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Preface

This study is concerned with the processes that take place from the moment that
a writer wants to write down a given word, until he or she can inspect the finished
result. What types of transformation are needed, going from planned word to mus-
cle contraction? Which components of writing behavior are explicitly planned, and
which components are emergent consequences of neural or biomechanical processes?
The goal of this thesis is to enlighten at least to some extent these intriguing but
hard-to-solve questions. The approach followed is based on the assumption that by
trying to build a working generative computer model of handwriting, one will be
confronted with the same types of problems that a human writer has to solve. As will
become evident, this assumption is only partly true, since it merely holds for models
that comprise more than a mere input/output description, and that try to reflect, at
least partly, the internal architecture of the system under study. The starting point
for the simulation model is the writing behavior of an adult writer, experienced in
cursive writing. This implies that we disregard processes taking place during early
motor development and during the learning of cursive handwriting. If we take a
recording of writing movements during the production of a page of text by such an
experienced writer, will it be possible then to analyze, transform and adapt these
data to produce a completely new text, written in the cursive handwriting style of
this subject? The aim of the present study is indeed to build a computer model that
is able to generate handwriting patterns in such a way that there is a high corre-
spondence with respect to both the spatial and the temporal characteristics between
the handwriting production by the computer model and that by the human writer.
The difference of this approach from most other attempts to model handwriting is
that these latter models have tried to re-generate existing recordings of handwriting
movements, mostly involving isolated words. As we shall see, the step from regener-
ation to new generation of movement patterns is far from easy. This thesis describes
the research that evolved from the interaction between the demands of a working
model, the experimental findings, and theoretical issues.

Chapter 1 deals with the theoretical roots of the present endeavor. Many view-
points reveal essential aspects of motor control, but no single viewpoint will suffice to
provide the building blocks for a working model of handwriting production. Hence,
a ”vertical” approach is taken, adopting the necessary components for the different
processing levels from cybernetics, cognitive motor theory, robotics and connection-
ism.

Chapter 2 discusses an important aspect of the pen-tip kinematics during cur-
sive writing: how reproducible are replications of writing movements recorded on
different occasions? Only if movements are actually reproducible, makes it sense to
develop a handwriting production model. This chapter forms the starting point of
the development of the model, since it shows that invariance and replicatability are
indeed present in movement patterns with the duration of at least a single letter.

Chapter 3 presents a computer model of handwriting. One of the basic problems
that have to be solved is concerned with the transformation of discrete entities, i.e.,
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the symbolic representation of a planned letter shape (allograph), into a continuous
multi-dimensional time function, i.e., the movement of the pen tip. This problem is
tackled with the first step assumption that there are basic segments in handwriting,
strokes, the number of which is known to have a more or less quantized influence on
the reaction time in the programming of handwriting movements by a human writer.
The next step is to find a parametrization of these strokes. Here, the problem is the
fact that movements along more than one axis have to be prepared at a specific
moment in time. In most models, the movement patterns along separate axes are
essentially independent, describing the total pattern for an isolated word separately
for each axis. In contrast, the current model aims at handwriting production that
proceeds letter by letter. The reason for this constraint lies in the findings which seem
to indicate that the motor programs used in planning cursive handwriting involve
movement patterns of a size that corresponds to single letters. This assumption,
consequently, leads to the definition of an abstract representation of allographs and
a grammar, dubbed the Cursive Connections Grammar, that provides the rules for
generating connecting strokes between two planned letters.

Up to this point in the thesis, the model has only been concerned with the kine-
matics of the pen-tip movement. However, the important question may be asked if
movement kinematics are the only domain that is controlled by the ”programs” for
handwriting production. Apart from the intrinsic forces that generate movement, the
pen is in contact with the writing surface, yielding normal force and friction. What
is the actual relation between finger and wrist movements and pen force (pressure)?
If there is a fixed and strong relation between pen force fluctuation and movement,
it is most parsimonious to consider pen force fluctuations to be a passive biome-
chanical phenomenon. If, on the contrary, pen force appears to be independent from
the movement, it is likely to be a separate control variable. Thus, in Chapter 4,
a kinetic aspect of writing is studied: what happens to axial pen force during the
production of several types of movement patterns and what are the implications
for movement control as specified in the working model? It appears that pen force
fluctuations are not a passive biomechanical phenomenon. Also, the pen force pat-
tern during letters is invariant across replications, which supports the notion that
pen force is a separate domain, in some way embedded in the ”programs” for letter
production.

During the course of our project, rapid new developments took place in the field of
modeling perceptual and cognitive functions. New techniques in neural network sim-
ulations, such as back propagation, simulated annealing and neural self-organization
are being refined and still newer techniques are being developed. With respect to
motor control, however, there are still some typical problems to be solved, notably
the representation of time and of continuous functions.

Chapter 5 presents a review of some basic artificial neural network models and
their potential use in modeling handwriting movement control. In the following
chapters, three basic issues are raised with respect to motor modeling: the coding
of quantity, the representation of time, and the representation of the effector sys-
tem. Chapter 6 deals with the representation of quantity and learning the static



transform of a continuous function. It reveals subtle differences between basic types
of coding of quantity in a neural system: Firing rate control, value unit coding, and
recruitment. In Chapter 7, the representation of time in neural systems and the
learning of handwriting time functions is addressed. A new neural network model of
the production of time functions is proposed, consisting of an ensemble of neuron-
interneuron spike oscillators. The last of the three neural modeling experiments is
described in Chapter 8 and concerns the problems of the representation of an ef-
fector (e.g., an arm) and the transform of two-dimensional movement patterns into
N-dimensional joint angle patterns: The inverse kinematics problem. A final interest-
ing and relevant problem is computer recognition of handwriting movements which
is the focus of Chapter 9. Will the knowledge gathered thus far in simulating the
production of cursive handwriting and in neural network modeling be helpful in the
automatic recognition of handwriting movements? An algorithm is proposed that
performs recognition by actively constructing letter (allograph) hypotheses on the
basis of chains of individual strokes, instead of storing prototypical allographs and
performing template matching.



Chapter 1

Theoretical perspectives

Motor processes are studied at a number of observational levels varying from electro-
physiology to cognitive psychology. Mostly, a researcher chooses his field of interest
and thus determines the level of observation for his work. However, in the course of
developing a generative simulation model of cursive handwriting, it became appar-
ent that a single level or perspective would not suffice. In the several stages of the
current study we were confronted with problems that are specific to different ob-
servational perspectives. For instance, the problem of the internal representation of
letter shapes requires an approach that is quite different from the approach needed
in the problem of trajectory formation or force control. Consequently, we had to
follow a ”vertical” approach, leading to a model of handwriting that encompasses
several levels of observation. Unfortunately, there is a great abundance of different
theories at each of these levels, all of them addressing relevant aspects of motor
behavior. The reason for this lack of agreement lies in the complexity of the motor
processes themselves. Given our goal of developing a model of cursive handwriting, a
selection of theories had to be made at each of the observational levels encountered.
First we will describe some relevant theories from a historical perspective and point
out our stance. Cybernetics and systems theory, have exerted a profound influence
on our insight of motor control. Cognitive Motor Theory exposes the need for
a description of the representational and computational aspects of motor control.
The Systems Dynamics Approach is powerful in explaining a number of motor
control phenomena, but appears to be insufficient as the basis for a handwriting
model. The Robotics viewpoint exposes problems, that have been implicit in the-
ories on motor control for a long time. Connectionism provides neurally inspired
models which have the attractive property of potentially being closer to the actual
biological neural motor control system than the models developed in the other ap-
proaches. Finally, the origin of theories and techniques, used in the Recognition of
handwriting movements will be mentioned briefly.

1



2 Theoretical Perspectives

1.1 Cybernetics

Cybernetics is defined as ”...the study of control and communication in the ma-
chine or in the animal...” (Wiener, 1948). In the current context, we will use the
term cybernetics in a narrower sense, i.e., as referring to the study of control sys-
tems. The communication and information-theoretical aspects that were originally
partly embedded in cybernetics, are currently studied in a different field, called in-
formatics or computer science. The name cybernetics comes from the Greek word
for steersman (κυβερνήτης), and in fact does not have connotations with respect
to communication or information. More specifically, even, we will only speak of sys-
tems controlling a physical parameter. The following quotation clarifies how Wiener
himself envisaged the control problem:

”....what we will is to pick the pencil up. Once we have determined
on this, our motion proceeds in such a way that...the amount by which
the pencil is not yet picked up is decreased at each stage....”

N. Wiener (1948, p 14)

Since the development of technical servo systems (Wiener, 1948), interest in cy-
bernetics as a paradigm has been increasing and fading in a number of fields, varying
from engineering, biology and psychology to economics. Research in cybernetics has
led to powerful mathematical tools and theoretical concepts, gathered under the
heading of Control Theory. Figure 1 shows the basic components of a general first-
order feedback system and their connections.

There are four system components: (a) Comparator, (b) effector, (c) sensor, and
(d) feedback loop. The quantities flowing from one component to the other can be
weakly separated into information quantities (dotted lines) and energy quantities
(solid lines). The input to the system is a signal determining a target value for the
effector output, as measured by the sensor. The output of the system is an amount



3

of energy dissipated by the effector. In error-correcting systems, the effective sign
of the sensory quantity that is fed back to the comparator is the inverse of the sign
of the energy quantity produced by the effector. In this way, external disturbances
imposed on the effector output are counteracted by the system. Feedback can also
be positive, leading to oscillations or an avalanche process. The central issue in the
cybernetic paradigm is the identification of these basic system components and the
determination of their parameters. For instance, the system has a gain parameter,
each component has a static transfer function (linear or non-linear) with a specific
operating range, and a frequency domain transfer function. The connections between
components may introduce a time delay in the propagation of quantities. The overall
system behavior can be described by sets of differential equations.

With respect to handwriting, the cybernetical paradigm would point to the follow-
ing type of model. From somewhere, a target letter shape enters a system composed
of (b) the end effector holding a pen, (c) a visual, proprioceptive and tactile sensor
subsystem delivering a displacement or velocity feedback signal (d) which enters a
comparator (c) (Figure 1). The muscles of the effector system in use are continually
activated with an excitation signal that is based on the difference between the tar-
get shape and the obtained shape. Is such a model realistic? Potentially, the model
could be justified since the necessary system components are existent. However, the
credibility of such a model ultimately depends on the actual values of the physical
parameters of the system components (transfer functions, delays etc.).

Now, for the sake of argument, let us ask what an ideal, physically realizable,
error-correcting feedback system for motor control would look like? Such a system
functions optimally if disturbances are corrected fully, immediately and without
oscillations. Empirical evidence and theoretical reasoning have led to the following
five qualitative requirements for this hypothetical and ideal system.

The external parameter as well as the effector control signal are of a continuously
varying (analog) nature.

An effector whose output cannot be controlled continuously, but can only be
switched on or off will lead to oscillations in the feedback process. This happens
with the binary controlled feedback systems that the refrigerator and most home
thermostats are. The problem can be solved by damping the effector output and
by decreasing the switch hysteresis, the theoretical optimum is an infinitesimally
short switching time. Another solution is the quantization of the effector range into
a much larger number than two levels.

Sensory measurement takes place continually during effector activity.

A sampling sensory system measuring the effector state at regular or irregular in-
tervals with a duration that is larger than the duration of output fluctuations, misses
information and cannot provide stable error correction. In the frequency domain, this
problem appears as folding or aliasing of the ”missed” spectral components (Bendat
& Piersol, 1971).
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There are no transmission delays.

A feedback system with a transmission delay between sensor and comparator will
have a strong tendency to oscillate (”hunting”). The reason is that the disturbance
at the time of correction does not match the correction magnitude that was based on
old sensory information. Thus, the corrective action becomes a disturbance itself, and
so on. A feedback system with a transmission delay may function in a stable mode,
however, if a damping (”low-pass filtering”) component is placed between the effector
and the sensor. The price to be payed for this solution is an increased ”sluggishness”
in the system behavior. In motor systems, a comparable problem is encountered in
the mono-synaptic reflex arc of, e.g., the arm and hand muscles. The neuroelectric
delay between sensor (muscle spindle) and comparator (the alpha motoneuron pool)
is about 20 ms, the neuromechanical delay is about 60-100 ms. If muscles were
undamped electro-mechanical devices, this would surely lead to an unacceptably
high-amplitude oscillation at about 8 to 12 Hz. In the course of evolution, however,
the parameters of this system (visco-elasticity, inertia, loop gain) developed in such
a way that there exists a compromise between stability and response speed. In the
human hand, the result is a critically damped system, displaying a small-amplitude
oscillation of about 8-12 Hz known as physiological tremor (Redfearn, 1957; Lippold,
1970). As an example of the effect of delay at a higher level of motor control, delayed
speech feedback by means of headphones seriously impairs the process of speaking
(Fairbanks, 1955).

The gain of the system is high.

If the gain of the system is low, it takes longer to counteract disturbances (Von
Hámos, 1964).

The operating range of the effector is bipolar.

An effector with a monopolar operating range (a heater) is less effective and slower
than an effector with a bipolar operating range (e.g. in airconditioning: Heating as
well as cooling) (Klir, 1969). The reason lies in the time constant of a monopolar
effector, which forces the control system to wait passively until the target value is
reached by decay.

In physiological systems, none of the above conditions is fully met. We have seen
that in case of delays there may be a compromise between stability and response
speed. Moreover, muscle control is hampered by the fact that the effector cannot
really be controlled in an analog fashion. Smooth movements are only approximated
by a non-ideal (Allum, Dietz & Freund, 1978) statistical summation of motor unit
activity (De Luca, 1979; Van Boxtel & Schomaker, 1983), filtered by visco-elastic
damping and inertia (Rack, 1981). Single muscles have a monopolar working range,
they contract actively but relax passively. Only with agonist-antagonist pairs can
bipolar effector control be achieved. Due to their physical limitations, the gain of the
physiological feedback systems is much less than in technical systems, but often a
high gain would only worsen the detrimental effects of transmission delays on error
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correction. Nevertheless, in motor control, physiological feedback systems exist, as
evidenced by anatomical and experimental data. Important feedback loops in motor
control are the mono-synaptic reflex arc, the Golgi tendon sensor feedback loops
(Roberts, Rosenthal & Terzuolo, 1971), and the feedback loops between the motor
cortex and the cerebellum (Dimond, 1980). As compelling examples, posture control
and oculomotor control are processes that can be described elegantly in terms of
cybernetics (Jones, 1972). Apart from physiological modeling, cybernetics was a
useful paradigm in modeling some types of tracking behavior (Crossman, 1960). But,
is there enough evidence to support a ”tracking” hypothesis of handwriting? Before
answering this question, let us first point out some inherent theoretical problem
areas. For instance, what is the input to a feedback system? If it is a simple and
fixed physical goal (”keep standing upright”), there is no theoretical problem. But
what if the input target value is varying over time to obtain a time varying effector
output instead of maintaining a fixed value? Where does such a signal come from?
It does not suffice to say that the feedback system being observed is submerged
in a larger hierarchically organized system of feedback units. Such an explanation
introduces, once again, the well-known ”homunculus” problem.

Before continuing this more or less historical review with the next paradigm in
motor theories, let me clarify the issue of ”closed-loop” control or feedback as it
was used in psychological theories on motor control. Sometimes, the original ideas
of ”feedback” of the cybernetical approach were interpreted slightly differently by
researchers in non-engineering fields. For instance, Adams (1971) proposes a closed-
loop theory of motor control in which the concept ”Knowledge of Results” (KR) 1

plays an important role. Knowledge of Results, as it is usually applied, represents
feedback that a subject gets about a response after it has terminated. Indeed,
there exists a large class of human motor actions that, unlike tracking behavior, in-
volves discrete patterns, the success of which depends on the final state (e.g. catching
a ball), so continuous feedback is not possible at all. In fact, however, in Adams’
closed-loop paradigm, a very special type of feedback system is described. It is a
system in which a ”one-shot” response is followed by a delayed single experimental
stimulus conveying information about the quality of that response. The time scale is
such that the duration of the response relative to the delay time of KR can be very
small, e.g., 100ms for a single pencil stroke vs 20s delay of the feedback about the
produced actual stroke length. This temporal dissociation is much larger than one
expects in physical feedback systems. In fact, a careful comparison of the ”closed-
loop” theory of Adams with standard cybernetics reveals many more differences.
Adams deals with ”perceptual traces”, ”memory” and ”learning”, concepts that are
absent in basic control theory. What psychological ”closed-loop” theories and cyber-
netics have in common is the closed loop from effector activity to the comparator
(Figure 1). The operating mechanisms of a system like the mono-synaptic reflex
system on the one hand, and the feedback system that is composed of a subject and

1The name (KR) is rather strange since it seems to imply that the experimenter can be certain
that the subject indeed has acquired knowledge upon the presentation of the feedback stimulus
that is supposed to represent a response measure.
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experimental apparatus in a typical ”KR experiment” are vastly different. Whereas
the mono-synaptic feedback process is governed by known, relatively simple, physi-
cal and physiological laws, still very little is known about the neurophysiological and
cognitive laws that govern the behavior of a subject in a KR feedback experiment.
In any case, a failure to confirm hypotheses with respect to ”closed-loop” control in
typical KR experiments should not tempt us to dismiss all feedback mechanisms.
The line of thought followed in the theory of Adams is much more in agreement
with the theory to be discussed next than the original controversy suggested at the
time (Stelmach, 1982).

Gradually, some shortcomings of a purely cybernetical view on motor control pre-
dominantly based on feedback became more and more clear. An increasing number
of findings indicated that there are phenomena in motor behavior that cannot be
explained in terms of systems with closed loops and negative feedback only. Lash-
ley (1951) already noticed that some motor phenomena simply occur too fast to
be explained by feedback mechanisms: A good piano player can achieve a regular
frequency of 16 key strokes per second, using several fingers. Dijkstra & Denier van
der Gon (1973) found that target positions in aiming movements could be reached
after disturbances, without active high-level feedback of the motor system taking
place. Also, it was shown that unexpected disturbances in fast arm movements did
not lead to changes in the recorded EMG until 100ms after their occurrence (Wad-
man, 1979). In monkeys, it was shown that ”programmed” target positions could be
reached after functional deafferentiation (Bizzi, 1980; Morasso, 1981). Table 1 shows
some typical average reaction and delay times in humans.

The simple reaction time between seeing a light
flash and pushing a button with the index finger
(Donders’s a-type reaction) is, in adults
(Kelso et al., 1979): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 ms

The reaction time between seeing a light
flash bar and pushing a button with the index finger in
a binary decision task is, in adults (Laming, 1968): . . . . 419 ms

The 95 percentile reaction time to brake a car in case
of an unexpected obstacle (Olson & Sivak, 1986): . . . . . 1600 ms

Table 1a. Typical reaction times.
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The time between a passive stretch of an arm muscle
and the arrival at the alpha motoneurons in the spine
of the afferent neuroelectric burst coming from the
muscle spindles is (Marsden, Merton & Morton, 1973): . . . . . 23 ms

The time between a discharge of an alpha motoneuron
and the peak twitch force of the muscle fibers belonging
to the motor unit is (Grimby, Hannerz & Hedman, 1979): . . 30-100 ms
The effective duration of a motor unit twitch is
(ibid.): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . >60 ms

Estimated time between the occurrence of a motor discharge
at the motor cortex and the discharge of hand alpha
motoneurons (type A fiber, conduction speed 100m/s) is: . . ± 10ms
Idem, measured in monkeys (Schmidt & McIntosh, 1979): 11ms

The time between presentation of a light flash and its
arrival at the visual cortex (Wurtz & Mohler, 1976) . . . . . . . . 35ms

Table 1b. Typical delay times.
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As an approximate estimate, 100 ms is assumed to be the minimum time to pro-
cess sensory signals at cerebral levels and initiate corrective muscle contractions.
Faster systems exist, e.g. the oculomotor system (Gisbergen, Van Opstal, & Roe-
broek, 1987) with its short connections to the central nervous system. However, the
general opinion took hold that the neural system is just too slow to react fast enough
to the rapid and often sudden perceptual and proprioceptive changes that occur in
daily actions: Car-driving, sporting and speaking, and to produce adaptive correc-
tive activation of the muscles. The conclusion was that there process types must
exist which do not use feedback loops, but function, as it were, with an opened loop.
Thus, ”open-loop control” was acknowledged more and more as an explanation for
the timing problems in real-life motor control. Normally, in cybernetics, open-loop
control is an artificial situation, produced by an experimenter to measure system
parameters, such as gain, which can only be determined if the feedback loops are
cut. It is the engineer who determines what the input signals are to the mutilated
system, in order to measure the output signals. In the case of motor control how-
ever, the notion of open-loop control necessarily requires the introduction of a new
concept. What type of signal or information is flowing through this system with its
feedback loops inactive or ineffective? It must be some signal or ”information” that
is based on the current state of the perceptual systems and that is anticipated to
contribute to an adaptive state of the motor system by the time the muscle contrac-
tions take place. The necessary concept is ”preparation” or ”programming” as it is
sometimes called. The term ”open-loop” is also confusing since it presupposes that
all existing feedback loops are inactive, which is not the case. Feedback loops varying
from the mono-synaptic reflex arc and the cortico-cerebellar loops (Dimond, 1980)
to the visual feedback loop, are continually active, but the relevant information is
arriving ”too late” in the case of rapid movements.

Apart from open-loop control by programming, there is a related but distinct
principle that was postulated to explain the motor phenomena that appeared to
operate without feedback: Feedforward control. The essence of feedforward control is,
that earlier systems in a chain of processing units bypass the activity of intermediate
processing units and bring about state changes in the units further away in the
direction of the end of the chain. Feedforward control has the effect of overruling
the activity of the intermediate processing units. In industrial engineering practice,
feedforward is often used to implement safety mechanisms that prevent the system
from overloading in case of input signals reaching ceiling values. The explanation
that Dijkstra & Denier van der Gon (1973) put forward to account for the apparent
ability of the motor system to reach a target after a disturbance without high-level
feedback was the existence of a gamma-efferent feedforward signal that designated, a
priori, the expected muscle length at the target location. This paper is typical for the
transition from predominantly feedback-oriented explanations towards feedforward
and ultimately, open-loop or programming-oriented explanations for phenomena in
motor control.

The preliminary conclusion is, that cybernetics elegantly describes some existing
phenomena in motor control. With respect to handwriting it can be concluded that
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the existence of feedback loops such as the mono-synaptic reflex arc and the cortico-
cerebellar loops introduce a self-organizing autonomy into the effector system (the
writing hand) in the domain of posture and stiffness control. At the same time
however, the concept of feedback is insufficient to explain the corrective properties
of motor control in case of absent or delayed sensory information. Also, the origin
of complex patterns like writing is left implicit in a pure cybernetical theory.

1.2 The Open-Loop Approach: Cognitive Motor Theory

As stated earlier, the experiments by Bizzi (1980), Bizzi, Polit & Morasso (1976)
played an essential role in the paradigmatic shift in which feedback as such was in-
creasingly considered to be inadequate as an general explanation of motor control. It
was shown that in fast aiming movements of the head or the arm (Wadman, 1979),
final targets could be reached in the absence of essential feedback information (vi-
sual, vestibular, or proprioceptive feedback). The explanation for this phenomenon
that was put forward, and that is still accepted for the greater part today, is that
the central nervous system determines in advance of such an aiming movement, the
ratios of muscle activation (co-contraction) levels. In this view, the motor apparatus
is a combination of tunable mass-spring systems. The role of the existing feedback
loops was consequently limited to (1) slow and fine adjustment as in posture control,
to (2) adaptation to new or strange postures (Wadman et al., 1980), not internalized
by the ”programming” system, and (3) and to learning. These findings, as well as
psychologically oriented models on motor preparation (Sternberg, Knoll, Monsell, &
Wright, 1983) have influenced the development of a perspective we will call Cognitive
Motor Theory. This field has exerted a marked influence, also on the development of
theories on handwriting production (Hulstijn, & Van Galen, 1983; Hulstijn & Van
Galen, 1988; Teulings et al., 1986; Van Galen, 1980). The paradigm has led to inter-
esting discoveries that have been described extensively elsewhere (Teulings, 1988).
However, there are some problems to the Cognitive Motor Theory. For example, the
algorithmic view on motor processes inherently introduces discrete and sequential
processing stages, and computer-based metaphors like ”buffering” and ”unpacking”.
In retrospect, an attractive aspect of cybernetics with respect to modeling motor
control was that all the various processes function inherently parallel, in the models
as well as in the neural reality. It is only recent that the concept of parallellism re-
gains attention in staged and serial modeling (Van Galen, Meulenbroek, & Hylkema,
1986).

However, two basic aspects of the Cognitive Motor Theory approach are used and
adhered to in the present thesis. The first is the concept of a motor program as a
prepared system state that controls actual movement and that is of a more abstract
nature than simple, stored muscle activation patterns. The second is the finding
that ”programming” is only possible for a motor action of limited duration. In other
words, in order to be able to produce cursive handwriting, the motor control system
must prepare the action in advance, but at the same time, it cannot prepare in
detail more than a few of the basic movements (strokes) making up a specimen of
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handwriting.
A corollary of the open-loop approach is that the internal representations used in

motor control can be used by the organism to process the (delayed) feedback infor-
mation. Although the peripheral feedback information arrives too late to influence
the individual stroke production, it can be used in the learning of handwriting (ad-
justing the ”motor programs”) and to compensate future strokes. As an example,
deviations from the base line in handwriting can be compensated by adapting the
vertical size of subsequent strokes. From a study in blindfolded writing (Schomaker
& Van der Plaats, in prep.), it appeared that a striking difference between sighted
and blindfolded writing lies in the reduced linearity of the base line. Figure 2 shows
two samples of handwriting of a single subject, in a normal (2a) and a blindfolded
condition (2b). Apart from the non-horizontal orientation, the baseline is not linear
because of within-word and between-word fluctuations. The between-word fluctua-
tions are of a ”staircase” type, caused by the positioning uncertainty at each pen lift.
The positioning of the first word of a line of text was guided by the experimenter.
It should be noted, that the mode of feedback that is involved here differs strongly
from the physiological feedback in Section 1.1, in that it requires cognitive activ-
ity. The writer must see the handwriting base line or visually estimate it, in case
of unruled paper, and he or she must know if the subsequent strokes have an end
point that is located on the base line in order to produce an adapted ”program” for
the movements to come. The example also indicates that visual information is used
to calibrate the global writing parameters size and orientation. In blindfolded writ-
ers, the orientation mostly deviates from the horizontal base line, but there are no
systematic biases in the group of subjects. All 10 subjects wrote larger in the blind-
folded condition. Apparently, the visual information is also needed for a feedforward
”Einstellung” of global parameters like orientation and size before the initiation of
this motor task. The fact that writing size is systematically larger instead of smaller
may be caused by the fact that larger movements compensate for the lack of visual
feedback by larger muscle-length variations and a consequently enhanced proprio-
ceptic feedback. Another effect caused by the removal of visual information is the
so-called ”stroke counting error”, here exemplified by the erroneous spelling of the
words huis (house) and zee (sea) (Figure 2b, line 1 and 4 respectively) where a per-
severation of strokes from the digram /ui/2 or the letter /e/ takes place. This effect
has also been reported by others (Ellis, Young & Flude, 1987). This phenomenon
points to the necessity of the visual detection of an ”end-of-allograph” condition,
especially in the case of a repeating pattern.

2The /../ notation will be used throughout the dissertation to refer to handwritten characters,
i.e., ”graphemes” or strings of graphemes.
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1.3 The ecological viewpoint: The Systems Dynamics Approach

The ecological or ”Gibsonian” perspective (Gibson, 1979) evolved from a grow-
ing discontent of several researchers who felt that the cognitivist, computational,
approach complicated matters rather than explaining basic features of motor behav-
ior and providing ”deep” insight in these features. The cognitivist approach yielded
complex models (Sanders, 1983), graphically depicted by connected ”boxes”, hence
the term ”boxology” (Bootsma, 1988). This type of model often appears to be some-
what remote from both the physical motor behavior and the physiological processes.
More specifically, doubt can be cast whether all behavioral phenomena are explic-
itly programmed (computed). It is very well possible that motor control is brought
about by a more autonomous process. In this latter approach, the idea of an internal
representation of movement such as a stored pattern of receptor activity typical for
a specific motor task is rejected.

Although the ecologists’ criticism with respect to the cognitive approach is re-
viewed extensively elsewhere (Bootsma, 1988), it is useful to elaborate on some
points. Interestingly, the ecological approach also partly rejects cybernetical expla-
nations for motor behavior. For example, a given oscillatory component in a motor
action pattern can be explained as the consequence of non-ideal servo behavior,
but the same data can be described as being produced by a mass-spring system
(Table 2), without the need for concepts like comparator, error correction and the
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like (Figure 1). In other words, in the eyes of the Gibsonians, a system may behave
like some technical contraption, but it is considered more parsimonious to look at
simple physical analogs for the description of the system as a whole. It is considered
inappropriate to look for active system components if the data can be explained by
passive mechanisms like attraction to equilibrium states. In a sense, the ecological
perspective is holistic, not using concepts of physics in the regular reductionistical
sense.

In many theories of the motor system the concept of mass-spring systems is
used. In fact, it is used so often that hearing the words will cause an overhasty
”Aha Erlebnis” in many listeners. I would like to point out here, that there
are very large, sometimes subtle differences in the way the mass-spring analog
is used.

1. The mass-spring system as a direct analog for the biomechanical
behavior of the motor system.
This is the most direct analog, with physical parallels in the motor system for
each subconcept of the theoretical mass-spring system, determining the trans-
fer function of the system. Mass and visco-elasticity may refer to a parameter
of a single muscle, or to parameters of a compound motor system consisting
of limbs etc. (Rack, 1981).

2. The mass-spring system as an explanation for feedback-less error
adjustment.
In fact, what is meant here is a system consisting of one limb, (mass), con-
nected to two counteracting springs around a joint. The elasticity coefficient
of the springs (muscles) is pre-programmed, so that after a disturbance the
system will return to the equilibrium joint angle itself, without neuromuscular
feedback being involved. Here the analog is specifically used to account for an
aspect of motor behavior (Bizzi et al., 1976; Hogan, 1985).

3. Oscillations of a mass-spring system as a metaphor for the
organism-environment interaction.
Here the mass-spring system is used to show that oscillation can occur in a
physical system without components such as feedback loops. In the Gibsonian
approach, the very high-level concept of organism-environment interaction is
linked to the low-level concept of an oscillating mass-spring system (Gibson,
1979).

Table 2. The ubiquitous mass-spring analog.
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In a paper by Saltzman & Kelso (1987), many basic concepts of the Gibsonian
approach in motor theories are dealt with. These authors prefer to talk about the
”task-dynamic approach” when referring to their theory. However, the term dynamic
or dynamics is a frequent source of ambiguity (Table 3).

Often the terms dynamic and dynamics are used in a confusing way. There
are at least three interpretations.

1. Dynamic as opposed to Static
In this case the term is used to refer to time-variant properties as opposed to
time-invariant properties. This use of the term dynamic is particularly confus-
ing in the context of motor theory.

2. Dynamic vs Kinematic
Here, the distinction between the two basic aspects of Mechanics is meant,
i.e., ”Dynamic” refers to force as opposed to movement. The Newtonian equa-
tion of movement F = ma + βv + ks contains three force terms (Dynamics),
each term determined by a Kinematic factor (a, v, s) for acceleration, velocity
and displacement, respectively, and a constant (m,β, k) for mass, viscosity
and stiffness, respectively.

3. Dynamics as a method of analysis
In this case, the term Dynamics refers to the theory of Systems Dynamics
which evolved from Mechanics (see 2), Mathematics, and Control Theory. The
field is evolving rapidly, yielding many useful methods and insights, including
well-known phenomena as chaos (Parker & Chua, 1987) and fractals. In simple
terms, the theory shows that very complex behavior can occur in non-linear
systems of limited complexity. See Abraham & Shaw (1984) for an excellent
introduction.

Table 3. The terms Dynamic and Dynamics and their meaning

In the sequel of this chapter, interpretations 2 and 3 (Table 3) will be referred
to using the terms Dynamics and System Dynamics, respectively. In general,
it would be profitable if the term kinetics were used in case the force domain is
referred to.

We will try to find arguments against the ecological approach and analyze two
papers (Saltzman & Kelso, 1987; Beek & Beek, 1988) to see if the approach of
Systems Dynamics is the ultimate panacea for the complexity problem in motor
theories, and a good candidate for a handwriting production model.

Arguments against a motor theory that is solely based on Systems Dynamics.

1. It seems as if the differences in terminology between Cognitive Motor Theory
and the Systems Dynamics Approach obscure the fact that it is the same motor
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system and the same motor processes that are the subject of study. This difference
in terminology is maintained on purpose, carefully avoiding each other’s concepts.
In Saltzman & Kelso (1987), the term motor programming is carefully avoided, al-
though the configuration of a Task network on the basis of Task space and Body

space (ibid.) is clearly something like ”preparation” or motor ”programming”.
2. There is a tendency to peruse anecdotal evidence. Example are the ”diving gan-
net” (Lee & Reddish, 1981) and the ”skilled marksperson” (Tuller, Turvey & Fitch,
1982). There is no methodical, falsifiable approach in modeling as is used in some
cognitive theories (Sanders, 1983).
3. The Systems Dynamics Approach virtually completely ignores the internals of the
neural systems involved. In this sense it is purely descriptive. Only a very complex
and matured device such as the human nervous system is capable of learning the
task dynamics for a wide spectrum of motor tasks during an individual’s lifetime,
no matter how simple and parsimonious a dynamics description for the behavior in
a specific task might be in terms of its mathematics.
4. The Systems Dynamics Approach is suited best for a limited class of motor
tasks, i.e., oscillatory behavior, like walking which has since long been known to be
produced by relatively independent and self-organizing low-level spinal and brain-
stem modules. It can be fairly effective to describe other pure oscillatory tasks (Beek,
1989).
5. The parsimony of the Systems Dynamics Approach breaks down in complex pat-
terning tasks. As an example we can take cursive handwriting. In this motor task,
discrete action pattern units are concatenated. The model of Hollerbach (1981),
assuming that the oscillator for a complete word is installed in advance does not
hold. Writers only plan the movements for one or two letters ahead (Hulstijn & Van
Galen, 1983; Stelmach & Teulings, 1983; Schomaker & Thomassen, 1986). Even if
we would succeed in describing an oscillator configuration for a single letter, or even
two letters, how then are the basic action units concatenated? Is this done by an
associative process, or by ”buffering”? Eventually, representational concepts will be
needed, similar to those that are currently in use in Cognitive Motor Theory.
6. Looking at the Systems Dynamics Approach with a skeptical attitude, the method
appears as an elaborate form of curve fitting, especially if one were to use it for
modeling oscillatory behavior that is subtly modulated in phase, frequency and
amplitude, like cursive handwriting movements. In this case the relation between
the actual movement process and the original Newtonian equation of movement
can be quite far-fetched, losing contact with the original physical parameters. The
famous oscillator model of handwriting by Hollerbach (1981) needs 13 parameters.
In a paper by Beek & Beek (1988), the phrase ”scouting for” (a non-linear function)
can be found, conveying an essential problem of the approach that is characteristic
of all curve fitting attempts. To understand the essence of this criticism, let us take
a look at the method in more detail. Again, assuming the special case of cyclic
tasks, an equation of motion can be given that describes a time-invariant periodic
attractor:

ma + βv + k(s − s0) = f(s, v) (1.1)
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Saltzman & Kelso (1987)

where m is mass, a is acceleration, β is the viscosity coefficient, v is velocity, k
is the stiffness coefficient, s is displacement, and s0 is the equilibrium position.
The non-linear escapement function f(s, v) is needed to counteract the energy loss
caused by viscous friction. Given an appropriate f(s, v), the system described by
this equation will tend to oscillate at a fixed frequency and a fixed amplitude, for
all initial conditions of s and v, except for s = s0 ∧ v = 0. The stable oscillating
state occurs at the limit cycle in the system’s phase portrait (v plotted vs s). A
more realistic equation is given by Beek & Beek (1988), assuming that we cannot
be certain that the friction (βv) is really viscous, or that the elasticity is linear and
can be described by the term k(s − s0):

a + s + W (s, v) = 0 (1.2)

Beek & Beek (1988)

where W (s, v) comprises all deviations of the ideal mass-spring system in terms
of friction and non-linear elasticity, including the escapement needed to keep the
oscillation going. In other words W (s, v) is an extension of f(s, v). Note, however,
that we are moving away from the idealized mass-spring system even further, and
that the system described is a kinematic one, unlike equation (1). Given kinematic
data, the goal now is to find a W (s, v) that is appropriate to model these data. Beek
& Beek (1988) introduce several methods to decide if W (s, v) is one (combination)
of a catalogue of non-linear functions (Duffing, Van de Pol, Rayleigh). What is the
real purpose of searching after such an equation? A valid reason can be the fact
that the domain described with the equation contains all temporal, spatial and/or
force invariances (autonomously corrective effects) in a parsimonious way. But what
if the complexity of W (s, v) exceeds other possible functional approximations to
the term a + s? In other words, is the researcher allowed to fill in any non-linear
function (polynomial, Fourier etc.) as long as the curve fits? It is essential that the
Systems Dynamics Approach is adhered to as long as it describes motor phenomena
in the most parsimonious way, keeping into account the physical and physiological
limitations of the system under study. It appears however, that even in an evidently
oscillatory task like juggling, other non-linear components like actively injected Dirac
pulses have to be added to describe the behavior properly. Quoting:

In conclusion, all our evidence points to momentary action in the form
of Dirac forcing pulses (’kicks’) along the loop of the hand in addition to
non-linear (and oscillatory, LS) behaviour. Hence the main tenets of the
ecological approach are preserved, but dynamical research programmes,
taking an a priori stand in favour of full autonomy and, thus not designed
to reveal the presence of pulsed forcing, might well, through prejudice,
miss the point.
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Beek & Beek (1988), p. 341.

And the point is, of course, that some active central nervous system process is
involved in keeping the oscillation going, by intentional kicks (ibidem).

Looking at the modeling of cursive handwriting movements again, it can be
reasoned that here a time-variant W (s, v, tk) would be needed for each temporal
segment k coinciding with pieces of movement (letters or combinations of a very
limited number of letters) that are produced by a corresponding non-linear oscilla-
tor. Most probably, just as in the juggling problem above, a time function of Dirac
pulses has to be added if the influence determined by W (s, v, tk) is not sufficient to
produce the trajectory. In both cases, parsimony is lost, leaving us with the usual
non-autonomous patterning problem. This shortcoming of a pure ”autonomous” ap-
proach makes it inappropriate as the sole basis for the development of a handwriting
model. However, there are also several strong points in the Systems Dynamics Ap-
proach. We will discuss four of them.

