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Introduction
Motor imagery is a cognitive process in which motor acts are mentally rehearsed without 
any overt body movements. A fast growing number of studies show that brain areas 
engaged in the actual performance of movements are for a large part also active during 
motor imagery. The areas that are activated during execution and imagery are the 
prefrontal cortex, the premotor cortex, the SMA, the cingulated cortex, the parietal 
cortex, the cerebellum and the primary motor cortex cerebellum (Porro et al. 1996; Roth 
et al. 1996; Luft et al. 1998; Lotze et al. 1999; Gerardin et al. 2000; Porro et al. 2000). 
Furthermore it has been shown that mentally rehearsing a physical exercise induces an 
increase of muscle strength comparable to that attained by a real exercise (Yue & Cole, 
1992). 
In an intriguing recent study Ehrsson, Geyer & Naito (2003) showed that imagery of 
finger, tongue and toe movements activated the somatotopically organized area’s of the 
primary motor cortex in a systematic manner, that is, imagery of finger movement 
activated the finger area, imagery of toe movements activated the foot zones, whereas 
imagery of tongue movements activated the tongue region of the primary motor cortex. 
Thus the imagined body part seems to be reflected directly in the pattern of cortical 
activation. Fadiga et al (1999) demonstrated that motor imagery influenced the 
corticospinal excitability and that this influence is specifically related to muscles 
involved in motor execution. For example, motor imagery of forearm flexion enhances 



the MEP’s of the m. biceps brachialis, an agonist during forearm flexion, whereas this 
was not the case during imagery of forearm extension, where the m. biceps brachialis acts 
as an antagonist. So, motor imagery does not lead to an a-specific general increase in 
arousal but to a very specific activation of neural control structures also involved in the 
actual execution of (the same) movements.
Gallese & Lakoff (in press) argue that when a given action is planned, its expected motor 
consequences are forecast. This is possible because these predictions are based on an 
internal simulation process. Imagining or observing an action is to a large extent 
equivalent to internally simulating it and it is this internal simulation process that is 
recordable. Hence, cognitive activities such as imagination are far from being 
disembodied but make use of the activation of sensory-motor brain regions.

These results form the background for a project which is focused on the question whether 
it is possible to use the activity elicited by motor imagery in certain areas of the brain for 
controlling external devices (e.g. a robot arm). When the activity is specific and highly 
correlated to the imagined movement, it is argued that this activity may be used for the 
execution of that movement by an external agent. Would the imagination of a grasping 
movement lead to an actual grasping movement performed by a machine?
In a clinical context it may be asked whether the imagination of a movement by a 
paralyzed patient can be “recorded” and used for the control of external devices. Recent 
studies have shown that monkeys are able to control the trajectory of a cursor on a 
computer-screen without showing any overt behavior. Musallam et al. (2004) provided 
the first demonstration of the feasibility of employing high-level cognitive signals from 
the parietal and premotor cortex for driving a neural prosthesis. These brain signals 
reflect the goal of the intended movement and the value of the reward the subject expects 
to receive for successfully completing a task.  

How to record a cognitive state
Available brain recording/imaging techniques for use in BCI are PET, MRI, MEG, EEG, 
LPF (local field potentials), and single-cell (multi-unit) recording. For technical and 
practical reasons, however, PET, MRI, and MEG are presently not suitable for 
application in a neuroprosthesis. Multi-unit recording and LPF, both involving 
intracranial insertion of electrodes, have produced intriguing and promising results in 
recent animal studies (e.g. Andersen, Musallam, & Pesaran, 2004). Apart from technical, 
but perhaps solvable, problems related to the limited useful ‘life time’ of intracranial 
electrodes, usage of intracranial recording techniques in humans is beset with other 
practical and ethical problems. From a purely technical and practical perspective, this 
leaves EEG as the most viable technique to provide on-line information on brain activity 
and mental state to be used in (non-invasive) neuroprosthesis.

Even in the best of circumstances (using spatial filtering and multivariate modeling 
techniques to enhance the spatial resolution of the EEG signal), EEG measures the 
synchronous (average) activity of millions of neurons. Thus, EEG provides a 
macroscopic measure of brain activity, at a scale that most likely exceeds the magnitude 
that is assumed by population-vector theories of neural information processing. The 
implications of the relative lack of specificity of the EEG signal for application in 



neuroprostheses should be clearly acknowledged. For instance, while the EEG might well 
be used to reliably differentiate between left-hand and right-hand motor intentions (due to 
the well-known lateralization of manual motor systems), it seems questionable whether it 
can usefully differentiate between more specific intentions to engage in functionally 
distinct and meaningful actions, such as grasping versus releasing. 
Informational states and transactions at mesoscopic and microscopic levels of brain 
activity, arguably the levels at which mental (e.g., motor) representation and processing is 
realized, are unlikely to be assessable by means of EEG recording. Thus, when the goal is 
to develop a neuroprosthetic system that allows the user to control an artificial effector by 
‘natural’ ideomotor means, i.e. by imagining specific, punctuated actions (or action 
goals), EEG seems intrinsically ill-suited and cortical implants should be considered to 
provide the only feasible technology. However, an EEG-based neuroprosthesis does 
remain a highly viable alternative, for reasons to be discussed next.

