
Passing the Test: Improving Learning Gains by 
Balancing Spacing and Testing Effects

Hedderik van Rijn (D.H.van.Rijn@rug.nl)
Department of Psychology & Department of Artificial Intelligence

Grote Kruisstraat 2/1
Groningen, 9712 TS The Netherlands

Leendert van Maanen (leendert@ai.rug.nl) & Marnix van Woudenberg 
Department of Artificial Intelligence,

P.O. Box 407
9700 AK Groningen, The Netherlands

Abstract
Where the spacing effect promotes longer intervals between 
facts that  needs to be memorized, the testing effect argues for 
intervals that  are short enough to  recall the facts.  As the ease 
by  which facts are memorized differs greatly  between stu-
dents, an individual assessment of how well  certain facts are 
represented in  memory is  required to successfully balance 
spacing and testing effects. We present a model that adapts 
itself to  the abilities of the student, and show in a real-world 
experiment that this model outperforms other approaches to 
spacing.

Keywords: spacing-effect;  testing-effect; subsymbolic model 
tracing; cognitive model.

Introduction
The last couple of years have seen a renewed interest in 
applying insights from fundamental memory research in 
real-world settings. One of the most visible lines of work are 
studies to the application on the spacing effect.  The spacing 
effect,  first described by Ebbinghaus (1913/1885) at the end 
of the 19th century, is the positive effect on factual recall 
that is observed when study trials are temporally separated. 
Thus, the probability of recall of facts learned in a spaced 
sequential order (e.g.,  abcabcabc or abc-break-abc-break-
abc) is higher than the probability of recall of facts that are 
learned massed (e.g., aaabbbccc). The consequence of this 
finding is that the presentation sequence of a to-be-
memorized list of facts partly determines how well these 
facts will be recalled on a later test: all items on a list that 
presents the items with optimal spacing will be recalled bet-
ter than items on a list that presents the items as many times 
as the first list, but massed instead of spaced.
 This observation was central to a lot of applied research in 
the ‘60s and early ‘70s of the last century. Using the possi-
bilities provided by digital computers,  scientists tried to 
construct optimal schedules. Although some of this work 
has stood the test of time from an applied or commercial 
point of view (e.g.,  the Pimsleur and Leitner methods are 
still available commercially), the methods used by these 
early systems are relatively simple and the learning gains 
often did not outweigh the extra investment associated with 
using these systems. This led to a decline in applied research 
on the spacing effect, although over the decades, more fun-
damental research on this effect has thrived (see for reviews 
Dempster, 1988, Cepeda, Pashler, Vul, Wixted, & Rohrer,  

2006). Only recently has attention again shifted to using 
algorithms to determine the optimal schedule for learning 
(Wozniak & Gorzalanczyk, 1994, Pavlik, 2007, Pavlik & 
Anderson, 2008).

A second finding that has a potentially large effect on how 
on optimal sequence has to be constructed, is the testing 
effect that can be described as: “If students are tested on 
material and successfully recall or recognize it,  they will 
remember it better in the future than if they had not been 
tested” [but merely studied the same material] (Roediger & 
Karpicke, 2006, p.249, see also Carrier & Pashler, 1992). As 
it is generally assumed that memory decays over time, and 
that decay is in some way a function of time, an increased 
interval between successive presentations makes it more 
likely that an item cannot be recalled, thus failing the benefit 
of the testing effect (c.f., the inverse u-shape often observed 
when the performance on a test is plotted as a function of 
the interval between two presentations, Cepeda, Vul, Rohrer, 
Wixted, & Pashler, 2008). 

When it comes to computing an optimal presentation se-
quence for fact learning, spacing and testing have different 
interests. For the spacing effect, increased spacing is theo-
retically preferred. But for the testing effect, small to no 
spacing would theoretically provide best results since longer 
intervals increase the chances of having forgotten a fact, and 
thus decrease probability of recall. One of the aims of the 
study reported here is to reconcile these seemingly conflict-
ing requirements. 