1. Empirical findings indicating that a parsimonious dynamical system description
is applicable to a specific motor task are intriguing. Indeed, a repertoire of complex
pattern generators or oscillators will lead to a simplified mode of control. In terms
of the Cognitive Motor Theory, the specification of parameters for a general task
program is simplified. But then again, the non-linear dynamical system will have to
be configured or ”geared up” somehow, requiring active neural intervention on the
part of the organism.
2. It is a misconception, indeed, that all kinematic phenomena must be planned
explicitly. But apart from the Systems Dynamics Approach, also system-theoretical
pulse-oriented models (Plamondon & Maarse, 1989; Dooijes, 1984) assume that the
kinematic details are largely caused by the impulse response of the effector system.
3. The emphasis on the tight coupling between perception and movement does jus-
tice to the essence of behavior: The organism’s goal is to survive in a chaotic and
hostile environment. The study of perception and motor control in isolation would
ultimately be detrimental to the development of cognitive science. The current ap-
proach in perception studies can be described as analyzing the facilities of a hy-
pothetical philosopher who lives in a box and looks at the strange world outside
through a hole. The study of motor control can be described as an attempt at ana-
lyzing hand and arm movements at a microscopic level while ignoring or forgetting
about perceptual (visual, proprioceptive and tactile) processes.
4. The minimization of the assumed required cognitive (computational) resources
needed for motor control is attractive. Many primitive species are able to produce
incredibly complex movements, without possessing a cortex or cerebellum. From the
ecological perspective, it can be argued that it is futile to try and model a single
function in the behavior of an insect in terms of a cybernetical system, if there is
only a limited number of receptors, ganglia and effectors available, each contributing
to a number of functions at the same time. Equally, to model the behavior of such
an insect in terms of a list of production rules (IF-THEN list) is only descriptive
and too remote from the actual physiological system. It is one of the problems in
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cognitive science that elegance of modularity is preferred to such an extent that one
tries to find modules everywhere. In fact, however, the pervasive idea of modularity
in technology is something new, only becoming feasible when the cost per processing
element (transistor) decreased to an acceptable level in the 1960’s. Earlier, during
the times of the radio tube (thermionic valve) it was considered excellent engineering
practice to make optimal use of the dynamical behavior of the expensive tubes by
combining as many functions as possible in a single tube, at the cost of losing the
option of a clean and ”maintenance-friendly” modularity. Since biological systems
are self-maintaining, there is no external constraint necessitating the development
of a degree of modularity which would be considered elegant by the scientist who
tries to find order in a complex system.

1.4 Robotics

Robotics is currently a most stimulating technological field of interest to the
researchers in psychomotor control. The compelling goal of building moving and
manipulating flexible machines has led to the discovery of many new facts and to a
clarification of previously underexposed concepts and implicit ideas. The following
paragraph is an excerpt from a paper published earlier (Schomaker, 1988) 3.

Consider the mechanical structure of a biological or technical arm. An arm is
composed of a series of inflexible oblong links, connected by joints. The joints can
be classified according to the number of degrees of freedom (df) or movement axes,
e.g., prismatic and revolute joints. As a simple two-dimensional example, let us take
a piece of ”meccano”, consisting of four straight links. The first link is fastened to
the table loosely with a screw, each other link is loosely connected to the end of its
predecessor. We now have obtained an arm with four degrees of freedom. The next
step is to draw a random scribble on the table. The purpose of this experiment is to
consider how the free end of this mechanical arm, the hand, or end effector, can follow
the scribble. Let us call the scribble the path that must be followed. Leading the
”hand” along the path leads to irregular shapes of the arm. In fact, with this given
arm, the path can be followed in an infinite number of ways: The time functions
of the joint angles are indefinite. To impose some more constraints, we can identify
points on the path and define the times at which the hand must be at the identified
position. At this time we know the trajectory of the hand. Although the problem
becomes tractable more and more, the time functions of the joint angles are still
indefinite. Many different joint angle time functions are possible to obtain the same
resulting trajectory. This is the essence of the inverse kinematics problem: How
to calculate the individual joint angles in a complicated mechanical manipulator
system if only the trajectory of the end effector is known? It is an example of a
coordinate transformation problem from a 2- or 3-dimensional, Cartesian space,
to an N -dimensional space of much higher dimensionality, and a typical ”ill-posed”

3Schomaker, L.R.B. (1988). Robotica en menselijke motoriek (Robotics and human motorics).
In P.J.G. Keuss, G. Ten Hoopen & A.A.J. Mannaerts (Eds.), Psychonomische Publikaties: Motoriek
(117 - 140). Amsterdam: Swets en Zeitlinger.
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problem. To alleviate the problem, other constraints can be introduced, like a simple
heuristic that states that changes in joint angle must be distributed evenly over all
joints. Other constraints may consist of specifying the orientation of the end effector
along the trajectory, apart from its end point. Nevertheless, there is no general
computational solution to this transformation problem for all possible geometrical
manipulator structures and numbers of df. On the other hand, humans solve the
inverse kinematics problem continuously during movement, without being conscious
of the computational effort involved. Only in the case of neurological disorders one
becomes painfully aware of the complexity of the motor system (Schomaker, 1988).

In industrial robotics, the problem of inverse kinematics is approached by using
numerical algorithms that are optimized with respect to computational speed (Luh
& Lin, 1984; Paul, 1979; Hollerbach & Sahar, 1983). Still, these algorithms require
a large amount of computation time, which increases steeply as the complexity of
a robot arm, in terms of its number of df, increases. In practice, to simplify he
computation, the geometrical structure of industrial robot arms is reduced to six df,
of which three df are occupied by a spherical wrist.

A useful mathematical description of the inverse kinematics problem is via the
inversion of the Jacobian matrix J describing the current geometrical state of
a manipulator:

[δq]T = J−1[δX|δφ]

where δq is the vector of changes in the joint angles, J is the Jacobian, a
function of the geometry of the manipulator and the current joint angles, and
δX|δφ is a combined vector representing changes in the end effector position
and angle with respect to the base. Problems arise in the case of a singular
Jacobian and in the case of manipulators with a large number of degrees of
freedom requiring a very large amount of computation (Desa & Roth, 1985).

Even these measures (computational optimization and geometrical simplification)
are not sufficient to allow for a real-time computation of inverse kinematics in current
industrial robots. The on-line programming of movements, such as the planning of
collision avoidance in an uncertain environment, is not possible in current industrial
robot systems.

This restriction also reduces the use of high-level formal robot control languages,
which cannot obtain their full potential in terms of flexibility in on-line control. In-
stead, in industrial practice, most of the trajectory formation is inflexible and taught
to the robot by manual guiding: A human operator does the actual inverse kinemat-
ics computation for the robot system. And this introduces an intriguing question.
How is the inverse kinematics problem solved in the human motor control system
with its hundreds of degrees of freedom, its inherent non-orthogonal geometry and
its complex relation between actuators (muscles) and joint angles? In handwriting,
for example, one of the most complicated known manipulator systems is involved:
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The human hand. In chapter 8, we will consider solutions to the inverse kinematics
problem.

Forces and compliance

However, there is more to motor control than end-effector trajectory formation
and joint angle time functions. In an imaginary world without mass and forces the
obtained joint angles are sufficient to produce a graphical computer simulation of
the robot movements according to the planned trajectory. In the real world, on the
contrary, objects, including the manipulator itself, are characterized by mass, stiff-
ness and static and dynamic friction in case of contact with another object. This
introduces forces which disturb the planned trajectory. There are also ”parasitic”
forces, like the Coriolis force resulting from the rotating links. The disturbances can
only partly be counteracted by (post hoc) feedback (Section 1.1). This holds a forte-
riori for the biological motor control system with its limited force range (compared
to gravitation) and its neural transmission delays. Consequently, it is necessary that
the motor control system anticipates forces and torques. This introduces a problem,
comparable to the inverse kinematics problem, viz., the inverse kinetics problem.
What are the torques on the joints, given the size and orientation of a force applied
at the end effector? This is not just a technical problem. As an example we take the
experienced batsman in baseball. The available time for a hit is much too short to
determine the necessary torque per joint during movement. Instead, he has to make
use of an internal representation of the movement to plan the necessary torques and
forces before the movement starts (Schmidt, 1982). This is especially important to
maintain the body balance.

If a manipulator is in contact with an external object, the concept of compliance
or mechanical impedance is needed. Objects may be damaged if the grip, push or
pull force is to high. Therefore, controlled ”elasticity” is needed in a manipulator.
In a motor system consisting of two antagonistic muscles around a 1-df joint (e.g.,
an elbow), compliance control can be achieved by lowering the activation levels
for both muscles while leaving the ratio of their contraction levels constant. There
exists a wide range of motor tasks, varying from opening a door to polishing a
curved surface, where the requirement for a sophisticated control of compliance is
evident. In handwriting, the movements of the pen-tip are confined to the two-
dimensional plane, whereas the arm is a complicated 3-D object. One may expect
that this has consequences for the pen force, e.g., the less compliance, the higher the
pen force, if the pen-tip movement is not planned to take place exactly within the
two-dimensional plane. Chapter 4 deals with the problem of the relation between
pen-tip movement and pen force.

The robotics perspective broadly influenced the work in Chapters 3, 4 and 8,
where the problems of inverse kinematics and inverse kinetics reappear.
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1.5 The connectionist approach

There are some problems with the cognitivist approach to modeling motor control.
The first problem concerns the symbolic character of the handwriting model that
was developed (Chapter 3). Symbols are discrete and monolithic entities, whereas
movement appears as a continuous process. Computing with symbols and computing
with quantities are still separated fields in computer science, and it is not easy
to find a symbolic formalism that does justice to the continuous nature of motor
control. The proposed model (Chapter 3) provides an interface between the symbolic
and quantitative domains. The second problem is of a more epistemological nature.
Although a descriptive ”Turing” approach to modeling can be very fruitful to gain
insight in the computational aspects of motor control, there is a risk of deviating
from the physical and physiological system to such an extent that the proposed
computational stages are completely theoretical. Therefore, it seems necessary to
take a step in the direction of model types that are closer to the intrinsic nature
of the biological system performing motor control: The brain. The most intriguing
feature of the brain is the fact that its single processing elements, the neurons,
operate relatively slow (with firing rates mostly in the order of 100 Hz, maximally
1000 Hz), whereas the reaction time for a response in a large range of tasks of
varying complexity is of an order of magnitude (150-1000ms). Given a fixed cortico-
muscular delay, imposed by the axonal transmission and the muscle biomechanics, of
40-110 ms, it becomes apparent that the number of neurons involved in a perceptuo-
motor task, counted as a single thread serially down the neuraxis, must be limited.
Changes in activity are only updated at a pace of the inverse of the firing rate (intra-
cortical transmission delays play a minor role since they are very short as compared
to the delay in the efferent nerve trunk). As Ballard (1986) states: ”...at the very
least, this would seem to indicate that the cortex does massive amounts of parallel
computation”. The corollary of this observation is that the serial ”loops”, ”iterations”
and ”recursion” in symbolic computational models of cognition are not likely to play
a predominant role in neural activity, be it of a perceptual or motor control nature.
It is far more likely that cognition is brought about by parallel computation of highly
interconnected, but relatively slow processing elements. The field of research that is
based on this insight is called ”Connectionism”. Its perspective raises new questions
with respect to computation and representation in cognition and motor control,
some of these are dealt with in Chapter 5. It is the purpose of the latter chapter to
initiate the development of a complete neurally-oriented model of handwriting, the
first steps being undertaken in the chapters 6 through 8.
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1.6 Conclusion

In this chapter, a review of relevant theoretical viewpoints was presented. The
eventual selection of ideas that are fruitful in the current modeling approach may be
summarized as follows (the relevant sections within this chapter are shown in bold
type).

Feedback systems provide a relative autonomy of the peripheral effector system
involved in handwriting, such that the central motor control system does not have
to specify all movement and force details (Cybernetics). Feedback can be of a dis-
continuous, delayed nature, and still have an effect on motor control (e.g., learning).
This finding necessitates representational concepts (Cybernetics and Cognitive

Motor Theory).

Preparation and anticipation play a predominant role in handwriting, and hand-
writing movement appears to consist of a stream of separable movement units
(Cognitive Motor Theory). The discrete character of handwriting movements
represents a good starting point for a symbolical model, which will be presented in
Chapter 3.

The transformation from perceptual and internal data to the effector domain
is a distinct and computationally non-trivial problem in all motor control tasks,
including handwriting. Also, the problems of force control and compliance play an
important role, which becomes evident if one imagines what would be necessary to
let a mechanical arm produce handwriting movements (Robotics).

Although symbolical models of motor control may provide insight on an abstract
level, and display the idealized behavior of the system under study, they may devi-
ate substantially from what is realized in the actual neural motor control system.
In the symbolic paradigm, symbols are objects that can be manipulated using the
appropriate formal operations. Such an object is representationally stable (does not
decay gradually) and can be operated upon an infinite number of times. In the con-
nectionist paradigm (Connectionism), a symbol is represented by a distributed
system state, which can be transformed by operations that are limited by neural
constraints. Here, the symbol (read: system state), is representationally unstable,
and of a transient nature, requiring an active process such as selective attention
or concentration. This essential feature limits the number of ”symbols” that can be
operated upon simultaneously, e.g., the well-known 7±2 limit (Broadbent, 1975), as
well as the number of operations that can be performed on them (how many people
are able to plan more than a handful of moves ahead in playing the game of chess?).
Consequently, a symbolic model is useful in describing some classes of behavior, i.e.,
behavior that is based on transitions between discrete system states, and that is
performed under high mental concentration. Examples are the neat production of
connected cursive words without interjection of blockprint allographs, the product-
ion of syntactically correct sentences, and the evidently algorithmic processes like
mental arithmetic. However, natural behavior is characterized by errors that are
indicative of the limitations of the underlying cognitive processes (Harley, 1984).
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Also, in motor behavior, such as handwriting, there are phenomena that are incom-
mensurable with a pure symbolic approach, such as quantitative pattern transform,
the production of smooth time functions and the representation of the effector sys-
tem. These functionalities in motor skills are non-symbolic and difficult to express
explicitly in linguistic terms. To describe this observation, the concepts of ”tacit
knowledge” (Polanyi, 1967), and ”behavior-based tasks” (Steels, 1989) have been
coined. In Chapter 3, this problem is partly solved assuming an interface between
the symbolic and the quantitative domain. In Chapters 5-8, however, the perspective
is switched to a more neurally-oriented viewpoint, in the hope that new insights will
emerge, especially with respect to the low-level aspects of handwriting control that
fall in the class of ”tacit knowledge”.

Finally, concurrent with the experiments on handwriting production, work has
been done in the field of pattern recognition. As a test case for the theoretical in-
sights on psychomotor control in handwriting, Chapter 9 describes the problem of
recognizing pen-tip movements in cursive script, one of the goals of Esprit project
419 (Thomassen et al., 1988). The practical problem of pattern recognition requires
theories and techniques that have been developed in the fields of electrical engineer-
ing, statistics, artificial intelligence and computer science, rather than in psychology.
It is only with the introduction of connectionist models in cognitive science (McClel-
land & Rumelhart, 1986), that psychologists produced widely accepted tools that
really work for practical applications in pattern recognition. Consequently, only part
of the work presented in Chapter 9 and in Teulings, Schomaker, Gerritsen, Drexler,
& Albers (1990) will be of a ”psychological” nature. However, the psychomotorically
inspired segmentation of handwriting movements in order to describe movements in
an abstract fashion (Teulings, Thomassen, Schomaker & Morasso, 1986), will prove
to be very promising starting point for ”on-line” handwriting recognition. For the
time being, we will revert to the actual production of handwriting.



23

1.7 References

Abraham, R.H., & Shaw, C.D. (1984). Dynamics, the geometry of behavior, part 1:
Periodic behavior. (220 pages). Santa Cruz: Aerial.

Adams, J.A. (1971). A closed-loop theory of motor learning. Journal of Motor Be-
havior, 3, 111-149.

Allum, J.H.J, Dietz, V., & Freund, H.-J. (1978). Neuronal mechanisms underlying
physiological tremor. Journal of Neurophysiology, 41, 557-571.

Ballard, D.H. (1986). Cortical connections and parallel processing: Structure and
function. Behavioral and Brain Sciences, 9, 67-120.

Beek, P.J. (1989). Juggling dynamics. Doctoral dissertation. Amsterdam: Free Uni-
versity Press.

Beek, P.J., & Beek, W.J. (1988). Tools for constructing dynamical models of rhyth-
mic movement. Human Movement Science, 7, 301-342.

Bendat, J.S., & Piersol, A.G. (1971). Random data: Analysis and measurement pro-
cedures, London: Wiley.

Bizzi, E., Polit, A., & Morasso, P. (1976). Mechanisms underlying achievement of
final head position. Journal of Neurophysiology, 39, 435-444.

Bizzi, E. (1980). Central and peripheral mechanisms in motor control. In G.E. Stel-
mach & J. Requin (Eds.), Advances in psychology 1: Tutorials in motor behavior
(pp. 131-143). Amsterdam: North Holland.

Bootsma, R.J. (1988). The timing of rapid interceptive actions. Doctoral disserta-
tion, Amsterdam: Free University Press.

Broadbent, D.E. (1975). The magic number seven after fifteen years. In A. Kennedy
& A. Wilkes (Eds.), Studies in long term memory (pp. 3-18). London: Wiley.

Crossman, E.R.F.W. (1960). The information capacity of the human motor system
in pursuit tracking. Quarterly Journal of Experimental Psychology, 12, 1-16.

De Luca, C.J. (1979). Physiology and mathematics of myoelectric signals. IEEE
Transactions on Biomedical Engineering, 26, 313-325.

Desa, S., & Roth, B. (1985). Mechanics: Kinematics and dynamics. In G. Beni & S.
Hackwood (Eds.) Recent advances in robotics (pp. 71-130). New York: Wiley.

Dijkstra, S., & Denier van der Gon (1973). An analog computer study of fast, isolated
movements. Kybernetik, 12, 102-110.

Dimond, S.J. (1980). Neuropsychology: A textbook of systems and psychological func-
tions of the human brain. London: Butterworth.

Dooijes, E.H. (1984). Analysis of handwriting movements. Doctoral dissertation.
Amsterdam: University of Amsterdam.

Ellis, A.W., Young, A.W., Flude, B.M. (1987). Afferent dysgraphia in a patient and
in normal subjects. Cognitive Neuropsychology, 4, 465-486.

Fairbanks, G. (1955). Selective vocal effects of delayed auditory feedback. Journal
of Speech and Hearing Disorders, 20, 333-346.

Gibson, J.J. (1979). The ecological approach to visual perception. London: Houghton-
Mifflin.



24 References

Gisbergen, J.A.M., Van Opstal, A.J., & Roebroek, J.G.H. (1987). Stimulus-induced
midflight modification of saccade trajectories. In J.K. O’Regan & A.Lévy-Schien
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Chapter 2

Planar pen-tip kinematics:

invariance

The current chapter deals with a fundamental aspect in the modeling of handwriting
behavior. Are handwriting movements replicatable at all, if a writer produces a given
word several times? Only if there exists an invariance in the movement patterns over
several replications, it becomes plausible to assume that handwriting movements are
based on a stable internal representation that provides for the sequential launching
of automatized movement units. Theoretically, the spatial shape of a given piece of
handwriting trace on paper (the path) can be brought about by an infinite number
of kinematic time functions (trajectories). Figure 0 shows several replications of
a Dutch word, written with a vertical size of 2mm to 20mm, thus using a varying
number of muscles in each replication. It is evident that there exists an invariance,
both with respect to the shape and with respect to the pen-tip velocity pattern. The
following experiment is a more detailed study concerning invariance in handwriting.
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On the Use and Limitations of Averaging

Handwriting Signals ∗

Lambert R.B. Schomaker
Arnold J.W.M. Thomassen

Abstract

The averaging of handwriting signals is subject to a number of special
restrictions that in general do not apply to other signals such as electro-
physiological recordings. Specific problems are presented by the choice of the
entities to be averaged, by the choice of time-reference points and by duration
variability. Knowledge of the signal production mechanism and of temporal
and spatial characteristics of the handwriting signal is needed to solve these
questions. It is noted that the signal is deterministic at the local level, which
justifies the use of averaging techniques. The problem of stroke duration vari-
ability is dealt with by applying time-axis normalization prior to averaging.
Examples of averaging at the stroke, letter and word level are presented. Re-
sults indicate that at up to four letters can be averaged without noticeable
distortion in the spatial domain. Eventually, however, variability in stroke
duration will dictate the choice of time-reference points for the time-axis nor-
malization in multi-letter handwriting segments. This will ’warp’ the original
time path. If care is taken in the selection of time references, time-axis normal-
ization and averaging can be useful in movement analysis, pattern matching
and simulation of handwriting.

2.1 Introduction

Ensemble averaging is a technique, used in many conditions where the reliabil-
ity of measurement of a single sample record is reduced by some degree of noise.
The measurement Xk may be assumed to be composed of a signal Sk and a noise
component εk:

Xk = Sk + εk (2.1)

where εk is a stationary random signal and Sk is a fixed- duration transient with
deterministic properties. The averaged signal Xk is obtained by:

∗Published 1986 in: Kao, van Galen & Hoosain (Eds.) Graphonomics. pp. 225-238. Amsterdam:
Elsevier. Supported by grants from NWO, project 560-259-020, and Esprit, project P419
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Xk =
1

N

N
∑

i=1

(Ski + εki) (2.2)

= S̄k + εk (2.3)

If the noise in the given samples is uncorrelated and the mean value of the noise
is zero, then for large N :

Xk = Sk (2.4)

Averaging of N sample records thus results in noise reduction: the variance of
the error component of a single value k in Xk will be reduced with a factor 1/N
(Bendat & Piersol, 1971; Regan, 1972). Apart from the random error, there may
be a bias in each measurement, for instance caused by non-stationarities of the
signal transient such as increasing or decreasing mean square value in the series of
individual sample records. The main advantage of ensemble averaging over other
methods of noise reduction such as low-pass filtering is that ensemble averaging
selectively cancels noise contributions without affecting the ’true’ signal portion of
the spectral characteristics of the signal.

One major assumption in using averaging is the notion of time-lock. In many
applications, the time reference used is an external event that triggers the occur-
rence of the transient to be measured. Furthermore, transients are assumed to have
fixed duration. In practice, some jitter in the transient onset time and some vari-
ation in duration are taken for granted if they fall within predetermined limits. In
handwriting signals, however, as well as in other types of free-floating human motor
output, there are no external time-reference points and duration of segments having
identical spatial representation may vary substantially. Nevertheless, it would be
very useful in analysis, pattern matching and simulation of handwriting if an aver-
age representation of a specific stroke, letter or word produced by a certain writer
were available to represent the idealized shape and dynamics of such handwriting
segments for that person.

Therefore, we shall take a look into the main problems in selecting adequate
time-reference points and in dealing with duration variability.

Selecting the time-reference points.

Before averaging of handwriting can take place, time-reference points have to be
selected. From studies of handwriting it is known that the handwriting signal can
be segmented reliably by taking the part of the displacement signal between two
zero crossings in the Y-velocity signal as a stroke (Teulings & Thomassen, 1979).
Another solution, taking the moment of maximum Y velocity as time reference is
rejected because of its greater dependence on the velocity profile. Y strokes defined
in the former way have the property of reflecting a combined agonist-antagonist
muscle group action. Theoretically, the use of the acceleration signal would thus
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introduce the possibility of separating agonist and antagonist action. In practice,
however, the double differentiation of the displacement signal leads to an unaccept-
able increase in noise level. The basic unit in averaging, therefore, will be a stroke in
the velocity domain, the time-reference points being two adjacent zero crossings in
the Y velocity. This also determines the time segment of the X velocity belonging to
the same stroke. The velocity profile of Y strokes of a specific class (e.g. ”last down
stroke in /a/ ”) is very reproducible within a subject and varies from triangular to
sine shaped. Velocity profiles of strokes that occur in a transition from clockwise to
counter-clockwise movement are often bimodal or broadened, but their shape is re-
producible for a given class (e.g., the connecting stroke from /g/ to /e/ ). According
to the criteria by Bendat & Piersol (1971) we should classify single strokes as being
deterministic transients (Note 1). Combined with the knowledge that zero crossings
in the Y velocity are reliable time-reference points this justifies the use of averaging
handwriting signals of a single subject at the local (i.e., stroke) level. It should be
noted that, although single strokes can be considered to be deterministic, large seg-
ments of handwriting contain such a large amount of time and amplitude variations
that they have to be classified as random time series. As a consequence, methods
used for random data analysis like spectral analysis are still applicable on larger
segments (minimally lasting five seconds) (cf. Maarse, Schomaker & Thomassen,
1986).

Duration variability.

When a subject is asked to write a page of text, the movement duration of a
specific letter will vary among the different realizations of that letter due to non-
intended size and context effects. Thus, after selecting time-reference points, we
shall have to normalize the time axis of the different replications before averaging.
A comparable problem is encountered in speech recognition where the duration of
the phonemes within a word may vary across several replications of the same word.
If a minimum of assumptions with respect to signal shape is preferred and a fast
computer is available, normalization of time axis can be done by means of Fourier
transform (Note 2). A forward Fourier transform is done to obtain the amplitude
and phase frequency spectrum, followed by an inverse Fourier transform with a
time spacing of samples as determined by the ratio of old duration and normalized
duration.

At the stroke level, an averaging technique may provide a reliable estimate of
the strategy used to produce the displacement in that stroke. The velocity profile
of a stroke determines the efficiency of its movement (Teulings, Thomassen & Van
Galen, 1986). Figure 1 shows the typical (averaged) Y-velocity profile of a large up
stroke in which a change of sense of rotation is produced. The stroke is the basic
averaging unit. After time-axis normalization, the only sources of variability in a set
of strokes are the stroke-size differences and differences in the shape of the velocity
profile. Strokes may have equal size (area of the velocity profile) and have different
shape of velocity profile.



34 Kinematics

Knowing that single strokes can be averaged, it would be interesting to know to
what extent a given record of handwriting can be averaged. It is hypothesized that if
the right time-reference points are chosen, sequences of strokes can be averaged also
reliably if the movements are overlearned, e.g., in the case of a single letter , written
by an experienced writer. The problem in averaging multiple-stroke handwriting
segments is that each further stroke introduces a time variability, apart from the
already mentioned size and shape variability. If the movements are overlearned, a
handwriting segment can be assumed to be homothetic, i.e., ratios of stroke durations
are constant in different realizations (Viviani & Terzuolo, 1980). Figure 2 shows the
effect of the location of time reference for one letter. In 2a, it may be seen that
the choice of Y-velocity maxima in connecting strokes leads to an unacceptable
distortion of the average letter representation in the spatial domain. Cause of the
distortion is the fact that connecting strokes are embedded in the motor context of
the end of the previous letter and the start of the next letter. A better choice may
be seen in 2b, where the first and last zero crossings of the Y-velocity signal within
the letter proper were used as time-reference points, disregarding the connecting
strokes.
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In the case of naturally produced handwriting, the straightforward averaging of
even larger units, such as words , is made increasingly more difficult by hesitations,
pen-up movements and allograph variations that may be expected to disturb the
homothetic features of the movement sequence. Also, in these larger units, there is
an increased probability of non-overlearned sequences to introduce a greater time
variability. For instance, connecting strokes may or may not be part of a motor
program, depending on the degree of automation of the specific sequence of let-
ters. In sequences encompassing instances of evidently large time variability due
to occasional hesitations or pen-up movements, a time warping technique might be
necessary, i.e., segmenting the handwriting into pieces each of which can be assumed
to be homothetic, and normalizing time for each segment separately. Once this has
been done, ensemble averaging or pattern matching can be applied. In speech recog-
nition, this problem is solved, using an optimal time-alignment procedure called
dynamic time warping (Brown & Rabiner, 1982).
From an exceptionally regularly writing subject the average word /computer/ could
be obtained (Figure 3a), but hesitations and prolonged stroke duration may cause
distortions (Figure 3b) if they are not accounted for in the averaging procedure. The
average word /gen/ is distorted by a hesitation before executing the down stroke in
/g/ in the last of the five replications (the hesitation cannot be inferred from the
spatial representation).
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In order to assess the discussed problems encountered in averaging multi-letter
segments of handwriting in greater detail, we shall analyze some experimental data
in the next sections of the present paper, using time-normalization and averaging
techniques. The following aspects will be illustrated.

Deviation from the average handwriting pattern.

Deviations from the average Y-velocity pattern can be attributed to time, size and
shape variations (note that in the current study stroke size is not normalized in any
way). Possibly large deviations from the average pattern are indicative of transitions
between discrete states in the motor production process. Such transitions are likely
to occur during movements connecting one letter to the next. Consequently, three
types of connecting strokes will be examined.

Variability of zero-crossing times.

If we know the average stroke duration of each stroke, the uncertainty of finding
the stroke ending of the n-th stroke in some time segment in the velocity signal
increases with the number of strokes since each new stroke adds its variability in
duration. Normalizing the time axis will have the effect of reducing this uncertainty
in a curvilinear fashion, maximum uncertainty remaining around the middle of the
handwriting time segment. In the limiting case where the variance of stroke duration
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is the same for all strokes, the variance of stroke onset time will be proportional to
stroke number (first stroke is number zero) before normalization. After normalizing
the time axis, the variance of stroke onset time will be proportional to n ∗ (N − n),
where n is the stroke number and N is total number of strokes.

2.2 Methods

Subjects. Two adult right-handed male subjects, aged 49 and 28, participated in
the experiment.

Materials. The movements of the tip of the writing stylus were recorded by means
of a large-size writing tablet (Calcomp 9000) connected to a computer (PDP 11/45).
The laboratory-made writing stylus was equipped with a pressure transducer. The
stylus contained a normal ball-point refill. Thirty-eight pseudowords were printed on
specially prepared A4 response sheets in twelve rows of two to five words each. A row
contained a certain ’family’ of pseudowords allowing specific comparisons. The rows
themselves were placed in a quasi-random order. Pseudowords contained minimally
three letters, the maximum was five letters. From this material, the pseudowords
/ague/, /agne/ and /agee/ are selected for the present purpose since they contain
an identical part (/ag/) and a contrasting part, that starts with three possible types
of large connecting strokes, i.e., /g-u/ which ends in a sharp cusp, /g-n/ which ends
in clockwise turn, and /g-e/ which consists of a clockwise and a counter-clockwise
turn in one stroke.

Procedure. The subjects’ task was to write on the response sheet immediately
below the place where the pseudowords were printed. The response sheet was placed
on the writing tablet and was held by the subject in a convenient position and at a
preferred angle, just as in a normal writing situation. A pseudoword had to be written
fluently without raising the pen. A session consisted of writing the 38 pseudowords
on the sheet once. An experimenter-controlled tone sounded to signal the onset of
a 2.5 s period during which the writing could be produced. Two tones signalled the
end of the interval. All pseudowords could easily be written within this 2.5 s period,
so that no time pressure was imposed on the subject. The experimenter took care
that he did not start the interval until the subject’s hand rested at approximately
the appropriate position for the next word. If the subject was not satisfied, due to
hesitations, errors (e.g. selection of incorrect allographs), jerks, late starts or slow
movements, he was immediately given another trial in which the word was written
below the rejected product. A session, which lasted only four minutes, could be
followed by a further session after a rest of a few minutes, or sessions could be
separated by a whole day. Each subject completed ten sessions.

Signal processing. The X and Y-coordinate values and the pressure at the tip of
the pen (Z coordinate) were sampled during 2.5 s intervals at a 105 Hz rate, samples
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having an accuracy of 0.02 mm in both X and Y directions. Prior to our analyses,
these handwriting data were digitally filtered with a finite-impulse response filter
(pass band 0 to 10 Hz, transition band 10 to 30 Hz; Rabiner & Gold, 1975). Since
the orientation of the handwriting was left to the writer’s preference data were au-
tomatically rotated to obtain a horizontal baseline, using the low extremes of small
letters as a reference. Velocity signals were calculated by differentiating the hand-
writing coordinates versus time using a five-point finite-differences impulse response
(Dooijes, 1984). Handwriting was segmented on the basis of zero crossings in the
Y-velocity signal, the first point in a segment being the start of the first down stroke
in the first letter (/a/ ), the last point being the end of the last stroke of the last
letter (/e/ ) in the analyzed pseudowords. Of each word (/ague/, /agne/ and /agee/)
eight replications per subject were entered in the analysis. The average duration of
each word was used as the reference duration in the time-axis normalization. After
time normalization, the average Y-velocity pattern and its standard deviation (SD)
pattern were calculated (N=8) for each word and each subject separately. For com-
parison purposes and data reduction, the following measures were calculated per Y
stroke. From the time-normalized replications, SD of stroke size and SD of stroke
duration were determined. From the average Y-velocity and the individual time-
normalized Y-velocity replications, the SD of the average Y-velocity pattern was
calculated. The latter measure was obtained by pooling sums of squared deviations
per stroke.



Averaging Handwriting Signals 39

2.3 Results

The mean word durations are shown in Table 1. Of the ten sessions, two sessions
were lost due to technical problems.

Table 1. Average durations per word, Subject 1 and 2.
Word Subject 1 Subject 2

µT σT µn Nw µT σT µn Nw

[ms] [ms] [samples] [words] [ms] [ms] [samples] [words]

/ague/ 1467 68 154 8 1457 100 153 8
/agne/ 1419 52 149 8 1423 80 150 8
/agee/ 1305 41 137 8 1257 102 132 8

Figure 4 shows the average handwriting pattern and the Y-velocity profiles for
the three pseudowords written by Subject 1. Notice the broadened SD at the large
down stroke in /g/ which occurs in all words, but which is maximal in /ague/. In
this word, the shape of the average Y-velocity minus SD is irregular at the large
down stroke in /g/ . The Y-velocity profile in /agee/ shows the typical shape of the
/g-e/ stroke (stroke number 8). Of all three patterns, the /agee/ pattern is the most
stable, especially at the two /e/ s.
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Figure 5 shows the variability in time of zero crossing, before and after time-axis
normalization. Note the overall decrease in variability and the curvilinear relation-
ship between stroke number and stroke-onset time variability after normalization.

Figures 6, 7 and 8 allow a comparison of three types of variability per stroke. The
a panels show the deviation from the average Y-velocity pattern. At the seventh
stroke, which is the large down stroke in /g/ , there is a peak in the variability of
the Y-velocity. This peak is not related to the curvilinear stroke-onset variability
caused by time normalization, because it occurs in the same place for the 13-stroke
words /ague/ and /agne/ as for the 11-stroke word /agee/. Shifting the first time-
reference point up to three strokes to the right, moreover, had no influence on this
effect: variability always remained maximal at the large down stroke in /g/ (not
shown). The largest variability (peak as well as overall) is reached in /ague/, followed
by /agne/, and finally /agee/ if both subjects are combined. The b panels show
stroke size variability. There is no clear peak at the seventh stroke. In fact, a peak
occurs at the eighth stroke which is the connecting stroke /g-*/ . Only in Figure
8 (/agee/) stroke size variability is also high at the seventh stroke as written by
Subject 1. The c panels show stroke-duration variability which is increased at or
around connecting strokes (numbers 4, 8, 12). There is no clear relationship between
duration variability and the variability in Y-velocity at the seventh stroke itself.
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2.4 Discussion

An interesting finding of the present study is that handwriting segments up to
four-letters can be averaged very well because the consistency across the individual
replications is high, even though the task involved pseudowords. Normalization of
the time axis was a sufficient condition to obtain a reliable average. Within a subject,
normalizing stroke size seems to be unnecessary. The detected peak deviation in the
Y-velocity remains a problem to be explained. The possibility of an artefact caused
by the normalization operation may be excluded since the effect was independent
of number of strokes or time reference chosen. Size and duration variability of the
stroke itself are unlikely to cause the effect (Figures 6, 7 and 8). Another source of
error could be variable shape of the velocity profile of the large down stroke in /g/ .
Inspection of Y-velocity profiles of the individual replications indicated that this was
not the case. In fact, the source of the effect can be traced back to the occurrence
of duration variability earlier in the pattern, at the fourth and fifth stroke. Possibly
this variability can be explained by anticipation of the large down stroke in /g/ and
the subsequent large connecting stroke. In this case, the duration variability did not
cause visible distortion in the spatial representation of the average. It is advisable,
however, to analyze the variability of stroke onset times (Figure 5, closed circles)
before time-axis normalization. At the location of sudden increases in variability
the handwriting signal should be split up in subsegments. To obtain a more reliable
estimate in the case of the pseudoword /ague/), subsegments would be: (a) strokes



Averaging Handwriting Signals 43

1 to 4; (b) stroke 5; and (c) strokes 6 to 13.
The time normalization technique can be a valuable tool in movement analysis,

pattern matching and simulation. Before it can be applied, however, careful inspec-
tion of the of the stroke-onset time variability appears to be needed. When the
homothetic assumption is violated in a handwriting segment, subsegments have to
be defined, thereby ’warping’ the time axis. In movement analysis, time normaliza-
tion and averaging can be used to detect special strategies in the velocity profiles
that are used by the subject to obtain specific curvature shape in the spatial do-
main. In pattern matching of handwriting signals the technique can be of use by
providing reliable averages that are used as templates. In the matching process it-
self, time normalization is used to enable matching of a specific handwriting pattern
with the template. In simulation of handwriting, time-axis normalization is used to
obtain reliable averages of letters and connecting strokes from a writer. Only reliable
averages allow the determination of important parameters in the simulation model.

Use of the Fourier transform has the disadvantage of being time consuming. Fast
Fourier has the disadvantage of requiring sample record sizes that are powers of
two (the technique of adding zeros appeared to cause unacceptable distortion). The
use of splines is rejected because it also can introduce serious estimation errors.
During the last few years, much work has been done on this subject. Methods of
interpolation using finite impulse response differentiation are promising with respect
to calculation time (Sudhakar, Agarwal & Suhash, 1982).

2.5 Appendix

1. If an experiment producing specific data can be repeated many times with
identical results, within the limits of experimental error, then the data can be
considered deterministic. If such an experiment cannot be designed, then the
data are considered random (Bendat & Piersol, 1971).

2. The steps necessary to achieve time-axis normalization using Fourier trans-
form are as follows:

(a) Determine normalized duration Tn and normalized number of samples Nn

by averaging movement duration of the different replications.

(b) Calculate x and y velocities.

For x and y:
repeat steps (c) to (g) for each sample record with Ni values.

(c) Make sample record circular by linear detrending.

(d) Apply forward Fourier transform with Ni frequency domain estimators,
with k = 0 to Ni − 1.



44 Kinematics

Xk =
Ni−1
∑

n=0

(xne−jπkn/Ni) (2.5)

where j =
√
−1.

(e) Apply inverse Fourier transform with Nn time domain estimators, with
n = 0 to Nn − 1.

x′

n =
Ni−1
∑

k=0

(Xke
+jπnk/Nn) (2.6)

(f) Decircularize sample record by restoring linear trend.

(g) Gain correction (multiply sample record with Ni/Nn).
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Chapter 3

A computational model

After having collected data on the replicatability of movement patterns, an exper-
iment was done to assess the influence of surrounding characters, i.e., the tem-
poral context on the size and duration of strokes in handwriting (Thomassen &
Schomaker, 1986). From the experiment it appeared that temporal context influ-
ences are present, displaying most of their effect in the temporal domain (stroke
duration). As an example: in writing the cursive word /elle/, the duration of the
down strokes of the /l/’s is different, the first /l/ being written faster. At the same
time, however, the effects seem to differ in magnitude and direction between sub-
jects, such that a general ”law” could not be determined easily. It was decided to
continue the development of the handwriting model without incorporating these
subtle context effects until more is known about their origin.

