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6 Conclusions

A segmentation method suitable for application to unconstrained discretely writlen words
of variable length bas been outlined. Word length estimation and the control structure
utilize digit and character recognition results to help accurately segment word images. On
discretely written words composed of digits, word length estimation is very accurale and a
high satislaclory segmentation rate is achieved. Hesults on a wider class of an bomatically
located words are understandably lower but, further research in character recognition and
cupsive script bechniques will improve performance. The study en interaction with the
recognition syslem will continue and larger Lests will be conducted.
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Abstract

A cursive-seripd recognizer has (o be trained using an extensive data base of & person’s own handwridng, In arder
Lo train the recognizer, scparate lefters in their context of cursive script have o be ienified first. An subomatic
procedure, which segments cursive scripl into letters before the recognizer has 2 chance to lenm the leuters, would
facilitale learning of 8 new person's handwriting by the mecognizer. In this paper various methods are presenied o
segment oo-line recarded cursive script into leters. One of the methods is o siochastc method imspired by
simulated wnealing. This method i elaborated more exiensively. According w this method begin and end
sirokes of the letters are randomly varied. Only those variations are scoepied that would make identical leieers
have more similar begin and end strokes. Resubis show that the pure simulsted-anealing procedure can be
improved sigeificanty by selecting mainly the worst outhiers. The resubts suggest that this method may yiebd 2
valuable wal for solatieg individual cursve-script leters, excluding oceasional connection sbrokes, such tha
thess letiers can be learsed by the recognizer,

Iniroduction

Two approaches exist for designing a handwriting recognizer allowing recognition of any
kind of handwriting. The first approach is to implement a-priod knowledge about how each
handwrilten letter should look like, occasionally using a trial and error methed (e.g.. Simon &
Baret, 199(x Ouladj et al, 1990). The second approach is to rain the recognizer with
handwriting produced by specific writers (e.g., Schomaker & Teulings, 1990). The latter
training procedure would be relatively straight forward if the writers produce handprini or
separate numbers (Guyon et al., 19%1), but labarious if they are osed w0 produce cursive script,
The difficulty is caused by the fact thai cursive script has to be segmented into leners before
they can be leamt by the recognizer. This paper presents a number of methods to identify
individual letters in cursive seript in their natural contexi, prior 10 leamning thal panicalar
handwriting,

Cursive script represents a less restricted domain than handprint, Therefore variability
within and between writers is greatest in cursive scripl. In order 1o cope with individual
differences of cursive script, a recognizer needs to be trained, using very large numbers of
prototype letters per writer. However, these prototype letters should be produced in their usual
conlext, rather than in isolation like in handprint, in order to obtain representative samples.

Un—supervised learning of ¥rutntgpe allogyraphs in cursive script
recognition using invarian

In J.—C. SEimon & 3. Impedowvo (Ed.?>)

Erum Pixels to Features 111 (pp. &6i-73), Amsterdam: Horth-Holland.
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Of course, the problem of letter segmeniation can be omited by whale-word recogniton,
where the complete paiern of the word is matched with a finite number of patterns of each
word in the recognizer’s data base (Simon & Baret, 1990). A further advantage is that
especially longer wards may be recognized remarkably well. However, a disadvantage is the
less efficient storage of large numbers of word prototypes because for each combination of
letter variations a complete prototype word has 1o be stored. Furthermore, words not stored
cannot be recognized at all even if it is writlen very clearly. Therefore, this approach is
complementary 10 our procedure.