An interesting observation in almost all work on the spac-
ing effect is that the “optimal schedule” is defined as the 
schedule that reaches a rather high-level, almost noble goal: 
the best performance (often defined as the highest probabil-
ity of recall) over a longer timeframe. Although this is of 
course what the goal of all learning should be,  the goal of 
learning in a real-world situation is often more pragmatic: 
passing the next day’s test by studying for a limited, often 
more or less fixed amount of time. So, although the results 
of more than a century of spacing results can be used for the 
real-world situation of having to learn a lot of vocabulary 
word pairs for a foreign language test that is scheduled a 
couple of weeks or months in advance, these results do not 
necessarily tell us anything about the pragmatic goal of 
learning: What method should a student use to learn a set of 
20 vocabulary word pairs for a potential test tomorrow, 



knowing that, because of soccer practice, favorite TV-shows 
and other homework, all he or she has is 15 minutes to 
spare?

Note that this real-life situation differs quite a bit from 
typical experimental setups: First,  to prevent contamination 
of the results by different levels of prior knowledge,  the 
learning materials are often selected in such a way that it is 
to be expected that none of the participants brings any prior 
knowledge (by either learning sequences of nonwords, e.g., 
Ebbinghaus, 1913/1885, very obscure facts, e.g.,  Cepeda et 
al, 2008, or word-pairs from languages previously unstudied 
and selected to be from different language-families, e.g., 
Japanese-English, Pavlik & Anderson, 2008). In contrast, 
when learning for a vocabulary test, most students bring 
additional knowledge to the learning session from earlier 
experiences with that language.  Second, in most studies the 
list of word pairs presented to the participants is much 
longer than the 10 to 30 words that typically have to be 
learned in a single learning session. Third, the retention in-
terval (defined as the time between the final test on the 
learned materials and the last study of the materials) in most 
studies is less than a day (221 out of 254 studies reviewed in 
Cepeda et al, 2006, used an interval less than a day). Fourth, 
where many experimental studies aim for finding a general 
law that describes the effects of different types of spacing on 
performance in general, the goal of an individual student is 
not striving for the best performance of a larger group, but 
for the optimal results on his or her test. As the speed and 
ease by which vocabulary is learned differs greatly between 
individuals (see Baddeley, 2003, p832), settings that are 
optimal for the group as a whole might not be the optimal 
settings for an individual. These differences are less sub-
stantial with respect to the spacing effect than with respect 
to the testing effect. That is,  irrespective of the individual 
expertise in vocabulary learning, the spacing effect predicts 
that increased spacing provides better scores. However, with 
respect to the testing effect, individual differences greatly 
determine the probability of recall of a particular item. Since 
successful recall is associated with better learning gains, it is 
important to account for individual differences in such a 
way that facts are presented before they cannot be recalled 
anymore. 

To test whether the general findings associated with spac-
ing and testing effects hold when these issues are taken into 
account, we ran an experiment that closely mimics everyday 
learning contexts. In this experiment, four classes of ap-
proximately 15-year old pre-university level pupils were 
asked to memorize Dutch translations of 20 French words 
that were selected from a lesson that would not be discussed 
until one week after the experiment. Each word pair was 
presented first in a study trial of 5 seconds in which both the 
French and the Dutch word were presented. Immediately 
following the study trial, participants were presented with a 
test trial of that same word.  During a test trial, only the 
French word was presented, and the participant had to type 
the Dutch translation. (If the participant did not response in 
time, or an incorrect answer was given, the study trial was 
presented to refresh the participant’s memory.) After the 

initial presentation, the next trial was scheduled on the basis 
of one of four algorithms. 