So, a computer model was developed that represents the computational stages in
transforming discrete letter identities into continuous movement. The transform is
from a symbolical representation at the ”higher”, cognitive, level into a quantita-
tive representation at the ”lower”, spatio-temporal motor level. An essential aspect
of the model at the lower non-symbolical level is a representation of spatial stroke
shape that is based on differential relative timing. Indeed, it is the relative timing
of muscular contractions: the subtle switching On and Off of muscle groups dur-
ing a complex action, that determines the spatial characteristics of the resulting
movement path. It is shown that shape, as expressed in the end-point curvature,
can be defined in terms of the relative difference in timing of two orthogonal ef-
fector sub-systems, with the overall movement duration as the local reference. In
earlier theories, the concept of phase shift was used (Hollerbach, 1981), assuming
that there is a single (narrow-banded) fundamental frequency of a two-dimensional
phasor signal generated by a mass-spring oscillator, that determines the shape of
the handwriting. The weakness of this assumption becomes clear if one examines the
frequency spectrum of handwriting movements (Teulings & Maarse, 1984; Maarse
et al., 1986) or the distribution of stroke size and duration in handwriting. The
changes in the movement parameters are occurring on a stroke-to-stroke basis. The
existence of this subtle concatenation of events reduces the likelihood of an oscillator
mechanism as the central explanation for the production of words in handwriting,
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as evidenced by the large number of parameters needed to describe word production
in terms of a mass-spring oscillator. In this chapter, the alternative view is taken,
i.e., that there exists an active pattern generator mechanism, leading to movement
behavior that may appear oscillatory at times, within a limited time window, but
that is basically a fluent concatenation of discrete and limited-duration movement
segments with a temporal range of typically a single letter.
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Abstract

This paper presents a computational model for the production of handwrit-
ing, starting with allograph codes as input and ending with a target pen-tip
trajectory as output. In the model, a distinction is made between a symbolic
level of processing and a quantitative level of processing. At the symbolic level,
a grammar for the connection of cursive allographs determines abstract codes
for connecting strokes. At the quantitative level, a translation of symbols into
a sequence of parameterized strokes takes place. A parsimonious stroke pa-
rameterization in the velocity domain is used, that is based on planning in
Cartesian space and allocation of time to movement components along the
spatial axes. With the basic model settings used, simulation results already
show a satisfactory correspondence with original handwriting samples.

3.1 Introduction

Attempts to generate new cursive script by means of a computer confronts us
with the fundamental problems that the human motor system has to solve likewise.
In the past, many models of handwriting were proposed, basically aiming at digital
or analog regeneration of existing samples of handwriting (Denier van der Gon et
al., 1962; Vredenbregt & Koster, 1971; Hollerbach, 1981; Dooijes, 1984; Plamondon
& Lamarche, 1986; Maarse, 1987). This paper discusses a computational model
that describes the generation of new samples of handwriting on the basis of motor
principles and on the basis of knowledge of idiosyncratic features of the handwriting
of a given individual.
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Theoretical Framework.

The production of handwriting requires a hierarchically organized flow of informa-
tion through various transformations (Ellis, 1986; Teulings et al., 1987). The writer
starts with the intention to write a message (semantic level), which is transformed
into words (lexical and syntactical level). When the individual letters (graphemes)
are known, the writer selects specific letter shape variants (allographs). This selec-
tion is done according to a formal allograph selection syntax, according to individual
preferences or just according to random choice. A formal rule, for instance, is the
use of a capital letter at the beginning of a new sentence. An example of preferential
context rules is the use of differently shaped versions of /s/ /t/ or /r/, depending
on the adjacent allographs or on the serial position of these letters in a word.

Below this level we enter the scope of the current model, were the allographs
are transformed into movement patterns. Both spatial and temporal characteristics
of error-free, non-hesitant handwriting tend to show some invariance for a given
writer. However, it has been shown that there exists a tendency for the spatial char-
acteristics to be more invariant than the temporal characteristics (Teulings et al.,
1986). The reason for this can possibly be located in the nature of handwriting as
a means of linguistic communication. It seems reasonable to assume that the hand-
writing production system ’stores’ the information pertaining to the task-related
constraints: the produced spatial shapes are to be read by someone at a later time.
Also, the spatial characteristics of handwriting are strongly consistent for a given
writer (Maarse et al., 1986), regardless of the end effector or writing apparatus used
(Raibert, 1977). Therefore, we assume that there exist spatial representations of al-
lographs, residing in some long-term memory. These idiosyncratic spatial allograph
representations (paths) have to be transformed into spatio-temporal representations
(target trajectories). For the adult writer, this transformation is assumed to be au-
tomatized or ’overlearned’ for the strokes within an allograph, i.e., the strokes that
are merged in a fixed context. However, the temporal representation of a single al-
lograph is also to be embedded in the current movement context and linked to its
neighbors by connecting strokes and/or pen-up movements. This task places a sep-
arate demand on the information processing capacities at this stage. There is some
experimental evidence to support this view (Meulenbroek & van Galen, 1989). Thus,
during writing, a decision process will be active that determines the best connecting
strategy, given two successive allographs.

It should be noted that at this level, there is as yet no specification of the even-
tual end effector. The output of our model is a target trajectory in 3-D space. This
choice is based on evidence that the planning of movements indeed takes place in
a 3-D representation of the outside world as opposed to planning in intracorpo-
ral joint space. For instance, Hollerbach and Flash (1981) calculated the trajectory
deviations caused by Coriolis forces that can be expected theoretically in fast target-
ing movements. On the basis of the near-rectilinear experimental hand trajectories
they conclude that an a priori adjustment in movement programming takes place to
overcome the Coriolis disturbances and keep the hand movements rectilinear. The
spatial trajectory of hand movements generally is more invariant and less complex
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than the course of individual joint rotations in time (Morasso, 1986). This principle
is assumed to be of ecological significance in the planning of movements in the same
space as in that where objects and obstacles are located. Planning in joint space
would lead to a large variability in the trajectory of the end effector which interferes
severely with requirements as regards collision avoidance and minimization of iner-
tial force in object handling. It should be noted that this does not hold for all motor
tasks. Consider, for instance, other actions than the free planar pen-tip movement
in handwriting or 3-dimensional pointing movements, where planning in joint space
actually is required, e.g., in isometric force appliance to an object held with two
hands, or the holding of the pen by several fingers in handwriting.

The description of the pen tip trajectory in an internal spatio-temporal represen-
tation constitutes the bottom range of the scope of the current model. Of course, the
authors do not claim to know in what form these representations actually exist in
the motor system, but they strongly believe there must be a fluent spatio-temporal
representation of movements. So, it is doubted whether the nervous system enjoys
any special advantages by using bang-bang or staircase-typed movement representa-
tions (Dooijes, 1984; Plamondon & Lamarche, 1986). Although, at the lowest level,
motor unit contractions (twitches) are indeed discrete events, the nervous system
uses the mechanisms of firing rate control and recruitment of a large number of mo-
tor units (van Boxtel & Schomaker, 1983) to produce continuously varying muscle
excitation. It is only then that mechanical damping (read: filtering) takes place.

Still lower levels in the motor system would have to handle the problem of the
conversion from 3-D internalized space to n-dimensional joint space, such that the
chosen end effector will follow the prescribed trajectory and forcing pattern in ex-
ternal 3-D space: the problem of inverse kinematics and inverse dynamics trans-
formations (Asada & Slotine, 1986). The final stage would be the specification of
the excitability pattern for the alpha and gamma-motoneuron pools of the involved
muscles.

Since a neural information processing system is plagued by a continuous stream
of interoceptive and exteroceptive noise, and since it is confronted with real-world
mechanics in the final stage (friction, hysteresis and writing-surface irregularities)
feedback loops will exist, returning information to higher levels, or operating within
a given level. At the level of our model, visual or proprioceptive feedback delays
are estimated to exceed the maximum delay for continuous control. Thus, position
information that is fed back to the operating level of the model can only be used
in reprogramming subsequent strokes. A stroke currently in production cannot be
modified: it is assumed to be produced ballistically.

Model Design.

After having located the current model within the global system for handwriting
production, we will now focus on the requirements and constraints for this model.
The type of handwriting that is to be simulated is the ballistic, fluent handwriting
of an experienced adult writer. This restriction allows us to disregard the complex
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problems involved in motor-learning processes. The point of departure thus is a ’sta-
tus of the system’ in which the writer has at his disposal a number of stable spatial
representations of allographs, as well as a sufficient amount of motor experience to
translate these spatial representations into movements of a given end effector.

Input to the model will be chains consisting of allograph symbols for lower and
upper case letters, blanks and an occasional period or comma. These symbols are
viewed as the parallel of internal abstract categories available within the neuronal
system. Output of the model will be a specification of the planar target trajectory
of the pen tip. Pen-lifting movements along the Z axis are reduced to a binary signal
(pen up/down). A feedback mechanism will be used to maintain the orientation
of the generated target trajectory. With respect to stroke parameterization and
representation, the aim is to use a parsimonious topological description. We will
now proceed to discuss the model from bottom up.

The Quantitative Level: Stroke Parameterization.

Already in early simulation studies it became apparent that the timing of move-
ment units is an essential determinant of handwriting (Denier van der Gon & Thur-
ing, 1965; Vredenbregt & Koster, 1971). When we look at the vertical and horizontal
velocity components we see a pattern of low-frequency content near-sinusoidals of
varying amplitude and period, only disturbed by a moderate amount of noise (Figure
1).

Sometimes the zero crossings in both signals coincide, sometimes the horizontal
component (vx) lags the vertical component (vy) and vice versa. Thus, according to
one hypothesis, handwriting is produced by modulating a horizontal and a vertical
mass-spring oscillator (Hollerbach, 1981). Apart from the fact that such a model
requires a considerable number of parameters (i.e., 13), to account for slant and size
constancy, there are indications that modulated oscillation is not the type of motor
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control that the writer uses. In the first place, in our experiments, writers experi-
ence considerable difficulty in producing simple repetitive patterns like /elelele/ or
/ellellell/ for a sustained period of time (longer than 2 seconds) without errors. One
might expect that this simple kind of oscillation should be easy for a system that
controls movement by amplitude and phase modulation. Second, size and timing
variations occur very often in handwriting, i.e., on a discrete stroke-to-stroke basis,
which seems to be contrary to the idea of a mechanical sinus oscillator. This argu-
ment is also supported by findings which show that the ’isogony’ principle which is
dependent upon sinusoidal oscillation holds for scribbling movements, but not for
normal cursive handwriting (Thomassen & Teulings, 1985). A third objection comes
from the fact that at movement onset we would need a special input forcing pattern
for the oscillator (a mass-spring system) to achieve its spatial target pattern immedi-
ately from rest. The authors support the view of trajectory formation as a process of
chaining discrete strokes (Morasso et al., 1983). However, unlike the stroke definition
in (Morasso et al., 1983), which is essentially in polar coordinates, the stroke is de-
fined here as a combined acceleration plus deceleration movement unit for a spatial
axis in Cartesian space. The basic shape of such a stroke is (near) sinusoidal in the
velocity domain (Figure 1). In cursive handwriting, at least two such corresponding
momentum impulses (Maarse, 1987; Plamondon & Maarse, 1987) are needed for
the production of a spatial stroke, one per spatial axis. Maarse (1987) compared a
number of handwriting models. With respect to the quality of fit, velocity-domain
models appeared superior. Included in the comparison were triangularly shaped mo-
mentum impulses and sinusoidally shaped momentum impulses. The latter signal
type is used in the current project: it appeared to produce only a slightly lower
quality of fit than the triangular signal type, which gave the best fit. In fact, care-
ful observation of velocity profiles in human handwriting will reveal that the actual
shape is something between triangular and sinusoidal (Teulings et al., 1986). It could
be argued that the best approximation would be a filtered (damped) version of the
synthetic and physically not realizable triangular momentum impulses. In order to
avoid the choice of a filter transfer function, we will continue to use the sinusoidal
momentum impulse as the fundamental movement unit in this model, until we know
more about the physical origin of the small deviations between the observed and the
simulated strokes.



54 Kinematics

Figure 2 shows examples of the three basic stroke types in handwriting. The spa-
tial up stroke is produced by horizontal and vertical momentum impulses of specified
onset time, amplitude and duration. The vast majority of strokes in handwriting is
of this type, with shapes varying gradually from very blunt and clockwise, via sharp,
to very blunt and counter-clockwise, and looping. Since both X and Y impulses con-
tribute to the same spatial stroke, they are considered to be ’locked’, i.e., they are
not independent in the sense that horizontal and vertical movements are consid-
ered to be independent ’signals’ in other studies (Dooijes, 1984; Maarse, 1987). One
could, for instance, as is done in many studies, parameterize the vx and vy signals by
creating independent parameter lists for both directions, containing duration and
amplitude of each sinusoid. After parameter evaluation and integration versus time
one would obtain displacement functions containing regenerated sample of hand-
writing. Generation of new movements, however, implies that a system is producing
movement components along each of the two or three orthogonal axes for a given
discrete spatial stroke. Thus the parameterization method should account for the
time allocation of momentum impulses corresponding to a spatial stroke. A straight-
forward and simple method is the following. The basic parameters are the required
relative horizontal and vertical displacement in space, ∆X and ∆Y , of a movement
section which we call a ’compound stroke’. Times of occurrence of zero crossings in
the vx and vy signals determine the points in time at which the spatial distances,
∆X and ∆Y , respectively, can be determined. This deals with the displacement per
se. The remaining characteristics to be parameterized are the impulse durations and
the shape at the stroke ending (Figure 2, points a, b and c). As can be seen from this
figure, shape could be described by the time delay between the two vx and vy zero
crossings. We then would need three parameters in addition to ∆X and ∆Y , viz.,
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the durations of both momentum impulses and a time delay parameter. However,
if the momentum impulses indeed belong together and are produced by the same
pacing mechanism we can also assume the following. The duration of the execution
of a single spatial stroke, as derived from the standard segmentation of the tangen-
tial velocity signal (Teulings et al., 1987), will be the basis for the durations of the
vx and vy momentum impulses, Tx and Ty respectively. So we take the compound
stroke duration T as the third parameter. In a given sample of handwriting, it can
be estimated by measuring the time between two minima in the tangential velocity,
or simply by taking the average (Tx + Ty)/2. Instead of taking the physical time
delay as the fourth parameter, we now introduce a shape parameter C which is the
proportion delay of the given compound duration T , to be achieved at stroke ending.
Parameter C is comparable to the concept of ’phase’, but it has the advantage of
not being related to the concept of oscillation. C can attain positive or negative
values, roughly varying from -1.5 (counter-clockwise) to +1.5 (clockwise). With this
method, smoothness of the transition between two strokes depends on the overlap
in time of the two movement components.

Parameter Name Unit

1 ∆X relative horizontal displacement mm
2 ∆Y relative vertical displacement mm
3 T duration (Tx + Ty)/2 ms
4 C shape factor (tvx=0 − tvy=0)/T

Table 1. An overview of the used stroke parameters.

The duration parameter T can be made relative itself if it is expressed as a pro-
portion of the period of the required average stroke pacing, thereby deferring the
introduction of physical time to a later stage of processing. In the current model,
however, we will express T in absolute terms. Note that the proposed stroke pa-
rameterization only determines the shape of the stroke ending. The curvature of a
stroke’s beginning is completely determined by its predecessor. Thus, a curvilinear
shape of an initial stroke in a word is characterized by a preceding stroke for which
holds: ∆X = 0, ∆Y = 0, C 6= 0, T > 0. The proposed method allows for a context-
sensitive and parsimonious stroke modeling that is suited for use at the bottom level
of the generator, where the target trajectory is compiled. Furthermore, it allows for
a selective global biasing of each of the parameters, for example to induce sharper
or rounder letter shapes by multiplying parameter C with some factor. Now we will
proceed with the higher levels of the current model.

The Symbolic Stage: Connecting the Allographs.

Figure 3 gives an overview of the data structures and the data processing modules
of the model. The incoming data are allograph symbols. They will be converted
stepwise into a quantitative form.

The first step is to insert symbols for connecting strokes and pen-lifting strokes
between the allographs. This is done by the Cursive Connections Grammar (CCG).
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The CCG can be understood as a ’Production System’ (Witteveen, 1984) with rules
such as:

<ALPHA><ALPHA> :== <ALPHA><CONNECTOR><ALPHA>

<ALPHA><PENUP> :== <ALPHA><ENDSTROKE><PENUP>

<ALPHA><PUNCT> :== <ALPHA><ENDSTROKE><PUNCT>

<PENUP><ALPHA> :== <PENUP><BEGINSTROKE><ALPHA>

<ENDSTROKE><*> :== <ENDSTROKE><PENUP><*>

<*><PUNCT> :== <*><PENUP><PUNCT>

where <ALPHA> stands for ’a symbol belonging to the set of

alphabetic symbols’, <*> stands for any symbol, etc.

Connecting strokes (or <CONNECTOR>s as termed above), are the pieces of handwrit-
ing, normally starting at about the base line or descender line and completing the
shape of the current letter, spanning the horizontal distance to the next letter and
initializing the shape of this next letter. The rules shown above, tell us to insert
connecting strokes between two alphabetics, to append small ending strokes if we
are at the verge of a pen-up movement, and to lift the pen if there is a punctuation
sign coming. The CCG is applied recursively to an incoming pair of symbols and
it inserts pieces until no rule has an effect any more. To be able to substitute the
generated insertion symbols, the CCG consults a qualitative (ordinal) description
of allographs: the Symbolic Letter Description. This is a grid of available spatial
vertical and horizontal levels and levels of curvature. For instance, going from an
/m/ to an /e/ requires a connecting stroke from <base-line> to <mid-line> ,
<counter-clockwise> and with <normal-progression> . The resulting symbol chains
enter the Stroke Parameterization process (step two), where they are further refined
and converted into a sequence of stroke parameters, that are biased by the global
setting of the tempo, size and shape factors. The refinement is achieved by consult-
ing the Quantitative Letter Description, a more accurate but less general parallel
of the Symbolic Letter Description. The third and final step is the distribution of
available time for a spatial stroke among momentum impulses along the X and Y
axis according to the required size and shape by the Stroke Generator. The output
of the Stroke Generator is monitored by a process that uses the Symbolic Letter De-
scriptions as a lineation reference. This is necessary because the position data have
to be updated in the correct cells of a memory of the lineation that has actually
been produced until now. This memory is of the exponentially decaying type. If an
already generated stroke deviates too much from the current state of the lineation
memory, the programming of the size of the subsequent stroke is adjusted.
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Some Considerations on Model Architecture.

The architecture of a computational model of any aspect of human behavior is
fundamental to its plausibility. The architecture of the current model is built upon
the concept of a continuous flow of the smallest chunks of information possible
through a hierarchically constructed set of operations. The opposite view would be
that of a sequence of operations on larger information units such as complete words
or sentences. There are some arguments against the latter approach. In the first
place, it would be a severe limitation of the model if it would operate word by word
only: we know that the human writer can write cursive words that are dictated
by spelling letter by letter. A speaker generally has to wait until more ”letters” are
known since phonemes encompass a much larger context than graphemes do. Indeed,
there are some indications that the scope of motor context in handwriting may be
much smaller than in speech. In handwriting there is nothing like the intonation in
speech (pitch envelope) which is semantically important and can only be produced if
several words are known beforehand. Therefore we would like to restrict the extent of
the motor context in the handwriting generator as much as possible until empirical
evidence commands the contrary. In the current model, motor context is confined to
a range of strokes that belong to two letters only (Hulstijn & van Galen, 1983). An
architecture like this, working with such small chunks of information at a time can
easily be made context sensitive at all levels by insertion of context-dependent steps
of processing within the hierarchy. A stepwise, block-oriented model, on the contrary,
can not be set to operate on chunks of information smaller than the minimum size
(e.g. word by word). Much like the human information processor, the current model
starts operating on the smallest amount of information coming in and passes it
to lower levels of processing. The active levels will process down-flowing data only
if there is insufficient context available to complete the ongoing operations, thus
working on an ’as needed’ basis. We will proceed to describe how a working model
is built and make some comparisons between simulated and original handwriting
samples.

3.2 Methods

Subjects. The generation parameters are based on a page of handwriting (12 lines,
75 words, 230 seconds duration) of a very experienced and ’regular’ writer (male,
righthanded, age 44). Furthermore, use is made of a continuously growing corpus
of recorded handwriting samples of several subjects (righthanded, age 18 years and
older) to test the analysis procedures.

Data acquisition and preprocessing. Pen tip displacement signals were recorded
by means of a large-size writing tablet (Calcomp 9240), sampling frequency 105 Hz,
spatial resolution 0.025 mm, or by means of a medium-size tablet (Vector General),
sampling frequency 100 Hz, resolution 0.02 mm. The analog axial pen pressure was
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digitized (10bits, 1g/bit) synchronously with the displacement data. Unless stated
otherwise, the displacement data are off-line digitally low-pass filtered with a FIR
filter with 25 weights and a transition band from 10 to 30 Hz (Rabiner & Gold, 1975).
The displacement signals (Sx and Sy) are differentiated by means of a five-weight
FIR window (Dooijes, 1984) to obtain horizontal (vx) and vertical (vy) velocity
signals. The pen pressure signal is used to obtain reliable pen up/down information.

Constructing the letter description data structures for a writer.

a) Lineation analysis. The first step is to analyze histograms of the spatial po-
sitions of vertical extrema. The recorded handwriting data should have horizon-
tal orientation, either by a proper recording procedure or by post-hoc numeri-
cal rotation. Separate lines of handwriting are extracted. To obtain reliable his-
togram peaks, the lines should contain a sufficient amount of body size points as in
/a,c,e,i,m,n,o,r,s,u,v,w,x,z/, descender points as in /f,g,j,y/ and ascender points as
in /b,f,h,k,l/ (Figure 4). The histogram of the Y minima will show a distinct peak
indicating the position of the base line of handwriting (Y0). To

the left of this large peak there will be some small peak indicating the position of
the descender line (Yd). The histogram of the Y maxima will show a clear peak at
the level of the body-size line (Yb). To the right of this large peak there will be some
peaks indicating ascender line positions (Ya). The body-size size can be estimated
reliably by

Hb = Yb − Y0 (3.1)
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Because there will be much less descender and ascender samples in a piece of
cursive script than base line and body-size line samples, estimates of descender and
ascender size will be less reliable. The descender size is determined by

Hd = Yd − Y0 (3.2)

and the ascender size by

Ha = Ya − Y0 (3.3)

The ratios Ha/Hb and Hd/Hb will be characteristic for the writings of the subject
in question. The method described has indeed been used successfully in a study on
writer identification (Maarse et al, 1986). Other, slightly more subtle, characteristic
levels in lineation are the global maxima in /d,t/ the global minima in /p,q/, and
the positions of dots on /i/ and /j/ which tend to be much more variable. Analysis
of several handwriting samples revealed a lineation that reflects the handwriting
method taught at primary school. Deviations often comprise overshoots and under-
shoots in the first and last strokes of words, respectively. An even more detailed
refinement is obtained by observing the handwriting more closely. Between the base
line and the body-size line, three levels may be identified, indicating endings of ter-
minal strokes, intermediate levels (as in /k/, cursive /t/ ) and starting points of
initial strokes, respectively. Depending on the individual writer, these levels may co-
incide, or additional levels may be present. The identified levels are given an ordinal
number and a corresponding symbolic name. The handwriting sample used in this
study contained 10 levels of lineation (Table 2).
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Table 2. An example of the ordinal classes of stroke

characteristics in the symbolic stage, and

their names. This ’grid’ is used by the

Cursive Connections Grammar to build connecting

stroke codes.

DEFINE

LINEATION:

Low (minimum in <g>, <j>)

Low-PLUS (minimum in <p>, <q>)

Base-line-MINUS

Base-line (minima in <m>)

Base-line-PLUS

Intermediate

Mid-line (maxima in <m>)

Mid-line-PLUS

Upper-line-MINUS (maximum in <t>, <d>)

Upper (maximum in <k>)

SHAPES:

Negative (counter-clockwise)

Sharp

Positive (clockwise)

PROGRESSION:

Close

Normal

Far

PENSTATUS:

Down

Up

END

Coding example for a connecting stroke:

(b_m_p_c) = ’from Base to Mid, clockwise (p) and Close’

b) Analysis of shape. Within letters, a wide range of stroke ending curvatures
is found. Since the fine-grained within-letter shape is not needed in the symbolic
stage, we leave the stroke shape definition within letters to the quantitative stage.
For the connecting strokes, as a rough approximation, only three levels of the shape
of connecting strokes were sufficient for the writer under study: counter-clockwise
as in a connecting stroke leading to /e/, sharp as in a connecting stroke leading to
/i/ and clockwise as in a connecting stroke leading to /m/.

c) Analysis of horizontal progression. Here also, a coarse categorization in three
levels of horizontal progression between letters is sufficient: Close, Normal and Far.
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Since the vertical and horizontal sizes of connecting strokes are strongly coupled
(typically, r=0.9), this categorization is relative to the vertical size of a stroke.

Building the quantitative letter and stroke definitions.

Preprocessing involves low-pass filtering and segmentation. The aim is to find the
corresponding vx and vy momentum impulses for each spatial stroke, which is not
trivial. This is done by means of an algorithm that indicates possible corresponding
vx and vy momentum impulses and allows the operator to correct misalignments.
The success of this operation depends upon the percentage of hesitations or slow cor-
recting movements (graphical editing) in the handwriting sample. Since the model
describes ballistic movements, samples containing severe movement artefacts are ex-
cluded from the analyses. Residual shortlasting (i.e., shorter than 30 ms) local dis-
turbances that cause misalignment are solved by applying additional local filtering
with a simple first-order recursive filter (y(k) = αx(k) + betay(k − 1), α = β = 0.5).
This procedure guarantees that no overall filtering bias is imposed on the signal at
moments where no segmentation difficulties arise. Another source of segmentation
difficulty is the projection of the movements onto the orthogonal axes of the tablet.
If the direction of a ballistic stroke coincides with one of the axes of the tablet,
the movement residual in the orthonormal direction will be irregular. Such prob-
lems can be avoided by determining the preferred axes of handwriting beforehand
(Denier van der Gon, & Thuring, 1965; Teulings et al., 1989). When the correct
segmentation points are known, the four stroke parameters ∆X, ∆Y, C and T are
calculated. Stroke sizes ∆X and ∆Y are calculated by numerically integrating the
corresponding vx and vy strokes. Moments of zero crossings (tvx=0 and tvy=0) are in-
versely interpolated and used to obtain stroke durations Tx and Ty. The ’compound’
stroke duration is approximated by

T =











(Tx + Ty)/2 for Tx 6= 0 ∧ Ty 6= 0
Tx for Ty = 0
Ty for Tx = 0

(3.4)

The shape factor C is determined by the time difference between the zero crossings
in vx and vy, i.e.:

C =
tvx=0 − tvy=0

T
(3.5)

In the generation process, this parameterization results in dividing the available
time T for the compound stroke equally over the separate axes, such that the delay
at the stroke ending is as prescribed:

∆tb = tvx=0 − tvy=0 (3.6)

∆te = C ∗ T (3.7)
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T ′

x = −∆tb/2 + T + ∆te/2 (3.8)

T ′

y = +∆tb/2 + T − ∆te/2 (3.9)

where

∆tb is the delay between the velocity zero crossings of both axes at the beginning
of the stroke,

∆te is the requested delay of the velocity zero crossings of both axes at the ending
of the stroke,

T ′

x is the duration of the vx momentum impulse,

T ′

y is the duration of the vy momentum impulse.

When the total handwriting sample is analyzed, parameter lists of several repli-
cations of each allograph or connecting stroke are averaged to obtain a more reliable
estimate. In the current study, these estimates are based on two to six replications.
The model is evaluated by comparing one of its generated products to equivalent
subject-written and regenerated samples. All data are automatically segmented by
means of a standard procedure.

3.3 Results

The construction of the letter description data structures (by lineation analysis,
analysis of shape and analysis of horizontal progression) for the writer under study
did not pose any special problems. In building the quantitative letter and stroke
definitions, non-cursive letters or letters containing editing movements were excluded
(two /H/s, which were in block print, and two out of 26 /t/s, also of block print
type, with pen-lifting). There were no other allograph variations.

Table 3. Letter frequencies.

a (13), b (10), c (10), d (21), e (97), f (5), g (13),

h (11), i (29), j (1), k (8), l (14), m (7), n (48),

o (22), p (9), q (1), r (19), s (20), t (26), u (8),

v (12), w (5), x (1), y (4), z (1), D (3), H (2),

Z (1).

Frequencies of pen-lifting and special movements are: blank spaces (61), commas
(5), periods(4), dottings (30), editing (2), long-lasting blanks (2), new line move-
ments (11), other pen liftings (12). Table 4 presents a sample of transformations at
the symbolic stage, produced by the Cursive Connections Grammar. Note the in-
serted codes for connecting strokes and pen-lifting movements. Also note the crude



64 Kinematics

approximation of horizontal progression for spaces between words, (space) denoting
the default horizontal progression, (spacef) indicating movements above the paper,
’landing’ somewhat more to the right. As can be seen, the connectors are generic,
no reference is made to the surrounding allograph codes within the connector codes
themselves.

Table 4. A sample of input and output to the Cursive Connections

Grammar, a) input text, b) output codes. See table 2

for an explanation of the used codes.

a) ...an adequate language does not exist.

b) ...(a)(b_m_p_c)(n)(b_bplus_s_c)(spacef)(a)(b_m_s)(d)(b_m_n)

(e)(b_m_p)(q)(lplus_m_s_c)(u)(b_m_s)(a)(b_uminus_s)(t)(i_m_n)

(e)(b_bplus_s_c)(space)(i_u_n)(l)(b_m_s)(a)(b_m_p_c)(n)(b_m_s)

(g)(l_m_s_c)(u)(b_m_s)(a)(b_m_s)(g)(l_m_n)(e)(b_bplus_s_c)

(spacef)(d)(b_m_s_c)(o)(m_m_n)(e)(b_m_p_c)(s)(space)(i_m_p_c)

(n)(b_m_s_c)(o)(m_uminus_s)(t)(i_i_s_c)(space)(i_m_n)(e)

(b_m_s_c)(x)(b_m_s_c)(i)(b_m_p_c)(s)(b_uminus_s)(t)(i_i_s_c)

(penup_pendown)(period)

Figure 5 shows a comparison between some replications of the word ’computer’.
The first three replications are originally written by the subject. The fourth sample
is newly generated by the model. The fifth sample is a regenerated version of
the first word, by parameterizing the horizontal and vertical momentum impulses
independently, as in (Maarse, 1987). The sixth sample is also a regenerated ver-
sion of the first word, but in this case, stroke parameterization was done by locked
corresponding X/Y momentum impulses, as in the generator model.
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Table 5 presents a numerical account of the differences between the horizontal
stroke sizes of the 6 replications. It appears that on the average, the model produces
horizontal connections (4) that are 0.2 mm shorter than the subject did (1-3). From
the correlation table it appears that the model (4) does not produce strong deviations
from the originals. As to be expected, regenerated versions (5) and (6) strongly
resemble the original (1). Also, versions (5) and (6) are highly equivalent, which
shows that the method of ’locked’ momentum impulses does not produce deviations
from regeneration by independent vx and vy momentum impulses.
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Table 5. Comparisons of horizontal stroke size.

Mean and standard deviation (mm)
µ σ N

1 2.947 1.896 30
2 2.951 1.809 31
3 2.928 1.847 30
4 2.429 1.606 32
5 2.706 1.850 30
6 2.683 1.840 30

Correlation, N=30
1 1.000
2 0.742 1.000
3 0.989 0.744 1.000
4 0.934 0.717 0.917 1.000
5 1.000 0.741 0.988 0.933 1.000
6 1.000 0.744 0.988 0.932 1.000 1.000

Standard deviation of differences (Rows minus Columns)
1 0.000
2 2.432 0.000
3 0.497 2.417 0.000
4 1.231 2.408 1.355 0.000
5 0.258 2.364 0.560 1.121 0.000
6 0.278 2.347 0.555 1.121 0.056 0.000

Legend:
1-3 Original handwriting samples
4 Newly generated sample
5 Regenerated version of 1, by independent vx&vy

6 Regenerated version of 1, by locked vx&vy

Table 6 shows the comparisons of the vertical stroke sizes for all replications.
On the average, the generated vertical strokes (4) are again somewhat smaller than
the original vertical strokes. It appears that correlations between the vertical stroke
sizes are higher than those between horizontal stroke sizes. The newly generated
replication does not deviate significantly from the originals (1-3).
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Table 6. Comparisons of vertical stroke size.

Mean and standard deviation (mm)
µ σ N

1 2.785 1.369 30
2 3.044 1.338 28
3 2.665 1.476 32
4 2.460 1.347 32
5 2.554 1.320 30
6 2.529 1.298 30

Correlation, N=28
1 1.000
2 0.990 1.000
3 0.966 0.967 1.000
4 0.970 0.970 0.989 1.000
5 1.000 0.988 0.965 0.969 1.000
6 1.000 0.989 0.966 0.970 1.000 1.000

Standard deviation of differences (Rows minus Columns)
1 0.000
2 0.490 0.000
3 0.826 0.854 0.000
4 0.789 0.861 0.516 0.000
5 0.254 0.617 0.834 0.726 0.000
6 0.282 0.619 0.825 0.717 0.054 0.000

Table 7 shows the comparisons of the horizontal stroke durations. From the av-
erage durations we can see that the generated strokes (4) lasted somewhat longer
than the original strokes (1-3). From the correlation matrix we can see that in the
comparisons (1-4), correlations are much lower than in the case of horizontal stroke
size . The originals (1) and (3) appear to intercorrelate highly, whereas the original
(2) and the model (4) are moderately intercorrelated.
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Table 7. Comparisons of horizontal stroke duration.

Mean and standard deviation (ms)
µ σ N

1 105.857 26.728 29
2 103.463 26.617 30
3 107.959 30.891 29
4 108.439 26.797 31
5 105.397 31.094 29
6 105.890 31.653 29

Correlation, N=29
1 1.000
2 0.352 1.000
3 0.942 0.346 1.000
4 0.435 0.613 0.378 1.000
5 0.967 0.429 0.877 0.532 1.000
6 0.966 0.440 0.887 0.545 0.996 1.000

Standard deviation of differences (Rows minus Columns)
1 0.000
2 29.999 0.000
3 10.641 32.752 0.000
4 28.919 23.647 32.759 0.000
5 8.589 30.792 15.354 28.595 0.000
6 9.073 30.879 14.883 28.518 2.963 0.000

Table 8 shows the comparisons of the vertical stroke durations. From the average
durations we can see that the generated strokes (4) take an intermediate position
with respect to the original strokes (1-3). Here correlations are of even lower value
than in the case of the horizontal stroke durations. The model (4) produces vertical
strokes with durations that covary most closely with the original (3), the lowest
correlations exist between the model (4) and the original (1).
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Table 8. Comparisons of vertical stroke duration.

Mean and standard deviation (ms)
µ σ N

1 106.538 24.517 29
2 116.430 27.434 27
3 102.033 24.758 31
4 109.416 18.348 31
5 106.430 24.952 29
6 106.941 24.670 29

Correlation, N=27
1 1.000
2 0.512 1.000
3 0.361 0.288 1.000
4 0.171 0.236 0.715 1.000
5 0.976 0.501 0.329 0.206 1.000
6 0.974 0.520 0.406 0.261 0.990 1.000

Standard deviation of differences (Rows minus Columns)
1 0.000
2 25.529 0.000
3 26.276 30.071 0.000
4 27.207 28.942 15.849 0.000
5 5.300 25.872 27.013 26.780 0.000
6 5.386 25.218 25.176 25.577 3.342 0.000

Figure 6 shows a longer sample of spatial output of the model. At first sight the
data give the impression of some ’naturalness’: there are no evident artificial-looking
shape repetitions. A given letter may differ in shape according to the context (e.g.,
/e/ or /o/). However, closer observation reveals some peculiarities. Some connect-
ing strokes do not seem to be fully appropriate. Moreover, horizontal progression
between words is a little coarse. In some strokes, finally, inflection points might be
expected, as discussed in an earlier paper (Schomaker & Thomassen, 1986).
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3.4 Discussion

Even with the parsimonious parameterization used, we have already obtained a
reasonable approximation of the subject’s handwriting in the spatial and temporal
domain. From the comparisons made, provisional conclusions may be drawn. Again,
spatial (size) consistency appears to be higher than temporal (duration) consistency
in the comparisons of the three original words and a generated word. A striking
finding is that the locked parameterization of momentum impulses proposed in this
study does not lower the correlation with the original data as compared to an inde-
pendent parameterization of horizontal and vertical velocity. In the spatial domain,
between-letter context effects are present that resemble the handwriting of the orig-
inal writer. The used lineation grid enables the model to maintain a horizontal
baseline and to generate an estimate of the vertical position of the next pen-down
position for new words. However, some qualifying comments must be made here.
In the current state of the model, connecting strokes are generic, i.e., the /m/-/e/
transition is considered to be the same as the /n/-/e/ transition. This does not seem
to be justified in all cases. It might be that in fact the human writer makes more
use of stored connecting strategies for different allographic contexts, or performs
more ’real-time’ computation to program (connecting) strokes. In the former case,
we would have to add transitions to the Cursive Connections Grammar and update
the Symbolic and Quantitative stroke definitions. In the latter case, the Stroke Gen-
erator module should be made more sensitive to the current motor context. Such a
solution would also make it possible to let the Stroke Generator reprogram strokes
in case of changes of movement direction from clockwise to counter-clockwise and
vice versa. The human writer shows a strategy where the stroke with the longest
duration shows a short deceleration in these cases (Schomaker & Thomassen, 1986).
Also, some bigrams might in fact be overlearned to such an extent that we should
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consider them to be part of a single two-letter allograph: a digraph. The horizon-
tal progression between words can be made more natural by refining the grid of
horizontal progressions. This can be done by further analyses on the histograms of
horizontal stroke sizes. Also, what is needed is knowledge on the subtle perceptual
cues that the writer uses in planning horizontal progression. In computer graph-
ics, for instance, the designer of letter fonts defines ’hot spots’ as anchor points for
spatial concatenation. Probably such ’spots’ also exist in handwriting curves. An
interesting extension of the current model would be a top level that takes care of
context-dependent allograph selection. Such an extension is only feasible if a large
corpus of handwriting of a writer is available. In the recorded samples of handwrit-
ing (one page per subject) that the authors have available, however, most writers
do not seem to exhibit a sufficiently consistent use of different allographs for formal
rules to be derived. At the bottom level, a promising continuation of the current
work would be the use of K-nets (Kinematic Nets) (Morasso & Mussa Ivaldi, 1987),
a formalism that enables the solution to the inverse kinematics problem, to specify
the joint and, eventually, muscle-domain control patterns for a given end effector.
The advantage of this approach is the natural inclusion of dynamics (forces) in the
movement control on the basis of the task-related demands in handwriting, i.e., pro-
ducing a planar trajectory while applying sufficient force to produce a legible trace
on the writing surface. Another point of discussion is the use of a Cartesian coor-
dinate system at this level of movement planning. Some would argue that coding
in terms of polar coordinates is more attractive in terms of rotation invariance. Al-
though we do not really know how movement patterns are represented in the brain,
there are some theoretical and practical considerations that support the choice of
an orthogonal coordinate system as the frame of reference when planning external
3-D movements. Here, I would like to quote Denier van der Gon & Thuring (1965):
’the occurrence of perpendicular directions in biology and physiology is well-known,
for instance the analysis mechanism of the semi-circular canals’ (in the vestibular
system). In (Denier van der Gon & Thuring, 1965) also, reference is made to the
work of Dal Bianco in the 1940s who showed that cerebellar lesions can have specific
consequences for movements in one orthogonal plane. A practical objection to the
use of a running angle representation would be its dependency on the initial value
and the propagation of direction errors in time. With respect to the architecture
of the model, the following remarks can be made. We are confronted with a very
complex real-life system on the one hand and the current ’paradigms’ in science,
as well as the ’state of the art’ in technology on the other hand. These two latter
aspects determine what is ’thinkable’ and what is not. The terminology used, the
processing steps indicated and the solutions that are proposed in this paper serve to
guide our conceptualization of the handwriting process (cf. figure 3). Thus, a ’cogni-
tive’ module like the Cursive Connections Grammar can be implemented as a formal
production system, as it is done in this study, or it could just as well be implemented
as a neural network simulation in connectionist terms, as proposed in (Morasso &
Mussa Ivaldi, 1987). In our view, the connectionist approach is appealing because of
the somewhat more (bio)physical and physiological nature of the models involved.
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On the other hand, the danger exists that basic information processing steps are
obscured in this approach, by relegating basic processes to a single artificial neural
network that solves the demanded input/output relationships. Methodologically, a
better procedure for matching model data with original handwriting might be one
which uses dynamic programming to find a time warp function of the handwriting
samples for an optimal alignment in time (Brault & Plamondon, 1987). Finally, we
would like to mention the use of the proposed model as a synthesis stage within
cursive-script recognition, which is under study in ESPRIT project P419 (Teulings
et al., 1987).
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Chapter 4

Kinematics and kinetics

After having built a working model that describes the kinematical aspects of the
pen-tip control problem, the question may be asked if kinematics is all there is in
handwriting. Clearly, the movement is necessary to let the pen-tip travel along a path
on the paper surface. However, there are other aspects in the writing task. A legible
trace of regular thickness must be left behind by the pen. The paper or the pen must
not be damaged by an applied force that is too large. The complex biomechanical end
effector system that is not controlled along 3 orthogonal dimensions must follow the
writing plane, without spending an overdue amount of muscular energy. Thus, force
aspects, i.e., kinetics come into play, notably in the form of a compliance control
problem. In this chapter, we try to find out if pen force is a passive dependent
variable, determined by the kinematics of the movement and the parameters of the
biomechanical system, or an actively controlled and independent control variable.
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Abstract

This study investigates the spectral coherence and time-domain correlation
between pen pressure (axial pen force, APF) and several kinematic variables
in drawing simple patterns and in writing cursive script. Two types of the-
ories are prevalent: ”biomechanical” and ”central” explanations for the force
variations during writing. Findings show that overall coherence is low (< 0.5)
and decreases with pattern complexity, attaining its lowest value in cursive
script. Looking at subjects separately, it is found that only in a small mi-
nority of writers ”biomechanical coupling” between force and displacement
takes place in cursive handwriting, as indicated by moderate to high nega-
tive overall correlations. The majority of subjects displays low coherence and
correlation between kinematics and APF. However, APF patterns in cursive
script reveal a moderate to high replicatability, giving support to the notion
of a ”centrally” controlled pen pressure. The sign of the weak residual av-
erage correlation between APF and finger displacement, and between APF
and wrist displacement is negative. This indicates that small biomechanical
effects may be present, a relatively higher APF corresponding to finger flexion
and wrist radial abduction. On the whole, however, variance in APF cannot
be explained by kinematic variables. A motor task demanding mechanical
impedance control, such as handwriting, apparently introduces a complex-
ity that is not easily explained in terms of a passive mass-spring model of
skeleto-muscular movement.