The procedure w follow is that of individual leter recogniton. The advaniage is that only a
few prolotypes pet leiter have 1o be stored. Any sequence of letters may be written and each
letier may be written in various versions (allographs). The procedure of letter recognilion in
cursive script allows far more efMicient storge of the wriling pattems in terms of prototype
letiers and word lists, and allows recognition of clearly and unambiguously written patterns.
However, & major disadvantage is that the cursive-script recognizer will identify many leuers
in overlapping siroke sequences. This causes an explosion of word hypatheses, which remains
o be sorted out by a linguistic postprocessar (e.g., Wells e al, 1990). A linguistic
postprocessor may be as simple as verifying which combination of letter hypotheses yields a
word occuring in a word list or may echo the ‘closest’ word in a word list. Linguisdc
processing may even take place in parallel o the recognition and segmentation of the letiers
(Quladj et al,, 1990). Linguistic processing may resemble whole-word recognition but that is
not true: also words not occuring in the word list may, in principle, be recognized, depending
upan Lhe reliance upon the word lisi. _

Because we prefer the approach of letter recognition in cursive script, and stll allow writers
to produce their own handwriting, it is desirable to train the recognizer with many prowiype
letters in their context, occuring in the writers' handwriting. This does not tum out © be
trivial. In order 1o understand methods 10 obtain prowtype letters & small summary will be
presenied of the low-level processing of on-line cursive script.

Normalizalion and fearure extracrion

In mos! recognizers at least five phases can be discerned: acquisition, normalization, feature
extraction, symbelic patlern recognition, and linguistic postprocessing. Of importance 1o this
paper are normaliztion and fealure extraction,

Normalization concerns global transformations of position, orientaton, size, and slant
which serves removing the non-essendal variations, which are manipulated freely by the
writer. [deally, features should be vinually independent of the non-essential, noisy variations
so that identical letters will have similar features. However, not all variations can be removed
by normalization. For example, identical letters may be produced with wpologically different
shapes. Topologically distinct versions of the same letter are called allographs. The recognizer
ireals different allographs as difTerent letters having the same ASCII represenmtion.

Feature extraction is based on the notion that on-line handwriting is produced by a sequence
of ballistic strokes. Thus a stroke can be defined by two consecutive absalute-velocity minima.
Each stroke is characlerized by a set of features: the feature vector. 50 a cursive-script ward
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consists of a sequence of feature vectors and an allograph consists of a subset of these vectors.
An allograph may count 1 10 8 characteristical strokes, I1 may be noted that we assume thal
letier boundaries are only at stroke boundaries, although one can imagine that in cursive seripl
n stroke may, in part, belong wo a letter.

The stroke features being used in the present paper have been selected an the basis of their
low signal-w-noise ratios across replications within a writer (Schomaker & Teulings, 1990,
The success of the methods of automatic leier segmentation depends on the chaice of the
fealures (Teulings & Schomaker, in prep.). Features which are linle dependent upon molor
noise yield good resulls in the segmentatian, and, of course, yield also consistent promiypes
for the recognizer. The features used are:

(a) The vertical pasitions of the begin and end of a stroke and the path length of the stroke all
scaled to the average x-height, and relative to the base line.

(b) The directions of the five, straight stroke segments belween two subsequent points
corresponding with the time moments

t=t, +(n/5)*(1, -t )

where t | and 1, are the time momenis of begin and end of the stroke and n = [ 1. ..., 5]. Hers
we explicitly use dynamic movement information. The rationale is that in equal time intervals
the movement direction is changing a relatively constont amourt (e.g., Thomassen and
Teulings, 1985) such that each new segment adds an equal amount of information.

(c} The relative size of the enclosed area between the a stroke and the subsequent stroke,
which is rather a visually salient feature.

(d) A pen up indicator, which shows the proportion of time that the pen is up during a stroke.

Words consisting of sequences of strokes, each one characierized by these fealure sets or
feature vectors, need o be segmented into allographs. This requires that the cormect strokes are
assigned to each allograph without using a-priori knowledge of the allographs. Selection of
allographs would be trivial in neat handprint, where a-priori segmentation is possible.
However, in corsive seript segmentation into letters is a problem when the letters are not yet
known,

Methods lfor sutomatical letier segmentation

Several methods exist to abtin cursive script letters in conlext before their recognition. We _
assume that 8 large corpus of cursive script (e.g., 1000 words of 6 leiters on average),
segmented into words, and each ward's ASCII lenter sequence are available. This is relatively
casy for the person whose handwriting has 1o be leamed and does not need 1o cost mare than
the writing time (plus typing time in some cases). We assume here that only lower case lelters
are used. The methods are listed fram highly interactive and laborious w fully non-inleractive.
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Maniual meshod

Each letter boundary in the whole corpus is pointed at manually, casually helped by
automatic guessing procedures. This method is very laborious, introduces many ambiguies
about which connection stroke belongs to which letter, and requires accurale error checking. A
data set like this, once created, could tain all on-line cursive-script recognizers for the
prepared rypes of handwriting.