Algorithm 1 was based on a flashcard strategy: the 20 
words were clustered in 4 sets of 5 words which were pre-
sented individually until all words in the set had been re-
sponded to correctly once. After all sets had been presented, 
the sequence was started anew. Algorithm 2 is an imple-
mentation of the spacing method proposed by Pavlik and 
Anderson (2005), which will be discussed below. Algo-
rithm 3 and 4 are adaptations of the original Pavlik and 
Anderson algorithm in that the model that is used to deter-
mine the optimal sequence is dynamically adapted on the 
basis of the observed performance of the student while tak-
ing the testing effect in account. Before turning to these 
algorithms, we will first discuss Pavlik and Anderson’s 
spacing model and how this model can be applied to provide 
an optimal learning sequence. 

Pavlik & Anderson’s Spacing Model
The spacing model proposed by Pavlik and Anderson (2005, 
referred to as the PA model) is based on the work of Ander-
son and Schooler (1991). In this work, Anderson and 
Schooler demonstrated that the “availability of human 
memories for specific items shows reliable relationships to 
frequency, recency, and pattern of prior exposures to the 
item” (Anderson & Schooler, 1991, p.396). Based on their 
and later work, the following formula was proposed to ex-
press the availability (or activation) A of a certain item i at a 
certain time (t) as a function of prior encounters:

According to this equation, which has become central to 
all memory related models created in the ACT-R cognitive 
architecture (Anderson, 2007), all previous encounters 
(t1..tn) of the item i contribute to its current activation. How-
ever, the older an encounter (tj represents the time of en-
counter j),  the smaller the contribution of that encounter to 
the total activation. The speed of this decline is expressed by 
-dj, the decay parameter. Although initially -dj was assumed 
to be variable for different encounters j (and Anderson and 
Schooler, 1991, even provided an equation to account for 
some spacing effects but downplayed its importance by not-
ing that “its exact form is a bit arbitrary”, p.407), it quickly 
became a parameter that was treated as a constant (d=.5, see 
for example Anderson, Bothell, Byrne, Douglass, Lebiere, 
& Qin, 2004) as different values for different encounters did 
not add much explanatory power for most tasks to which 
this equation was applied. However, in contrast to the origi-
nal work of Anderson and Schooler, in none of these later 
tasks was spacing a factor of importance. To account for a 
broader range of spacing phenomena, the PA model reintro-
duced individual decay values for individual items. 

Pavlik and Anderson proposed to relate the decay values 
for the individual encounters to the activation of that par-
ticular item at the time of the encounter. As recently pre-
sented items have a high activation, the second encounter of 
an item presented twice in quick succession will be associ-
ated with a high decay value. Therefore, the long-term in-
fluence of this item will be small as its activation will decay 

Ai(t) =
n∑

j=1

(t− tj
−dj )



quickly. On the other hand, an encounter of an item of 
which the last presentation was longer ago (and therefore 
has a lower activation) will receive a lower decay value, 
resulting in more long term impact on the activation of that 
item. The proposed equation calculates the decay, d, for 
encounter j of item i by calculating the activation of that 
item (Ai) at the time of encounter j.  

In this equation,  alpha represents the decay intercept. This 
intercept is the minimum decay for an encounter that will 
also be used as decay value for the first encounter. The de-
cay scale parameter c determines the relative contribution of 
the activation dependent component. Pavlik and Anderson 
(2003, 2005, 2008, Pavlik, 2007) have shown in a series of 
studies that these equations account for a wide range of 
spacing-related learning phenomena. 

In both the PA model and in ACT-R, the activation of a 
fact determines both the probability of recall of that fact and 
the latency associated with recalling that fact. For the prob-
ability of recall, the activation of the fact is compared to the 
retrieval threshold while taking into account the noise that is 
associated with declarative memory. If the activation of a 
fact is higher than the retrieval threshold, that fact can be 
recalled. However, if the fact is below the retrieval thresh-
old, it is unavailable for further processing. The latency of a 
retrieval at a certain point in time (t) is a function of the 
activation (Ai) of the fact that is retrieved:

In this equation, F is a scaling factor and “fixed time” 
refers to the time cost of all non-fact-retrieval processes 
required in giving the answer.