4.1 Introduction

Generally, researchers of handwriting movements in the fields of signature verifi-
cation, forensic studies, and in biophysical or psychomotor studies have recognized
the importance of the pen pressure 1 on the writing surface as an important de-
pendent variable. For instance, in signature verification, the force exerted by the
pen on the paper during handwriting appears to be a discriminating parameter be-
tween individual writers (Hale & Paganini, 1980; Crane & Ostrem, 1983; Deinet et
al., 1987). Also, writer identification on the basis of normal handwriting samples is
greatly improved if the pen-force signal is known (Maarse, Schomaker, & Teulings,
1986; 1988). Thus, in the writer identification or signature verification problem, the
pen-force signal is an important source of information (Plamondon & Lorette, 1989).
On the other hand, the number of studies exploring pen force is rather limited and
little is known about the underlying control process.

Methods to measure pen force differ greatly. Sometimes, the pen force is measured
directly with some kind of transducer during writing so that its time function is
known. In the case where the transducer is mounted in the pen, and measures force
along the longitudinal axis of the pen, we will speak about Axial Pen Force (APF ).
In the case where the transducer is located under the writing surface, normal pen

1Since the actual area of the pen point is rarely included in the measurements, pen pressure
will be referred to as pen force in this article.
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force (NPF ) is measured. In the latter case, the wrist is typically located on a
separate supporting surface. At other times, as in forensic handwriting analysis, pen
force is inferred from the static properties of the handwriting, i.e., trace thickness
and depth (Baier et al., 1987) and the paper characteristics (Deinet et al., 1987),
but the pen-force time function is not known. Another measure that is sometimes
used is the pen-grip force (Kobayashi, 1981). In what follows, however, we will only
be concerned with time-varying APF or NPF . Axial Pen Force and Normal Pen
Force are related by:

FN (t) = −FA(t) sin(ϕ(t)) (4.1)

where ϕ is the angle between the longitudinal pen axis and the writing plane.
A central question to be solved is the relationship between the pen-tip kinemat-

ics and the pen force. Essentially two viewpoints are relevant: the biomechanical
hypothesis and the central control hypothesis.

Pen-force variation as a passive, biomechanical process..

In this view, the pen-force changes during writing are seen as a consequence of
biomechanical factors related to the kinematics of the movements. Dooijes (1984)
relates APF variations to the pen tip displacement in the vertical direction, sup-
posedly brought about by the forefinger in many subjects which is ”...pushing the
pen into the paper surface during down strokes” (a stroke is generally defined as
the trajectory segment between two consecutive minima in the tangential pen-tip
velocity).

In this paper we would like to propose an approach that describes the pen force
problem in terms of a mechanical impedance (Hogan, 1985) or compliance control
problem (Asada & Slotine, 1986; Mason, 1982). A mechanical impedance is a system
which accepts motion input and yields force output (Hogan, 1985). Suppose we
wanted to let a robot system produce cursive script on some writing surface. We
could define the motor task in terms of a pen-tip trajectory formation problem. In
this situation the moving system has to control a lot of intra-corporal degrees of
freedom (body df, bdf) in joint and actuator space. In the extra-corporal spatial
domain, however, the movement in the air towards the writing surface demands
the control of six (3 translational, 3 rotational) extra-corporal degrees of freedom
(task df, tdf), while controlling zero degrees of freedom in the extra-corporal force
domain since there is as yet no contact. However, at the moment of contact, making
point-to-plane contact with the pen held in the end effector, the control problem is
transformed into a five spatial tdf and one force tdf problem. The force is applied
to the paper surface and compensated by a component, normal to the writing plane
(NPF ) and a frictional component along the writing plane. No torques are required
by a point-to-plane contact. Clearly, the requirements of force control should be part
of the motor task description. A possible description in handwriting is: ”apply force
in such a way that friction is overcome and a clear, legible trace is left behind”. Thus,
apart from the trajectory formation, mechanical impedance control is required. Since
the writing system has to overcome surface (say, Coulomb) friction, additional force
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components have to be present along the X- and Y-axes, that are linearly related
to NPF (Deinet et al., 1987). These additional force components complicate the
control problem. There are task constraints, however, to make things easier for our
robot. No rotation around the longitudinal pen axis is required for normal cursive
script, so we can neglect this tdf. Furthermore, pen orientation does not have to be
controlled explicitly (can be held approximately constant) since it is not part of the
specific task requirements. In the human writer, the average orientation angle of the
pen depends on hand anatomy and on personal preference, and variations seldom
exceed a maximum amplitude of ten degrees in the normal cursive handwriting
size, which is about 2.5 mm for an /a/, on average. The movement system can
concentrate on the pen tip’s trajectory formation and on mechanical impedance,
i.e., on regulating the normal pen force to produce a continuous trace of sufficient
thickness and on overcoming friction in the XY plane by exerting an appropriate
force along the X and Y axes.

According to a ”pure” biomechanical hypothesis, variations in pen force are di-
rectly related to the peculiarities of the multi-degree-of-freedom, non-orthogonal ef-
fector configuration that a human hand in fact is. In this view, movements intended
to take place in the XY plane are accompanied by inadvertent force variations along
the Z-axis because the system is not exhibiting ideal active or passive compliance
or both. If the system is geared to high stiffness, force variations will be of high
amplitude; if the system is highly compliant, force variations will be reduced. How-
ever, in any case, the result will be a strong coupling between pen-tip kinematics
and pen-force variations. As Figure 1 shows, the writing hand is a polyarticular sys-
tem consisting of a closed kinematic chain. It is polyarticular in the sense that each
tendon spans a considerable number of joints, going from its muscular attachment
in the forearm to the distal finger tip. A grossly simplified biomechanical model de-
scribes APF as the consequence of compressing a viscoelastic system by moving the
surface contact point in the direction of the normal at a fixed hinge. It also shows
that in such a system, pen angle is directly related to pen tip position. Empirical
evidence (1 subject) for the latter point is found in Deinet et al. (1987).
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For example, in the pen-grip style with the palmar part of the wrist resting vir-
tually flat on the writing surface, the finger flexion and extension will lead to larger
variations in pen angle than wrist adduction and abduction, as an observation of
the rear end of the pen during simple linear writing movements will reveal. The
biomechanical hypothesis is attractive from the point of view of control efficiency.
An appealing theory on skeleto-muscular motor control states that movements are
brought about by the planning of muscle length ratios at target positions (Bizzi, Polit
& Morasso, 1976; Morasso & Mussa Ivaldi, 1987; Hogan, 1985). In this view, move-
ment is an equilibrium trajectory of minimum potential energy caused by the elastic
energy that is stored by muscular (co-)contraction. This type of control obliterates a
temporally fine-grained trajectory planning between intermediate target positions.
Similarly, the application of force to external objects is the direct result of the differ-
ence between the stored elastic energy state and the state the motor system is forced
to maintain after obstruction by an external object. In handwriting, the obstruction
is presented by the pen, yielding pen-grip force, and by the writing surface, yielding
NPF and friction. In equilibrium theory, the planned virtual trajectory would be
located spatially beneath the writing surface. If we assume that the elastic energy
potential function Ep of the end effector is smooth (a valley), that the movement
direction coincides with the major or minor stiffness axis (Hogan, 1985), and that
the movement does not cross the equilibrium point, there is a linear relation between
small displacements and force. Under the same assumptions, force will generally co-
vary strongly with displacement in complex movements patterns, too, since Ep is
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monotonically increasing with distance from the equilibrium point. The exception
is the special case of the isotonic trajectories in which the shape of the movement
pattern is fully determined by a constant force constraint.

Pen-force variation as an actively controlled process..

However, it can also be hypothesized that variations in pen force are actively
regulated by a central nervous system (CNS) process, independent of the trajectory
control. For example, Kao et al. (1983) found an increase in normal pen force (NPF )
as the patterns to be copied became increasingly complex. Another finding of this
study was that pen force increased during the production of a single pattern. Fur-
thermore, there is are many older (German) studies, relating pen force to high-level
constructs such as personality or mental state (Kraepelin, 1899; Kretschmer, 1934;
Steinwachs, 1969). A problem with these latter theories is that they do not attempt
to describe important physical aspects of the pen-force control problem.

Leaving aside hypotheses that attach weight to high-level constructs, such as,
e.g., mental stress, as causing the pen-force variations (Steinwachs, 1969), it can be
hypothesized that in the process of learning to write the letter shapes (allographs),
the writer adopts his own strategy or style of controlling pen force during trajectory
formation. According to this viewpoint, the main intention of the movements is to
produce spatial shapes within a certain amount of time. The shape of the pen-force
time function would be only indirectly of importance: its average level should be
just high enough to produce a trace of sufficient thickness. If force variations are
indeed purely a matter of personal writing style, the result would be a complex,
subject-dependent relation between pen tip kinematics and pen force.

The question of whether pen force is a natural, physical consequence of finger
movement or an independently controlled variable is especially important in mod-
els of handwriting. Plamondon and Maarse (1989) give an overview of 14 models
of handwriting from the point of view of systems theory. These models are two-
dimensional and do not incorporate pen-force or mechanical impedance control.
Ideally, to be included in these models, the pen-force signal should be independent
of the movement control signals. Also, before developing a coupled oscillator model
(Beek & Beek, 1988) of pen-force control, one must know if there is any coupling at
all.

Although the separation of passive from active aspects in the handwriting process
is a very complicated problem, and probably only partly solvable because the nervous
system makes efficient use of the biomechanical and physiological characteristics of
the effector and sensor systems in an integrated fashion, it seems worthwhile to test
to what extent pen force is related to movement.

In a pilot study on the handwriting and drawing movements of two subjects,
two methods of analysis were performed to test the relation between movement
and pen force. First, it was argued that a simple first-order correlation would not
suffice because of phase or time differences between the movement (displacement,
velocity, acceleration and angular velocity) and the force signal. Therefore, a cross-
correlation analysis was performed. Results revealed that the cross-correlation never



Pen force and pen-tip kinematics 81

displayed a consistent and reproducible clear peak value above 0.8 at a fixed delay,
and correlation values were lowest if the movements involved scribbles or cursive
handwriting. Subsequently, a second type of analysis was performed, that was based
on the assumption that the combined linear contribution of planar displacement,
velocity and acceleration yielded, by biomechanical coupling, an axial component of
pen force. The latter analysis (linear multiple regression) did not yield consistent
results in terms of signal significance or the proportion of explained variance. The
conclusions of the pilot experiment were threefold. First, it appeared that it was of
essential importance to control the pen-grip style of the subjects in order to allow for
a comparison of finger and wrist contributions to the movement. For example, short
straight lines of length 1 cm at an angle of 45 degrees can be produced by the wrist,
the fingers, or a combination of both, depending on the forearm attitude. Second,
it was evident that, in order to rule out either the ”biomechanical” or the ”central”
explanation for pen-force variations, a larger number of subjects and recordings was
necessary. Third, it can be argued that the lack of consistent findings is caused by the
fact that the relation between movement and force is only significant within a limited
frequency band, e.g., the 5 Hz periodicity in handwriting (Teulings & Maarse, 1984;
Maarse, Schomaker & Thomassen, 1986), and that a lumped correlation measure
hides such a dependency.

It is hypothesized that if pen force is the direct consequence of biomechanical
loading and unloading of the wrist and finger muscles, it should covary with the
movement produced by the stroke production process, regardless of the complexity
of the drawing pattern as a whole, e.g., pen force invariably going up in downward
strokes. In one study the fingers are mentioned as having a larger effect on pen-force
variation than wrist movement (Dooijes, 1984).

According to several handwriting models, writing movements are generated by
a system that produces bell-shaped tangential velocity profiles (”strokes”) of the
effector (Morasso & Mussa Ivaldi, 1982), along with the production of bell-shaped
angular velocity profiles (Plamondon, 1987; 1989). A possible coupling (synergism)
between this (CNS) stroke production mechanism and the pen pressure should be
revealed by high coherence between tangential velocity and/or angular velocity on
the one hand, and APF on the other hand. In this case, a hypothesis that can be put
forward is that pen force will be increased at stroke transitions, where the tangential
velocity is low and the angular velocity and curvature are high. We use the term
tangential velocity instead of the more general term curvilinear velocity because we
are dealing with planar movement.

In order to determine the existence and strength of linear relationships between
movement and axial pen force, we will calculate the coherence spectrum for sev-
eral types of handwriting patterns. The Cartesian displacement coordinates will be
transformed into an estimate of the oblique system that represents the directions of
wrist and finger movement, respectively. This provides the opportunity to separate
the wrist and finger contributions to the axial pen force. Also, the coherence between
APF and tangential velocity as well as angular velocity will be determined. A set of
drawing patterns will be used, varying in complexity from straight lines to scribbles



82 Kinematics & Kinetics

and cursive script.

4.2 Methods

Data acquisition.

Subjects. Sixteen right-handed students, five male and eleven female, with an
average age of 23.3 years, participated in the experiment. Subjects were not informed
of the purpose of the experiment (i.e. that ”pen pressure” was being measured).
Materials. The movements of the tip of the writing stylus were recorded by means
of a large-size writing tablet (Calcomp 9000). The sampling frequency was 105.2
Hz, samples having a resolution of 0.025 mm and an accuracy of 0.25 mm in both
X and Y directions. The tablet was connected to a PDP 11/45 computer via a
9600 baud serial line. The laboratory-made writing stylus was equipped with a
strain-gauge force transducer, measuring axial pen force in the 0-10 N range. The
stylus contained a normal ball-point refill in tight contact with the force transducer.
The analog signal from the pen-force transducer was low-pass filtered (second-order
Butterworth, -3dB at 17.5 Hz) and A/D converted with a resolution of 10 bits. Data
were stored on magnetic tape and copied to a VAXstation 2000 computer where the
actual analyses were done. Software was written in Fortran-77.
Procedure. The subjects’ task was to write predefined patterns or cursive words
on a DIN A4 paper sheet placed on the writing tablet. The tablet was placed in such
a way that the subject was sitting in a convenient position, writing at a preferred
angle, just as in a normal writing situation. Patterns had to be written at a pace
corresponding to normal writing speed. The recording of a single drawing pattern
lasted 12 seconds. The duration of the writing of a single word is writer-dependent,
but the maximum duration was set at 12 seconds. Before the actual recording took
place, subjects had the opportunity to accustom themselves to the experimental
set-up and to the writing patterns that were te be used. The writing patterns were
practised three times each. To eliminate arm movements, the forearm was placed
and fixed in an adjustable special-purpose cuff attached to the digitizer (Maarse,
Schomaker, & Thomassen, 1986). The forearm was fixed in such a way that its
inner side was parallel to the vertical axis (Y) of the digitizer. In order to allow
free movement of the hand, the ulnar side of the processus styloideus ulnae was just
above the top edge of the cuff (Figure 2).
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Writing patterns were indicated by simple icons on the response sheet (Figure
3), on which six patterns were randomly distributed, and amounted to ten trials
per pattern. The following writing patterns were used. In condition ”F” (fingers),
the subject had to make an oscillating writing movement at a preferred frequency,
producing a short (maximally 6 mm) straight line by moving the fingers only, holding
the wrist still, in a relaxed attitude. In condition ”W” (wrist), the subject was asked
to perform similar writing movements, in this case producing a straight line by using
the wrist only, and holding the fingers still in a relaxed attitude. In a third condition,
”C-”, the subject had to draw counter-clockwise circles, about 5 to 6 mm in diameter.
In a similar fourth condition, ”C+”, the circles were drawn in a clockwise fashion.
In the fifth condition, ”S”, the subject had to draw scribbles, aiming at a spatial
range of 6 by 6 millimeters, maximally. In the sixth condition,”H” (handwriting),
the subject had to write the Dutch word ”gestaakt” (”struck”) in cursive style,
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without pen-lifts. This word was selected because it contains body-sized letters as
well as ascenders and descenders, and is not too long. Care was taken to optimize
the dynamic range of the wrist and finger movements, since the forearm was fixed.
The subject was instructed to hold the writing hand relaxed in its preferred position.
Finally, the response sheet was positioned with the left hand until the pen tip pointed
to the center of the white response area below the stimulus pattern. No pen lifting
was allowed during the trials.

Data processing.

Per subject, a data set of 10 trials x 6 patterns x 1280 samples x 3 coordinates
(X, Y, APF ) was collected (460.8 kilobytes). From each trial in the drawing pattern
conditions, the middle 1024 samples (9.733s) were used in the analyses, thereby
removing possible artefacts appearing during the initial and final periods of 128
samples (0.122s) at the beginning and at the end of a trial. From each trial in
the text condition, the middle 256 samples (2.433s) of the written word were used
(average word duration was 4.9 seconds). The signals, horizontal displacement (Sx),
and vertical displacement (Sy), were obliquely transformed (Dooijes, 1984), using:
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φ = µ − λ

c1 = cos(λ) + sin(λ)/ tan(φ)

c2 = sin(µ) + cos(µ)/ tan(φ)

c3 = − tan(λ).c2

c4 = −c1/ tan(µ)

Sw = c1.Sx + c4.Sy

Sf = c3.Sx + c2.Sy

(2)

where λ is the estimated angle for the axis of the wrist system, with respect to the
Cartesian x-axis, and µ is the estimated angle of the axis of the finger system with
respect to the Cartesian x-axis. The angle φ represents the angle between the wrist
and finger axes. The wrist axis angle is obtained by estimating the angle of the
written line from the (Sx, Sy) coordinates in the ”W” trials of a subject by linear
regression. The finger axis angle is obtained by estimating the angle of the written
line from the (Sx, Sy) coordinates in the ”F” trials of a subject by linear regression.
The application of eq. (2) transforms the data to the estimated ”internal” effector
coordinate system, with wrist activity indicated by Sw, and finger activity indicated
by Sf .

The displacement signals Sx, Sy, wrist activity (Sw), finger activity (Sf), and axial
pen force (APF ), were differentiated, using a five-point convolution window with
Lagrange weights (1/12, -8/12, 0, 8/12 and -1/12, Abramowitz & Stegun, 1970).
The frequency domain transfer function of this differentiator is linear up to about
13 Hz in our case. Thus, the signals Vx, Vy, wrist velocity (Vw), finger velocity (Vf)
and differentiated APF (i.e., dAPF ) were obtained. From Vx and Vy, the tangential
velocity (Va) and angular velocity (Vθ) were calculated. The reason for the time-
domain differentiation is twofold: (a) it removes low-frequency variations that would
lead to large bias errors in the low-frequency range of the Fourier transform to be
performed later, and (b) it keeps spectral components in the frequency range of
interest (3-13 Hz) intact. Differentiation has virtually no effect on the coherence
function estimate (see Appendix). Of each signal, the Fast Fourier Transform (FFT)
was calculated per trial per condition per subject, after tapering with a 10 percent
cosine window (Bendat & Piersol, 1971; van Boxtel & Schomaker, 1983). Bandwidth
resolution (Br) before smoothing was 0.103 Hz except in the case of the handwriting
condition where Br was equal to 0.411 Hz. The Fourier spectrum was transformed
to a power spectral density function (PSDF). Also, cross power spectral density
functions (CSDF) were calculated for the following comparisons: dAPF vs wrist
velocity Vw, dAPF vs finger velocity Vf , dAPF vs tangential velocity Va, and,
finally, dAPF vs angular velocity (Vθ), a signal closely related to curvature.

The PSDF and CSDF were then smoothed with a rectangular window (l = 5)
in order to increase the reliability of the individual spectral estimates and to make
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it possible to calculate the spectral coherence function (Bendat & Piersol, 1971).
Then, per subject, per condition, the PSDF and CSDF spectra were averaged over
the ten trials in a condition to obtain ensemble averages. This yields 2x5x10=100
statistical degrees of freedom for the average smoothed PSDF and CSDF per subject
per condition. To obtain a general estimate of the PSDFs and coherence functions
per condition, however, the ensemble average spectra were again averaged over the
sixteen subjects. The PSDFs were normalized to unit area before averaging, and the
obtained condition average was rescaled to physical units again. A condition aver-
age PSDF has 16x100=1600 statistical degrees of freedom. The coherence functions
underwent Fisher’s Z transform before averaging, the average being converted to
the coherence domain again. The squared coherence (also called Magnitude Squared
Coherence or MSC) is given by:

γ2(f) =
|Guv(f)|2

(Gu(f).Gv(f))

(3)

where:

γ2(f) = squared spectral coherence function

Guv(f) = cross spectral density function (CSDF )

Gu(f) = power spectral density function (PSDF ), signal u

Gv(f) = PSDF , signal v

Note the similarity to the formula for the Pearson correlation. In fact, a single
spectral coherence estimator is a coefficient of determination for the relationship
between two variables in a specific frequency band. Other measures that will be
used are the average APF level and its standard deviation and Pearson correlation
between APF and displacement.
In order to test for non-stationarity, run tests were performed on all signals of each
trial. The runs were determined by dividing each sample record into 10 segments of
equal duration and calculating the 10 mean square values and their median value.
This procedures captures non-stationarities in the mean and the variance of the
signal. It is assumed that data are (weakly) stationary if maximally 5% of the trials
exhibit a number of runs that has a probability of less than 0.05 of originating from
a random process.

4.3 Results

The run tests revealed the following percentages (N=960) of sample records yield-
ing a number of runs with p < .05: dAPF 3.23%, Vw 2.08%, Vf 3.02%, Vθ 3.33%,
all below 5%. There was no systematic relation between number of runs and con-
dition. Table 1 shows the results for the preferred angles of the lines drawn in the
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conditions W and F. From the mean difference value, it can be inferred that the
wrist and finger systems have approximately orthogonal movement axes, given the
forearm attitude used.

Table 1.
Average preferred angles in degrees for the linear wrist and finger movements
with respect to the X-axis of the digitizer, and their difference. Note that the
forearm is aligned with the Y-axis of the digitizer.

Subject Wrist Fingers F-W

01 36 136 100
02 26 132 106
03 44 127 83
04 35 129 95
05 36 127 91
06 36 141 105
07 52 136 85
08 35 134 98
09 48 128 79
10 31 146 115
11 22 132 110
12 39 130 91
13 39 127 88
14 42 123 81
15 53 159 106
16 48 134 86

Mean 39 134 95

Figure 4 shows a superposition of the patterns produced by wrist movement
and by finger movement in a trial of the W and F conditions, respectively. The
widths of the patterns indicate that the wrist movements are more accurate than
the finger movements, a finding consistent with earlier studies (Maarse, Schomaker
& Thomassen, 1986). Figure 5 shows the dAPF and Vf signals of a single trial in
the clockwise circling (C+) condition, a time segment of 1s within this trial and the
shape of both the total circling pattern and the selected 1s segment.
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Figures 6 and 7 show the results of the comparisons of dAPF with VwandVf

(wrist and finger domain velocities). The figures are scaled in physical units to enable
comparison. The smoothness of the handwriting spectra (panel H) as compared to
the simple drawing spectra (panels C+,C-,F,W,S) is due to the shorter sample record
duration in the former, resulting in a lower spectral resolution.
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The axial pen-force PSDFs.

From the figures it is clear that all PSDFs (dAPF and kinematics) have a peak
in the area of two to five Hz. The peak in the dAPF spectrum occurs at about
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the same frequency as the peak in the kinematics spectra, small deviations being
due to the estimation error. The main difference between the dAPF and kinematics
spectra is the relatively larger amount of dAPF power in the range above eight
Hz, for all conditions. The most probable explanation is the contribution of friction
with its hysteresis effects, and the paper surface irregularities in the APF signal.
In fact, hysteresis could be inferred clearly in the single-subject dAPF PSDFs of
six of the sixteen subjects, showing peaks up to the second harmonic. The reduced
remainders of these higher harmonics can be seen in the average dAPF PSDF of the
clockwise circling (panel C+) and the finger movement (panel F) conditions. Overall
dAPF power is greatest in handwriting (panel H), intermediate in scribbles (panel
S) and circling (panels C+,C-), and small in straight finger and wrist movements
(panels F and W). The average, variance and time trend of the primitive APF signal
are shown in Table 2. The average APF is not related to variance in this series of
conditions. In cursive script, there is a positive time trend, in the other conditions,
APF decreases slowly during a trial.

Table 2.
Average APF measures for all conditions, in [g] unless otherwise stated. Note
the maximum variance and positive time trend in the cursive script condition
(H). APF(0) and APF(n) denote linearly estimated initial and final force level,
b is the gain of the time trend, r is correlation of APF vs time.

µ σ2 (g2) APF0 APFn b (g/s) r ()

S 83.6 284.5 91.3 75.9 -2 -0.27
W 87.5 250.6 95.0 80.1 -1 -0.29
C+ 108.9 295.9 116.0 101.8 -1 -0.25
H 109.7 806.4 91.6 127.7 +8 +0.39
F 113.5 259.2 121.2 105.8 -1 -0.26
C- 115.3 307.7 124.0 106.6 -2 -0.29

The kinematics PSDFs.

The kinematics PSDFs in circling and scribbling are roughly comparable in shape
and area (Figures 6 and 7, panels C+, C- and S). The differences in peak power
values between circling and scribbling spectra reflect differences in spatial movement
amplitude, rather than differences in periodicity, as can be inferred from peak width.
When subjects are asked to produce scribbles, the temporal behavior is thus not as
irregular as the spatial result would lead one to suspect. Scribbling is performed
faster (average peak frequency 4.5 Hz) than circling (3.5 Hz).

Furthermore, as could be expected, the power of movements along the finger axis
is greatly reduced when wrist movements were requested (Figure 7, panel W). This
suppression takes place to a lesser extent with respect to the power of movements
along the wrist axis in case of finger movements (Figure 6, panel F).
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Coherence between dAPF and Vw.

In the comparison between dAPF and the wrist velocity Vw, it appears that a
maximum peak coherence (0.42 to 0.44) is reached in circling movements (Figure
6, panels C+ and C−). The difference in peak coherence between clockwise and
counter-clockwise circling is small. This means that maximally 40% of the power
in dAPF at the fundamental movement frequency can be explained by wrist move-
ments, if the movements are circular. In straight wrist movements (W), the peak
coherence is somewhat lower (0.35) but the more striking feature is that coherence
is smeared out over a broad band from 5 to 20 Hz, (Figure 6, panel W). In straight
finger movements, the wrist contribution to dAPF is negligible. The shape of the
coherence spectrum for the scribbling movements is comparable to that for circling,
but the peak coherence is lower (0.3). In producing cursive handwriting (panel H),
peak coherence is still lower (0.25) and the shape of the coherence spectrum is broad
banded.

Coherence between dAPF and Vf .

In the comparison between dAPF and the finger velocity, peak coherence values
and coherence spectrum shape are similar to those in the dAPF − Vw comparison,
with the exception of the straight finger movement condition. The finger velocity
in straight finger movements (Figure 7, panel F) explains 0.49 of the dAPF power
at the fundamental oscillation frequency, which is the maximum peak coherence
value obtained in this study. The coherence spectrum shape is of the broad-band
type with peaks at the fundamental frequency 4.5 Hz, at 13.0 Hz and at 21.7 Hz.
The coherence between the wrist velocity and dAPF is very low in straight finger
movements (0.14).

Coherence between dAPF and Va or Vθ.

The coherence between dAPF and tangential velocity or between dAPF and
angular velocity Vθ never reached a value above 0.3 in any condition.

First-order correlation between APF and Sf or Sw.

An analysis of variance on the Z-transformed first-order (Pearson) correlation
between APF and Sw and between APF and Sf revealed the significant main ef-
fects Condition (p < .0001, 5df), Effector (i.e., Wrist vs Fingers) (p < .0001, 1df),
Subject (p < .0001, 15df). The interactions were: a trivial Effector*Condition
(p < .0001, 5df) due to the F and W conditions, Subject*Effector (p < .0001, 15df),
Subject*Condition (p < .0001, 75df). The finger movements were slightly more
strongly correlated to APF (mean r=-0.23) than the wrist movements (mean r=-
0.14). Note that in this analysis the sign of the correlation biases the average, unlike
the case of mean coherence values. There is only one positive correlation (+0.09),
between APF and finger displacement in the W condition. The correlation figures
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should be squared for comparison with coherence values. The largest mean correla-
tion found was -0.39 for the fingers in the clockwise circling condition (C+). Clock-
wise circling (C+) yielded higher correlation values than counter-clockwise circling
(C-) (Table 3).

Table 3.
Average first-order (Pearson) correlations over subjects (N=16) between APF
and finger displacement Sf and between APF and wrist displacement Sw for
all conditions.

Condition: F W C+ C- S H Mean

Effector:
R(APF,Sf) (Fingers) -0.36 0.09 -0.39 -0.24 -0.20 -0.22 -0.23
R(APF,Sw) (Wrist) -0.02 -0.15 -0.33 -0.11 -0.14 -0.10 -0.14

Mean -0.20 -0.03 -0.36 -0.17 -0.17 -0.16

To exclude the possible influence of pen angle variation, and consequent variation
in the pen force, a test was performed with a modified tablet controller from which
pen angle could be derived with an accuracy of 3 degrees (Maarse, Janssen & Dexel,
1988). The controller device was only available after collection of the main data
set. Recordings (T=9 s) never revealed correlations below 0.96 between axial and
normal pen force in any of the conditions (N=4 subjects). The reason for this strong
relationship is the small amplitude of the pen angle variations (2.5 degrees) with
respect to the average value (50 degrees).

Results thus far seem to indicate that, in cursive script, the relation between pen
force and kinematics is rather weak, and that only in simple movement patterns a
coherence of intermediate value can be observed. However, from a visual analysis
of the single-subject time records, the impression was that the correlation between
APF and kinematics is actually waxing and waning in time. We will now proceed to
analyze this behavior for the cursive script condition (H). In order to determine the
development of the relation between APF and vertical displacement over time, an
instantaneous (running) Pearson r (r51

APF,Y (t)) (see Appendix) was calculated, using
a window width of 51 samples, corresponding to about half a second, or at least a
number of five strokes. This window-width value is not critical, as long as it is large
enough to contain several strokes, and small enough to fluctuate within the sample
record (the written word ”gestaakt”). For simplicity, the raw vertical displacement
Y (t) was chosen. This signal contains a large proportion of finger movement (Table
1). It appears that roughly three types of subjects were present.
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Type a subjects (10 in 16) show a high number of sign reversals (> 4) of the
correlation r51

APF,Y (t) (Figure 8a). Locally, however, absolute correlation values of
0.8 in r51

APF,Y (t) were not uncommon. Overall correlation (and coherence) was low.
Especially interesting in type a subjects is the fact that the shape of APF (t), Y (t)
and the correlation time function r51

APF,Y (t) were well replicated over trials in the
cursive script condition.
Type b subjects (2 in 16) show a much more smooth pattern of r51

APF,Y (t), with a
limited number of brief sign reversals, and a relatively high but negative correlation
value (Figure 8b). There is a medium inter-trial consistency.
Type c subjects (4 in 16) show noisy displacement and APF patterns and a conse-
quently low correlation with kinematics (Figure 8c).

In order to track down the origin of the fluctuations in r51
APF,Y (t), a measure

of replicatability of both APF (t) and Y (t) was needed. We chose to calculate the
average correlations, via Fisher’s Z transform, between replications of a word for
APF , yielding RAPF,APF , and for the vertical displacement, yielding RY,Y . These
measures will indicate the degree to which the writer was able to replicate the APF
or Sy patterns over different realizations of the written word, given the beginning of
the first down stroke in /g/ as the time synchronization reference. For comparison,
the within-trial average correlation between APF and vertical displacement, RAPF,Y ,
was also calculated. The next measure calculated was the number of runs or phases,
Nphases, in r51

APF,Y (t), in order to provide a measure of the complexity of the relation
between APF (t) and Y (t).

Figure 9 shows the distribution of subjects in a two-dimensional space of corre-
lation complexity (Nphases) versus the average correlation between vertical displace-
ment and APF (RAPF,Y ). The replicatability of the APF and vertical displace-
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ment pattern Sy, as reflected in average inter-pattern correlations also are shown
(RAPF,APF and RY,Y ). Typical type a subjects are numbers seven and fifteen, typi-
cal type b subjects are numbers four and eight. Subjects two, ten, twelve and sixteen
are typical of the type c category: note the small radius and light shading that are
indicative of low inter-trial replicatability for both vertical displacement and APF
for these subjects. Interestingly, from recordings of a calligrapher it was found that
this person can be classified as a type b subject, as indicated by an asterisk (Figure
9). Table 4 contains the within and between-pattern correlations for all subjects, for
the whole word ”gestaakt” (4a) and for the time segment that corresponds to the
first letter /a/ (4b). This letter was selected because it did not display allographic
variation over the subjects. All subjects wrote it much in the same way, such that
a clean ensemble average over 160 replications could be obtained (Schomaker &
Thomassen, 1986). As could be expected from the r51

APF,Y (t) fluctuations, locally,
within the /a/, a somewhat stronger relation between APF and Sy can be found:
another two subjects display a value of RAPF,Y that is less than -0.6. Subjects six,
ten and sixteen display elevated writing times. Trend removal from APF and Sy

yielded very similar figures. Figure 10 shows the time-normalized ensemble averages
(n=10) of /a/ per subject and the overall average (n=160). Apart from the time
normalization, no DC or amplitude normalization was performed in the calculation
of the averages, but because of between-subject differences in the average APF level,
Figure 10 is scaled to fit optimally, assuming an APF origin of 0. The panels are
sorted in an order of increased relative APF variance, with the result that subjects
with a low absolute correlation between APF and Sy are predominant in the top
row, with an approximately flat APF profile, and subjects with a higher (negative)
correlation between APF and Sy are predominant in the bottom row. Note the
different APF patterns for each subject.
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Table 4. Average correlations (N=10 replications) between APF and Sy, be-
tween the Sy functions of different replications and between APF functions
of different replications of the word ”gestaakt” (4a) and its first letter /a/
(4b), for all subjects. Also shown are the average APF level and its standard
deviation and the average writing time.

4a. The word ”gestaakt”.

Subject R(APF,Y) R(Y,Y) R(APF,APF) µAPF σAPF T
(g) (g) (s)

01 -0.17 0.60 0.43 57 18 3.419
02 -0.43 0.24 0.11 60 12 2.974
03 -0.20 0.38 0.32 128 16 4.917
04 -0.70 0.39 0.47 85 18 4.312
05 -0.18 0.50 0.73 212 25 3.592
06 0.02 0.57 0.55 65 14 10.133
07 0.02 0.61 0.43 95 11 3.319
08 -0.59 0.65 0.45 100 25 2.596
09 0.09 0.57 0.65 114 25 3.361
10 -0.17 0.25 0.40 175 24 8.663
11 0.11 0.35 0.55 66 23 3.761
12 -0.54 0.31 0.14 83 19 5.990
13 -0.22 0.34 0.47 58 11 3.564
14 -0.25 0.29 0.36 97 15 5.471
15 0.21 0.56 0.77 140 19 3.736
16 -0.04 0.11 0.41 114 17 8.107

4b. First /a/ in ”gestaakt”.

