
tion and identification systems into more detail. This
facilitates judging the reliability of the outcome of au-
tomatic classification based on the amount of text. The
second objective is to derive a rule of thumb for the
minimum amount of text that is required for reliable
classification using the best features. Knowing such
a minimum is useful when designing new datasets for
automatic writer verification and identification. Such
a minimum cannot be firm, because performance does
not only depend on the amount of text but also on other
factors such as feature quality, text quality and database
size.

2. Method

The relation between text amount and performance
was examined by repeatedly conducting writer verifi-
cation and identification performance tests while grad-
ually increasing the amount of text on the pages. The
amount of text on the pages was controlled by wiping
text from complete pages of existing datasets. It was

also determined what happens when one of the com-
pared documents contains little text (a partially wiped
page) while the other contains a lot (a full page). In
the following subsections, the building blocks of the
experiment are presented. The last subsection shows
how these blocks were put together in a series of per-
formance experiments.

2.1. Datasets

Two handwriting datasets were used: Firemaker [10]
and IAM [6], which can be obtained from the respec-
tive authors. Firemaker is a dataset consisting of Dutch
text handwritten by 251 students; each student wrote
four pages of which we used page 1 and page 4. Page
1 contains a fixed text consisting of 612 alphanumeric
characters; page 4 contains free text of 252 characters
on average. Both pages were written in natural hand-
writing and scanned at 300 dpi. The IAM dataset con-
tains handwritten English text written by 657 subjects;
the number of pages written by the subjects varies. The
pages were written in natural handwriting and scanned
at 300 dpi.

Both datasets were split in two parts: part Q repre-
sents questioned documents and part S represents sam-
ple documents. This mimics the realistic forensic sce-
nario where the authorship of questioned documents
is to be determined while a database of documents of
known authorship exists. Not all documents in the orig-
inal datasets were put in Q or S: pages with less that
200 characters were discarded and the same happened
to pages of writers that wrote only one page. Of the re-
maining pages, for every writer, the page containing the
most text was added to S and the next page was added
to Q. Additional pages were discarded as well. For the
Firemaker dataset, the resulting sets Q and S both con-
tained 192 scans (118 pages were discarded). For the
IAM dataset, Q and S both contained 298 scans (378
pages were discarded).

2.2, Text wiping

We present line_wipe,,, a method to wipe hand-
written text on a line-by-line basis until an estimated
n characters remain. It is natural to use a line-based
approach because it is straightforward and it keeps the
appearance of the handwriting almost intact. The gen-
eral idea is to wipe some lines completely and one line
partially. This approach requires that the text lines can
be separated well. This is not feasible in general free
text but it is relatively easy in the Firemaker and IAM
dataset, because the text lines are quite horizontal and
the overlap between descenders and ascenders of con-

[o)]
o

IS
o

N
o

Frequency

(@)

0 200 400 600 800
a (ink pixels per character)

Figure 2. « varies on the scans of the Fire-
maker dataset.

secutive lines is minimal. The locations of the text lines
can be found with projection histograms. For the Fire-
maker and IAM datasets, this has already been done in
[2] and [6] respectively. From these publications, the
coordinates of boxes around the text lines were re-used
for this experiment.

Based on these boxes and a desired number of char-
acters n, the handwritten text can be wiped. Ideally, af-
ter wiping, exactly n characters would remain. In prac-
tice, this is not possible, because it is not yet possible
to segment free text into characters. Instead, n is con-
verted to a desired number of ink pixels: d = « - n.
The variable o denotes the average number of ink pix-
els per character on the page, which can be computed
by dividing the number of dark pixels in the image by
the number of characters in the transcription. As an ex-
ample, Figure 2 illustrates the distribution of a: on the
scans of the Firemaker dataset.

The next step is to remove full text lines by filling
the bounding boxes with white pixels. The lines are
wiped in random order while maintaining a variable r,
the number of remaining ink pixels on the page. When
wiping the next line would decrease r below d, the line
contains too much ink to be removed entirely. That line
is wiped partly as follows. First, the vertical projec-
tion histogram of the line is created and then smoothed
using a Gaussian window. The valley that is closest
to the point where » = d is designated as the cutting
point. The right part of the line is wiped starting from
this point. This approach makes it likely that the cut
is made between characters and not through characters,
thus lowering the risk of damaging the letter shapes.
See Figure 3 for an example.