Applying the Spacing Model
In Pavlik and Anderson (2008), the spacing model is used to 
actively determine the optimal sequence for learning a list of 
Japanese-English word-pairs. In this paper,  Pavlik and An-
derson do not take into account the testing effect, but instead 
determine the optimal sequence by balancing the positive 
effects of increased spacing intervals on probability of recall 
with the negative effects increased intervals have on the 
retrieval latency. That is,  although increased spacing is al-
ways positive in the PA model, it is, because of more decay, 
detrimental for the retrieval latency. In the 2008 paper, the 
additional time required for a retrieval if the presentation of 
a word-pair is shifted forward in time is weighted against 
the predicted increase in probability of recall. This results in 
a series of relative complex formulae to determine the learn-
ing gains of test-trials and study-trials. 
 An alternative approach is to determine the optimal se-
quence on the basis of the activation of the word-pairs in 
relation to the retrieval threshold. That is, if we assume on 
the basis of the combination of spacing and testing-effects 
that the time between two encounters is optimal just before 
the activation of the fact drops below the retrieval threshold, 
an optimal sequence can be determined on the basis of the 
activation of all facts. 

dji = ceAi(tj) + α

Li(t) = Fe−Ai(t) + fixed time

Algorithm 2: Default PA
On the basis of the notion discussed above, the default PA 
model can be used to determine the optimal spacing se-
quence: as soon as a fact is about to fall below the retrieval 
threshold, it has to be presented again. If no previously pre-
sented fact is below the threshold, a new fact can be intro-
duced. More precisely, as it could be that a fact drops below 
the retrieval threshold while another fact is being tested, the 
algorithm computes the activation of all facts 15 seconds 
ahead to determine whether to introduce a new fact or pre-
sent a previous one.  If all facts have been introduced, the 
fact with the lowest activation is selected for presentation. 
The performance of this algorithm is highly dependent on 
the accuracy of the internal activation representations, 
which are in turn dependent on the choice of parameter val-
ues. Although the PA model has been tested on a large num-
ber of studies, no fixed set of parameter settings have 
emerged yet.  The values for the decay scale (c) range (Pav-
lik & Anderson, 2005, 2008) from 0.143 to 0.495, and for 
the decay intercept (alpha) from 0.058 to 0.300.  The thresh-
old parameter is typically set at -0.704.  As these parameters 
have been fit to experiments with longer study session than 
used in the current experiment, we explored the effects of 
different settings on the resulting sequences. As a too low 
threshold results in extended spacing (in our explorations, 
sometimes all word-pairs were presented before the first 
word-pair was repeated),  we decided to raise the retrieval 
threshold to -0.500. Following similar reasoning, the decay 
intercept and the decay scale were set at .25. With respect to 
the latency equation,  we decided against separate estima-
tions for F and the “fixed time”. In the 2008 model, F is set 
at a value larger than 1 (1.29) indicating an enhanced effect 
of Ai on the latency. At the same time,  using a “fixed time” 
diminishes the effect of Ai on the latency. Therefore,  we set 
F to 1, and the “fixed costs” to 0.

Using the default PA algorithm, we can create an optimal 
schedule. However, this schedule will be similar for all par-
ticipants: if the first word-pair is repeated after 5 trials be-
cause it will drop below the retrieval threshold within 15 
seconds, this holds for all participants.  Obviously, this does 
not match real performance profiles: some participants will 
have an higher overall performance level than other partici-
pants, but it might also be that some words are recalled bet-
ter by participant A, but a different set of words is recalled 
better by participant B. Of course, the default PA model 
described above and the standard ACT-R equations have 
only been fit to aggregate behavioral data. Luckily, because 
each time an item is presented the learner provides us with 
additional behavioral data, we can use this data to fine-tune 
the internal representation.