Subject R(APF,Y) R(Y,Y) R(APF,APF) µAPF σAPF T
(g) (g) (s)

01 -0.19 0.52 0.43 154 7 0.278
02 -0.04 0.64 0.54 146 7 0.236
03 -0.21 0.76 0.60 88 8 0.373
04 -0.72 0.79 0.57 83 6 0.309
05 -0.60 0.53 0.36 67 20 0.287
06 0.28 0.79 -0.01 105 9 0.796
07 -0.12 0.76 0.46 226 28 0.247
08 -0.61 0.84 0.81 125 11 0.215
09 -0.41 0.67 0.48 72 17 0.328
10 -0.10 0.78 0.75 100 5 0.462
11 -0.25 0.71 0.31 74 5 0.279
12 -0.46 0.33 0.46 210 13 0.542
13 -0.60 0.64 0.62 89 11 0.326
14 0.01 0.83 0.66 130 16 0.419
15 0.19 0.77 0.67 57 6 0.309
16 0.00 0.49 0.01 93 19 0.694
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4.4 Discussion

The moderate coherence values obtained indicate that, at least for the majority of
writers, a simple biomechanical coupling between APF and kinematics is unlikely.
The residual non-ideal or non-linear relation that exists, attains its greatest strength
in simple linear movements, with low average pressure levels, deteriorating as move-
ment complexity increases. Since the periodicity of the axial pen-force variations is
the same as the periodicity of the movements, it must be the phase relation between
the two that is time-variant or noisy. This latter explanation is supported by the
finding that the first-order correlation between pen force and displacement fluctuates
over time. The pen angle can be discarded as a cause of this phase jitter because it
is coupled to the pen tip kinematics. With regard to pure spatial factors, like points
of high curvature, the data reveal that there is no coherence between APF and
tangential velocity or angular velocity. Since points of low velocity and high angular
velocity correspond to the high-curvature points, high-order inter-relationships of
this kind can be excluded. On the whole, pen force appears to be a separate control
variable.

The mean first-order correlation over the subjects, between APF and wrist dis-
placement, and between APF and finger displacement, shows comparable results
to the coherence analysis but the values are lower, supporting the hypothesis that
residual biomechanical coupling takes place predominantly at the modal movement
frequency. There are indications that the residual correlations are due to biomechan-
ical effects. The sign of these correlations is mostly negative, relatively higher APF
corresponding to finger flexion and wrist radial abduction. On the whole however,
variance in APF cannot be explained by kinematic variables. The fact that APF
is somewhat stronger coupled (Table 3.) with movement in the clockwise circling
condition than it is in counter-clockwise circling could be explained by the exis-
tence of a curl term in the stiffness matrix (Hogan, 1985) that has to be overruled
in clockwise movement. More specifically, this finding points to a larger stiffness of
the thumb subsystem as compared to the opposing finger system. For the cursive
script condition, a more detailed analysis revealed three categories of subjects. Type
a subjects (”APF patterners”) displayed a complex but replicatable relationship
between APF and displacement. The replicatability of the pen-force pattern and
the instantaneous force-displacement correlation pattern both support the notion
of independent, feedforward control of the force by the CNS in many subjects. It
is well known that in handwriting at least one, but most probably several, strokes
are planned in advance (Hulstijn & van Galen, 1983; Stelmach & Teulings, 1983).
Transmission delays exclude the possibility of a continuously monitored pen tip dis-
placement in a neural feedback loop. The average observed writing speed is eight to
twelve strokes per second in the adult cursive writer. In type a subjects, it is quite
likely that CNS advance planning or feedforward control is also the case with the
pen force aspects (average force level and impedance) of the writing movement as it
is with the trajectory formation (Rack, 1981).

In a small minority of subjects (type b, ”biomechanics”), there can be a strong
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coupling between axial pen force and movement kinematics. The sign of the corre-
lation between vertical displacement and APF is negative, which means that APF
does indeed increase in down strokes (Dooijes, 1984), at least in this group of writers.

A third group of subjects is characterized by low replicatability of both kinematics
as well as APF (type c, ”shakers”). It is as if these writers do not have a stable
internal representation for cursive script movements.

In the current experiment, most subjects fall into category a. Here, the corre-
lation between the force and displacement is time-variant, biphasic, and subject-
dependent. The writer’s strategy might be, at some time or in some specific writing
context, to actively pre-program mechanical impedance during movement, thereby
minimizing pen-force variations. This can be achieved by an anticipatory lowering of
the amount of agonist/antagonist co-contraction. If the writer overcompensates, the
sign of the resulting force-displacement correlation will be the inverse of the sign of
the correlation in the case of uncompensated biomechanical force variations. If the
writer fails to compensate or even increases stiffness, e.g., if the trajectory formation
control temporarily requires more resources, the force-displacement correlation will
be determined by the amount of noise in the neuro-muscular force control and by
the biomechanics. In human handwriting, it is unlikely that the stiffness regulation
mechanism is Cartesian, plane-oriented such as is used in the robotical seam weld-
ing of curved surfaces. If a planar target trajectory requires a high degree of hand
stiffness along the X and Y axes for positional accuracy, this generally will have a
strong effect on the stiffness along the Z axis, too. Considering the effects of pen-
to-paper friction, current findings show that in using the relatively low-friction ball
point stylus, the friction influence on APF is nearly constant, as witnessed by the
high correlation between APF and NPF . Dooijes (1984) estimates the friction to
be about 4% of the NPF value in the 0-2 N range. However, more study is needed
on this topic.

Conclusions.

The levels of the coherence and first-order correlation between pen force and pen-
tip kinematics in drawing simple patterns and in cursive script are rather low for
a majority of writers. However, the replicatability of the pen-force pattern for a
given word and the replicatability of the instantaneous correlation pattern between
vertical displacement and pen force shows that the lack of overall coherence can-
not be explained by an external source of random noise. A possible explanation
is the presence of a separate control component that regulates pen force in an id-
iosyncratic fashion for each writer. One may speculate that this is possible since
pen force is an extraneous, invisible variable, the time function of which is not ex-
plicitly addressed in the course of learning cursive script. The current findings are
consistent with the known high discriminatory value of pen pressure in writer identi-
fication. A major implication for handwriting modeling (Hollerbach, 1981; Edelman
& Flash, 1987; Schomaker, Thomassen & Teulings, 1989) is that trajectory control
can be separated from pen-force control. The availability of a pen angle signal will
allow for more detailed analyses, e.g., a decomposition of the axial pen force into
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3-dimensional components. As a preliminary result however, it appears that pen an-
gle variations are too small to explain a large proportion of the pen-force variance.
The control of pen force during handwriting could be a paradigmatic example of
how a biological manipulator handles mechanical impedance. Further studies will
be needed on questions regarding the flexibility of the centrally controlled portion
of pen force control in adapting to the various requirements of the motor task. This
can be done by trying to teach the writer a given strategy of mechanical impedance
control by means of artificial feedback about pen force. Such an experiment would
reveal the learning ability of the human movement control system as compared to
the teaching of the inverse dynamics solution to an artificial neural network (Kawato
et al., 1987).

4.5 Appendix

1. The differentiation of two signals does not influence their coherence spectrum.
Assume the signals u(t) and v(t), that are transformed by a linear operator h(t),
then

U ′(f) = H(f).U(f)

V ′(f) = H(f).V (f)

The cross-spectral density will then be given by

Gu′v′(f) = U ′

conj(f).V ′(f) = |H(f)|2.Uconj(f).V (f)

and the squared coherence function will be

γ2(f) = |Gu′v′(f)|2/(|U ′(f)|2.|V ′(f)|2)
= |Guv(f)|2/(|U(f)|2.|V (f)|2)

because of a |H(f)|4 component in both numerator and denominator. In the nu-
merical estimation, however, the coherence at f=0 (DC) will be reduced because of
discretization, if h(t) is a differentiator. This is not of importance for the present
purpose.

2. The instantaneous or running Pearson correlation is given by:

rw
xy(j) =

σ2
xy(jw)

σx(jw)σy(jw)

where j is the discrete time index, w is a time window width, σ2
xy is the covariance

and σx and σy are standard deviations. Time window calculation of σ’s is done by:

σw
uv(j) =



1/w
j+w/2
∑

i=j−w/2

(ui − µu)(vi − µv)





1/2

where u 6= v for the square root of the covariance and u = v for the standard
deviation. The actual value used for w is 51.
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Mason (Eds.), Robot Motion: Planning and Control (pp. 373-404). Cambridge:
MIT.

Morasso, P., & Mussa Ivaldi, F.A., (1982). Trajectory formation and handwriting:
A computational model. Biological Cybernetics, 45, 131-142.

Morasso, P., & Mussa Ivaldi, F.A. (1987). Computational models of handwriting. In
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Chapter 5

Alternative approaches:

Connectionism

As we have seen, the modeling approach used so far, has led to a modular symbolic
processing architecture, specifying symbolic and quantitative data-structures and
the operations performed on them. This approach is typical for the classical cog-
nitivist viewpoint and is strongly related to methods used in artificial intelligence.
The advantages of such an approach are the following:

• The resulting model is a working computer model, i.e., ideally it displays a
functionality comparable to the human cognitive function that it is supposed
to simulate.

• Basic processing steps are made explicit.

• In the process of model development, new and essential functionality that was
previously implicit is uncovered.

There is a large difference between a working cognitive simulation model and
the more descriptive information processing models as used in reaction time studies
(Sternberg, 1969; Sanders, 1983). This is not to say that the latter models are of less
importance, but the development of these models is characterized by a somewhat
sterile and detached view on possible neurophysiological or even neuro-informatical
processes underlying a given reaction time obtained in a specific experimental con-
dition. In our view, one cannot simply label an information processing module with
the name ”Feature Extraction” without describing how this feature extraction takes
place. However, a method like the Additive Factor Method (Sternberg, 1969) has
considerable power in systematically guiding the experimentation process along a
probable track, and one cannot dismiss the valuable empirical data obtained in this
paradigm. Ideally, research in the field would be characterized by a dual-track ap-
proach, where a given team consists of a group dedicated to unravel the modular
structure of a part of the human information processing system, and a group si-
multaneously working on the internal architecture of these modules, to create a
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working model that is satisfying with respect to both the reaction time data and its
performance as compared to the empirical data.

Examples of functionality in handwriting production that was previously implicit
and that was revealed during the development of our handwriting model are the
presence of a module that maintains the base line position of the script trace by
feedback and the (currently unresolved) module that solves the horizontal spacing
between letters.

Apart from the mentioned advantages, there are also disadvantages to the sym-
bolic information approach that was adhered to until now. To summarize:

1. The symbolic processing architecture can be completely different from the
biological neural architecture, thereby leading to the definition of processing
steps in the model that are absent or unnecessary in the real biological system.

2. The stress on symbolic processing interferes with the control of continuous
variables.

3. The undesirable deterministic, ”machine-like”, properties cannot be solved
by merely injecting stochastic variation in the output of identified processing
modules.

ad (1). Marr (1982) describes three levels at which any machine carrying out
an information processing task must be understood: (a) the computational theory
that describes the goal, the appropriateness and the logic of the used steps, (b)
the representation of the information (input/output) and the transformation algo-
rithms, and (c) the hardware implementation. The three levels describe an order
that goes from general to specific, from abstract to concrete. It is Marr’s belief that
the computational description (a) is of importance for any representational mecha-
nism and physical implementation of a system, e.g., a system that can reconstruct
three-dimensional estimates of objects that are viewed binocularly. And indeed, the
computational description of an information processing capability may be very gen-
eral and it may potentially lead to the construction of a man-made system that
is more powerful than any existing biological system performing this information
processing capability. The point is that a computational theory, although certainly
necessary for the general insight, can in fact be too general, and that there are no
actual representational constructions or physiological machines that in the biological
reality are able to perform the computations indicated. Many computational prob-
lems are ”ill-posed”, i.e., there exists no unique solution. Thus, an elegant matrix
inversion in computational terms may turn out to be a fallacy in the real world be-
cause nature found less elegant, hybrid, solutions for the pitfall of ill-posedness and
singularity. As for the second level (b), it is clear that the nature of representations
and algorithms that are thinkable at a specific point in time is to a very large extent
dependent on the technological and mathematical stage of development. Ultimately,
at level (c), the physical characteristics of the systems onder study determine the
correctness of the descriptions at the more general levels. Consider, for instance the
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situation where the goal is to create a simulation model describing the flow of river
water in an arborizing estuary. One way of modeling would be the creation of a
tree data structure with a decision process controlling the amount of water flowing
through the river arms at a node. Clearly, this approach can have success in terms of
the accuracy of the estimated water flow quantities. However, such a model does not
do justice to the essence of the underlying physical processes. A water flow model
in terms of a dynamical system described by differential equations obliterates the
necessity of a ”homunculus” decision process, the river arms simply being attractors
in the system state space.

ad (2). The designation of symbols as basic processing objects gives rise to an in-
terfacing problem: In what way can we step from symbols to a continuous temporal
movement pattern? This problem is the complement of the so-called Analog-to-
Digital (A/D) problem in categorical perception (Harnad, 1987). Here, unlabeled
perceptual input of an analog and continuous nature must be categorized into dis-
crete object representations. In the production of movements conveying the shapes of
distinct letters, exactly the opposite problem has to be solved: The Digital-to-Analog
(D/A) transform. One solution to the D/A problem is the expansion of symbols at a
higher processing level into many more symbols designating infinitesimal steps as an
approximation of the continuous flow at the lowest physical level. One could indeed
argue that as long as the granularity of the symbol set is fine enough, there is no real
problem. The neural process is limited, too, by a baseline noise level that leads to an
error that is the parallel of the quantization error of a finite symbolic representation.
Another, more parsimonious solution to the D/A problem is the invocation of an
interface, as in chapter 7, that transforms a given symbol into a set of quantitative
parameters that lead to the production of a fraction of a time function. The latter
solution is also used in Morasso et al. (1983) and the minimum jerk models (Edel-
man & Flash, 1987) to modeling cursive script. The implication of these solutions to
the D/A problem is that either there exists an active computational transform, or
there exists a ”passive” memory association between the symbolic representation of
a letter and its corresponding continuous time function. For both the computational
transform and the memory association mechanism it holds that a symbolic repre-
sentation has to be linked uniquely to its (quasi-)continuous counterpart and not
to other continuous representations. A severe problem of the symbolic processing
approach is the so-called ”brittleness” of symbolic information processing systems.
Since symbols and rules operating on symbols are monolithic construction entities,
there ”is nothing in between them”. This makes it hard for such a system to handle
novel input information that is not accounted for formally and explicitly. What is
needed, in fact, is a new way of thinking about the representation of symbols and
quantities in an information processing system (Harnad, 1987; Smolensky, 1988).
Especially Reeke & Edelman (1988) vehemently attack the traditional information
processing paradigm in artificial intelligence (and cognitive science) as:

”reducing intelligence to symbol manipulation.”

Reeke & Edelman, (1988) p. 147
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ad (3). Since human motor behavior is characterized by both deterministic and
stochastic components, a good model should explain the origin of both components.
For example, in drawing movements, the amount of movement noise is influenced by
context factors (Van Galen, Van Doorn, & Schomaker, 1988). This finding reveals
properties that are typical of the neural movement control system. In modeling, it
appears to be difficult to simulate the variability of a movement parameter if the
modules and processes described by the model do not match the architecture and
processes of the real biological system.

Connectionism.

A field of modeling cognitive functions that enjoys renewed interest is connection-
ism, or the simulation of neural networks. The basic feature of all neural network
simulations to date is, that they are based on a massive amount of relatively simple
processing units (cells) that are highly interconnected. Each unit collects weighed
input from a large number of other units and distributes its output to other units.
The connections between units are characterized by their weights, which may be pos-
itive (excitatory) or negative (inhibitory). The units are characterized by their static
transfer function, e.g. a sigmoid function of the net input, and often by a threshold
parameter. To some extent such a system has similarities with the biological (often
called ”wet”) neural networks existing in the brain (Smolensky, 1988; Ballard, 1986).
For instance, firing rate is often an asymptotic function of the net synaptic input,
sometimes sigmoid static transfer functions are found, and there exists a threshold
excitation level below which a biological neuron does not fire (Bigland & Lippold,
1954; Kanosue et al., 1979).

But there are also large differences. Apart from some notable exceptions (Torras i
Geńıs, 1986; Peretto & Niez, 1986; Kurogi, 1987), the cells are not stochastic renewal
pulse oscillators (Lago & Jones, 1977) in most neural network simulations: They do
not fire action potentials in time. The unit activation level is represented by a single
value, sometimes even a binary number. Although the firing of an action potential
by a biological neuron also is an all-or-nothing process, it is not the single discharge
but the current average firing frequency that determines the informational state of a
neuron. Also, in biological systems, separate inter-neurons are needed for inhibitory
connections which are absent in most simulations. Another serious discrepancy is
the fact that biological neurons have a large fan-in/fan-out ratio, i.e., the number of
cells that receive information from a given neuron is small compared to the number
of cells that send information to this very neuron (Crick, & Asanuma, 1987). The
”fully inter-connected nets” that are often used in artificial neural networks are most
probably rare in biological reality. Nevertheless, connectionism might be an interest-
ing approach to modeling motor behavior since several neural network simulations
have displayed behavior that is comparable to the behavior of biological networks:
Learning by examples, generalization, association, robustness with respect to limited
damage or internal noise, and graceful degradation in case of limited or noisy in-
put. By graceful degradation is meant the fact that a network exhibits ”reasonable”



Connectionism 109

behavior if it is presented with noisy input. By contrast, deterministic syntactic sys-
tems, such as rule based expert systems, often get stuck in an inappropriate system
state if presented with noisy data or data for which no explicit rules are defined
(Reeke & Edelman, 1988).

Before trying to answer the question if this approach can solve the problems in
cognitive and motor modeling raised above, let us give a short review of some of the
basic architectures and models used, referring to their usefulness in the simulation
and recognition of handwriting whenever applicable. For each of the models, some
attention will be given to Architecture, Operation, Learning, and to Practical

Issues.

5.1 Two-layer network architectures: Linear Classifier and Percep-
tron

One of the earliest ”artificial neural networks” is the linear classifier.

Architecture.

Figure 1 gives a schematic description of the architecture of a linear classifier
(and the perceptron). There are three system components: (1) A layer of input
units (cells, neurons), (2) a bundle of connections to (3) a layer of output units. In
the sequel we will include the input cell layer in the counting of the number of layers.
In this terminology, a linear classifier is a two-layer network. An N -layer network
will have N − 1 connecting bundles, where a bundle can be described as a two-
dimensional weight matrix W . The rationale for this nomenclature is the realization
that the input units may have their own properties (e.g., static and dynamic transfer
function) and thus contribute to the network characteristics. The connections in the
bundle also have their specific properties (connection sign and strength, delay).
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Operation.

Assume an n-dimensional space F n, where each dimension denotes a perceptual
feature of observed objects O. The vector ~ik containing n feature values, describes
object k in F n. Now assume a set of object classes K = {j1, jm}. The goal is to
classify a given feature vector~ip as describing an object pεK. In linear classification,
this is done by specifying an objective function opj for each object class j, given
pattern p, such that:

opj = w0j + w1j .ip1 + ... + wnj.ipn (5.1)

that is, the activation of an output cell j is the linear combination of the feature
vector elements. A winner-take-all decision leads to the choice of the object class,
read ”unit”, j for which opj is maximal. This relation is possible if the vectors
describing the object classes are linearly separable.

In fact, for the linear classifier, the output unit activation function is a linear
function of the net synaptic input x:

x =
∑

j

wijij

o(x) = x



Connectionism 111

The distinction between the net synaptic input x and the unit output activation
o will prove useful in the non-linear networks handled later. After presentation of
pattern p, the output of unit j will be

opj =
∑

i

wijipi (5.2)

and, in vector notation, the total output layer activation will be

~op = W~ip (5.3)

This indicates that recursion (recurrent connection) leading to ~i(t + 1) = ~o(t) is
useless in linear classifiers since in this case ~o(t) = W t~o(0) which means that there
exist a weight matrix for which the transform could have been obtained in a single
step without recursion. The same argument holds for cascaded linear classifiers. One
might be interested what happens if the unit activation function is non-linear.

For the perceptron, both input and output units can only assume the value of 0
or 1. The output unit activation function is:

o(x) = f(x, θ) (5.4)

where θ is a threshold and

f(x, θ) =











1 if x > θ

0 otherwise
(5.5)

x being the net synaptic input.

Learning.

An often-used learning rule in artificial two-layer network is the Hebbian rule:

∆pwij = ηipitpj (5.6)

In words: A connection between input unit i and output unit j is strengthened
if both units are active in input pattern ~ip and target output pattern ~tp. Using a

Hebbian learning rule, inputvectors ~i must be orthogonal (~iTp~iq = 1 if p = q and 0
otherwise). This rule does not depend on the current state of the weight matrix.

Another well-known rule is the delta rule, also called Least Mean Squares (LMS)
or Widrow-Hoff rule:

∆pwij = ηipi(tpj − opj) (5.7)

In words: A weight is changed according to the error (”delta”) that its current value
caused in the actual output unit activation opj compared to the target activation level
tpj of that output unit. If there is no error, there is no weight change. Clearly, this
learning rule is dependent on the current state of the weight matrix. The advantage
of the delta rule is that input vectors ~ip only have to be linearly independent.
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Input Output

i1 i2 o1

0 0 0
0 1 1
1 0 1
1 1 0

Table 5.1: The XOR state table

Practical issues.

The problem with linear classifiers and perceptrons is that they cannot solve a
problem like the exclusive-or (XOR) mapping. Table 5.1 gives the state table for
this mapping. It is clear that there are no possible weights in a (2x1) architecture
such that the linear combination w11i1 + w12i2 = o1 for all states of i and o. For
many problems, the functionality of a two-layer network is sufficient. An experiment
with a two-layer network will be reported in Chapter 6, where its ability to learn
a typical non-linear function is illustrated.

5.2 Multi-layer networks and learning by error back propagation

Architecture.

Two-layer networks are only able to solve a limited set of classification, association
or transformation problems. If more, so-called hidden, layers are introduced, difficult
transformations on non-orthogonal and not linearly separable data can be performed.
This is only true if the static unit transfer function of the units in the hidden layers
is a continuous, differentiable non-linear function.

Typically, multi-layer networks are characterized by the number of units per layer
in the following notation: (nin x nhidden1

x...x nhiddenm
x nout), e.g., (4x8x2) for a

three-layer network.
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Operation.

The operation of a multi-layer network is as follows. Each cell j collects the
afferent activity of cells i in the preceding layer:

xj =
∑

i

wijoi

and maps this input level non-linearly according to its static transfer function f
onto an output activation level, representing, as it were, the unit firing rate:

oj = f(xj, θ)

where θ is the threshold or bias parameter for unit j that translates the non-linear
activation function along the x-axis. Thus, the given input activation pattern at
layer 0 is propagated in the direction of the output by a succession of (a) matrix
x vector multiplications ~x = W~o to obtain the vector ~x, and (b), transfer function
f() applications to obtain the unit activation vector o for each subsequent layer.
Ultimately, the units of final layer will exhibit activation values according to the
transform that the network has learnt in the learning phase. The calculations can
be performed in parallel, so operation of such a network can be fast, both in artificial
and in biological systems. The assumption, however, is that although the updating
of unit activations in forward propagation does not have to be synchronous, the
input activation pattern must be stable until the final output activation pattern has
been reached. In an artificial system that is time-discrete and synchronous, parallel
computation must proceed stepwise from input layer to output layer. In an artificial
system that is analog and time-continuous, the output activation values are available
immediately, in principle. It is important to note that in a parallel system, the time
that is necessary for the mapping of input to output is independent of the content
or complexity of the activation patterns but depends on the number of layers and
the delays that exist in the inter-unit connections.

Learning.

The standard delta rule in case of a two-layer network without hidden units
pertains to the modification of a weight w between an output unit j and an input
unit i:

∆pwij = ηipi(tpj − opj) (5.8)

= ηipiδpj

where i is the input vector containing the target unit activations of the input layer
for pattern p, where t is the target vector containing the target unit activations of
the output layer for pattern p, o is the output vector containing the current actual
unit activations of the output layer after presentation of pattern p, η is the learning
rate parameter. In words: The weight change of the weight between input unit i and
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output unit j after the presentation of an input/output pair p is the product of the
learning rate η with the error δpj between the actual output and the target value for
output cell j, multiplied by the activation level ipi of input cell i as determined by
p. The basic problem, now is, how to calculate weight changes for units not directly
linked to the output layer in case were the number of layers (including input cells)
is greater than two. Note that only for the output layer, the target vector is known.

The generalized delta rule has the same form as the standard rule (Rumelhart,
Hinton & Williams, 1986):

∆pwij = ηipiδpj (5.9)

If Uo denotes the set of units in the output layer, then:

δpj =











f ′

j(xpj)(tpj − opj) if unit jεUo

f ′

j(xpj)
∑

k δpkwkj otherwise
(5.10)

p. 327

where: f ′

j(xpj) is the derivative of the unit activation function that transforms the
sum of the activations xpj received at j from cells in the previous layer (xpj =
∑

i wjiopi + θj). The unit activation function is (Rumelhart, Hinton & Williams,
1986):

opj =
1

1 + e−xpj

=
1

1 + e−(
∑

i
wjiopi+θj)

(5.11)

p. 329

Its derivative simply being opj(1 − opj), so the generalized delta rule rewrites as:

δpj =











opj(1 − opj)(tpj − opj) if unit jεUo

opj(1 − opj)
∑

k δpkwkj otherwise
(5.12)

In words, roughly, the generalized delta rule reads as follows. Weight change
during learning is proportional to the product of learning rate, the activity of the
sending unit and the error of the activity of the receiving unit, or a weighed error
of the activity of all the receiving units in case the latter belong to a hidden layer.
The error itself is weighed by a function (the first derivative of the unit activation
function) that leads to a maximum weight change if the activation of the receiving
unit equals its threshold (bias) level θ.

Whereas thresholds in biological networks are an inherent property of the neuron,
in artificial or theoretical networks, a threshold can be defined as a connection
strength to an auxiliary unit not part of the input, hidden, or output layers, that
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is continually exhibiting a constant activation level. This redefinition allows for the
incorporation of threshold level adaptation during a learning process. In case of back
propagation this implies that the generalized delta rule applies to both connection
weights and threshold levels.

Practical issues.

As Hecht-Nielsen (1987) notes, most applications of back propagation deal with
mappings from binary input patterns to binary output patterns, although there is
no fundamental objection against using vectors of non-binary activation patterns.
This issue will be studied in an experiment to be described later (Chapter 6).
There is no inherent provision for the representation of time, an essential aspect in
the modeling of handwriting which will be addressed in Chapter 7. In Chapter 8,
the capabilities of the multi-layer perceptron in finding a solution to an important
mapping problem in motor control (and handwriting) are assessed: The autonomous
learning of an internal representation of the effector system.

5.3 Hopfield networks

Architecture.

Hopfield (1982) networks are characterized by a single layer of fully interconnected
units. The activation level may assume two values, true or false, mostly represented
by +1 and -1, respectively. In statistical physics, such a system is a model for a
material which consists of atoms with an amorphous distribution of Ising spins, spin
glass, (Stein, 1989). The units are connected by links with a specific real-valued
positive or negative weight.

Operation.

The basic functions of a Hopfield network is pattern completion (association). In
pattern completion, the activation of a number of units is set (clamped) according
to an incomplete binary pattern, a perceptual input, so to speak. The activation of a
unit can be interpreted as a hypothesis concerning the existence of some perceptual
feature. Subsequently, the system is left to evolve states according to the constraints
that are formed by the clamped units and the weights of the connections. The
weights of the connections are based on a learning process in which the system was
confronted with several complete binary patterns. If there is a solution, the system
will converge to a final state in which the activation of the units represents the
complete pattern. This is possible because in the relaxation phase, the activation of
single units changes such that the total system energy decreases.
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The total system energy in a Hopfield network is:

E = −1/2
∑

i

∑

j

wijsisj +
∑

i

θisi (5.13)

(Hopfield & Tank, 1985, p. 144.) 1

or:

E = −
∑

i<j

wijsisj +
∑

i

θisi (5.14)

(Hinton & Sejnowski, 1986, p. 286)

where E is the system energy, wij is the synaptic weight from the jth to the ith
unit, si is the state of the ith unit and may be -1 or +1 (sometimes 0 or 1), θi is
the threshold of unit i. Updating states si is achieved by switching each unit i into
whichever of its two states yields the lower total system energy given the current
state of the other units j 6= i. The activation of a unit k can be seen as a hypothesis.
The contribution to the change in energy by a change of this hypothesis can be
locally determined at k and its connected units by

∆Ek = −∆sk(
∑

i

wkisi − θk) (5.15)

(Hinton & Sejnowski, 1986, p. 286; Hopfield, 1982, p. 2556)

Minimizing the energy contributed by a unit is achieved by adopting true (+1) if
the sum of its inputs exceeds its threshold, i.e.,

sk =

{

+1 if
∑

i wkisi > θk

−1 if
∑

i wkisi ≤ θk
(5.16)

or:

sk =











+1 if
∑

i wkisi > θk

−1 if
∑

i wkisi < θk

sk if
∑

i wkisi = θk

(5.17)

In pattern completion, a number of units is clamped to a known part of a binary
pattern, and the problem to be solved is the completion of the total pattern. In
this case the inter-units connection strengths wij are based on a learning procedure.
If a Hopfield-type network is used for constraint solving, the constraints are trans-
lated into a set of wij values and the question is what binary pattern represents a
(near)-optimal energy state of the net. The problem with the deterministic updating
procedure described above is that it can lead to infinite oscillations. Kirkpatrick et
al. (1983) developed a solution that is borrowed from statistical mechanics. This
solution is used by Hinton & Sejnowski (1986) in a constraint solving algorithm
dubbed ”Boltzmann machine”, to be discussed later.

1In the Hopfield-network literature the weights are often called Jij instead of wij .
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Learning.

In Hopfield networks, an often used learning rule is the Hebbian rule (eq. 5.6). In
case of Hopfield nets weight change after the presentation of pattern p is:

∆pwij = ηspispj (5.18)

The weight matrix can be determined non-iteratively by:

wij = 1/N
∑

p

spispj (5.19)

where N is the number of units. Normalizing by N is not strictly necessary. Thresh-
old change of unit i during iterative learning can be calculated by:

∆pθi = −ηspi (5.20)

so the threshold of a unit is lower, the more patterns contain an active unit s = +1
at i.

Practical issues.

Practical issues in Hopfield networks involve the distinction between synchronous
and asynchronous update of unit activities, the presence of transmission delays in the
links and the learning rule that is used to determine the initial weights in association
problems. Other issues are the updating of thresholds θi, and the pre-structuring
and limiting of the connectivity (Gielen & Coolen, 1989). A problem with Hopfield
networks is that the choice of patterns is not free. In the original paper only a num-
ber of 15 patterns could be recalled without error, using 100 units (Hopfield, 1982).
The Hamming distance (the sum of differing bits) between the patterns must be
”sufficient”, Hopfield mentions a distance of 50 for N=100 units. Probabilistically,
the number of patterns is of the order N/log(N) (McEliece et al., 1987). Structuring
or shaping of the weight matrix on the basis of the available patterns can improve
the storage capacity (Coolen & Ruijgrok, 1988). The potential use of the Hopfield
network in motor modeling has been shown in an inverse dynamics experiment (Gie-
len & Coolen, 1989). Further research with respect to the modeling of handwriting
processes with this type of network is planned.

5.4 Boltzmann machines

Architecture.

The principle of describing a system state with zeros and ones, zero-one program-
ming, can be used in constraint solving (Kirkpatrick et al., 1983). Practical examples
are the traveling salesman problem, finding a good lay-out of components on a silicon
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chip, loading a ship with varying-size packets, etc.. Here, the binary state vector rep-
resents hypotheses that are being generated stochastically (Metropolis et al., 1953).
Hypotheses can be mutually consistent or conflicting in a gradual fashion. This can
be represented by assuming a positive or negative weight value between hypotheses,
yielding a weight matrix similar to the case of the Hopfield network. This weight
matrix is generally not learned, but determined by the constraints that are given.
The constraints are called ”weak”, because single constraints may be violated, in
favour of a better overall solution.

Operation.

After determining the (symmetrical) weight matrix wij, the system is left to evolve
states according to the constraints that are formed by the clamped units and the
weights of the connections. The state of unit (hypothesis) k, sk is stochastically set
to true with a probability:

pk(sk=1) =
1

(1 + e−(
∑

i
wkisi−θk)/T )

(5.21)

(Hinton & Sejnowski, 1986, p. 288)

where T stands for a temperature parameter that determines the amount of (”ther-
mal”) noise in the unit firing process. In thermal equilibrium, the relative probability
of a global system state α with respect to state β is:

Pα

Pβ
= e−(Eα−Eβ)/T (5.22)

(Hinton & Sejnowski, 1986, p. 289)

where Eα and Eβ represent the energy in global states α and β, respectively. Thus,
given T , this ratio depends only on the energy difference between the two system
states. This equation describes the well-known Boltzmann distribution. In a typical
simulated annealing scheme the system starts off with a high temperature, yielding
large state changes and allowing for large jumps in E. Gradually, T is decreased,
such that the process will escape from local minima in E and, hopefully, will reach
the absolute minimum. The state of the units then finally represents the solution to
the imposed constraints.

Learning.

A Boltzmann machine can operate as an input/output mapping or pattern com-
pletion device. In this case, the constraints are formed by (a) a set of units that are
clamped to the values of a pattern, and (b) the weight matrix. The weight matrix
wij should be learned. By calculating the probabilities p+

ij (some units clamped) for
a unit being ON, and p−ij (all units unclamped) for a unit being OFF, at the end of
the annealing phase, weight changes can be imposed: ∆Wij = η(p+

ij − p−ij (Hinton &
Sejnowski, 1986). This method is cumbersome and slow, and depends heavily upon
the annealing schedule.
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Practical issues.

The slowness of the method, especially if implemented in a sequential computer,
makes it necessary to find an annealing schedule (the function of temperature T over
cycles in the relaxation phase) that is as short as possible. However, theoretically,
no finite-length relaxation phase guarantees that the obtained optimum is global
(Richards, 1990). Other solutions are the implementation of the Boltzmann machine
in VLSI silicon chips containing the necessary multiply-add functions and random
number generators (Pesulima, Pandya & Shankar, 1990). In the current project,
the Boltzmann machine is used in cursive handwriting recognition, as reported in
a master’s thesis under supervision by the author (Stal & Ter Hofstede, 1990). In
cursive handwriting recognition, as will be explained in chapter 9, a solution search
space is created in which an optimum solution for the word to-be-recognized has
to be found. Traditionally, this is done using deterministic tree search techniques
(Tanaka et al., 1982). In the case of varying-length discrete sequences, tree search is
computationally expensive, hard to parallelize, and does not elegantly handle noisy
fragments in an otherwise neatly written input word. The Boltzmann machine can
be used to integrate information from a number of sources (pattern shape quality,
digram probabilities, amount of input covered by a character hypothesis etc.) in a
parallel fashion. These information sources impose constraints that determine the
”energy landscape” of the solution space for a word. Initial results are promising,
but more study is needed with respect to the choice of constraints, and with respect
to the method of translating of these constraints into a weight matrix Wij.

5.5 Self-organizing networks

As an example of self-organizing networks we will only handle Kohonen nets for
unsupervised feature vector quantization, the Topology Preserving Maps, although
there exist other models, like Adaptive Resonance Theory (Grossberg, 1987).

Architecture.

Kohonen (1987) has looked at the neural architecture in the cerebral cortex to
develop a self-organizing feature vector quantization network. The cerebral cortex
can be considered as consisting of a large number of cellular columns with high
inter-connection in the vertical direction and a limited connectivity in the horizontal
direction. In this section we will use the term ”column” instead of ”unit”. All columns
receive a common input consisting of a fixed number of channels, each column j
having its own connection strength wij to the input channels i. Furthermore, each
column receives input from other columns with strength vkj. Auto-recurrent inputs
j = k, i.e., vkk can also be present.
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Operation.

After presentation of an input pattern, the cell column that exhibits the largest
activation value represents the output state corresponding to that input pattern.
In this sense, the Kohonen network is a local, topological model instead of a dis-
tributed model. The activation level represents a certainty measure. It is one of the
virtues of the Kohonen model that the development of activation in time is an essen-
tial characteristic, just as in the biological reality. Therefore, some of the following
equations will be differential with respect to time t. Changes in the activation value
of a column are given by:

x =
∑

i

wijii

y =
∑

k

vkjok

doj/dt = x + y − γ(oj) (5.23)

where x denotes the weighed contributions of the external input ~i, y denotes the
weighed recurrent contributions from neighboring columns, and the inverse γ−1 is
a sigmoid function. If the inputs are constant in time and the activity from other
columns is zero, then:

oj = γ−1(x) (5.24)

as in most other models mentioned. The feedback connectivity vkj has a specific
shape that is based on knowledge about real cortical connectivity. The shape of vkj

as a function of inter-unit distance in the case of a 2-dimensional layer of cells is a
so-called ”Mexican hat”: Nearby columns are excited, distal columns are inhibited.
In working, artificial models, this shape is often simplified to block shape, with or
without the distal inhibitory weighing. The described system stabilizes some time
after the presentation of an input pattern, exhibiting maximum activation in a region
of columns. This maximum activation is called a bubble. The location of the bubble
is the internal representation that the network forms of the input pattern.

Learning.

Kohonen (1987) has developed a number of useful learning rules. A general for-
mula for weight change in Kohonen nets is:

∆pwij = ηojij − βojwij (5.25)

where η is a learning rate, as earlier, and β is a forgetting rate. In words: Weight
change is maximal if the product of output oj and input ij (”correlation”) is high but
it is suppressed if the output activation oj and wij satiate. The process described thus
far is completely self-organizing, no target activation patterns have to be provided
by an external teacher or supervisor as in back propagation learning. However, a
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learning strategy can be used in which the recurrent connectivity vkj starts off with
a wide excitatory range that is contracting during the learning process at a fixed
but unsupervised rate. This has the effect of facilitating the formation of the shape
of column regions representing a class of input patterns.

Practical issues.

One difference between the Kohonen network and the other types mentioned so
far is the fact that it is not a distributed model. Furthermore, there is a difference in
the use of the concept of ”weight”. In the feature vector quantization network, the
weight values are in the same domain as the sensory inputs, whereas their scaling
in multi-layer networks is only indirectly related to input magnitudes. The Koho-
nen network is currently used in a ”speech-to-phoneme code” translator (Kohonen,
1988). However, to recognize speech it is not sufficient to classify isolated phonemes.
The resulting varying-length sequence of phonemes must be converted to a varying-
length sequence sequence of letters. Other architectures are more plausible here (cf.
Chapter 9). Kohonen networks are successfully used in the classification of strokes
in cursive script (Morasso et al., 1990). Figure 2 shows a topological map of stroke
shapes such as used by the cursive handwriting recognizer that is under develop-
ment in Esprit project P419 in cooperation between the NICI, Nijmegen and the
University of Genova.
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5.6 Three experiments on connectionism in motor control.

As we have seen thus far, most of the applications of neural network simulations
involve perception or memory models. With respect to modeling motor behavior, we
shall now focus on some fundamental issues in motor behavior neural network models
must be able to address: (1) Movement patterns must be described by continuously
varying control variables, (2) movement occurs in time and different movement pat-
terns are chained into sequences, (3) controlling and coordinating movement requires
complex transformations of sensory to motor representations.

In the next three chapters, we will describe three simulation experiments to ex-
plore the typical characteristics of common artificial network models if applied to
modeling motor control and handwriting movements in particular:

• Chapter 6: Representation of quantity

• Chapter 7: Representation of time and sequence

• Chapter 8: Representation of the effector system

Where possible, these experiments are performed on the basis of kinematic motor
aspects in handwriting.
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Chapter 6

Representing quantity and

learning a non-linear function

6.1 Introduction

In the development of a neural network model of handwriting it is essential to
study the ways a quantity, e.g., a vertical displacement ∆Y , can be coded in a neural
architecture. Since most of the work on neural networks is concentrated around
learning rules, the coding of quantity is often a neglected issue. Basically, three
viewpoints can be found:

• The representation of quantity by the firing rate of a neuron (rate coding).