Multichannel EEG represents a highly complex signal. Time-frequency analysis in 
conjunction with experimental manipulation and multivariate signal analytical 
techniques, such as Independent Component Analysis, has been used to uncover a range 
of underlying components, defined in terms of frequency signature, spatiotemporal 
properties, and associations with mental state. Moreover, neurofeedback research has 
provided ample evidence that humans can be trained to acquire some degree of control 
over many of these components. In principle, then, the EEG signal should provide ample 
degrees of freedom to represent and communicate a variety of basic motor intentions. 
However, realization of this potential may well require extensive training in order to 
teach users to translate (by more of less ‘natural’ means) motor intentions into distinct 
EEG signatures.

An elegant and compelling demonstration of the potential of this approach is provided by 
the recent research of Wolpaw and McFarland (2004). These investigators capitalized on 
the fact that manual responses (and associated intentions) are associated with strongly 
lateralized and quite specific power changes in the alpha (mu) band (10 Hz) and the beta 
band (20 Hz) in the EEG recorded over precentral motor cortex, and that humans can be 
trained to control the power in these frequency bands (by mentally simulating left-hand 
or right-hand actions). Using a simple adaptive classifier to translate linear combinations 
of the various spectral powers into horizontal and vertical cursor movements, these 
investigators reported good control of two-dimensional cursor movement, comparable, 
with respect to precision, accuracy, and movement time, to that obtained with invasive 
BCIs. Interestingly, whereas subjects reported using explicit motor imagery strategies 
early in training, such strategies tended to become less important and performance more 
automatic as training progressed.

As this example illustrates, the success of EEG-based BCI critically relies on two integral 
parts. First, a range of potentially useful EEG features or components must be 
preselected. This selection jointly depends on the accuracy (and speed) with which 
components can be identified and measured at a single-trial level (requiring prior 
information and suitable techniques for signal preprocessing – on-line time-frequency 
analysis and spatial filtering), and on the quality of control that users (can be trained to) 



have over these components (relevant prior information from motor imagery and 
neurofeedback literature, to be complemented with development of suitable training 
tasks). Second, adaptive classifier algorithms are needed that can focus on those EEG 
features each user is best able to control and that can guide and promote further 
improvement in control, thereby interlocking the user and computer into a process of 
mutually dependent adaptation in order to find a robust and high bit rate BCI.

Pattern classification in multichannel recordings of brain activity
Although the point can be made that not enough is known about neural coding of 
information in the brain or about the nature of neural-information processing, a number 
of concrete experiments in biomedical engineering and in cognitive neuroscience have 
demonstrated that with the currently available methods in signal processing and pattern 
recognition more intended-Shannonian bits can be derived from brain activity than was 
considered possible until very recently. The early results, both by groups using invasive 
methods as well as by groups using non-invasive EEG recordings have stimulated a new 
wave of multidisciplinary research. In 2003, the first open Brain-Computer Interfacing 
competition was held, organized by the following researchers:

Albany (USA):     Theresa M. Vaughan, Gerwin Schalk, Jonathan R. Wolpaw 
Berlin (DE):         Benjamin Blankertz, Gabriel Curio, Klaus-Robert Müller 
Graz (AU):           Alois Schlögl, Christa Neuper, Gernot Müller, Bernhard Graimann,
                              Gert Pfurtscheller 
Tübingen (DE):   Thilo Hinterberger, Michael Schröder, Niels Birbaumer 

Numerous results have been published, e.g. Mensh et al. (2004). Other work in BCI 
concerns the (invasive) electrode arrays for restoring motor control by John Donoghue at 
Brown University and Nicholas Hatsopoulos (1998) in macaque monkey, following the 
seminal work of Georgopoulos. Recent work by Carmena et al. (2003) Again, in the 
domain of invasive methods, there is the exploratory work of Richard Norman, 
University of Utah towards restoration of vision. 