Subsymbolic Model Tracing
In the traditional model tracing account (Anderson, Boyle, 
Corbett, & Lewis, 1990), the behavior of a student is 
matched against all knowledge available in a tutoring sys-
tem. For example, if a student has shown accurate perform-
ance in a number of subtraction problems in which carrying 
is required, the knowledge in the tutoring system that repre-
sents carrying is marked as mastered. Thus, the tutoring 



system keeps an accurate representation of all knowledge 
the student has mastered by updating the internal representa-
tion each time new behavioral information becomes avail-
able. The behavior that the learner displays can similarly be 
used to update the subsymbolic activation of facts.

Given that each time a student has to answer a test trial 
both accuracy and latency information becomes available, 
we can,  in principle, use this information to determine what 
the current activation of the retrieved chunk is. If we know 
the latency and therefore the activation at the time of en-
counter j, and we also know the latency/activation at the 
time of encounter j-1, we can calculate what the decay for 
encounter j-1 should have been. By this rationale, we can 
minimize the difference between the predicted activation 
and the observed latency and use the behavioral data of the 
student to update our model that represents the state of the 
student. 

However, given the general  assumption that the retrieval 
process is inherently noisy, using this direct relation might 
be problematic when the response is fast. That is, when tj - 
tj-1 is relatively long and the latency for tj is short because of 
a temporal boost in activation due to noise, the calculated 
decay for tj-1 will be very low (or even negative). As a very 
low decay results in facts that are predicted to be highly 
active over a very long period of time, this temporal noise-
boost will ruin the scheduling of the fact.  Therefore, we 
have chosen not to use the outcome of the algorithm de-
scribed here directly, but instead change the dj-1 with a fixed, 
small amount in the direction indicated by the mismatch 
between predicted activation and observed latency (c.f., hill-
climbing search algorithms).  

Algorithm 3: Threshold-based Adaptation
Given the issues related to the noisy observations,  it might 
not be wise to use the more fine-grained subsymbolic model 
tracing method described above as this might result in over-
fitting. To minimize the chances of overfitting, a coarser 
algorithm might prove beneficial.  Therefore, Algorithm 3 
adapts the PA model by only modifying the decay parameter 
for a certain encounter when at test the word-pair cannot be 
correctly recalled. As the system always presents word-pairs 
of which it estimates that they are still above the retrieval 
threshold, the failure to recall indicates that the estimated 
activation was too high. Thus, the decay for that particular 
item should be higher, which is reflected in increasing the 
alpha parameter with 0.01. 

Algorithm 4: Latency-based Adaptation 
The threshold-based adaption algorithm focussed on maxi-
mizing the testing-effect. Each time a fact cannot be re-
called, its decay is increased, ensuring that it will be pre-
sented with shortened spacing in subsequent trials.  Although 
this provides the optimal effect from successful retrievals, 
this algorithm neglects the importance of the spacing effect 
as it would never result in increased spacing. However, 
where a failure to retrieve a fact is a marker of a lower than 
expected activation, a too fast response is a marker of a 
higher than expected activation. Thus, the latency-based 
adaptation of Algorithm 4 extends the threshold-based adap-
tation algorithm by comparing the expected latency with the 

observed latency. To prevent overfitting a threshold-based 
approach is used to determine if an activation-based mis-
match is observed. That is,  the decay intercept will only be 
changed if the expected and observed latency differ by more 
than 0.5 seconds.  Instead of a constant modifier, the decay 
intercept is changed according to:

where observed and expected are the latencies expressed in 
seconds. 