• Representing quantity by the topology of a set of supra-liminally firing neurons
(value unit coding).

• Representing quantity by the sum of the activations of a set of neurons
(recruitment coding).

Rate coding.

The representation of a quantity by firing rate is an issue of hot debate (Ballard,
1986). Proponents of this view (Pellionisz, 1986) state that firing rate control has
been proven to exist in the biological neural system and has important advantages
in terms of the number of neurons needed to represent a certain quantity. Opponents
have indicated the limited amount of information (bits) that can be sent through
a single axon due to the inherent noise of the system and the fact that it requires
at least an inter-pulse interval for a neuron to get an update of the ”average” firing
rate. In most artificial neural network models, the firing rate is represented by a
single real value.

127
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Value unit coding.

In this view, the firing rate conveys only the certainty or probability of the value or
quantity portion that is encoded by a single unit. In a coding scheme proposed by
Ballard (1986), a quantity is represented by the activity of a single unit (i.e., a single
neuron, or a cluster of neurons). The firing rate transfer function of this unit has
an inverted U-shape, peaking at the afferent quantity that it represents. The advan-
tage of this coding principle is that functions requiring multi-dimensional scaling
of several different inputs can easily be implemented by units that receive activ-
ity of several value units representing values at different dimensions. For instance,
the combined output for a feature extractor that detects lines at an angle of 45
degrees and a feature extractor that detects a specific hue of green leads to the con-
figuration of a new feature extractor detecting slanted green lines. Opponents have
pointed out the large number of units needed in this type of coding. This is known
as the Nk problem where N represents the number of units representing a dynamic
range (granularity), and k determines the number of (e.g., sensory) dimensions to
be coded.

Recruitment coding.

A type of coding that is well-known to researchers in the field of motor control
is recruitment. In recruitment, quantity is coded by the number of neurons in a
fixed pool that are supra-liminally active at a given moment in time. Recruitment
coding has been used in a two-layer network model for the coding of joint angle
values in an inverse dynamics problem (Gielen & Coolen, 1989). As in value unit
coding, the number of neurons determines the accuracy of the coding scheme. If all
units have a maximum output level of equal value, and if the firing thresholds are
distributed uniformly over the dynamic range to be covered by the coding scheme,
the relationship between net input and net output approaches linearity. Conversely,
non-linear mapping can be achieved by a non-uniform distribution of thresholds and
by differences in maximum output level over neurons in the pool.

Other coding schemes.

Another encoding scheme, artificial, but optimal from the point of view of infor-
mation theory, is the binary encoding of quantity by units, leading to the maximal
resolution of 2n quantity levels for n binary units. Binary coding is a typical topo-
logical coding scheme. Multi-dimensional coding schemes are conjunctive and coarse
coding (Hinton, McClelland & Rumelhart, 1986). Coarse coding is an extension of
value unit encoding in which a number of neighboring units are part of a zone
that represents a given quantity.

Irrespective of the type of coding, it is doubtful whether the activity of a single
neuron in the cerebral cortex is sufficient to represent a quantity reliably. If a quantity
is represented by the modal firing frequency of a cluster of neurons, rate coding will
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be robust with respect to the dependence on single-neuron activity. Furthermore,
the argument of the reduced information capacity of single axons does not hold
strictly any longer for the case of a nerve bundle emanating from such a cluster of
neurons, if the firing of the neurons takes place asynchronously. Likewise, in value

unit coding, the representation of a quantity by the location of a cluster of firing
neurons will increase the fault tolerance as compared to the case of a single neuron.
Here also, asynchronous firing within the cluster will result in a temporally more
stable representation as compared to the case of a single neuron.

The recruitment coding scheme is interesting as a general model for the cod-
ing of quantity because of its known presence in spinal alpha-motoneurons and the
mathematical models that have been developed (De Luca, 1979; Blinowska, Ver-
roust & Cannet, 1979; Lago & Jones, 1977; Agarwal & Gottlieb, 1975; van Boxtel
& Schomaker, 1983). In a ventral horn of a spinal segment, the alpha motoneurons
are grouped into pools, each pool for a different muscle. The axon of a single alpha
motoneuron terminates on a number of muscle fiber end plates. The combination
of an alpha motoneuron and its connected muscle fibers is called a motor unit. The
total activation of a muscle is determined by the sum of the activations of the alpha
motoneurons in a pool. As the activation of the pool by supra-segmental or segmen-
tal input increases, (1) single motoneuron firing frequencies are increasing, and, (2)
more motoneurons are being recruited, i.e., exhibiting a supra-liminal firing rate.
The recruitment occurs in a fixed order, starting with small motoneurons inner-
vating a limited number of muscle fibers, and gradually including larger and larger
motoneurons that innervate large numbers of muscle fibers. Thus, in this scheme,
quantity is encoded by a combination of firing rate and recruitment of a number
of neurons. The physiologically existing scheme of recruitment coding solves the
problem of limited information content of the output of a single neuron, it allows
for the easy coding of non-linear relationships, it exhibits reduced sensitivity to the
effects of inter-pulse durations because of the gap-filling accumulation of multi-unit
activity, and it is robust with respect to noise and single-unit failure. Apart from the
alpha motoneurons, it has been shown that on the afferent side, mixed recruitment
and firing rate control is the mechanism by which lumped muscle spindle activity
reliably reflects muscle stretch (Milgram & Inbar, 1974).

Since the goal of this study is the development of an artificial neural network
model of handwriting, it is important to find out if there are differences between the
quantity coding schemes mentioned above, if they are implemented in an artificial
neural network. A question, for instance, concerns the learning speed in a recruitment
coding scheme as compared to a value unit coding scheme.

In order to study the behavior of several coding schemes in an artificial neural
network, a series of simple experiments was performed with the standard three-layer
network taught by back propagation (Rumelhart, Hinton & Williams, 1986). This
model is not a pulse oscillator model: unit activations are represented by a single real
value reflecting the average firing frequency of the biological unit. The network had
to learn the static mapping from φ to sin(φ) with φ = [0, 2π], i.e., a single period of
the sinusoid. Note that the mapping is non-dynamical, the network does not learn
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to oscillate. A period of the sinus was chosen because it exhibits typical aspects
of non-linearity: the existence of extrema and a bending point. The ”difficulty” of
the mapping lies in the fact that a single given output activation pattern can be
produced by several input activation patterns (i.e., values for φ). There were four
coding conditions.

Coding of quantity by:.

1. Single-unit Activation level (SA),

2. Multi-unit Recruitment and Activation level(MRA),

3. Multi-unit Topology and Activation level (MTA),

4. Multi-unit Topology, Binary coding (MTB).

Table 6.1 gives the theoretical coding accuracy of the multi-unit coding schemes
if unit activation were a binary threshold function, and fine tuning by activation
level (denoted by ”A” above) were not the case. It is expressed as a proportion of
the total dynamic range to be coded, given N units.

Coding Scheme Accuracy

Recruitment (MR) 1/N
Value-units (MT) 1/N
Binary (MTB) 1/2N

Table 6.1: Theoretical accuracy values as a proportion of the covered
dynamic range, for three coding schemes, N is the number of units used
in the coding scheme.

According to these limits, if accuracy were the most important characteristic, the
more or less technical binary coding scheme (MTB) would be optimal. Clearly, in
biological systems, pure binary coding did not emerge in the course of evolution.
With respect to accuracy, there is no difference between a topological or value-
unit scheme (MT) and a recruitment scheme (MR) without fine tuning by the unit
activation levels. There is, however, another characteristic that is of importance in
a physical system: fault tolerance or robustness of the coding scheme. Table 6.2
gives an overview of the theoretical error sensitivity in the decoding of activation
patterns of the multi-unit coding schemes. The expected error values are based on the
assumption that the activity of units is unreliable, i.e. has a non-zero probability
of exhibiting the inverted activation value, one single unit at a time. From this
table, we see that recruitment coding (MR) is much more tolerant to erroneous unit
activity than value unit coding (MT). Value unit coding (MT) appears to be the
most vulnerable coding type, yielding an average error of 1/2. In binary coding, there
is the situation that the maximum error (1/2) is large as compared to the average
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error (Avg. ε → 1/N) for large numbers of units. This indicates that a binary coding
scheme is particularly sensitive to the shape of the error probability distribution over
units. This latter point may be an explanation for the fact that pure binary coding
did not evolve in natural systems. The aim was to see how accurate and fast a
network could be taught a sin() function for the different encoding schemes.

Coding Scheme Min. ε Avg. ε Max. ε

Recruitment (MR) 1/N 1/N 1/N
Value-units (MT) 1/N 1/2 1 − 1/N
Binary (MTB) 2−N (2N − 1)/(N2N ) 1/2

Table 6.2: Theoretical error as a proportion of the covered dynamic range
in the case of unreliable units, for three coding schemes. The probability
that a unit displays a faulty activation is assumed to be distributed
uniformly. N is the number of units used in the coding scheme.

6.2 Method

For all schemes, the static transfer function of a hidden or output unit is the sig-
moid (eq 5.11). The dynamic range of the unit activation is taken as oj = [omin, omax]
to ensure that weight values → ∞ did not occur. The domain of φ = [0, 2π] and
range of sin() = [−1., +1.] were each linearly mapped to [omin, omax]. The actual
values for omin and omax were 0.1 and 0.9, respectively. The learning rate η was set
to 0.4, and a first-order recursive filter with a gain of 1 (α = 0.4, β = 0.6) was used
to flatten changes in ∆wij during gradient descent. This approach has the advantage
over the normal ”momentum term” that the effects for the learning factor η and the
smoothing filter can be separated. On the contrary, the standard momentum term
(Rumelhart, Hinton, & Williams, 1986) leads to a reduced effective learning rate.
The target function is given in table 6.3.

There were 1250000 presentations of an input/output pair (φ, sin(φ)) picked at
random from the list, using a uniform distribution. Since there were 19 input/output
pairs, there is an average of 65790 presentations of the pattern as a whole (”epochs”),
in each training session. Given these general parameters, the independent variables
were: coding scheme, number of input units, number of hidden units, number of
output units. The dependent variables are accuracy of the mapping, or Signal to
Noise ratio DS/N , expressed in dB, i.e.,

DS/N = 10 ∗ log(
σ2

σ2
ε

) (6.1)

= −10 ∗ log(2σ2
ε ) (6.2)

for a sine, where σ is the standard deviation of the output sine pattern and σε is the
rms error between target and actual output pattern. We will use the average rms
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φ sin(φ)

-3.1416 0.0000
-2.7925 -0.3420
-2.4435 -0.6428
-2.0944 -0.8660
-1.7453 -0.9848
-1.3963 -0.9848
-1.0472 -0.8660
-0.6981 -0.6428
-0.3491 -0.3420
0.0000 0.0000
0.3491 0.3420
0.6981 0.6428
1.0472 0.8660
1.3963 0.9848
1.7453 0.9848
2.0944 0.8660
2.4435 0.6428
2.7925 0.3420
3.1416 0.0000
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Table 6.3: The target function to be learned, N = 19 samples.

error during the final 20 (φ, sin(φ)) presentations as the basis for the calculation of
DS/N .

The Single-unit Activation SA coding scheme is characterized by a 1xNx1 archi-
tecture. The activation level of the input unit varies linearly with φ, the activation
of the output unit varies linearly with the required sin().

In the Multi-unit Recruitment and Activation MRA scheme, a number of input
units is used, as an analogy to an alpha motoneuron pool exhibiting a fixed re-
cruitment order. The main difference with the biological version is the fact that the
maximum unit activation is equal for all units. The input layer is organized as a lin-
ear array of units, a low index indicating low activity, a high index indicating high
activity. As the total input excitation increases, more units become active. Some-
times, this scheme is called ”thermometer coding”. Encoding a value for an input
layer is as follows. If x is a real-valued quantity with a dynamic range of [xmin, xmax],
and n is the number of units in an input or output layer, then the real number of
active units u is

u = n
x − xmin

xmax − xmin
(6.3)

The number of units m that are recruited, i.e., fully active at their ceiling activation
level omax is m = int(u), where the int() function denotes truncation. If units are
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indexed from 0 to n − 1, unit m + 1 has a non-maximal activation level of:

om+1 = omin + (omax − omin)(u − int(u)) (6.4)

to account for the residual activation. Decoding the activation of an output layer is
done by:

x = xmin + (xmax − xmin)
∑

j

(oj − omin)/(omax − omin) (6.5)

Note that in decoding, the topology of the activation pattern is not relevant (contrary
to the encoding of a quantity into an input layer activation pattern). Also, the Multi-
unit Recruitment and Activation scheme yields a Single-unit Activation scheme in
the case of only one unit. Figure 1 gives an example of patterns obtained in this
mixed recruitment/rate coding scheme MRA.

In a pure value-unit coding scheme (Multi-unit Topology, MT), only the position
of a single active unit is of importance. To visualize this coding type, one can think
of a single LED in a linear array being active to represent a value (”flying spot
coding”). In the current experiment, a new scheme MTA is proposed in which the
activity level of two adjacent units in a layer is used to encode ”intermediate” values
for fine tuning of the quantity. The position of the first active unit is l = int(u) using
u from 6.3. The activations of units l and l + 1 are:

ol = omin + (omax − omin)(1 − (u − int(u)))

ol+1 = omin + (omax − omin)(u − int(u)) (6.6)

Decoding is achieved by:

x = xmin + 1/n(xmax − xmin)
∑

j

j(oj − omin)/(omax − omin) (6.7)

which shows that in this scheme, the output is dependent on the activation topology
because of weighing by position j. Figure 2 gives an example of patterns obtained
in a mixed value unit/rate coding scheme MTA.

For reasons of comparison, a simple binary coding (Multi-unit Topological Binary
MTB) scheme was used. The binary coding is interesting because it is the optimum
accuracy scheme for a set of binary threshold units. In binary decoding, the topology
of an activation pattern is obviously crucial. The threshold used in decoding was
simply (omax −omin)/2 = 0.5. Figure 3 gives an example of patterns obtained in this
artificial coding scheme MTB.
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6.3 Results

As a check, the accuracy of the coding schemes SA, MRA, and MTA were cal-
culated and appeared to be 144 dB, which is consistent with the accuracy of seven
decimal places for the VAX single-precision floating point representation. The ac-
curacy of the MTB scheme appeared to be consistent with the rule ”6 dB/bit”,
i.e. 30.5 dB for a five-unit encoding, 60.6 dB for a ten-unit encoding. These figures
represent the maximum obtainable accuracy in single-precision floating point calcu-
lation. Steepest learning rates are observed below 16000 epochs. After this number
of presentations, the DS/N value either approaches asymptotic levels or is slowly
increasing.

NxM architecture.

In its simplest form, the Nx1 architecture, the mapping problem is reduced to a
simple pseudo-linear model, or table search (e.g., a trivial 19x1 network). Table 6.4
shows the values of DS/N at the tail of the learning curve (1250000 I/O pairs, 65789
epochs), for a number of input units of N = 5 and N = 10. As is clear from the
table, the accuracy of the input/output mapping deteriorates as M is increasing.
This effect is much stronger in the case of Value Unit coding than it is in the case
of Recruitment coding. Input and output layers are subject to the same coding
scheme. Concerning other experiments the following observations were made. The
binary coding scheme in the NxM architecture never displayed an accuracy above
12 dB. The 1xN architecture never reached a sinusoid shape. The Nx1 architecture
requires at least N = 3 to approach the sinusoid shape. In a network with N = 1
and N = 2, only a monotonically increasing output was obtained with a sigmoidal
shape.

Output units Value Unit (MTA) Recruitment (MRA)

(M) N = 5 N = 10 N = 5 N = 10
1 22.86 40.81 22.88 53.56
2 17.96 27.40 23.47 27.39
3 14.07 16.49 17.74 27.06
4 7.81 22.54 18.90 33.22
5 4.19 17.51 19.23 32.93
6 2.40 12.96 16.08 29.32
7 2.56 13.24 17.72 32.02
8 1.93 10.75 17.62 31.95
9 2.86 10.91 16.83 30.26
10 1.30 7.72 16.91 33.79

Table 6.4: Signal to Noise ratio DS/N (in dB) in a NxM network for
value unit and recruitment coding schemes. N is the number of input
units, M is the number of output units.
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1xNx1 architecture.

This architecture, which is a model for a single-unit receptor/single-unit effector
connected via an intermediate layer of variable size, reveals the network capability
of ”finding its own” intermediate representation of quantity in the hidden units.
The coding scheme is Single-unit Activation or rate coding. Figure 4 shows the
learning curves for 1xNx1 architectures with N varied from 1 to 10. Please note
that the learning curve represents the effective error in the target domain (the sin()
function) rather than the average error of the individual unit activation which is
the basis for the error back propagation during learning. A 1x2x1 architecture never
reaches the sinusoid shape and produces a sigmoid output function. In general, the
accuracy increases as the number of hidden units N increases, but this relationship
is not completely monotonous within the used range of number of hidden units
(Table 6.5). The obtained level of accuracy is low.

Hidden units Single-unit
(N) activation (SA)

1 7.18
2 7.20
3 14.89
4 16.91
5 17.11
6 18.27
7 18.24
8 21.48
9 18.64
10 18.73

Table 6.5: Signal to Noise ratio DS/N (in dB) in a 1xNx1 network, using
the Single-unit Activation (rate coding) coding scheme, the number of
hidden units N is varied.
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NxMx1 architecture.

Here the effect of the input coding scheme is tested, using N = 5 or N = 10,
varying the number of hidden units, and assuming a single output unit (SA or rate
coding). Table 6.6 shows the Signal to Noise ratio for the three coding schemes. In
case N = 5, value unit coding (MTA) yields a higher accuracy than recruitment
coding (MRA), but this difference disappears for N = 10. In general, the accuracy
slightly improves with an increasing number of units in the hidden layer, except in
the case of binary coding (MTB), where this relation is irregular. Maximum accuracy
is obtained in the binary coding scheme, but the accuracy is highly dependent on
the number of hidden units. A number of input units N = 10 yields a much better
performance than the case of N = 5, for all coding schemes.

Hidden units Value Unit (MTA) Recruitment (MRA) Binary (MTB)

(M) N = 5 N = 10 N = 5 N = 10 N = 5 N = 10
1 19.49 34.90 19.01 34.92 9.53 8.58
2 35.16 36.89 27.07 36.86 26.17 39.63
3 36.96 39.52 26.30 37.67 59.18 39.64
4 39.71 39.41 24.93 36.97 54.85 47.95
5 37.80 39.82 27.53 39.15 61.06 53.79
6 37.12 37.49 32.84 38.99 45.60 60.18
7 41.27 38.69 29.31 39.36 13.87 51.94
8 39.14 41.83 25.98 39.49 33.11 55.74
9 35.36 40.51 29.49 42.84 32.23 61.67
10 37.19 38.74 28.22 40.24 48.94 61.60

µ 35.92 38.78 27.07 38.65 38.45 48.07

Table 6.6: Signal to Noise ratio DS/N (in dB) in a NxMx1 network, in
three input coding schemes, the number of hidden units M is varied,
the number of input units being N = 5 or N = 10. Also included is the
mean DS/N per coding scheme value of N .
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Value Unit (MTA) Recruitment (MRA) Binary (MTB)

N = 5 N = 10 N = 5 N = 10 N = 5 N = 10
DS/N , at 0.1xT 21.88 36.19 23.05 35.69 20.20 27.42

DS/N , at T 35.92 38.78 27.07 38.65 38.45 48.07

% 60.91 93.32 85.15 92.34 52.54 57.04

Table 6.7: Average Signal to Noise ratios DS/N (in dB) in NxMx1 net-
works, at 0.1 of total training time T , for three input coding schemes.
N is the number of input units. Also shown is the percentage of DS/N

at 0.1T relative to the DS/N at the end of training.

Figure 5 shows the learning curves for the 5xMx1 networks, displaying a steep
rise in the signal to noise ratio during the initial 3x105 input/output presentations
(16000 epochs), for all coding schemes. The value unit (MTA) coding scheme dis-
plays a steeper rising learning curve during the continued training. For all schemes,
back propagation may occasionally fail to maintain an optimum representation, as
evidenced by peak values in the learning curve exhibiting a higher signal to noise
ratio than the value attained at the end of training if the number of units is inad-
equate. It should be noted that the number of presentations is much higher than
in most other studies on back propagation, and that single-precision floating point
operations were used. At other times, back propagation manages to recover from
such ”catastrophes”. Figure 6 shows the learning curves for the 10xMx1 networks.
It can be seen that the learning curves are much more regular, also in the case of
binary coding. Figures 5 and 6 also give clues concerning the learning speed. Value
unit coding (MTA) initially learns fastest, followed by recruitment coding (MRA).
Learning a binary representation is relatively slow and less well-behaved. Table 6.7
shows the signal to noise ratio after 120000 presentations of input/output pairs
(6316 epochs). This point is at about one third of the point where most learning
curves are flattening and at about one tenth of the total training duration. Here,
the initial difference between value unit and recruitment coding virtually disappears,
binary coding still displaying lowest values. Networks with a number of hidden units
M = 10 learn faster than in case M = 5.
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6.4 Discussion

The decreasing accuracy of the input/output mapping in case of increasing M
in an NxM or 1xM network is most probably due to the collinearity problem. Since
all output units are equipotential in terms of their plasticity, an infinite number
of solutions (combinations of weight and threshold values) is possible. Also, the
1xMx1 architecture is limited with respect to the level of obtainable accuracy. For
this latter case, i.e., the Single-unit Activation or rate coding, it can be predicted
that in a non-linear mapping, a biological single-unit receptor needs a bundle of
fixed, (non-plastic) connections to an intermediate layer containing a large number
of units. This constraint is used in network models by Kanerva (1988).

In the NxMx1 networks, stable learning occurs if the number of units used in the
input encoding is sufficiently high. In value unit (MTA) and recruitment (MRA)
coding, the adding of hidden units only has a marked effect on the accuracy as long
as the general shape of the output function has not been reached. After that point,
improvements are marginal. Binary coding (MTB) is very sensitive to the number
of hidden units. In the current experiment, the presence of hidden units NxMx1 was
needed to obtain a good binary mapping. Potentially, this scheme may yield a high
accuracy, but the unpredictable learning behavior may be one of the reasons that
prevented its natural evolution in biological systems. Value unit encoding leads to
faster initial learning by a multi-layer perceptron than recruitment coding, in terms
of the absolute error. However, recruitment coding is faster in terms of reaching the
plateau of the signal-to-noise ratio in case of a small (N=5) number of units. Value
unit encoding has an advantage in terms of accuracy when only a small number of
units is used.

The differences between value unit and recruitment coding as applied in the
teaching of a non-linear function to a multi-layer perceptron are small. Results seem
to indicate that in case of a limited number of input units (5) the value unit scheme
has a slight advantage in terms of accuracy and the recruitment scheme has an
advantage in terms of learning speed. If a larger number of units is used (10) this
difference disappears. However, there may be other grounds for choosing a particular
coding scheme. If the behavior of single units is noisy, as in the biological neuron, it
can be predicted that recruitment coding is much more robust, and therefore a better
choice. With respect to the modeling of handwriting, the results indicate that for the
coding of a quantity (e.g., displacement), the learning of a non-linear relation is easier
the more input units are used in a value unit or recruitment scheme. Using a single
input neuron and rate coding, delegating the solution of the non-linear mapping
to the hidden units is more difficult than using multiple input neurons. Findings
(NxM studies) also indicate that it is advantageous to reduce the number of units
representing the output range, relative to the number of units in the preceding layer.
It can be hypothesized that the high proportion of biological neurons having a large
fan-in/fan-out ratio (Crick & Asanuma, 1987) is related to their ability to represent
a non-linear mapping of the input domain by dendritic topology.
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Chapter 7

Neural Network Models of

Temporal Pattern Generation ∗

Lambert R.B. Schomaker

Abstract

Most contemporary neural network models deal with essentially static, per-
ceptual problems of classification and transformation. Models such as multi-
layer feedforward perceptrons generally do not incorporate time as an essen-
tial dimension, whereas biological neural networks are inherently temporal
systems. In modeling motor behavior, however, it is essential to have models
that are able to produce temporal patterns of varying duration and complex-
ity. Several representations of time are dealt with, i.e., spatialized (topological)
time models, temporal flow models, and recurrent networks. An alternative
model is proposed, based on a network of pulse oscillators consisting of neu-
ron/interneuron (NiN) pairs. Due to the inherent temporal properties, a sim-
ple NiN net, taught by a pseudo-Hebbian learning scheme, is able to display
repetitive behavior which is much harder to teach to static non-pulse models.
Two network models, a recurrent net and a pulse oscillator net are compared,
using the simulation of pen-tip movement in handwriting as a common refer-
ence.

7.1 Introduction

The production of complex patterns of activity along several dimensions is prob-
ably the most intriguing aspect of motor control. However, it is also a most difficult

∗The major part of this chapter will appear as: Schomaker, L.R.B. (1991). A neural-oscillator
model of temporal pattern generation. Human Movement Science, x, xxx. This study was supported
by Esprit, project P419
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problem to tackle since we do not currently have sufficient insight in the function-
ality and architecture of the neural systems that provide for motor control. There
exists a long and fruitful tradition of measuring physiological parameters in detailed
parts of the nervous system, but it is hard to integrate the vast amount of em-
pirical detail into a more general theory. Therefore, a viable approach may be the
creation of models that are based upon general electrophysiological mechanisms of
single cell behavior, trying to find an architecture which is able to display a known
functionality in motor behavior. The goal of the current paper is to describe possible
general, neurally inspired, mechanisms for the production of complex but smooth
multi-dimensional motor patterns, as opposed to the production of discrete-element
sequences. Other functions in motor control like sensory feedback and inverse kine-
matics or kinetics computation (the degrees of freedom problem) are not considered
here. Neither are mono-phasic targeting movements, as described in models by Bul-
lock & Grossberg (1988) or by Houk et al. (1989). The central issue here is the
generation of patterns.

The origin of a movement pattern

Traditional reaction time oriented studies in cognitive psychology did not con-
cern the ”internals” of the motor system. In cognitive motor theory, the production
of a pattern is reduced to an abstract buffering and release of symbolic entities by
an information processing system which is assumed to operate much like a com-
puter (Sternberg et al., 1983; Schomaker et al., 1989). On the other hand, purely
cybernetical or system-theoretical accounts explain only servo-like control without
explicitly specifying where the ”set-level” or target time functions originate from.
Only completely sensor-ruled behavior can be explained in terms of feedback alone.
In his ”closed loop” approach, Adams (1971) uses the additional abstract concept
of memory trace to describe the origin of movement patterning. Although the non-
linear dynamics as used in synergetics (Gibsonian motor theory) has an advantage
in terms of the potential complexity of motor patterns that can be described in
their kinematical and kinetical aspects, the latter theory fails to account for the
concatenation of movement segments 1. Transitions between oscillatory modes of
behavior are not completely explained by the bifurcation phenomenon (Parker &
Chua, 1987a; 1987b) as a ”deus ex machina” mechanism, because also here, the ul-
timate origin of the parameter change leading to the new global system state must
be identified. In the case of long-duration pattern production such as in handwriting,
it is more parsimonious to assume the existence of internal ”motor representations”
for movement segments that are fluently concatenated during execution, than it is
to try to model longer sequences by complex and numerically vulnerable differential
equations. An example is an oscillatory handwriting model by Hollerbach (1981).
From the synergetics point of view, it is attractive, being an autonomous mass-spring
oscillator model. On the other hand, it needs 13 parameters, and the model unrealis-
tically assumes (Hulstijn & van Galen, 1983; van Galen et al, 1986) that writers plan

1Movement segment: a limited-duration kinematic and/or kinetic, neural or myoelectric activa-
tion pattern, depending on the level of observation.
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words as a whole in advance. Also, there is more to motor behavior than oscillatory
movement. It is useful to make a distinction between (a) models that describe the
chaining of basic movement segments, and (b) models that describe the shaping

of an individual movement segment. This distinction is not sharp and depends on
the definition of ”movement segment”. The solution is to classify a given model as
a chaining or shaping type model by asking the question how the model would
handle the extreme case of very long-duration patterns vs its handling of details
at a short time scale (< 100ms). The shaping functionality typically requires im-
plicit knowledge of the biomechanics of the output system, yielding neural activity
that compensates for unwanted biomechanical side effects or making effective use
of the properties of the output device. Hierarchically, shaping is of a lower level
than chaining, i.e., a chaining module drives a shaping module. The distinction
between chaining and shaping becomes evident in handwriting, where overlearned
basic patterns (allographs) are chained into fluent movements. Also in speech, the
occurrence of coarticulation effects can be described as shaping being influenced by
the chaining process. Anticipation and perseveration errors in handwriting, typing,
and speech indicate problems in the chaining process itself.

In order to develop a neurally inspired model of motor control that explains both
chaining and shaping functionality, more study is needed. Below we will discuss how
the time dimension is incorporated in current artificial neural networks, and see if
and how different models can display the chaining or shaping functionality that are
required in motor control.

Time in neural network models

Time is relevant to several aspects of neural network modeling. In the first place,
it is of importance in the learning phase. For instance, teaching an input/output rela-
tion to a multi-layer network by back propagation (Rumelhart, Hinton, & Williams,
R.J., 1986) generally takes hundreds of iterations. In the second place, time plays an
important role in the operational phase of a network. How much time is needed to
produce valid output values after presentation of an input pattern? In most multi-
layer network models this time is fixed, assuming parallel ”computation” by all the
units, using an amount of time which is independent of the complexity of the rela-
tion between input pattern and output pattern. Obviously, this is not in agreement
with behavior of the biological systems, as witnessed by a host of reaction time
studies (Sternberg et al., 1983). Thus, the multi-layer perceptron models as such
do not seem to incorporate time as a natural dimension. In this respect, Hopfield
nets (Hopfield, 1982) and Boltzmann machines (Hinton & Sejnowski, 1986) display
more correspondence with the biological neural networks because here, the duration
of their relaxation is indeed dependent on the stimuli. However, the duration of the
relaxation phase in the Boltzmann machine can be quite long, even if fast and par-
allel computing units are used, and the response time cannot easily be predicted on
the basis of pattern complexity.

Unfortunately for students of motor control, most artificial neural network models
ignore some essential features of biological networks that are related to time. Biolog-
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ical neurons are pulse oscillators, producing action potential trains by a stochastic
point process, whereas artificial neurons as used in a perceptron are mostly only
level reservoirs. Apart from specific physiological modeling studies, there is a lim-
ited number of general network models based on pulse oscillators (Torras i Geńıs,
1986; Peretto and Niez, 1986; Hartmann and Drüe, 1990; Tam and Perkel, 1989),
and Von der Malsburg (1988). Also usually ignored is the fact that connections be-
tween units in a biological neural network imply transmission delays, the duration
of which is determined by inter-unit distance and diameter of the axons. Typical ax-
onal delay values are 8 ms/m to 1700 ms/m (Grossman, 1973). Other criticisms with
respect to artificial neural networks exist (Crick & Asanuma, 1987), e.g., the limited
Fan-out/Fan-in ratio in the neocortex as opposed to the connectivity demands of
the fully interconnected artificial nets that are often used.

Spatialized representations of time

The denial or omission of the inherent temporal characteristic which biological
networks possess, has sometimes lead to odd multi-layer models for the recognition

of sequences of patterns, as noted by Stornetta et al. (1987). In these models, time is
represented by columns of input units, one column per time step, for a fixed number
of time steps. Network models of this type can thus be described as a more complex
form of tapped delay lines2. Apart from the disadvantage in terms of the number of
units if long sequences are to be recognized, the main shortcoming of such a system
is its inadequate representation of patterns of varying length. Also, since the time
steps are fixed, these models cannot handle temporally ”jittering” input patterns
either. An example of a speech recognition network where time is ”spatialized”, i.e.,
represented topologically, is the TRACE model by McClelland and Elman (1986). A
well-known model for the production of temporal patterns, i.e., keyboard typing, is
given by Rumelhart & Norman (1982). This model, originating from work by Estes
(1972), is also based on spatialized time, but the topology and the connectivity of
the network is pre-structured by a planning agent. A sequence of discrete motor
actions, key strokes, in time is produced by activations in an explicitly structured
chain of units. A unit in this chain inhibits activity in all its successors until it has
fired, thereby inducing a fixed sequential order, that occasionally may be disrupted
by noise, as in real human typing. This model is a precursor to contemporary neural
network modeling enterprises in cognitive science. Actually, the model is still of a
hybrid nature since it contains a symbolic parser which parses a letter sequence
and transforms it into a so-called key press schema. The key press schema is in
fact a highly structured ”special-purpose” network which is geared to perform the
key strokes in sequence. Although the model is very original and describes several
phenomena also occurring in human typing there are some problems with it. First,
the model describes discrete-time, discrete-value pattern production as opposed to
continuous time, continuous value pattern production. Second, its highly structured
architecture involves both activation and connectivity specification of movement

2Hence the term Time Delay Neural Network (TDNN) that is used sometimes.
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segments in the ”programming stage”. Although connectivity specification is pos-
sible in principle by using multiplicative synapses in a neural network model, the
original paper does not describe such structuring. Third, it is unclear how such a
system should be trained. Fourth, inspection of figure 4 (Rumelhart & Norman,
1982, p. 17), which displays activation levels during a typing sequence, will reveal
the susceptibility of the design to noise and the importance of fine threshold tuning.
And fifth (Jordan, 1985), without specific modifications, the general architecture is
not able to produce repetition of a given action unit. Consecutive repetition, e.g. AA
is represented by a specific doubling action unit influencing the next action which
follows. Alternation ABA can be solved similarly. But the model really comes into
trouble when repetition over longer serial position differences must occur (ABCA),
in which case the sequence must be broken up into e.g. ABC-A by a parser. As
we have noted in handwriting, however, writers experience problems in correctly
reproducing longer sequences of cursive /e/’s and /l/’s, e.g., /ellellle/ at a normal
writing speed, which indicates that humans also have trouble producing repetition
of identical patterns (Schomaker et al., 1989), an argument which may be in favor
of the Rumelhart & Norman (1982) chaining type model with unique context-free
representations for each motor segment and a limited temporal scope.

Gradually, the importance of a more general and flexible representation of time
is gaining recognition. Instead of considering, e.g., transmission delays as a nui-
sance which increases computational complexity, use can be made of their special
properties, thus turning a liability into a virtue. Furthermore, the use of recurrent
connections such that the state of a network at time t is influenced by the activation
states of the units at time t − ∆t offers a wide range of behaviors that are absent
in the feedforward architectures. Notably, the variable-length sequence problem and
the temporal jitter problem in speech and handwriting recognition could potentially
be solved by recurrent network architectures (Robinson, 1989; 1990). In what follows
we will describe shortly some network models which make no use of pre-structured
spatialized time representations.

The temporal flow model

In multi-layer networks, Watrous & Shastri (1987) developed a so-called ”tem-
poral flow” model for recognition purposes: transforming a temporal signal into a
static representation. The basic characteristic of such a network is that, contrary to
the standard multi-layer perceptron architecture, single units have auto-recurrent
links. A network like this is somewhat less sensitive to small time axis deviations
than is the case in topological coding of time. The recurrent connections impose a
”capacity” or first-order recursive filtering on the unit activation. The attractiveness
of the temporal flow model lies in the fact that temporal information is handled by
the distributed single-unit dynamics. In order to train such a network, a modified
back propagation rule was given, which takes into account the unit activations over a
short time window preceding time t in the input and target time functions. Watrous
& Shastri (1987) taught the network to discriminate between two 16-channel time
functions containing the spectral content for the spoken words ”no” and ”go”. As the
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target output function, a ramp function was chosen which increases for the output
unit corresponding to the required response and decreases for the non-matching unit.
This representation was chosen under the assumption that a listener continuously
builds up evidence for the detection of a specific word.

The temporal flow model can also be used as a production model, transform-
ing a static representation or a short seed sequence into a (longer) temporal signal.
Rumelhart, Hinton & Williams (1986) describe a model of the production of dis-
crete sequences of patterns by a 3-layer network with recurrent loops within the
hidden layer and within the output layer. The connections between layers are feed-
forward only. The idea is to feed the system with an initial seed pattern, which
initiates a path through the state space, such that the activation of the output units
in time is a completion of the total (taught) pattern. As an example, after having
learned the sequences AA1212 and BA2312, presenting AA to the network should
lead to the subsequent successive output states 1,2,1 and 2. A network of this type is
claimed to handle fixed time step inconsistencies as well, after the proper amount of
training. With respect to modeling motor behavior, the model relies on a discrete-
value representation and is more a chaining type model than it is of the shaping

type. A large amount of training is required to capture even these relatively simple
patterns. Both in recognition and production, the complexity of patterns is limited
by the first-order characteristics of the single units, which also puts a limit on the
complexity of the pattern which can be produced by the network as a whole. Using
higher-order transfer characteristics for the single units will allow for more complex
”impulse responses” to be generated by such models in production and to capture
higher-order dependencies between the system states at different points in time in
recognition, than is the case with the first-order recurrent links. Theoretically, the
temporal flow model can thus be used in shaping and chaining.

Recurrence in fully interconnected single-layer networks

By allowing transmission delays between units in a Hopfield network, Coolen
and Gielen (1988) were able to store a number of sequences of binary patterns
in such a net, provided that p � N where p is the number of patterns and N
is the number of units. Williams & Zipser (1988) developed a learning algorithm
for a network consisting of a single layer of fully interconnected units. Part of the
layer receives input from the outside world, another part of the layer consists of
”output” units whose behavior must follow some time function based on the initial
inputs. This network can learn some interesting dynamic behaviors like delayed
XOR mapping, parenthesis matching or sinusoidal oscillation. A pervasive problem
in training these recurrent networks is the often slow learning speed and the inability
to escape from non-optimal solutions. To solve this problem, special (less general)
versions of learning rules exist. With respect to motor models, it is as yet unclear
how fruitful the idea of fully interconnected single-layer networks will be with respect
to the chaining and shaping aspects in motor control.

Recurrence in multi-layer perceptrons
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Jordan (1985) developed a framework for the production of sequences by trainable
recurrent multi-layer perceptrons. In this type of networks, the input layer consists
of externally driven connections for the selection of learned sequences combined
with connections representing the network’s (previous) output state. Jordan was
able to model limited, variable length sequences containing repetitions and alterna-
tions (AA,AABB,AABA,ABAC,ACABAA). These sequences are of a discrete-value,
discrete-time nature. The longer the sequence, the longer the teaching phase lasts.
Other experiments include speech production where coarticulation effects could be
modeled using this architecture. In the latter case, the patterns consist of activations
for different speech features, and are of a continuous value, discrete-time nature. In-
teresting properties of this model are the trainability, the distributed representation
of the temporal system state and the natural inclusion of ”coarticulation” effects.
This models seems to combine chaining and shaping functionality.