2.3. Feature extraction

Four methods were used to compute writer features:
Hinge, Fraglets, Brush and HrunW. These features will
be briefly introduced; refer to the respective papers for
the details. The Hinge feature [3] is a normalized his-
togram of angle combinations that are measured on the
boundaries of the ink. This encodes slant and curva-

Figure 3. Text before (top) and after (bot-
tom) line_wipe,_;, was applied. In this
example, actually 51 letters remained.

ture. The Fraglets feature (also known as fCO3) [8]
is a normalized histogram of usage of ink blobs from
a codebook. This encodes allograph usage. It uses a
codebook that was trained on all four pages of the first
100 subjects of the Firemaker dataset. The Brush fea-
ture [9] is a histogram of ink intensities at stroke end-
ings. It encodes pen landing and lifting habits. The
HrunW feature [1, 9] is a histogram of horizontal white
run-lengths. This encodes within- and between-letter
spacing.

2.4. Writer verification

Writer verification is the process of determining
whether two documents have been written by the same
person. In forensic practice, the two compared docu-
ments are usually a questioned document and a sample
document. In automatic classification, the documents
are assigned to the same writer if (and only if) their
feature similarities are below a threshold. This thresh-
old is learned from the data: smooth distributions of
between- and within-writer feature distances are created
using Parzen windowing. Using these distributions, the
expected ratio of false positives and false negatives can
be balanced according to the preference of the user.
Since such a preference was not available, the thresh-
old was set such that the expected rate of false posi-
tives and false negatives was equal; the equal-error rate
(EER). The EER was used as the performance measure
for writer verification.

2.5. Writer identification

Writer identification is the process of searching for
suspected writers in a database of handwritten sample
documents, given a questioned document. The result-
ing hit list is sorted by feature distance to the questioned

document and typically has a fixed size of 1 (top-1) or
10 (top-10). For performance assessment, every q €)
was once treated as the query. A performance measure
for writer identification is the fraction of query docu-
ments for which a document of the same writer actually
appears in the hitlist.

2.6. Experiment

In the experiment, the building blocks described in

the previous subsections were put together to create
graphs that show the relation between text amount and
performance: while varying the number of characters n,
the performance of both writer verification and writer
identification were computed. This was done in two
variants: in one variant, the documents in part () and
S of the dataset were both wiped such that they con-
tained the same number of characters n. In the other
variant, only the pages in () were wiped, while the doc-
uments in S remained intact. This distinction respects
the difference in text amount between the compared
documents in forensic practice. Algorithm 1 outlines
the experiment in pseudocode. The functions named
split_dataset, line_wipe, £, WV, and WI, were
described in the previous subsections (without explic-
itly naming them). The algorithm was run on both the
Firemaker and IAM dataset, using the features Hinge,
Fraglets, Brush, and HrunW.
Algorithm 1 Complete experiment for a dataset D and
a feature function £. Compute performance of writer
verification and identification, with equal and unequal
amounts of text.

Q,S = split_dataset(D)

for all nin [4,9, 16, 25, ..., 196, 200] do

QW = line_wipe,(Q)

Fow =£(QW) (compute features)
SW = line_wipe, (S) (for equal text amount*)
Fgyw = £(SW) (compute features)

verif_perf(n) = WV(Fow, Fsw)
ident_perf(n) = WI(Fow, Fsw)
end for
* For unequal text amount: SW = S

3. Results

Figure 4 shows the results of the experiment. The
eight graphs each represent a combination of a feature
and a dataset. In each graph, the Top-1 and Top-10 per-
formance and the verification EER are shown; each in a
variant of equal-text amount and unequal-text amount.
The graphs confirm that the Hinge is a strong feature,
closely followed by the Fraglets feature. They also
clearly show that increasing the amount of text also