{acremenial method

The letter baundaries of the first letiers are determined manually and stored into the empry
recognizer's data base of prowtype allographs. Gradually, the recognizer stants identifying (or
selecting the letter boundaries) by itself (Morasso et al., in prep.). This mial and error method
is repeated until most letter boundaries are correcily identified. It may still be a laborious
method depending upon the kind of script and the speed of leaming.

Soowstrap method

The recognizer has somehow learned a type of handwriting and is presented with a new
writer's handwriting, which is only slightly different. While recognizing or selecting letter
boundaries correctly, a new data base of prowypes is built. However, it may be difficuk 1o
bridge larger differences between cursive script,

A-priari connéciion stroke idenigicalion

In Western cursive scripl connection sookes run mostly from the baseline via a cup-shaped
stroke in up-forward direction or show local minima in the lower conlour (Maier, 1986;
Leroux et Salome, 1990). However, many exceptions exist (e.g., u, w, v).

Leasr-squares method

Assume that each letter has a specific number of strokes, mosdy between | and 8. Then N
(of the order of 1000) words wrinen by M (of the order of 100) different leners vield N
equations of M unknown parameters, The equations are normalized with respect to the known
coefficients. The least-squares solulion reguires solving the normal equations. It should be
realized that the number of strokes of a specific allograph and the number of connection
strokes may vary between instances. Although it may be possible w obtain estimates of the
mast likely {integer) numbers of sirakes for each letter, it is still unlikely thal letiers can be
located in the middle of a word by just counting the numbers of strokes belonging 1o the
previous or following letters.

Deterministic method

IF all patterns stanting with the same lener are collected the first and the following strokes
will match well, or, at leas), form a few clusters (one for each allograph). Beyond a certain
stroke the fealure vectors are inconsisient because they may belong 1o any connecdon stroke
or lemer that follows. Interesting is that the first letter may be wrilen according 1o a few

o
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distinct allographs so that a few clusters of feature veclors are found. The largesi cluster
belongs to the most frequently occuring allograph. After the last stroke of the first allograph
the number of clusters suddenly increases (though nol so dramatical if there is still another,
less frequent allograph with more strokes having the same ASCII representation). This yields
the number of strokes of the first allograph. Then, the number of sirokes belonging to the first
letter has been identified. Subsequently, the strokes of the idendfied allograph are remaved
from the corpus of strokes, and the corresponding letier from the corpus of words. The
procedure is repeated until all data have been used (Teulings e1 al., 1990). The advantage of
this method is that, in principle, different allographs may be identified. Furthermore, it can
handle optional initial or connection strokes. In arder i skip the connection strake the patterns
are optimally aligned by shifing some paterns by ane stroke. However, [he major
disadvantage of this method is that several parameters and threshalds are involved which

dramatically determine the ouicome. Furthermore, this method s rather complex and therefore
less atractive.

Patternrequency method

This method does nol require the letrer sequences of the words written in order 1o find
regularities. It rather assumes that the featore veclors form discrete classes, representing the
lopological informadon of a stroke. Quantization of fentures may be less appropriate for
continuously varying cursive script, though. On the other hand, it would also be a simple and
straight forward method which again allaws identification of various allographs for one letter,

Imagine that A, B, C, D, E, and F stand for the 6 different, discrete feature vectors occuring
in n writing pattern of one word consisting of 16 strokes, e.p.:

ABCDEFBDCDEFABAB

then for each stroke i the frequencies of cocurrence of stroke i can be estimated as well as
those of the patterns consisting of strokes i, and i+1, and of the pauem consisting of strokes i,
i+1, and i+2, ec. can be estimated. If more words are included, then the paterns cannot be
extended across word boundaries. Each stroke where these frequencies increase is the
beginning of n new allograph. As can be seen in Table 1, the 2-sequence starting ai the first A
is (A B) and occors 3 times, whereas (B C) is infrequent and (C D) oceurs 2 times. Therefore
at stroke sequence (C D) & new sequence of strokes starts. The length of the latter sequence is

425 (CDEF) occurs 2 times as well but (CDEF B) is again infrequent. Therefore the units
of the sequence are:

(AB) (CDEF) (B) (D) (CDEF) (AB) (AB)

If the stroke sequence represents the ASCIT lerter sequence “abedbaa™ theri post-hoc it follows

that:

a=(AB), b=(CDEF), and cd=(B) (D).

Natice thal these frequent patierns have been identified without using information on the
sequences of letters involved. Therefore, different allographs can be idendfied easily. Note
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that from this limited example i1 is unclear whether (B) (D) forms, in fact, one patiern (B D) as
they are all infrequent. The use of the "ASCIl representation helps 1o disambiguaie.
Furthermore, information on the letters helps to keep together the strokes belonging o leters
having sirnilar beginning strokes (c.g., a, ¢, d, g, q). Although this may seem an interesting
method, it anly works in discrete and relatively noise-free data. [1 cannot easily be applied in
continuous and noisy features as in sloppy handwriling,

Tahle 1

Fraquancies of thes pattezrna of feanture wectors as a function of
pattarn ladgth help to identify relatively frequant strcks
pattemme, which may xrepressnt letters. (. means frequescy 1:
<blark> msans frequesncy 0)

Feature Patktern frequancies/length

vactor 12345671 Frequancy leangth Lattar
A : [ I - 3 z (1
B R A e
c a ERR 5 2 i b
D - B g e SR
E 22 . ' . o
r 2. . * '
B W~ i 1 1 c
D 3 .. F 1 1 d
c 2212 2 | b
D 322 "
E z 2. .
r Bt
A 33 i 3 2 a
B 4
A 33 3 2 a
] d

Strucrural-information theory method

Imagine that A, B, C, D, E, and F siand for 6 different, discrete Feature vectors occuring ina
writng patiem of one word consisting of 12 strokes, such as

ABCDEFEFABCD,

then the stroke sequence can automatically be rewrilten using the three struchural-information
operators. In the present example only one of the operatars is needed:

S[(ABCD) (EF)]

Iy
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where § [ ] is the append-symmetry operator (Van der Helm & Lecuwenberg, 1991). Of
course, il more words are used, patterns cannot extend across word boundaries. Furthermaore,
only operations are admitied that do not change the within-pattern sequence of strokes. For
example, the append-symmetry operation 5 (A B C D] produces the nonsense stroke sequence
ABCDDCB A Similarly to the previous method, it is sufficient 1o post-hoc assign letlers
to stroke sequences which appear as a unit. A side effect with some advantages is that these
frequent parterns may be confounded with regularities of spelling. The program by the authors
{PISA) allows several hundreds of elements processed at once, which is geting in the
direction of sequences of the arder of 1000 words of 6 letters of 4 sorokes, However, song
discretization of strokes is probably not appropriale in cursive scripl, just as in the previous
method.

MNumerical optimization

Begin and end swoke of each lemer are set 1o random initial values. Then a total "cost’
functian is calculated, e.g., by the RMS difference between the average feature vectors within
all groups of identical letters, or by the distance of their cells of a Kohonen topological stroke

map (Schomaker & Teulings, 1990). Then the cost lunction is optimized by varying the letier
boundaries.