A pulse oscillator ensemble model

A question which may be asked is: ”why try to model temporal behavior using
static cells if nature itself has come up with an inherent temporal system: the neuron
as a stochastic generator of action potentials in time”? Why not consider biolog-
ical networks as complex systems of oscillators and resonators? Indeed, oscillators
and resonators potentially offer interesting capabilities like entrainment, synchro-
nisation, complex pattern generation and completion by resonance (cf. Hebb’s cell
assemblies), that their static perceptron-like counterparts do not have (Eckhorn
et al., 1988; Skarda & Freeman, 1987). The problem with respect to modeling is
that there exists no robust training mechanism for dynamical pulse oscillator net-
works, comparable to back propagation (PDP group), the learning rules developed
by Grossberg (Carpenter & Grossberg, 1987), or Kohonen (1987). But there are
other arguments in favor of more physiologically oriented models. The mechanism
of motor unit recruitment (De Luca, 1979; Van Boxtel & Schomaker, 1983) reveals
how a neural pulse oriented system can escape from the limited information capac-
ity (Ballard, 1986) that a single axon suffers from. By a combined recruitment &
firing rate control, a neural system can easily implement non-linear mappings that
are required in a given Input/Output mapping problem. An interesting trainable
pulse oscillator model is given by Torras i Geńıs (1986) who tried to teach neurons
to fire at a given frequency. The learning rule consists of a dual process: the aver-
age membrane potential being incremented to increase the firing frequency if the
cell is being activated often, and decrementing the average membrane potential if a
depolarization occurs prematurely within a time window after the afferent driving
neuron has fired.

Taking for granted the oscillatory behavior of neurons, it can be hypothesized that
pattern generation, i.e., shaping, can be brought about by the selective combination
of neural activity in a large ensemble of neurons. This hypothesis is similar to the
Fourier-based composition of a signal. The main differences are that in this proposed
model, the constituent candidate oscillator frequencies & phases are not in any way
distributed evenly along the frequency & phase axis and that the signal shape is not
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sinusoidal. The phase relationship between the oscillators, however, may be constant
if interconnections or a common triggering source exists. Also, the oscillators do not
have to fire at a constant frequency, emitting evenly distributed pulses. In fact,
the envisaged system may profit from the fact that the neuron ensemble contains a
rich set of non-linear oscillators to capture a wide spectral range without requiring
subtle distributions of fixed frequencies. A simple and basic mechanism to modulate
oscillatory behavior of neurons is the mechanism of Neuron-inhibitory Interneuron
(NiN) interaction (Figure 1) which is widely present at several levels of the central
nervous system (Sloviter & Connor, 1979; Pratt & Jordan, 1979). Without claiming
that this mechanism is the only or even the most important mechanism in producing
complex spiking patterns, it is striking to see the variety of patterns that can be
produced by a NiN pair of neurons (Figure 2). If the recurrent inhibition is weak,
the NiN behaves almost as a normal single neuron. Depending on the parameters
of the NiN pair, responses like delayed burst, single delayed discharge and grouping
of spikes kan be obtained. Figure 3 shows the configuration of an ensemble of NiN
oscillators and their connection to (two) output lines through a trainable weight
matrix.
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At this point, it appears interesting to compare the recurrent perceptron model
with the proposed pulse oscillator model. How fast do they learn, how accurately are
patterns reproduced, and how sensitive are they to intrinsic noise? Before describing
two experiments, however, it is necessary to outline a common functionality that any
pattern generator must be able to display.

General features needed in a motor pattern production system

In the production of motor patterns, four basic events or phases can be identified,
both in chaining and in shaping:

1. System Configuration.

2. Start of Pattern.

3. Execution of Pattern.

4. End of Pattern.

System configuration. This stage is known as motor programming, coordinative
structure gearing, preparation, planning, schema build-up etc.3 It involves the de-
termination of the pattern and the end effector system which is going to be used.

3There are subtle distinctions between these concepts. ”Planning” hierarchically precedes ”Pro-
gramming”. Both concepts suffer from an algorithmic connotation, which in the case of motor
control may be only justifiable for high-level (symbolic) task planning.
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As a general model one may think of a list of binary values representing a system
configuration.
Start of pattern. After configuring the system for the task at hand, there must
be a signal releasing the pattern at the correct time.
Execution of pattern. The duration of this phase and the actions that are per-
formed depend on pieces of information such as the amount of time that has passed,
the distance from a spatial target position or force target value, or even the number
of motor segments produced. It can be hypothesized that an incorrect representa-
tion or implementation of this stage leads to errors as in stuttering and the counting
problem in the production of strokes in the cursive handwriting of /m/ and /w/.
An easy experiment is the cursive writing of the word /minimum/ without dots,
keeping the eyes closed, and writing at normal or slightly accelerated speed.
End of pattern. There must be a signal or condition which identifies in a non-
ambiguous manner that the systems that are involved do not have to be engaged
in the production of the pattern any longer. The importance of this signal is less
clear from a pre-structured network like the timing model of Rumelhart & Norman
(1982), but it appears essential in recurrent networks. Without special provisions,
a recurrent system which has learned a repetitive pattern, say AABAAB, will go
on producing this pattern unless en external event signals the end of the pattern.
Similarly, for non-repetitive patterns, a recurrent network may indulge in infinite
chaotic babbling after correctly reproducing a pattern. The same problem may oc-
cur in pulse oscillator networks4.

There are basically two solutions to represent the Execution of pattern phase
and the End of pattern event. First there is the autonomous solution, assuming
a within-pattern relative time scale from which the current state can be derived.
Second, there is the feedback-dependent solution, where sensory or efference-copy
information is needed to determine the relative within-pattern phase or the end of
the pattern (Bullock & Grossberg, 1988). Note that in the case of counting dis-
crete events, e.g., the writing of strokes in /m/’s or /w/’s, the necessity of feedback
becomes evident.

Finally, an important feature of a plausible neurally inspired model is that it
should be able to tolerate a moderate amount of noise on the single unit activations.

We will now proceed to describe an experiment with two types of network models
to perform the shaping task of individual letters in cursive handwriting, without
describing their chaining into movement patterns encompassing a word.

7.2 Method

Experiment 1 concerns the training of Vx(t) and Vy(t) pen-tip velocity func-
tions to a Jordan (1985) type network, modified to handle ”continuous” functions.

4A version of the NETtalk model (pronouncing English words that are presented optically) by
Sejnowski & Rosenberg (1986) displays a similar problem after reading the last input character.
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To achieve this, the output of a 3-layer network is coupled back to part of the input
layer, providing for a recursive filter-like functionality by saving the last n output
values produced in time, for each output channel. Note that this ”tapped delay”
is different from the spatialized time organizations in that n is no hard constraint
on the maximum pattern duration. Apart from the delayed output information, the
input layer is fed by a selector pattern (Figure 4). The System Configuration phase,
which determines the movement pattern selection, is outside the model. The Start
Pattern phase is signaled by a switch from relaxation (0.1) to maximal activation
(0.9) of an input line which selects the movement pattern to be produced. To give
the movement production model information about the within-pattern relative time
during the Execute Pattern phase, the activation of the relevant selector line is ex-
ponentially decaying during the duration of the movement. Contrary to the schema
for striking a key in Rumelhart & Norman (1982), there is no explicit signaling of
the End of Pattern phase. The time constant of the decay is chosen such that the
selector activation is lower than 0.2 at the end of the movement pattern. Training
is done using a normal back propagation algorithm with this difference that instead
of a momentum term the function W ′

ij(n) = βWij(n) + (1− β)W ′

ij(n− 1) is used to
separate effects of learning speed η from effects caused by the smoothing factor β.
Single unit activation levels contained 0.1% added noise from a uniform distribution.
The real-valued input and output variables were coded using a combined activation
and position scheme (”flying spot”, Chapter 6). The network structure was as fol-
lows. The output layer consisted of 2 output units for Vx and Vy. The input layer
consists of 5 time delay taps for both channels, using 2 units per tap in ”flying spot”
coding, and a selector channel also using 2 units, yielding a total of 22 input units.
There were 15 hidden units, which is less than the number of input units to enforce
”generalization” or smoothing on the time functions. The selector channel was fed
with an exponentially decaying signal. Relevant dependent variables are learning
speed and the normalized rms error between target and produced patterns. Also
investigated is the ability to store more than one pattern in a single network.
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Experiment 2 concerns the training of X and Y pen-tip displacement func-
tions to a pulse oscillator network of Neuron/Inter-Neuron pairs. The NiN pairs are
mutually independent in the current version of the model. The parameters for the
neurons are drawn from a uniform probability distribution and are not modified
during training for this initial experiment. The System Configuration phase, which
determines the movement pattern selection, is outside the model. The Start Pattern
phase, Execute Pattern Phase, and End Pattern phase are determined by activating
the Neurons of a set of NiN pairs, and releasing the activation at the end of the
pattern (square wave). The firing behavior of each neuron (including interneurons)
is governed by a general neuron model by Perkel et al. (1964, in Torras i Geńıs,
1986) (see Appendix). Training is achieved by use of an experimental training rule
that is based on the correlation between single NiN activity and the error between
target time function and obtained time function. The rule is non-local. In a sense,
it combines Hebbian, or covariance learning, with the delta rule:

∆Wik = ηere
i (1 − rg) (7.8)

where Wik is the connection strength between a single NiN i and output line k,
ηe is the learning speed, re

i is the correlation between NiN oscillator i’s activity ui(t)
and the error time function e(t) = yk(t) − ok(t). The target function is yk(t), ok(t)
is the output of line k, rg is the overall correlation between the output ok(t) and
the target yk(t). The squashing term ensures smaller weight changes, the more ok(t)
approaches yk(t). Furthermore, Wik is smoothed, similar to the use of a momentum
term in back propagation:

W ′

ik(t) = αWik(t) + (1 − α)W ′

ik(t − ∆t) (7.9)

The common output ok(t) is the low-pass filtered (F ), weighed sum of individual
NiN spike outputs ui(t):

ok(t) = F (
∑

i

W ′

ikui(t)) (7.10)

where k = 1 or k = 2 for the X and Y displacement target signals, respectively.
Note that a single NiN i contributes to different output lines k. The low-pass filtering
(cut-off frequency 10 Hz) is used to simulate a virtual ”muscle” system (Teulings
and Maarse, 1984).

Single unit activation levels contained 0.1% added noise from a uniform distri-
bution. There is no between-NiN connectivity. The NiN parameters are unchanged
in this experiment. They are drawn from a uniform distribution, bounded by ”rea-
sonable” extremal parameter values (Appendix). There were 400 NiN oscillators,
ηe = 0.1, α = 0.02

In both experiments, the training sets consist of the pen-tip movement signals
(X(t),Y(t) or Vx(t), Vy(t)) of isolated cursive characters of a single writer. The
data were obtained using a Calcomp 9000 series digitizer, sampling at 100 Hz. The
letters used here were manually isolated from whole words using a handwriting editor
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program. The beginning and end of a pattern were padded with zeroes (relaxed state)
corresponding to a 50ms real-time duration. Neural network simulation software
was written in Fortran-77 and simulations were executed on a VAXstation 2000
computer.

7.3 Results

Experiment 1.

Training the recurrent network, using 2000 presentations of the Vx,Vy pattern of an
/a/, lasting .66s (66 samples) costs over 3 hours of computation on a VAXstation
2000. Figure 5 gives an overview of some training histories, (letters /a,b,c,d,e,f/)
concerning the teacher-forced behavior. Figure 6 gives an overview of the training
history, concerning the free running recurrent operation. Note the different scale of
figures 5 and 6. The free-running mode of the network never showed a legible approx-
imation of the handwriting in this experiment, and the learning history is irregular
for /e/ and /f/. Figure 7 shows a typical simulation result. Only the feedforward
”teacher-forced” operation leads to a mimicking of the handwriting pattern. In the
free-running operation, the pattern degenerates rapidly as a consequence of bias and
the 0.1% noise imposed on the units. Figure 8a and b show similar results for an
18x10x2, 4-tap architecture after 4500 and 6000 pattern presentations, respectively.
Only after over 10000 training trials, we were able to teach an /a/ to a recurrent
network (Figure 8c). In this case the state space trajectory was robust, allowing for
a 5% noise on the selector channel in the free run. However, in the latter case, 50% of
the input units consisted of selector units, reducing the recurrent state influence on
the trajectory evolution. Experiments with other letters from the alphabet produced
very comparable results.
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Experiment 2.
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Training the NiN network, using 500 presentations of the X,Y pattern of an /a/,
lasting .66s (66 samples) costs about 2 hours of computation on a VAXstation 2000.
Figure 9 shows typical training histories for 6 cursive letters /a,b,c,d,e,f/, reaching
a flat learning curve after 300 presentations. However, the learning rule apparently
does not always leads to convergence. The deviating /d/ is due to a failure in match-
ing the Y-amplitude, while the shape of pattern is still approximated. This can be
inferred from figure 10, showing the simulation results for the 6 letters. The am-
plitudes of X(t) and Y(t) output were normalized to the amplitude of the target
pattern. The error is largest at the end of the pattern, due to the low-pass filtering
of the output. In the a, the X(t) signal is only roughly approximated.

The NiN network performed better than the recurrent network, also for the
teacher-forced operation, which can be inferred from the asymptotic normalized
rms values in figures 5 and 9.
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7.4 Discussion

A problem with the recurrent network is the degeneration of patterns in the free
running state. This means that such an architecture will be strongly dependent
on correct feedback to compensate for the internal errors and biases introduced at
each time step. Whereas this seems a reasonable assumption in the case of discrete
patterns (typing), it is not clear if this is true for the case of continuous patterns.
In handwriting, visual feedback, at least, does not seem to be a primary factor
in maintaining pattern integrity (van Galen et al., 1987). It should be noted that
the findings are relevant to the used limited-sized networks only. Computational
demands inhibit the experimentation with large-size networks. For example, it is
to be expected that a larger number of units for an input variable in ”flying spot”
coding increases the robustness of the recurrent network. Although the recurrent
multi-layer perceptron is an attractive model in its generality, it did not display a
convincing ”natural” functionality. The learning speed was very slow. Also, we were
not able to store more than one pattern in a single recurrent network, which reduces
its likelihood as being the basis for both chaining and shaping. Dedicated learning
rules may alleviate these problems to some extent, but potentially introduce new
degrees of freedom that may even be less realistic from the physiological point of
view. Summarizing: the training of the recurrent network appears to be a ”forcing”
of an essentially static system to display temporal behavior. Although the general
idea remains attractive, more study is needed in the field of the training of recurrent
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networks in general.
The NiN pulse oscillator ensemble model displayed a fast but uncertain learning

behavior. The learning rule does not always lead to convergence. More analytical
work is necessary in this field. The accuracy of the pattern reproduction depends on
the distribution of the neuron parameters in the ensemble. In this experiment, the
neuron parameters were unmodifiable. After dedicating a set of NiNs to a pattern
through a weight matrix, fine tuning can be obtained theoretically by adapting the
neuron parameters. To achieve this, learning rules similar to the one used by Torras
i Geńıs (1986) have to be identified. Other interesting features of the NiN network
are the natural oscillation and the influence of the general activation level on the
average firing rate, allowing for pace modulation. One can predict that there will be
a range in which the pace of a given pattern can be varied, breaking down outside the
working range. Doubling of a movement segment can be produced by a single NiN
oscillator. In this sense, doubling errors in typing can be modeled as the result of an
increased drive on a group of NiN oscillators. Summarizing: the NiN network model
may be a promising way of modeling motor behavior. Much more work is needed
with respect to its physiological credibility, learning rules, and its capacities in terms
of faithfully modeling motor parameter invariance. Obviously, any neural network
model of pattern production in motor behavior should display a functionality that
exceeds the mere storage and retrieval of a pattern.
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7.5 Appendix

A neuron model by Torras i Geńıs (1986) is described as:
While (Pb + Ps) < H, relax:

dPb/dt = −τb.(Pb − Pb1)

dPs/dt = −τs.Ps + x

dH/dt = −τh.(H − H1)

y = 0

Otherwise, fire:

Pb = Pb0

Ps = 0

H = H0

y = 1

where the variables are:
Pb spontaneous membrane potential
Ps post-synaptic potential
H firing threshold
x input
y output

and the constants are:
Pb0 membrane potential directly after firing
Pb1 asymptotic membrane potential in relaxed state
H0 firing threshold directly after firing
H1 firing threshold in relaxed state
τb time constant of membrane potential
τs time constant of post-synaptic potential
τh time constant of threshold change after firing

A simplification yielding qualitatively the same type of behavior is:
While (Pb + Ps) < H ∨ Pb > H0, relax:

dPb/dt = −τb.(Pb − Pb1)

y = 0

Otherwise, fire:

Pb = Pb0

y = 1

Always:

dPs/dt = −τs.(Ps − x)
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Here the threshold H remains constant. Input x = [0, 1]. The latter type was used
in experiment 2 as reported here. A NiN pair is connected by:

xi = x + wji.yj

xj = wij.yi

y = yi

where:
x external input to the NiN
xi input to the neuron
xj input to the interneuron
yi output of the neuron
yj output of the interneuron
wij forward weight from neuron to interneuron
wji recurrent weight from interneuron to neuron
y NiN output

Parameter range (uniform probability density function):

Parameter Min Max
τb 0.1 0.999
τs 0.0001 0.1
H1 0 0.9
H0 0 1
Pb1 0 0.9
wij 0.01 2
wji -2 1
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Hartmann, G. & Drüe, S. (1990). Feature linking by synchronization in a two-
dimensional network. Proceedings of the IEEE International Joint Conference
on Neural Networks 1990 Vol. I, 247-250.

Hinton, G.E. and Sejnowski, T.J. (1986). Learning and Relearning in Boltzmann Ma-
chines. In: J.L.McClelland, D.E. Rumelhart and the PDP research group (Eds.),
Parallel Distributed Processing: Explorations in the Microstructure of Cognition:
Volume 1 Foundations (pp. 282-317). Cambridge, MA: MIT Press.

Hollerbach, J.M. (1981). An oscillation theory of handwriting. Biological Cybernet-
ics, 39, 139-156.

Hulstijn, W., & Van Galen, G.P. (1983). Programming in handwriting: Reaction
time and movement time as a function of sequence length. Acta Psychologica,
54, 23-49.

Hopfield, J.J. (1982). Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the National Academy of Sciences, USA,
79, 2554-2558.



168 References

Houk, J.C., Singh, S.P., Fisher, C., & Barto, A.G. (1989). An adaptive sensori-
motor network inspired by the anatomy and physiology of the cerebellum. In:
W.T. Mille, R.S. Sutton, & P.J. Werbos (Eds.), Neural Networks for Control,
Cambridge (MA): MIT Press.

Jordan, M.I. (1985). The learning of representations for sequential performance.
Doctoral dissertation. University of California, San Diego, pp. 1-160.

De Luca, C.J. (1979). Physiology and mathematics of myoelectric signals. IEEE
Transactions on Biomedical Engineering, 26, 313-325.

Kohonen, T. (1987). Adaptive, associative, and self-organizing functions in neural
computing. Applied Optics, 26, 4910-4917.

McClelland, J.L., & Elman, J.L. (1986). Interactive processes in speech perception:
The TRACE model. In: J.L.McClelland, D.E. Rumelhart and the PDP research
group (Eds.), Parallel Distributed Processing: Explorations in the Microstruc-
ture of Cognition: Volume 2 Psychological and Biological Models (pp. 59-121).
Cambridge, MA: MIT Press.

Parker, T.S., & Chua, L.O. (1987a). Chaos: A Tutorial for Engineers. Proceedings
of the IEEE, 75, 982-1008.

Parker, T.S., & Chua, L.O. (1987b). INSITE-A software toolkit for the analysis of
nonlinear dynamical systems. Proceedings of the IEEE, 75, 1081-1089.

Peretto, P., & Niez, J.-J. (1986). Stochastic dynamics of neural networks IEEE
transactions on systems, man, and cybernetics, 16, 73-83.

Perkel, D.H., Schulman, J.H., Bullock, T.H., Moore, G.P., & Segundo, J.P. (1964).
Pacemaker neurons: Effects of regularly spaced synaptic input, Science, 145,
61-63.

Pratt, C.A., & Jordan, L.M. (1979). Phase relationships of motoneuron, Renshaw
cell and Ia inhibitory interneuron activity periods during fictive locomotion in
mesencephalic cats. Abstracts of the 9th Annual Meeting of the Society for Neu-
roscience, Vol 5, 728.

Robinson, A.J. (1989). Phoneme Recognition from the TIMIT database using Re-
current Error Propagation Networks. Technical Report 42, Cambridge University
Engineering Department (UK).

Robinson, A.J. (1990). Dynamic Error Propagation Networks. Doctoral dissertation.
Cambridge UK: University of Cambridge.

Rumelhart, D.E., & Norman, D.A. (1982). Simulating a skilled typist: A study of
skilled cognitive-motor performance. Cognitive Science, 6, 1-36.

Rumelhart, D.E., Hinton, G.E. & Williams, R.J. (1986). Learning internal represen-
tations by error propagation. In J.L.McClelland, D.E. Rumelhart and the PDP
research group (Eds.), Parallel Distributed Processing: Explorations in the Mi-
crostructure of Cognition: Volume 1 Foundations (pp. 318-362). Cambridge, MA:
MIT Press.

Schomaker, L.R.B., Thomassen, A.J.W.M., & Teulings, H.-L. (1989). A computa-
tional model of cursive handwriting. In R. Plamondon, C.Y. Suen, & M.L. Simner
(Eds.), Computer Recognition and Human Production of Handwriting (pp. 153-
177). Singapore: World Scientific.



169

Sejnowski, T.J. & Rosenberg C.R. (1986). Parallel Networks that Learn to Pro-
nounce English Text, Complex Systems, 1, 145-168.

Skarda, C.A. & Freeman, W.J. (1987). How brains make chaos in order to make
sense of the world. Behavioral and Brain Sciences, 10, 161-195.

Sloviter, R.S., & Connor, J.D. (1979). Effect of Raphe stimulation on granule cell
activity in the hippocampal dentate gyrus. Abstracts of the 9th Annual Meeting
of the Society for Neuroscience, Vol 5, 282.

Sternberg, S., Knoll, R.L., Monsell, S., & Wright, C.E. (1983). Control of rapid
action sequences in speech and typing. Approximate text of a speech held at the
Annual Meeting of the American Psychological Association.

Stornetta, W.S., Hogg, T., & Huberman, B.A. (1987). A dynamical approach to
temporal pattern processing Proceedings of the IEEE conference on Neural In-
formation Processing Systems, Denver.

Teulings, H.L., & Maarse, F.J. (1984). Digital recording and processing of handwrit-
ing movements. Human Movement Science, 3, 193-217.

Tam, D.C. & Perkel, D.H. (1989). A model for temporal correlation of biological
neuronal spike trains. Proceedings of the IEEE International Joint Conference
on Neural Networks 1989 Vol. I, 781-786.
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8.1 Introduction

Assuming that the problems of the representation of quantity and time are suffi-
ciently dealt with in the preceding two chapters, it becomes interesting to ask how a
motor system is able to control time functions of quantities (i.e., displacement or ve-
locity), to produce handwriting movements with an effector system such as an arm.
Both from human motor studies and in applied research in robotics it is becoming
evident that for a motor control system, it is advantageous to perform the original
movement planning in an internal representation of the extra-personal world instead
of controlling the effectors by activation patterns based on a intra-personal repre-
sentation of muscles and joints, solely. The ultimate goal of motor control is to exert
a desired effect in the extra-personal space, thus it seems more appropriate to plan
tasks like, e.g., collision avoidance, in a representation that is isomorphous to the
workspace, than it is to perform this planning in the intra-personal representation
of the effectors. In robotics, this insight is apparent from the control modes that are
available for existing systems. Table 1 depicts the evolution of robotics, initially only
allowing for control in an intra-corporal (intra-personal) representation in terms of
joint angles. Gradually, the inclusion of the time and force domain develops as the
field of robotics matures. The specification of kinematics is required to adapt to task
demands (velocity) and minimize spatial error. The specification of kinetics (joint
torques) allows for a further reduction in the spatial error, a reduction in the energy
dissipation, a reduction of mechanical wear and the adaptation to task demands (e.g.
torque values, given a required task-space contact force vector). The latter point also
introduces the necessity for adaptive compliance control in object handling.

Table 1. Historical development of control modes in robotics.

Phase Time axis Control of:

1 1960’s joint angles
2 ↓ spatial begin- and endpoint of the end effector
3 ↓ interpolation through spatial ”via”-points
4 ↓ kinematics: displacement, velocity, acceleration.
5 ↓ kinematics and kinetics: forces, torques.
6 1990’s kinematics, kinetics and compliance.

It should be noted that there is a large discrepancy between industrial practice
(”Phase 3”) and academic interest (”Phase 6”). The development seems to indi-
cate that an increasing number of variables must be controlled, going from effector-
oriented control to task-oriented control. Does this imply that all these domains are
under explicit and detailed pre-computed control in human motor control, where a
very high degree of motor skills is present? It can be hypothesized that computa-
tional demands necessitate a different solution. Here, it is informative to take a look
at the human motor system and a number of ”natural” types of movement control.
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Table 2 gives an overview of different types of motor tasks and the domain on which
the controlling system should focus to maximize the performance.

Table 2: Focus of control of a motor system and task type.

Task Type Example Control
Focus on:

interception catching a ball T+P
object handling picking up a cigarette K+C
object transport moving a glass of wine K+D
locomotion climbing stairs K+D+C
navigation obstacle avoidance K
communication handwriting, gesture K

P=Position
K=Kinematics
D=Dynamics
T=Time of contact
C=Compliance

The notion of a ”focus of control” does not imply that the subordinate domains
are always completely neglected. In handwriting, for instance, compliance control
can be autonomous (passive) if the writer configures the writing hand as a com-
pressible mass-spring system, or the compliance is controlled according to a specific
strategy as evidenced from pen force fluctuations (Schomaker, 1990). Thus, for each
motor task, the essential control domain(s) can be determined. The problem, how-
ever, is the transformation of the task-domain constraints into intra-personal effector
activation patterns. In most non-trivial motor tasks, this transformation concerns a
limited number of degrees of freedom in task-space, and a large number of degrees
of freedom in intra-personal space caused by an inherent redundance of the effector
system. This type of problem is called ”ill-posed” since there is no or no unique
solution. In perception, there is a similar complementary problem in that one can
never have enough optical sensors (eyes, cameras) to create an unambiguous inter-
nal representation of a natural visual scene. Given a number of limiting assumption
beyond the scope of this thesis, and taking the kinematics domain as an example,
one can write the transformation problem as:

[δΘ]T = J−1[δX|δΦ]T (8.11)

Desa & Roth (1985); Brady et al. (1982)

where Θ denotes the vector of joint angles in a manipulator, X and Φ denotes
the end effector position and orientation with respect to the base, J is the Jacobian
matrix. In words: small changes in joint angles Θ can be calculated from the product
of the inverse of the Jacobian, given the current manipulator state (Θ), with the
vector containing changes in X and Φ. So the Jacobian matrix must be non-singular,
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which is not generally true. In robotics, the geometry of manipulators is designed
as to allow for a solution for the inverse of the Jacobian since the problem becomes
rapidly intractable with an increasing number of degrees of freedom (joints). A well-
known example is the standard 6-df industrial robot where the wrist is spherical (3
df), effectively only leaving 3-df for the actual position control. Given the geometrical
and mechanical complexity of the human motor system, the analytical approach is of
little use. The ease with which we perform complex motor tasks exemplifies that the
biological motor system apparently found a solution to this problem. The question
arises what type of neural architecture is involved in this essential aspect of motor
control. If we look at human movements, the following aspects are apparent:
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• The number of anatomical degrees of freedom is very large.

• Movement and reaction times do not depend on the number of degrees of
freedom involved in a motor action.

• Stiffness regulation and the amount of activity per joint can be controlled
dynamically, as opposed to the equalized solution that existing algorithms for
the calculation of inverse kinematics provide.

• Movement time of fast, ballistic movements depends on the required accuracy
by MT=a + b log2 (2A/W) (Fitts’ law) where MT is movement time, A is
amplitude of movement, and W is diameter of target.

• Human movements are less accurate than are those of a mechanical manipu-
lator.

An ideal model of motor control should account for these observations. For ex-
ample, if in humans the calculation of inverse kinematics were be done by active
computation according to an analytical model (Luh & Lin, 1984), even one would
expect a strong relation between movement complexity and reaction time. This is
not the case. Pressing a button or starting to run in a steeple-chase occur with
approximately equal reaction times. Looking at the inverse kinematics transforma-
tion problem, it appears that there are two functions involved: the transformation
problem as such, e.g. from Cartesian or low-dimensional space to angular high-
dimensional space, and the handling of redundance, sec. Later in this chapter, two
small-scale experiments will be reported on neural network solutions to the transfor-
mation problem as such. Alternatives to the closed form (with a Jacobian) are the
”table lookup” (Albus, 1975), feedforward neural networks (Josin, 1988; Kuperstein
& Rubinstein, 1989; Massone & Bizzi, 1990; Pellionisz & Llinas, 1980), Hopfield net-
works (Gielen & Coolen, 1989), and dedicated neural network models (Eckmiller,
1988).

A general, unified model of motor control has evolved gradually from work by
Bizzi (1980), Hogan (1985), Morasso & Tagliasco (1986), Morasso & Mussa Ivaldi
(1987), and others. As a starting point, this model considers muscles to be tunable
springs. The next step is to assume a potential elastic energy field (PEF), gener-
ated by the manipulator system as a whole. The shape of the energy landscape is
determined by the spring-like characteristics of a large number of individual mus-
cles and their mechanical connectivity with respect to the anatomy of the limb
segments (bones and ligaments). According to this theory, motor control is not so
much the specification of local muscle activity to obtain a local joint angle or torque,
but rather a shaping of the elastic energy field. The system will tend to maintain
a configuration of minimum potential energy. Changing the shape of the energy
landscape yields movements along a virtual trajectory. If the manipulator meets
an external object, the resulting size and direction of force depends on the energy
difference between the current imposed state and the target state. Such a model
reduces the redundance problem to a large extent. However, more constraints are
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needed (see Table 2) in many motor tasks. Also, the motor control system must
occasionally make decisions, e.g., to choose from several end-effector approaching
strategies (Rosenbaum et al., 1990), to solve the redundance. Nevertheless, the PEF
model is very attractive as a starting point. For instance, stiffness control can be
represented as deepening sinks in the PEF field, which can be achieved by increased
muscular co-contraction. New findings indicate that stiffness control may be related
to movement duration as specified in Fitts’ Law (Van Galen & Schomaker, 1991).
High stiffness ensures higher stability in case of the small (”difficult”) target sizes of
a Fitts experiment. Increased co-contraction means increased stiffness, reducing the
gain of the mechanical transfer function of the effector system. The motor control
system has the choice to either elongate movement duration or to put in more force.
The latter strategy, however, yields higher instability, which is inconsistent with the
motor task demands. Consequently, movement duration is scaled. However, more
experimental work is needed to confirm this stiffness-related explanation of Fitts’
Law.

8.2 Two modeling experiments with a planar arm

The PEF model, or ”equilibrium theory” still requires a transformation from
target space to intra-personal effector space. The learning of the inverse kinematics
transformation on the basis of random limb segment movements (”motor babbling”)
was tested on two network types:

• A Kohonen-type net, learning feature vector quantization (LVQ)

• A 3-layer perceptron, trained by back-propagation (MLP)

A planar arm, 3 df, with constrained joint angle ranges was used. Teaching was
done by generating random joint angles θi and presenting end effector position and
joint angles to the Kohonen network. The multi-layer perceptron also received spec-
ification of the end effector orientation (Phi), as it was evident in an early stage that
learning was difficult on the basis of position alone. Arm parameters (limb segment
proportions approximating a human arm) are as follows:

Joint Limb θmin θmax

1 0.500 30.0 250.0
2 0.375 30.0 170.0
3 0.100 140.0 190.0

From pilot studies it was evident that these constraints are essential in reduc-
ing the solution space and in minimizing the occurrence of singularities. It can be
hypothesized that hard constraints like the maximum of 180 degrees for a human
elbow angle not only introduce mechanical stability, but also alleviate the problem
of learning a body representation.
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Figures 1 and 2 show a grid of obtained end effector positions, testing the total
work field, x=[-40,40]. y=[-40,40]. Both figures show the general shape of the work
field for such an arm. Clearly the Kohonen LVQ net outperformed the multi-layer
perceptron (MLP), but it also has a much larger number of cells than the MLP
(1600 vs 36), and is more or less a table-lookup solution.

Figures 3 and 4 show the joint angle nomogram over the work field, for the
shoulder joint (=1) (Figure 3) and the elbow joint (=2) (Figure 4). Apart from the
typical work field shape, it is evident that joint angles vary smoothly.



176 Connectionism & Motor control



Representing the effector system 177



178 Connectionism & Motor control

Summary of results:

Kohonen LVQ:

• Learning is faster than in the MLP

• An ”average solution” is found

• Spatial error is distributed almost homogeneously over the work field

• Many units (columns) are needed: NxNy(Njoint + Npos.)

• The ”out-of-bounds” behavior is predictable

A Multi-layer perceptron (MLP) trained by back propagation:

• Learning is slow

• A limited number of cells is needed, compared to the LVQ network

• A stable average solution was not found after 80000 presentations

• The ”out-of-bounds” behavior is unpredictable

Unpredictable ”out-of-bounds” behavior refers to the situation where the plan-
ning agent specifies an end effector location outside the work field. In this case,
evidently, ego-motion is implicitly required. An MLP just produces unpredictable
values for the joint angles, whereas in the LVQ network, the mechanism of thresh-
olding can be used to detect ”out-of-bounds” coordinates, since vectors that did not
occur during training contain unspecified values. The disadvantage of the LVQ net-
work in terms of the number of units that are needed to represent the effector system
becomes clear if one realizes that apart from the joint angles, also joint torques need
to be specified. In object manipulation, the parameterization of other solutions than
the average arm configuration necessitates an even higher-dimensional representa-
tion of the effector, making a topological implementation unlikely, unless modulation
of the LVQ feature space itself can be described and explained. In MLP networks,
on the other hand, parametrization can be obtained relatively easy by adding input
lines, theoretically. In practice, however, as becomes evident from the current exper-
iments, training complete-workfield inverse kinematics for a redundant arm to an
MLP by standard back propagation appears to be difficult. More research is needed
to find out how we can reconcile the notions of topological body representation and
distributed multi-layer neural pattern transformations.
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8.3 Conclusion

In the modeling experiments, we considered the representation of a 2-D workspace
of a 3-df arm. In experimenting with these models, it became clear that the regular
use of the term Degree of Freedom is confusing. Since joint angles in biological arms
have a limited range, it would be better to speak of Degrees of Limited Freedom.
A self-organizing system with unconstrained joint angles will experience more diffi-
culty representing a mapping from task space to effector space than a system with
constrained joints. More specifically, the fact that the human elbow has a working
range of 20 to 180 degrees instead of, say, 340 degrees is very likely to enhance
self-organized learning of the effector system in ”motor babbling” to a significant
extent.

For demonstration purposes, the LVQ network was succesfully used to simulate
large handwriting movements like a human would produce on a school blackboard
by upper arm, forearm and wrist movements, holding the fingers in a fixed attitude.
As such, this is not more than an illustration that the inverse kinematics transform
using this method works in practice.

Summarizing, the redundance problem in motor control can be largely reduced,
by assuming (a) a potential elastic energy field model (equilibrium theory), (b)
by considering internal effector constraints like working range of joint angles and
torques, and, last but not least, (c) the motor task requirements. From the neural
network modeling point of view, the challenge is to translate these insights into a
working model of human motor control.
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Chapter 9

Recognition of cursive

handwriting movements

The complementary approach to the simulated production of handwriting move-
ments by a computer is the automatic recognition of original handwriting movements
that are being produced by the human writer. Schematically:

Simulation: Discrete Symbols → Continuous Movement

Recognition: Continuous Movement → Discrete Symbols

In the simulation process, inherently discrete entities had to be connected in a
fluent way. In the handwriting movement recognition process, an inherently con-
tinuous stream of actions must be segmented in discrete entities, representing a
sequence of characters. This chapter describes how knowledge of the motor sys-
tem in handwriting can be used in an on-line handwriting recognition system. Also,
the knowledge that has been collected about the properties and peculiarities of the
handwriting movement signals as recorded by a digitizer in the analysis of experi-
mental data will be used in the implementation of a recognition system. Methods
have been developed to estimate typical parameters of handwriting, e.g. estimating
baseline orientation, recovering the lineation from the displacement signal, detecting
loops, and describing individual stroke shapes. Automatic handwriting description
and recognition methods can also be used in the analysis of experimental data. As
an example, the description of a writer’s Cursive Connections Grammar (Chapter 3)
has been a manual, interactive procedure. The further development of recognition
techniques will allow for a solution to this problem, minimizing manual intervention.
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Abstract

The human reader of handwriting is unaware of the amount of background
knowledge that is constantly being used by a massive parallel computer, his
brain, to decipher cursive script. Artificial cursive script recognizers do not
have access to a comparable source of knowledge or of comparable computa-
tional power to perform top-down processing. Therefore, in an artificial script
recognizer, there is a strong demand for reliable bottom-up processing. For the
recognition of unrestricted script consisting of arbitrary character sequences,
on-line recorded handwriting signals offer a more solid basis than the opti-
cally obtained grey-scale image of a written pen trace, because of the tempo-
ral information and the inherent vectorial description of shape. The enhanced
bottom-up processing is based on implementing knowledge of the motor sys-
tem in the handwriting recognition system. The bottom-up information will
already be sufficient to recognize clearly written and unambiguous input. How-
ever, ambiguous shape sequences, such as /m/ vs /n../ or /d/ vs /cl/, and
sloppy stroke patterns still require top-down processing. The present paper
discusses the handwriting recognition system as being developed at the NICI.
The system contains six major modules: (1) On-line digitizing, pre-processing
of the movements and segmentation into strokes. (2) Normalization of global
handwriting parameters. (3) Extraction of motorically invariant, real-valued,
feature values per stroke to form a multi-dimensional feature vector and subse-
quent feature vector quantization by a self-organizing two-dimensional Koho-
nen network. (4) Allograph construction, using a second network of transition
probabilities between cell activation patterns of the Kohonen network. (5) Op-
tional word hypothesization. (6) The system has to be trained by supervised
learning, the user indicating prototypical stroke sequences and their symbolic
interpretation (letter or N-gram naming).

9.1 Introduction

There are many advantages if data can be entered into a computer via handwrit-
ing rather than via typing (Teulings, Schomaker & Maarse, 1988). These advantages
are acknowledged by hardware manufacturers who are testing the market with ’elec-
tronic paper’ with built-in computer systems for recognizing elementary pen move-
ments (e.g., Hayes, 1989). Electronic paper consists of an integrated liquid crystal
display (LCD) plus digitizer. Although the user acceptance of this kind of hardware
will depend on the solution of some technical and ergonomical problems that are
currently present (visual parallax, surface texture, stylus wire), it seems relevant
to develop on-line handwriting recognition systems for unconstrained handwriting.
Several commercial systems exist that recognize on-line handprint, but cursive script
recognition has still not been solved satisfactorily (Tappert et al., 1988). Ideally, a
recognition system should be able to recognize both handprint, for accuracy, and
cursive script, for optimal writing speed. However, the major problem in cursive-
script recognition is the segmentation of a word into its constituting allographs prior
to recognizing them, while the allographs have different numbers of strokes (Maier,
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1986). Indeed, even for human readers cursive script is sometimes ambiguous. One
advantage of on-line recognition is that in case the system is not able to disam-
biguate, the correct output can be provided by the user interactively. However, the
most important advantage of including on-line movement information is, that it
contains more information than the unthinned, quantized images of the optically
digitized pen traces. Consider for instance the final allograph /m/ which may ap-
pear in the spatial domain as a single horizontal curl, but in the time domain still
displays the three pen-speed minima. This kind of extra information is needed to
compensate for the large amount of top-down processing done by the ’understand-
ing’ human reader of handwriting. The enhanced bottom-up processing is based on
implementing knowledge of the motor system in the handwriting recognition system.
Our efforts to introduce handwriting as an acceptable skill in the office environment
has resulted in a multinational consortium (PAPYRUS) aimed at building software
and hardware for a simple electronic note book, allowing the user to enter data into
a computer without using a keyboard.