Experiment
Procedure The outline of the procedure have been detailed 
earlier. Study trials, consisting of a French-Dutch word pair, 
were presented for 5 seconds. After each initial study trial, a 
test trial of the same word-pair was presented. During a test 
trial, only the French word was presented and students had 
15 seconds to reply by typing in the correct Dutch transla-
tion.  After pressing Enter, students were presented with a 2-
second feedback screen stating “Correct”, “Incorrect” or 
“Almost correct” (which was given if the Levenshtein-
distance to the correct answer was smaller than 3). After an 
incorrect or almost correct trial, participants are presented 
with another study trial.  The four algorithms determined 
which word pair to present next. After 15 minutes,  the par-
ticipants were thanked for their participation and were left in 
the impression that the experiment was done. After the 
learning session on Day 1, all words were tested by means 
of a traditional paper-and-pencil test on Day 2. The post-test 
was graded in the typical way in which such a test is graded: 
each error deducts one point from the maximum score of 10. 
Participants were naive with respect to the experimental 
manipulation and did not know that they would be tested on 
Day 2.

All participants were tested at the same time in a class-
room equipped for computer-supported education. Each 
participant operated his or her own computer. 

Materials A list of 20 words was compiled for each class 
separately. All words were selected from a chapter that was 
scheduled to be covered in class, but was not discussed yet.

Participants Ninety-one pre-university-education level stu-
dents (all students of four 3rd year HAVO/VWO classes)  of 
approximately 15 years of age participated, of which 85 
took part in both tests. Participants were semi-randomly 
distributed over conditions to ensure that in each class an 
equal number of participants used each algorithm.  All par-
ticipants were instructed that their results would be stored 
anonymously and that the results would not be communi-
cated to their school or teachers on an individual level.

Results
Of the 85 students who took part in both sessions, six stu-
dents were removed from further analyses because they did 
not respond in more than 5% of all trials and gave a number 
of answers that did not fit the instructions (e.g., “I’m bored”, 
or names of rock bands).  Four participants were removed 
because their performance in terms of correct responses 

∆α = max(0.01,
observed− expected

1000
)



during the learning session deviated more than 2 standard 
deviations from the average of their group. One participant 
was removed because of scores on the final test that devi-
ated more than 2 standard deviations from the average score 
for his or her group. This leaves 74 participants, 18 in the 
flashcard condition,  and 19 participants in each of the three 
spacing conditions.

Covariates As we tested participants in a domain in which 
they have a significant amount of prior knowledge, it is im-
portant to control for potential differences in prior knowl-
edge between groups. Hereto, we analyzed the students’ 
school grades (graded on a theoretically linear scale from 0 
to 10, with a 6 representing the grade required to pass that 
class) for French, see Figure 1 (F(3,73)= 1.27, p=0.29).  Al-
though this effect is far from significant, the value of the F-
statistic is larger than we hoped for.  Therefore, we decided 
to include the grades for French as covariate in all subse-
quent analyses.

Given that we limited the amount of time to learn 20 
word-pairs and the algorithm determined when a new word 
pair was introduced, not all participants might have seen all 
20 word pairs in the non-flashcard conditions (algorithm 2 
to 4). This did indeed turn out to be the case in all three 
conditions. The average number of word pairs presented to 
the participants was 19.5, 19.6 and 19.8 for the default PA, 
the threshold-based and the latency based conditions respec-
tively. Although these differences (when compared to the 20 
words seen by the students in the flashcard condition) fail to 
r e a c h s i g n i f i c a n c e ( A N O VA 
F(3,69)=2.6, p=0.057, post-hoc pair-
wise t-test with pooled standard de-
viations: flashcard vs default PA algo-
rithm, p=0.08, all other comparisons p 
> .1), this does give the flashcard-
based condition an advantage when 
comparing scores on the post-test, as 
some participants in the other condi-
tions will not have seen all word 
pairs. Therefore, we also included the 
number of words seen by the student 
as covariate in subsequent analyses. 

To account for possible effects as-
sociated with the session in which the 

study was run or peculiarities of a particular class, another 
factorial covariate was included representing group. 

Post-test Scores Figure 2 shows the raw scores on the post-
test, and Figure 3 shows the scores on the post-test adjusted 
by the covariates French grade,  group and number of words 
seen.  