Simuigred annealing

Begin and end siroke of each letter are set to random initial values. Then an ‘energy’
measure is caleulated for each begin and end smoke. The energy of a begin or end siroke is
based upon the consistency of this stroke with the corresponding strakes of the other, identical
letiers. Then at random a begin and an end stroke are varied and the new total energy is
calculated. In the beginning, when the "temperalure’ is high, energy increases are accepled ot a
certain probability which is high for small increases and approaching zero for larger energy
increases. Energy decreases are always accepted, of course. When temperature is decreased,
Jjumps to higher energy levels become less and less probable w be accepted. The effect is that
many combinations of begin and end strokes may ococur bul thal the ones yielding low
energies are the most likely. This method is concepmally not complicated and therefore
attractive. It allows finding the lowest encrgy by adjusting the stroke boundaries but requires
considerable computational power, This method resembles the previous method. The
difference is that the numerical-optimizaton method follows & deterministic gradient descent
whereas this method follows a stochastic approach. From the previous overview it appears that
the simulated-annealing method seems promising and uses most of the information available.

The simulared-annesiing method implemented

The simuolated-annealing method introduced above will be explained in mare detail. The
following steps are performed:

Step 1. The sequence of strokes, in terms of feature veclors, is stored in one buffer and the
sequence of correspanding letiers in another. Initially begin and end strokes of each leiter are
randomly selecied with the border condition that leter strokes do not overlap and do not cross
word boundaries. For each different letter the following procedure is repeated,
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Step 2. The featre vectors of all swokes representing all replications of a single letter are
extracted and stored in & smaller bufTer. Z-scores (i.e., values ransformed 1o zero mean and
unit variance) are calculated across the replications of all features in the first swoke, the second
strake, etc. Therefore, stroke features which depart from the mean across replications receive
absolute values which are muoch larger than 1. Averaging the absolure z-scores of the feature
vectors of the first, second, and following strokes of a single letter yields a distance measure of
- thai levter from the mean sequence of feature vectors. This distnce will be called the ‘energy”’
aof the begin strakes of the very letter:

In order to advance larger siroke sequences and to balance for the greater probability that
the energy of the begin stroke is flaered by an incorrect end stroke, the energy has been
multiplied with the inverse of the number of strakes, but this is probably a less relevani detail,

Step 3. Similarly, he 'energy” of the end sirokes of sach letter is estimated by averaging
across the end strokes of the lelizrs by reversing the suwoke sequences. The whole procedure is
therefore symmeirical for the begin and end strokes. For the sake of simplicity, the procedure
will be explained in terms of begin stokes only.

Step 4. Thus, the energy estimates for the begin and end strokes of each replication of a
specific leter and for all replications are calculaied. The total energy of the begin and end
strokes has to be minimized separately.

Step 3. Lowerning 1he minimura energy of the begin swokes is done by randomly selecting a
lewter and changing its begin stroke. The change is a1t most ane stroke position. Again there are
some border conditions: no overlapping letter strokes and no letters across word boundaries.
Furthermare the letter boundaries are geared towards increasing the number of strokes and, il
not possible, 10 reducing the number of strokes.

Siep 6. After a new begin stroke has been selected the total energy of the begin strokes is
calculated again. The update will only be accepted if the total energy decreases or if:

exp (- Energy_increase /T) > ¢

where cach time r is a random value between 0 and 1. For high values of parameters T, which
represents the wemperawre, large energy increazes are accepted. However, when T is lowered
(annealed) it is less and less likely that energy increases are accepied.

Siep 7. A new begin or end stroks is selected at a lower temperatore T. Apart from the normal
exponental lemperature decresse, several other annealing schedules exist for lowering
lemperature T (e.g., Scgura & Frias, 1990). We found that the annealing schedule is not as
impartant as the sarting 1emperature and the mte of lemperare decrease. [f the temperature
is chosea too high the sysiem rambles through a large part of the solution space. If the
lemperare drops too quickly, the sysiem freezes at a less optimal configuration. In the
present case low starting temperature, decreasing linearly w zero, has been selecied.

Thus lower and lower values for the total energy can be reached. However, this standard
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procedure could be made work more efficient after changing the procedure vielding the
following modifications, which could be combined independen tly:

(a) Instead of updating any begin or end stroke with equal probability, sookes having larger
departures from the mean obiain higher probabilides. Thus, when comparing the stroke
paierns of all identical letters, the mast outlying stroke boundaries are most likely o be

changed.