In Teulings et al. (1987) a modular architecture for the low-level bottom-up analy-
sis of handwriting was introduced, our so-called Virtual Handwriting System (VHS).
The present paper discusses the handwriting recognition system as being developed
at the NICI. The system contains six major modules which are also found in several
other recognition systems (e.g., Srihari & Bozinovic, 1987, for off-line handwriting).

1. On-line recording of handwriting, pre-processing consisting of lowpass filtering
and differentiation and finally, segmentation into intended movement units
(’strokes’).

2. Normalization of various motorical degrees of freedom.

3. Computation of feature values (’feature vector’) per stroke which are motor
invariants or salient to the human perceptual system, followed by the quanti-
zation of stroke shapes using a self-organizing Kohonen network.

4. Construction of letter (allographic) hypotheses from sequences of quantized
strokes.

5. Construction of word hypotheses from sequences of allographic hypotheses.

6. Supervised learning of the relation between stroke-vector sequences and allo-
graphs.

Below, these modules will be discussed in terms of their purpose, the knowledge of
the motor system or the perceptual system used, its realization and its performance.

9.2 Recording, Pre-processing, and Segmentation

Purpose.
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The pre-processing stage consists of all operations needed to provide a solid base
for further processing. At this stage the data consist of a continuous signal without
any structure. The first operation is to split the continuous signal into batches that
can be processed separately. We suggest that a word is the easiest batch to be
processed. Then for each word, the signal, containing noise from different sources
(e.g., the digitizing device), is low-pass filtered. Finally the continuous movement
is segmented into basic movement units. Knowledge of the human motor system
provides an empirically and theoretically basis for the segmentation heuristics.

Motor system.

The control of the muscles involved in producing the writing movements is of
a ballistic nature: each stroke has only a single velocity maximum (Maarse et al.,
1987) and a typical duration between 90 and 150 ms. Shorter-lasting motorical ac-
tions are very unlikely to be the result of intentional muscle contractions. For an
appropriate pre-processing it is relevant to understand the frequency spectrum of
handwriting movements. The displacement spectrum contains a large portion of very
low-frequency activity, mainly due to the ramp-like shape of the horizontal displace-
ment. This is not true for pen movement direction and velocity. The latter signal
is estimated by calculating the first time derivative. The differentiation suppresses
the low-frequency components that are present in the displacement spectrum, and a
more informative spectral shape emerges. In Teulings & Maarse (1984) it has been
shown that the velocity amplitude spectrum is virtually flat from 1 to 5 Hz where
it has a small peak and then declines to approach the noise level at about 10 Hz.
Therefore, a low-pass filter with a flat pass band from zero to 10 Hz will remove the
high-frequency noise portion of the signal while leaving the relevant spectral com-
ponents of the handwriting movement unaltered. In order to prevent oscillations
(Gibbs phenomenon) it has been shown that the transition band should not be too
narrow (e.g., at least 8/3 of the width of the passband). From the bandwidth of
at least 5 Hz follows that the movement can be most parsimoniously represented
by about 10 samples per second. Since the endpoints of the strokes appear to be
about 100 ms apart, the time and position of the stroke endpoints as determined by
two consecutive minima in the absolute velocity are a good basis for reconstruction
(Plamondon & Maarse, 1989). Points of minimum velocity correspond with peaks
in the curvature (Thomassen & Teulings, 1985).

Realizing that the vertical movements appear to be less irregular than the hori-
zontal progression, Teulings et al., (1987) suggested to weigh the vertical component
higher than the horizontal component in the calculation of a biased absolute velocity
signal (up to factor of 10).

Realization.

Handwriting movements are recorded on a CalComp2500 digitizer with a resolu-
tion of about 0.1 mm and a sampling frequency of 125 Hz using a pen which contains
a solid state transducer to measure the axial pen pressure synchronously with pen
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tip position. A pressure threshold serves as a sensitive pen on/off paper detector.
The data were not corrected for non-simultaneous sampling of x and y (Teulings &
Maarse, 1984) nor for variations of pen tilt (Maarse, Janssen & Dexel, 1988).

Filtering, and time derivation are done using frequency domain fast Fourier trans-
forms. In stroke segmentation, time points are chosen which are about 100 ms or
more apart. This is done by selecting the lowest absolute velocity minimum within
a time window of 50 ms around a given minimum (Teulings & Maarse, 1984).

Word segmentation is not based on particular information of the motor system
but rather on perceptual cues. It is done by detecting a fixed horizontal displacement
while the pen is travelling above the paper beyond the right or the left boundary of
the last pen-down trajectory.

Performance.

The performance of this straight-forward pre-processing does not appear to be
the main source of recognition error in the present system.
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9.3 Normalization

Purpose.

A particular problem in handwriting recognition is its extensive variability. A
given letter can be produced in several ways, each having its own typical shape,
e.g., lower case /a/ vs upper case /A/ or the well-known different variants of the
/t/. The shape variants for a given letter are called allographs. Thus, first there is
the between-allograph variability (I): a writer might select different letter shapes
in different conditions or at free will. Second, there is the within-allograph shape
variation in which the topology of the pattern is not distorted (II), the error source
being (psycho)motor variability. Topology can be defined as the number of strokes
and their coarsely quantized relative endpoint positions. Third, there is the within-
allograph shape variation which actually does distort the topology of the pattern,
by the fusion of two consecutive strokes into a single ballistic movement (III) in
fast and/or sloppy writing. These three types of variabilities will all be prevalent to
some degree under different conditions. Table 1. gives an impression of the estimated
order of these variabilities depending on context and writer. The context of a given
allograph is defined as the identity of the allographic neighbors and the serial position
of the target allograph.

Table 1. The estimated order of the degree of handwriting variability that a script recogni-

tion system has to handle, under different conditions, for all three types (I-III) of variability

(1= minimum variability, 4=maximum variability).

Context

Writer Identical Different

Identical 1 2

Different 3 4

The problem of allographic variation (I) can only be solved by presenting to
the recognition system at least one prototype for each allograph, as they act as
different symbols and we do not suppose that an artificial system will be able to
generalize totally different allographs of the same letter. Also, within-allographic
variation leading to different topologies (III) is handled by presenting each variant
to the system separately in the training stage. Theoretically, however, it should
be possible to recover a ’clean’ topological representation of a fused allograph by
deconvolution, or by auto-regressive techniques (Kondo, 1989). However, a large part
of the within-allographic variation (II), can be solved in the bottom-up analysis by
normalizing the writing pattern, prior to extracting the features and by choosing
relatively invariant features. The importance of normalization will be discussed here
and the choice of invariant features in the next section.
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Motor system.

In order to extract the sequence of feature vectors of the handwriting input,
several normalization steps can be performed (See Thomassen et al., 1988, for an
overview). The reason is that a sample of a person’s handwriting contains various
global subject-specific parameters, like slant or width of the allographs (e.g., Maarse,
Schomaker & Teulings, 1988). Also, the motor system is able to transform hand-
writing deliberately, e.g., changing orientation, size or slant (e.g., Pick & Teulings,
1983). However, these global parameters do not contain any information about the
identity of the characters. Therefore, the handwriting patterns have to be normalized
in terms of orientation, vertical size, and slant (Thomassen et al., 1988).

It may be anticipated that several alternative normalization procedures can be
proposed. We require the system to try them all and to learn to use the most
appropriate ones. As such it resembles Crossman’s (1959) statistical motor-learning
model: a person has a repertoire of several methods for every action and learns with
time which of those is most appropriate.

Realization.

Orientation is defined as the direction of the imaginary base line. Vertical size
consists of three components: body height, ascender height and descender height
relative to the base line. Slant is defined as the general direction of the vertical
down strokes in handwriting (e.g., Maarse & Thomassen, 1983). The normalization
consists of estimating these parameters and then performing a normalization by a
linear planar transformation towards horizontal orientation and upright.

Various algorithms to estimate the parameters for each normalization step are
available and not every algorithm may be appropriate in all conditions. Averaging
these estimates is probably not the best choice because one estimator (’demon’) may
be totally wrong. A sub-optimal choice of the orientation, for instance, has dramatic
effects in the subsequent normalization of size or slant. The solution we propose is
to have the system select the best available, unused estimator using the estimators’
current confidence and the proven correctness in the past using a Bayesian approach
(Teulings et al., 1990). This prevents an exponential increase in computational de-
mands with an increasing number of estimator algorithms (demons).

Performance.

The normalization estimators have not yet been evaluated statistically. However,
both in artificial data (using bimodally distributed estimates of different variance)
and in handwriting data (using a prototype system with parallel processes), the
system produces stable and optimized estimates within 30 trials. We observe that
the system backtracks immediately to the normalization level where apparently an
inappropriate estimator was chosen first, after which the second best alternative is
evaluated. Even though calculation is reduced by taking the ’best first’ approach,
a multiple estimator scheme requires a lot of computation. However, due to the
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modularity of the approach, a solution by means of a network of transputers is very
well possible. As we are still in a stage of testing with only two writers this system
was not used currently. Only vertical-size normalization was performed using one
estimator. The effects of vertical size normalization are relatively small as it is only
one of several features. Orientation was standardized by lined paper on the digitizer
and slant can be assumed approximately constant within a writer in a standard
condition (Maarse, Schomaker & Teulings, 1988). However, slant does seem to be
influenced by the orientation of the digitizer if it is located more distally than normal,
e.g., to the right of the keyboard in a typical workstation setting instead of directly
in front of the writer. It was observed that the feature quantization network partially
counteracted these slant variations as evidenced by reconstruction of the handwriting
trace.

9.4 Feature extraction

Purpose.

Each stroke of the normalized handwriting pattern must be quantified in terms
of a set of features, a feature vector, that describes the raw coordinates in a more
parsimonious way. It is important to use features that show a relative invariance
across replications and across different contexts. As a check for the completeness
of the feature set the original pattern must be reconstructable from these features.
Finally, in order to facilitate the subsequent classification and recognition stages
the feature vector itself should be quantized into a lower-dimensional representation
space.

Motor system.

We employ a set of features which is related to the underlying hypothetical mo-
tor commands and which is complemented by a few visual features. The feature
vector comprises 14 features. Only nine of them are related to the stroke itself
whereas five refer to the previous or the following stroke and are included to capture
between-stroke context effects. The procedure to select appropriate features is to
write a number of identical patterns (e.g., 16) at two speed conditions (normal and
at higher speed, respectively). The invariance of a feature of a particular stroke in
those patterns can be tested by estimating its Signal-to-Noise Ratio (SNR) (Teul-
ings et al., 1986). The advantage is that SNRs of totally different features can be
compared and the ones with the highest SNR can be selected. The preliminary data
presented here are based on the central 28 strokes of the word ’elementary’ produced
by one subject. It appears that the SNRs are remarkably constant between the two
speed conditions such that only the averages are presented. In order to assess the
invariance across conditions, the between-condition correlation of the average stroke
patterns of a feature is employed.

The features currently employed are:
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(a) The vertical positions of the beginning (Yb) and end of a stroke (Ye) relative
to the base line and the path length of the stroke (S) all scaled to the average body
height, also called x-height, referring to the lower case x. In Teulings et al. (1986) it
has been indicated that especially the relative (vertical) stroke sizes are invariant.
The SNRs of Ye or Yb are 4.9, and the SNR of S is 4.7, which are typical values for
spatial characteristics. The between-condition correlations are as high as 0.99.

(b) The directions φn of the five, straight stroke segments between two subsequent
points corresponding with the time moments

t = t1 + (n/5) ∗ (t2 − t1),

where t1 and t2 are the time moments of beginning and end of the stroke and
n = [0, 1, ..., 5], i.e., (φ1, φ2, φ3, φ4, φ5). Here we explicitly use dynamic movement
information. The rationale is that in equal time intervals the movement direction
is changing a relatively constant amount (e.g., Thomassen & Teulings, 1985) such
that each new stroke segment adds an equal amount of new information. The two
previous and the two following stroke segments (respectively, φb4, φb5, and φe1, φe2)
are included as well in order to capture the stroke’s context. The SNRs of φ1, ...φ5,
are, 7.2, 8.7, 6.3, 2.1, and 1.2, respectively, and the between-condition correlations are
higher than 0.92. It can be seen that the directions of the first three stroke segments
are highly invariant both within and between conditions. However, the latter two
stroke segments show a relatively low SNR but they are kept in the feature vector
as they are important to reconstruct the stroke shapes.

(c) The size of the enclosed area between the end of the stroke and the subsequent
stroke (λe) is rather a visually salient feature. The SNR of λe is 5.6 and the between-
condition correlation is as high as 0.999.

(d) A pen up indicator (P ), which shows whether the pen is predominantly up
or down during a stroke. It may be noted that strokes above the paper also count
as strokes. As this is a rather coarse binary signal we refrained from presenting any
statistics.

In summary, the selected features show absolutely high SNRs and high between-
condition correlations which indicates that these features contain the basic informa-
tion, which constrains the actual movement. As such, these features are attractive
to use in a recognition system. Whether this set of features is also a complete one,
can only be demonstrated empirically.

Realization.

It is trivial to estimate the feature values per stroke. It is, however, less trivial
to quantify the distance between feature vectors. An elegant method to solve the
problem of irregularly shaped probability distribution functions of the feature vector
of classes is vector quantization by an artificial self-organizing neural network (Ko-
honen, 1984; Morasso, 1989; Morasso et al., 1990). This type of network performs,
in a non-supervised way, a tesselation of cell units into regions, each corresponding
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to a particular prototypical feature vector. The statistical properties of the train-
ing set of feature vectors will determine the emergence of the prototypical feature
vector set. We have used a 20x20 network. Bubble radius and learning constant α
decrease linearly with the number of iterations, from 20 to 1 and from 0.8 to 0.2,
respectively. The shape of the connectivity within a bubble was a monopolar and
positive rectangular boxcar. The total set of strokes was presented 100 times to the
network. Cells representing a quantized vector were arranged in a hexagonal grid.

The completeness of the reduced data is tested by two reconstruction methods.
In the first method, the writing trace is reconstructed from the sequence of feature
vectors. An average Euclidean distance measure between reconstructed and original
pattern is used to express the accuracy of reconstruction, and thus, the quality of
the segmentation procedure as well as the information value of the selected features.
In the second method, each feature vector is presented to the Kohonen network,
and will be substituted by the nearest prototypical feature vector. The sequence of
strokes thus yields a sequence of prototypical feature vectors that can be used to
reconstruct the original trace in a similar way as described above. The accuracy of
this reconstruction yields a second distance measure. It indicates the quality of the
feature vector quantization imposed by the Kohonen network.

Performance.

The patterns produced by both reconstruction methods are legible, which is in
fact the crucial criterion rather than a spatial goodness of fit. Furthermore, the
reconstructed patterns lack individual and context-dependent characteristics which
stresses that the selected features reduce the writer dependence as well. For example,
slant variations due to imperfect normalization will be counteracted by the Kohonen
network as single strokes are attracted to their closest, general prototypes.

9.5 Allograph hypothesization

Purpose.

At this stage the writing pattern is represented as a sequence of prototypical
strokes. In earlier experiments, we have used a Viterbi algorithm using a lexicon of
allographs. Each prototypical allograph was represented by its average feature vector
(no feature vector quantization was performed). A Euclidian distance measure was
used that was adapted to angular measures (Teulings et al, 1990). The problem with
this approach was, that for a given stroke position, there is a distance measure with
each of the M=26 prototypes. Solution space is a matrix of MxN, where N is the
number of stroke positions. Since the allographs mostly have an unequal number of
strokes, the plain Viterbi algorithm could not be used. Instead an iterative version
was developed, trying to recognize 1-stroke solutions, 2-stroke-solutions, and so on,
until the N-stroke solution. The path cost factor was the modified Euclidean dis-
tance, optionally combined with a digram transition probability, each term having
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its own weight. The results of this technique were rather poor so we decided to find
a method that yields a smaller solution space, on the basis of quantized feature vec-
tors. Another approach used was to use 6 feedforward perceptrons, (Nx400)x160x26,
trained by back propagation, one perceptron for each class of N-stroked allographs,
N=1,...,6. This approach, too, yielded too many hypotheses in the MxN matrix.
This problem can possibly be alleviated to some extent by introducing competition
among the output layers of different perceptrons. Another solution is proposed by
Skrzypek & Hoffman (1989), who introduce a final judgment perceptron to combine
the output of the N lower layers. The problem is, however, that for the recognition
of varying-length temporal patterns, an optimal neural architecture does not exist,
yet. Of the known architectures, recurrent nets (Jordan, 1985) are hampered by
their limited ability to handle long sequences. Temporal flow nets (Stornetta et al.,
1987; Watrous & Shastri, 1987) are currently being tested in speech recognition.

Motor system.

In Teulings et al. (1983) it was indicated that complete allographs are proba-
bly stored at the level of long-term motor memory. An interesting question is to
what extent the strokes belonging to one allograph have to be kept together and
whether the strokes of different realizations of the same allograph may be assembled
to yield a new allograph. The directions of the stroke segments introduced before
(i.e., φb4, φb5, φ1, ...) show that the correlations between subsequent stroke segments
within one stroke range between 0.69 and 0.90 (mean 0.80) whereas the correla-
tions between subsequent stroke segments across the separation of two strokes range
between 0.47 and 0.53 (mean 0.50). This implies that even in identical contexts,
subsequent strokes are relatively independent. This suggests indeed that allographs
are probably built up of different strokes that may be assembled from other similar
allographs.

Realization.

Rather than performing a template matching between prototypical allographs
and an input sequence of strokes, the method we developed at this stage is based on
the idea of an active construction of allograph hypotheses. This is done by a neu-
rally inspired algorithm. Once the writer has labeled allographs interactively, and
thus created a data base covering a wide range of allographs in different contexts,
the system collects, for each prototypical stroke, its possible interpretations. The
representation is based on the reasonable assumption that the fundamental (root)
feature of an allograph is its number of strokes. Thus, two allographs are definitely
different if their number of strokes differs. Each stroke interpretation has the general
form Name(Istroke/Nstroke). Thus, a given stroke may be interpreted as representing
one element of the set {a(1/3), d(1/3), o(1/2), c(1/1)}. The construction of an allo-
graph is a left-to-right process, where the activation level of an allograph hypothesis
increases stepwise with each interpretation that is a continuation of a previously
started trace. The advantage over storing prototypical allographs is evident: after
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labeling three, 3-stroked sequences, each representing the allograph /a/, the net-
work will recognize an /a/ that corresponds to any one of the 27 combinations. The
method does not exclude the use of digrams or trigrams as graphical entities. How-
ever, the computational load on a sequential computer will increase quadratically
with an increasing number of interpretations per prototypical stroke, so the use of
trigrams is impractical.

Performance.

Table 2 presents the recognition results of two types of handwriting. In Section
6. the training procedures have been reported for each of the two writers. It may be
stated that these results have been achieved on unrestricted cursive script of lower
case letters without the use of linguistic post processing by means of a lexicon. On
the other hand, the data are optimistic as in case of alternative allograph hypotheses
(on average about 2 alternatives) the appropriate one was accepted. This was done
under the assumption that only linguistic post-processing will be able to solve these
true ambiguities. For instance, /u/ and /n/ are sometimes written identically.

Table 2. The recognition rates of allographs and of allograph strokes of five different text

samples from two writers.

Subj. Text Words Time Allo- Recog- Strokes Strokes in Recog-
graphs nized allographs nized

# (s) # # % # # # %

A AP87 40 281 236 153 65 668 525 368 70
A FE90 51 224 275 243 88 862 702 657 94
A TEKST 51 89 262 198 76 755 633 542 86
B TEST1 54 221 299 209 70 987 786 544 69
B TEST2 60 234 300 229 76 965 813 608 75

Note the difference between the number of strokes that is actually part of an
allograph and the total number of strokes. Apparently 18.4% of all strokes cannot
be attributed to letters because they are connecting strokes, hesitation fragments, or
editing movements. Note that there has been no post processing in any sense. Figure
1 gives an impression of the processing stages and the solution space for the word
/aquarel/. In the reconstructed patterns, circles indicate detection of a loop (λe 6= 0).
Going from bottom to top, the solution space (d) is liberally filled with hypotheses
of decreasing length as expressed in number of strokes. Shorter hypotheses may ’fall
down’ in holes that are not filled by hypotheses of greater length. Each ’-’ indicates
an allograph stroke, a ’*’ indicates a stroke that is not part of an allograph in the
target word.

5from the sequence of feature vectors, (c) reconstruction from the 5space, and (e)
the classification (target word) as provided by the user.



Recognition 195



196

9.6 Optional word hypothesization

Purpose.

Apart from yielding a list of hypothesized allographs the bottom-up information
contains also information to narrow down the number of possibly written words
in a word lexicon. The word in the list with the minimum distance from a word
in the lexicon can be selected. However, if the bottom-up process is rather certain
of a given hypothesized word, then it seems superfluous to use additional lexical
top-down processing.

Motor system and Perceptual system.

It is known that when writing redundant character sequences (i.e., words or parts
of words that could be recovered with a lexicon of words) the writer uses less efforts
to produce the allographs neatly.

From human reading research we know that ascenders and descenders (i.e., the
contour) are strong cues to recognize the presented word, similar to the function of
consonants in speech recognition.

Realization.

For the coding of the ascender and descender contour of a word the following
coding scheme is proposed. Contours are assumed to be equal if their pattern of
ascenders, descenders, and body-sized objects correspond. The body-size characters
/a,c,e,i,m,n,o,r,s,u,v,w,x,z/ are recoded as ”o”, the descender stroke of /g,j,p,q,y/
is recoded as ”j”, the ascender stroke of /b,d,h,k,l,t/ is recoded as ”l”, whereas the
/f/ is a unique class ”f” because it spans both the ascender and descender area in
cursive script. In this coding, a /b/ is a combination of an ascender object and a
body-sized object, i.e., ”lo”. This coding assumes that the letters as such have been
identified. However, if a repetition of N body-size characters N”o” is coded by ”x”,
a compressed coding is formed which is not based on the number of letters in a
word. For instance, the word ’they’ can be coded by ”lloooj” in letter-dependent
code, and by ”llxj” in compressed code. For the time being no special attention is
paid to the allographs with dots /i,j/.

Performance.

Although the word-hypothesization stage has not yet been integrated it is of
interest to mention its potential performance. Letter-dependent contour coding of
a Dutch lexicon of 48000 common words yielded a collision of 4 word hypotheses
on average for a given code pattern, with a worst case of 398 collisions for the code
”oooooo”. A number of 84.5% of the codes has a number of collisions less or equal
to the average of 4. Modal code pattern length was 9 codes.
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Compressed contour coding yielded an average collision of 24 word hypotheses,
with a worst case of 1953 collisions for the code ”xlx”. In this case, a number of
89.3% of the codes has a number of collisions less or equal to the average of 24.
Modal code pattern length was 5 codes.

The consequences of these figures for recognition are the following. First, letter-
dependent coding is practically of no use since it is the letter identification itself
which is the objective in cursive script recognition. Thus, only compressed contour
coding is useful. The actual gain depends on the linguistic frequencies of the words
in the different code groups. These frequencies are currently being analyzed.

9.7 Supervised learning

Purpose.

Before a cursive-script recognition system is ready to work, it has to learn how to
segment a writing pattern in the to-be-recognized allographs. The segmentation into
allographs of handprint, with sufficient distance between individual allographs (e.g.,
spaced discrete characters, Tappert, 1986), would be relatively straightforward. If
the written text is available, the learning module could just assign each allograph
within the context of a word to a character. Although it is a rather cumbersome
task to teach a system each allograph that may occur in a person’s handwriting,
it is currently still the most reliable procedure. The reason is that the allograph
boundaries in cursive script have to be specified somehow.

Several methods for performing this task in a non-supervised fashion are being
developed (Morasso et al., 1990; Teulings et al., 1990). Maier (1986) tried to segment
an unknown writing trace into allographs using a-priori assumptions about the shape
of the connecting strokes between allographs. However, such a method produces
persistent errors (e.g., segmenting allographs like cursive /b,v,w,u/, or /y/ into two
parts). Therefore, teaching is presently done interactively by the user.

Perceptual system.

Although this stage is rather artificial it is still important to make the job as
ergonomic as possible. During supervised learning the experimenter has to tell the
system which parts of the handwriting trace belong to which allograph. It is rela-
tively easy for the perceptual system if the user has to point only to complete strokes
belong to a certain allograph. The initial connecting stroke of the cursive allographs
/a,c,d,g,i,j,m,n,o,p,q,u,x/ and /y/ is not included and the initial connecting stroke
of the cursive allographs /b,e,f,h,k,l,r,s,t,v,w/ and /z/ is included because it forms
a strong perceptual cue for these allographs.
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Realization.

The software tool to teach the system the allographs displays a writing pattern
with small circle markers on each stroke. The markers indicating the initial and
final strokes of an allograph and the name of the allograph are successively clicked
by using the mouse. Occasionally, N-gram names have to be entered by means of
the keyboard. The naming of N-grams is needed when two allographs regularly
’melt’ together because of increased writing speed. Typical fused digrams in Dutch
handwriting are /or/, /er/, and /en/ in many writers.

Performance.

Once the procedure is running smoothly it takes on average 5 s per allograph to
teach the system. After the teaching phase all allographs and their names can be
made visible in order to assure that no mistakes have been made. Two handwritings
were trained. The first handwriting (Writer A) was a neat constant-size handwrit-
ing and was trained incrementally up to 1671 prototypes by exposing the system to
characters it could not discriminate or recognize well. The average number of strokes
per allograph was 4.7. The second handwriting (Writer B) was a normal handwrit-
ing with considerable variation of allograph sizes with words. The allographs were
trained from an a priori determined story of 240 words with low word frequencies.
The script contained 1366 allographs (a posteriori), the average number of strokes
per allograph being 2.9. The total script was written in 16 minutes.

9.8 Conclusion

It seems that the complex software system requires a powerful machine. A system
inspired by the human motor system and the human perceptual system may seem to
confine itself artificially. However, we see that the architecture is a very modular one
(vertical modularity) and allows parallel modules (horizontal modularity). Problems
can be very well located in one or two levels of the system. As such it seems that can
be extended and tested relatively easily. The word hypothesization based on varying-
length input sequences containing meaningless objects (e.g., connecting strokes) is
currently a problem that has been solved only partially. It is to be hoped that robust
artificial neural network models, handling noisy sequential data of unbounded lenght,
will evolve in the future. This capability will be of special importance in languages
like, e.g., German and Dutch, where nouns and prepositions plus nouns may be
concatenated to form strings that are unlikely to be an entry in a standard lexicon.



199

9.9 References

Crossman, E.R.F.W. (1959). A theory of the acquisition of a speed-skill. Ergonomics,
1959, 2, 153-166.

Hayes, F. (1989). True notebook computing arrives. Byte,14, 94-95.
Jordan, M.I. (1985). The learning of representations for sequential performance.

Doctoral dissertation. University of California, San Diego, pp. 1-160.
Kohonen, T. (1984). Self-organisation and associative memory. Berlin: Springer.
Kondo, S. (1989). A model of the handwriting process and stroke-structure of

character-figures. In R. Plamondon, C.Y. Suen, M. Simner (Eds.), Computer
recognition and human production of handwriting (pp. 103-118). Singapore:
World Scientific.

Maarse, F.J., Janssen, H.J.J., & Dexel, F. (1988). A special pen for an XY tablet. In
F.J. Maarse, L.J.M. Mulder, W.P.B. Sjouw & A.E. Akkerman (Eds.), Computers
in psychology: Methods, instrumentation, and psychodiagnostics (pp. 133-139).
Amsterdam: Swets & Zeitlinger.

Maarse, F.J., Meulenbroek, R.G.J., Teulings, H.-L., & Thomassen, A.J.W.M. (1987).
Computational measures for ballisticity in handwriting. In R. Plamondon, C.Y.
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Summary

This study concerns the processes that take place from the moment that a writer
wants to write down a given word, until one can inspect the finished result. What
types of transformation are needed, going from planned word to muscle contraction?
The approach followed is based on the assumption that new insights can be gained
by trying to build a working generative computer model of handwriting. Chapter 1
deals with the theoretical aspects of modeling processes of motor control. Many view-
points reveal essential aspects of motor control, but no single viewpoint will suffice to
provide the building blocks for a working model of handwriting production. Hence,
a ”vertical” approach is taken, adopting the necessary components for the different
processing levels from cybernetics, cognitive motor theory, robotics, and connec-
tionism. Chapter 2 discusses an important aspect of the pen-tip kinematics during
cursive writing: How reproducible are replications of writing movements recorded on
different occasions? Only if movements are actually reproducible, it makes sense to
develop a handwriting production model. This chapter forms the starting point of
the development of the model, since it shows that invariance and replicatability are
indeed present in movement patterns with the duration of at least a single letter.
Chapter 3 presents a computer model of handwriting. One of the basic problems
that have to be solved is concerned with the transformation of discrete entities, i.e.,
the symbolic representation of a planned letter shape (allograph), into a continuous
multi-dimensional time function, i.e., the movement of the pen tip. This problem
is tackled with the assumption that strokes are the basic segments in handwriting.
The number of strokes is known to exert a quantized influence on the reaction time
in the programming of handwriting movements by a human writer. In the model, a
parsimonious parametrization of the strokes is used, which is based on transforming
a shape factor into differential timing. Based on findings which indicate that the
motor programs in cursive handwriting involve movement patterns of this size, the
model aims at handwriting production that proceeds letter by letter. Consequently,
a grammar, dubbed the Cursive Connections Grammar, providing rules for gener-
ating connecting strokes between two planned letters is proposed. Up to this point
in the thesis, the model has only been concerned with the kinematics of the pen-tip
movement. However, the important question may be asked if movement kinemat-
ics are the only domain which is controlled by ”motor programs” for handwriting
production. Apart from the intrinsic forces that generate movement, the pen is in
contact with the writing surface, yielding normal force and friction. Thus, in Chap-
ter 4, a kinetic aspect of writing is studied: What happens to axial pen force during
the production of several types of movement patterns and what are the implications
for movement control as specified in the working model? It appears that pen-force
fluctuations are not a passive biomechanical phenomenon. Also, in most writers, the
pen-force pattern during letters is invariant across replications, which supports the
notion that pen force is a separate domain. Pen-force control and compliance appear
to be embedded in the ”motor programs” for letter production, in an idiosyncratic,
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writer-dependent fashion. In Chapter 5, a change of perspective takes place. It is
noted that there are some limitations inherent to a symbolical modeling approach,
especially with respect to low-level processes in handwriting control. A review of
basic artificial neural-network models is presented and their potential use both in
modeling handwriting movement control and in handwriting recognition is assessed.
In the following chapters, three basic issues are raised with respect to motor model-
ing: The coding of quantity, the representation of time, and the representation of the
effector system by neurally inspired models. Chapter 6 deals with the representation
of quantity. Differences between basic types of coding are described: Firing-rate con-
trol, value-unit coding, and recruitment. In Chapter 7, the representation of time in
neural systems and the learning of handwriting time functions are addressed. A new
neural-network model of the production of time functions is proposed, consisting
of an ensemble of neuron-interneuron spike oscillators. The last of the three neural
modeling experiments is described in Chapter 8 and concerns the problems of the
representation of an effector. A planar arm with three degrees of freedom is used to
compare two neural-network models and their ability to learn the transformation of
two-dimensional target-movement patterns into three-dimensional joint-angle pat-
terns, i.e., the inverse-kinematics problem. The neural-network models are trained
by random generation of arm movements (”motor babbling”). A final interesting
and relevant problem is computer recognition of handwriting movements which is
the focus of Chapter 9. Part of the knowledge gathered thus far in simulating the
production of cursive handwriting and in neural-network proved to be helpful in the
automatic recognition of handwriting movements as recorded on-line with a digi-
tizing tablet. An algorithm is proposed that performs recognition by actively con-
structing letter (allograph) hypotheses on the basis of chains of individual strokes,
instead of storing prototypical allographs and performing template matching.



Samenvatting

Simulatie en herkenning van schrijfbewegingen

Een verticale benadering van de modelvorming
op het gebied van de menselijke motoriek

Dit proefschrift heeft betrekking op de processen die plaatsvinden vanaf het
moment dat de schrijver een gegeven woord wil opschrijven, tot het moment
dat hij of zij het schrijfproduct kan inspecteren. Welke soorten transformaties
zijn er vereist, van woord tot spiercontractie? De hier gevolgde benadering is
gebaseerd op de assumptie dat nieuwe inzichten kunnen worden verkregen door
een werkend, generatief computermodel van het cursieve schrijven te ontwikkelen.
Hoofdstuk 1 behandelt de theoretische aspecten van modelvorming op het gebied van
motorische processen. Meerdere gezichtspunten verduidelijken essentiële aspecten
van de motoriek, maar er is momenteel geen enkel theoretisch gezichtspunt
dat de bouwstenen kan aandragen voor een werkend (computer-)model van de
schrijfbeweging. Daarom wordt in dit proefschrift een ”verticale” aanpak gevolgd,
waarbij de noodzakelijke componenten van de verschillende verwerkingsniveaus
ontleend zijn aan de cybernetica, de cognitieve motorische theorie, de robotica en het
connectionisme. Hoofdstuk 2 beschrijft een belangrijk aspect van de kinematica van
de penpunt gedurende het cursieve schrijven: hoe reproduceerbaar zijn replicaties
van schrijfbewegingen die op verschillende momenten geregistreerd zijn? Immers,
alleen als de bewegingspatronen feitelijk reproduceerbaar zijn, heeft het zin om
een model van de productie van handschrift te ontwikkelen. Dit hoofdstuk is
een aanknopingspunt voor het ontwikkelen van een dergelijk model omdat wordt
aangetoond dat er een hoge mate van invariantie en repliceerbaarheid is van
bewegingspatronen met een duur van minstens een letter. Hoofdstuk 3 beschrijft een
computationeel model van het schrijven. Eén van de basisproblemen die opgelost
moeten worden betreft de transformatie van discrete entiteiten (de symbolische
representaties van ”geplande” lettervormen of allografen), naar een continue,
meerdimensionele tijdfunctie (de bewegingen van de penpunt). Dit probleem wordt
benaderd door uit te gaan van de bevinding dat er fundamentele eenheden in
de schrijfbeweging zijn, te weten ”halen”, waarvan het aantal een gekwantiseerde
invloed heeft op de reactietijd bij het programmeren van schrijfbewegingen door de
menselijke schrijver. In het model wordt een spaarzame parametrisatie van de haal
gebruikt, die gebaseerd is op de transformatie van een vormfactor naar differentiële
”timing”. Het model richt zich op de productie van handschrift die letter voor
letter voortschrijdt. Dit uitgangspunt wordt ondersteund door bevindingen dat de
”motor programma’s” in het cursieve schrijven de omvang van een letter hebben.
Een grammatica (Cursive Connections Grammar) wordt gëıntroduceerd, die de
regels bevat voor het genereren van verbindingshalen tussen twee opeenvolgende
”geplande” letters. Tot op dit punt in het proefschrift is alleen de kinematica
van de penpunt aan de orde geweest. Men kan zich afvragen of dit het enige
domein is dat gestuurd wordt door ”motor programma’s”. Nog afgezien van de
intrinsieke krachten die nodig zijn voor het genereren van de beweging, geldt dat
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de pen in contact is met het schrijfoppervlak, hetgeen leidt tot een normaalkracht,
en een daaruit voortvloeiende wrijving gedurende de beweging. Daarom wordt in
hoofdstuk 4 een kinetisch (d.w.z. krachts-) aspect van het schrijven bestudeerd.
Wat gebeurt er met de axiale penkracht (pendruk) gedurende de productie van
verschillende typen van bewegingspatronen en wat zijn de implicaties voor de sturing
van de penbeweging zoals die in het werkend model worden gespecificeerd? Het
blijkt dat de fluctuaties in de axiale penkracht geen passief biomechanisch fenomeen
zijn. Tegelijkertijd echter zijn bij de meeste schrijvers de krachtspatronen gedurende
het schrijven van een bepaalde letter reproduceerbaar over meerdere replicaties.
Deze bevinding is een ondersteuning van de opvatting dat penkracht apart geregeld
wordt vanuit het centrale zenuwstelsel. Het lijkt erop dat de krachtsregeling in de
”motor programma’s” is verdisconteerd, op een voor elke schrijver idiosyncratische
wijze. In hoofdstuk 5 treedt een verandering van perspectief op. Enige inherente
beperkingen van het in hoofdstuk 3 gehanteerde symbolische model, met name
wat betreft de lage-orde aspecten van de motoriek worden behandeld vanuit de
optiek van het connectionisme (kunstmatige neurale netwerkmodellen). Er wordt
een overzicht gepresenteerd van een aantal bestaande neurale netwerkmodellen.
Tevens wordt hun potentiëel belang voor de modelvorming op het gebied van de
motoriek van het schrijven bekeken. In de hierop volgende hoofdstukken worden
drie fundamentele onderwerpen behandeld met betrekking tot netwerkmodellen
van de motoriek: de codering van kwantiteit, de representatie van tijd en de
representatie van het effectorsysteem. Hoofdstuk 6 behandelt de representatie van
kwantiteit. De verschillen tussen drie bekende neurofysiologische typen codering
(vuurfrequentiesturing, topologische ”value unit” codering en recrutering) worden
beschreven in de context van het leren van een non-lineaire functie door een
meerlaagsperceptron. In hoofdstuk 7 komt de representatie van tijd in neurale
netwerken en het leren van handschrift-tijdfuncties aan de orde. Een nieuw neuraal
netwerkmodel voor de productie van temporele patronen wordt gëıntroduceerd,
bestaande uit een ensemble van neuron-interneuron puls-oscillatoren. In hoofdstuk 8
komt vervolgens de representatie van het effectorsysteem aan de orde. Hier
wordt uitgegaan van een eenvoudige twee-dimensionele schrijfarm met drie
vrijheidsgraden. Er wordt onderzocht in welke mate twee verschillende neurale
netwerkmodellen in staat zijn om de transformatie van ”geplande” twee-dimensionele
penpuntbewegingen naar een drie-dimensionele tijdfunctie van gewrichtshoeken te
leren. Dit wordt gedaan op basis van een willekeurig verlopend leerproces (”motor
babbling”). Hoofdstuk 9 betreft de herkenning van schrijfbewegingen met behulp
van de computer. Een deel van het eerder beschreven onderzoek bleek zeer wel
bruikbaar te zijn bij de automatische herkenning van handschrift zoals dit ”on-line”
met een schrijftablet door de computer ingelezen wordt. Er wordt een algoritme
voorgesteld waarin de herkenning van allografen berust op een actieve constructie
van letterhypothesen op basis van de binnenkomende halenreeksen, in plaats van
een passieve vormvergelijking met eerder opgeslagen gehele lettervormen.
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