In The Netherlands there is an important group around Wim Rutten (UT), working on 
fundamental aspects of neuron-silicium interfacing. Also at UT, there is the Roessingh 
institute, working on the development of general prosthesis systems. 

The promising results at the level of invasive methods for brain-machine interfacing and 
the initial results in non-invasive, e.g., EEG-based methods are currently setting a stage 
for exciting new research in Groningen. Rather than focusing on low-level aspects, we 
want to exploit the available expertise at the level of kinesiology, EEG analysis, and 
pattern recognition. Apart from the results in the EEG arena, supportive evidence on the 
ability to detect cognitive states of the brain has been delivered by Tom Mitchell, one of  
the  most important representants of Machine Learning. His group showed that current 
state-of-the art machine learning methods can be applied very successfully to the 
classification of fMRI signals into corresponding “cognitive states”. In our proposed 



research, we will use EEG signals to obtain similar results, thereby setting the stage for a 
more practical application of BCI  than would be possible using fMRI.

The type of research in this domain  benefits from the participation of multidisciplinary 
groups. Cognitive psychologists, neuropsychologists and kinesiologists will be able to 
define experimental conditions, which can be used by neuroscientists or 
electrophysiologists for the accurate recording of the neural  signals, which in turn need 
to be analyzed by researchers from techological or methodological fields. It seems that all 
ingredients for success are present at Groningen University. For the dept. of Artificial 
Intelligence, there are three levels of interest within the depicted research area.

The most challenging level concerns our understanding of neural representations at a 
spatiotemporal scale which is much smaller than is the case with current recording 
technology. Even the fastest fMRI devices and the EEG-recording setups with the highest 
attainable spatial resolution will not immediately deliver sufficient information to build a 
bridge between voxel intensities and neural spiking patterns. However, there are more 
general questions within computational neuroscience which address the nature of a 
representation at the level of the signal, the definition of what constitutes the brain 
system state and the computing mechanism and mathematical transforms that model the 
essential invariances in the stream of multidimensional time functions. 

The second level of interest concerns another bridge, i.e., the connection between the 
rather abstract concepts in Cognitive Science and the concrete, measurable changes in the 
state of the brain. The availability of the “BCI” paradigm, as a complementary approach 
to the ANOVA-driven experimentation in cognitive neuroscience, will allow for a 
focused and functional testing of theories on motor imagery, intention, action and 
attention. 

The third level of interest concerns the development of methods in machine learning. The 
presence of high-dimensional time-variant signals for which the class identity of an 
episode, i.e., its ground truth is known due to the fact that the recordings have been 
obtained under stringent experimental conditions, provides an exciting breeding ground 
for the development of algorihms which are able to detect order in chaos.  The 
availability of the Beowulf computing cluster at Groningen University allows for the 
brute-force analysis of massive amounts of data, in order to hunt for 1) signal transforms, 
2) brain areas, and 3) classification methods which are optimal for the derivation of 
functionally usable and meaningful information brain activity. A specifically challenging 
notion concerns the bidirectional adaptivity which is needed for a high signal-to-noise 
ratio in brain-computer interfacing. The user of a BCI needs to learn to control  a new 
end effector, whereas, at the same time, the pattern-recognition and machine learning 
modules of the interface need to learn incrementally in real time. In fact, it may be argued 
that the introduction of BCI interfaces in, e.g., patients with peripheral motor disorders, 
will necessitate a continuous adaptivity on behalf of the biological and technical 
components of the movement -control system. 



Plan for BCI  research at RuG

Being aware of the attempts at invasive neural implants and stem-cell research for neural 
recovery of function, we will first focus on non-invasive “EEG”-based attempts at 
extracting action intentions in humans.

Three PhD students will be needed, one in Movement Science, one in Experimental 
Psychology and one in Artificial Intelligence, to perform a joint project which consists of 
the following stages.

1. Determining experimental and controlled conditions for bringing the brain into 
several well-defined neural-activation states, allowing for specificity of activation 
patterns. Attention will be given to both continuous and discrete (symbolic) 
modes of control.

2. EEG/fMRI localization coordination, determining optimal electrode placement, 
derivation and signal preprocessing

3. Pattern Recognition and signal processing method development to allow for a 
reliable classification of brain states.

4. Development of functional tasks, i.e., tasks with a benefit for the user of the BCI 
system. This may involve control of computer applications but also the control of 
robotic systems is considered here.

The research will result in three PhD theses under supervision of, respectively, 
T.Mulder, R. de Jong &  L.Schomaker

Related groups in Groningen, which may benefit from the results of the proposed 
research kernel BW/Psy/AI are:

Roerdink (Inf.), Duifhuis (BMT), Robillard
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