Hinge on Firemaker

Hinge on IAM

100%
80%
60%|"</
40%,
20%! %,

o k AP
0 /00 50 100 150 200 0 50 100 150 200

===ident. top10|
==ident. top1
=wverif. EER

Fraglets on Firemaker
100% e

80%|
0%+
40%|+/
20%|F
o
0%j

50 100 150 200 0 50 100 150 200

100%
80%f ..otnid

60%; " o

40%]

20%
0%,

100%,
80%
60% .
40%f %, ot
20%('

Figure 4. Relation between text amount
(in characters; horizontal axis) and per-
formance of writer verification and iden-
tification. Thick lines indicate equal text
amount; thin lines indicate unequal text
amounts. The vertical lines indicate a
suitable minimum text amount.

increases writer verification and identification perfor-
mance. From these graphs, a rule of thumb for the mini-
mum text amount was derived by visual inspection. Al-
though it is possible to do this using an exact method,
that would not be appropriate for the inexact situation.
As arule of thumb, the following minimum amounts of
text can be considered:

Feature = Min. text amount (chars)
Hinge 100
Fraglets 150
Brush 200
HrunW 200

These minima were drawn into the graphs as vertical
lines. The graphs also consistently show a better per-
formance for comparison of texts that have an unequal
amount of text. Thus, it is always better to increase the
amount of text in the database documents, even when
the amount of text in the query documents remains the
same.

4. Conclusion

As a rule of thumb, a document of 100 charac-
ters contains a good minimum text amount for text-
independent writer verification and identification when
using a strong feature such as Hinge. Any text above
this minimum does not significantly increase perfor-
mance any further; the feature itself becomes the lim-
iting factor. For features that are less powerful, such
as Brush, a reasonable minimum is 200 characters.
These numbers are not absolute because the perfor-
mance also depends on other factors such as the size
of the database. In general, the more difficult the clas-
sification task, the more text is needed. In any case,
more text is always better, even when the amount of text
is increased in only one of the documents in pairwise
comparisons. A follow-up to this study should consider
text-dependent methods, since those are more similar
to the manual methods used in forensic practice, where
text samples can be very small.

References

[1] B. Arazi. Handwriting identification by means of run-
length measurements. SMC, 7:878-881, 1977.

[2] M. Bulacu and L. Schomaker. Writer style from ori-
ented edge fragments. In CAIP 2003, LNCS, pages
460-469. Springer, 2003.

[3] M. Bulacu and L. Schomaker. Text-independent writer
identification and verification using textural and allo-
graphic features. IEEE Trans. on Pattern Analysis and
Machine Intelligence (PAMI), 29(4):701-717, 2007.

[4] M. Bulacu, L. Schomaker, and L. Vuurpijl. Writer iden-
tification using edge-based directional features. In IC-
DAR 2003, pages 937-941, 2003.

[5] S. Kabra, H. Srinivasan, C. Huang, and S. Srihari. On
computing the strength of evidence for writer verifica-
tion. In ICDAR, pages 844-848, 2007.

[6] U.Marti and H. Bunke. A full english sentence database
for off-line handwriting recognition. In Proc. of the 5th
ICDAR, pages 705-708, 1999.

[7]1 L. Schomaker. Writer identification and verification. In
N. Ratha and V. Govindaraju, editors, Advances in Bio-
metrics: Sensors, Systems and Algorithms, pages 247—
264. Springer-Verlag, 2007.

[8] L. Schomaker, M. Bulacu, and K. Franke. Auto-
matic writer identification using fragmented connected-
component contours. In F. Kimura and H. Fujisawa,
editors, 9th IWFHR, pages 185-190, Tokyo, Japan, Oc-
tober 2004.

[9] L. Schomaker, M. Bulacu, and M. van Erp. Sparse-
parametric writer identification using heterogeneous
feature groups. In ICIP, volume 1, pages 545-548,
September 2003.

[10] L. Schomaker and L. Vuurpijl. Forensic writer identifi-
cation: A benchmark data set and a comparison of two
systems. Technical report, NICI, Nijmegen, 2000.