(B} Instead of comparing the total energy, the energy of the letter stroke being updated is
compared. This sounds reasonable if one realizes that the number of strokes is very high and
that changing one stroke boundary may cause only a marginal effect upon the 1otal ENeTEY.
Thus, an updated letter boundary is more likely accepted if it does not yield & worse outlier. It
does not seem quiet the same as comparing total energy at a lower emperature, which che
would expect.

{c) Inswead of lowering the emperature independently of whether the updale is accepied or
nol, the temperature is lowered when an update has been accepted, which may occcur afier
many trials. In order ta prevent an infinite loop, the lemperalure is also lowered if no updaie

could be nchieved after so many trials that nearly every stroke must have been selected at least
onge.

In Figure | examples of two processing steps are represented where begin and end strokes
are updated. Mainly the outlying strokes obiained high probability for opdating and the
resulting (relative) energies appear to be much lower.

axxl ’au ll=sl ulox uul
e)x-|x=|1l]x=]o=-]u=]1]1]=-|a]l]u-]1])n-|x-ju-Ju=]1]
a] x| x|l]l=-]u-| au]l}l] =x|ellju--]1-]ulx]u-]1u] 1]

i—

GHEOGYWHNDGE P
== ]

3 328 2 $ 22 30321 8 6§22 3 2
1!!!11:1120211 7 821 1 2
o] x| x]l]l=x-Ju-|u-]1]1] =x]ellju--] 1 ulxju-]u] 1]
g
g 0 01 0 1 211 001 2 9% 30 14 1
g 0 080 @4 0 000 OO 28 20 0 OO

Figure !. Represemtatian of wwo processing steps where the begin and end sirokes are
updated. {A: The input words; B: The true begin and end sirokes. Each coliumn occupies ane )
stroke. The begin sirake of a certain levter is indicated by the name of thar lerer. The end
siroke, if different from the begin strake, is indicated by | and the within-letrer stroker are
indlcared by -; C: The current begin and end sirokes; D: The curremly selecred begin strake,
indlcared by T and the accepted update, indicated by «— or -»; £ and F: The current and the
new relative energies of the begin strokes, where 9 and 0 represent maximum and zera energys
7 - J: The same ar C - F but then for the end strokes,)
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Results

Results are based on finding the optimal solution of simulated stroke data of % words of 3 10
3 letters using & d-letier alphabet. The letters consisied of 2 or 3 strokes and no noise waz
ndded such that equal begin and end strokes have zero distance. The computational efforts of
the procedure o achieve the perfect solution as a funcdon of the proposed Modifications (a) -
(c) are listed in Table 2. It can be seen thar especially Modification (a) (select the outlying
- stroke before rying to update) saves a greal deal of the computational resources. The other
modifications improve efficiency if performed alone, but do not seem 1o help much in
cambination with Modilication {a).

Table 2
Required VAX3100Station CPU seconds for perfact solutlen

B8 a function of modifications (*] relative ta ths
standard simulatad-annealing procedors.

Modification [a] L] L] - *

Modification (b " . " *

Modificatlon ([a) O * " »

CFU ssconds 132 58 123 152 5.8 5.2 3.9 &.2
Swggested improvements

When dealing with real-life cursive script, the results do not seem encouraging. This may be
caused by the faci that cursive script still contains many symmetries. It seems difficult for the
sysiem to jump two stokes, by one at a time, in order to oblain 8 best fitting stroke. Runs
where the possibility of jumping wo strokes ot a time was included, indicaled that the system
staris rambling around dramatically. Also the border condition of non-overlapping strokes
causes the requiremnent thai first one letter has 1o "withdraw' before the adjacent letter can
claim 'its” stroke. Runs, were the possibility of averlapping sirokes was allowed showed again
dramatical departures from the desired solution. Finally, it may be noted that knowledge bas
not at all been used to select the initial configuration of letter boundaries. The wndency
emerges that the sysiem is able w0 find only a minimum energy solution if the initial
configuration was already nearly correct. An inidal setting can be guessed with higher
probability of correctmess by using specific numbers of strokes and connection strokes for
each cursive letter.
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