Analyzing the data presented in Figure 3 shows that the 
algorithm has a significant effect on the post-test scores 
(F(3,70)=4.19, p=0.009). Testing the individual effects by 
conducting pairwise comparisons using t-tests with pooled 
standard deviation and Benjamini and Hochberg’s (1995) p-
value adjustment method showed that students in the 
latency-adaptation group, Algorithm 4, score significantly 
higher than students in the flashcard (p=0.032) or in the PA 
model (p=0.010) group. None of the other comparisons 
reached significance (p>0.100).

 
Adaptions The observed differences between the more 
static PA model and the latency adaptation condition sug-
gests that the adaptations resulted in different decay patterns 
for different participants. Figure 4 shows the average esti-
mation of the alpha parameter associated with the last en-
counter per word-pair.  As can be seen, different participants 
required different alphas, with, for example, participant 1 
and 4 requiring relative low decay values and participant 13 
requiring a very high decay value.  If these three participants 
would have been set at the average alpha (0.259), the esti-
mated activation for participant 13 would be to high, result-

ing in many retrieval failures - and violating 
the testing-effect constraints. At the same 
time, participants 1 and 4 would have had a 
too low estimated activation, resulting in a 
sequence with too low spacing, violating 
the spacing constraints. 
Furthermore, note that although fast re-
sponses could have resulted in an alpha 
value below the starting value of .25, all 
participants have a higher average alpha. 

Figure 1: Average grades on French 
per algorithm condition
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Figure 2: Raw scores on post-test per 
algorithm condition
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Figure 3: Post-test scores adjusted for 
covariates mentioned in text
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All errorbars depict standard errors.

Figure 4: Effects of adaption on latency 
per participant
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Discussion
The current study set out to answer two question. The first 
was to test whether the results obtained in the scientific lit-
erature on the spacing effect would also hold in the more 
real-life case of learning a small set of vocabulary items in a 
small period of time. The second question was to examine 
whether the learning gain would improve when the algo-
rithms that construct the learning sequence take individual 
differences into account. With respect to the first goal,  the 
significant difference between the flashcard and the latency 
adaption conditions illustrates that a learning sequence that 
is based on an algorithm that takes spacing and testing-
effects into account outperforms a more traditional flashcard 
sequence. However, only the condition that optimizes the 
sequence on the basis of individual latency differences out-
performs the flashcard condition, answering the second 
question. 

It is striking to see that the traditional PA spacing condi-
tion scores - in absolute terms - worse than the flashcard 
condition. This result for the traditional spacing condition 
might be caused by the parameter settings chosen for this 
study. It might be that with an alternative parameter setting 
the PA model also outperforms the flashcard condition. 
However, it is difficult to come up with the settings in pa-
rameters required. The first candidate for change would be 
the retrieval threshold, as in most PA studies, the threshold 
is set at -0.704 instead of -0.5. However, lowering the 
threshold would increase the spacing between two presenta-
tions of the same item. As the difference in adjusted post-
test score between the PA algorithm and the threshold adap-
tion algorithm is close to reaching significance (p=0.107, 
two-sided, but one could argue that this difference should be 
tested one-sided), and the sole difference between these 
conditions is that the individual decay settings are possibly 
increased (which has a similar effect as increasing the re-
trieval threshold), it is difficult to imagine how decreasing 
the retrieval threshold would improve the performance. 
With respect to changes in the parameters involved in calcu-
lating dji, it is most likely that these changes would benefit 
the other algorithms as well. Thus, although changes in the 
parameter settings might diminish the gap between the dif-
ferent spacing algorithms, it is hard to imagine how the tra-
ditional PA model would outperform the alternative. It is 
interesting to note that Pavlik and Anderson (2008, p.102) 
discuss a very similar approach they call “performance 
tracking” and mention that this method will “add consider-
able power”. However, they conclude that this approach will 
make scheduling much more complex. 

We have shown in this study that performance tracking is 
possible, but also that adapting the sequence to the charac-
teristics of individual learners improves learning gains con-
siderably, even if the learning session takes only 15 minutes.
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