hdisk:[hlt.text]trondls3.tex 30-mar-1990 15:05:38
Paper presented at the 4th International Graphonomics Society Conference, Trondheim,
24-26 July 19809.

AN ONLINE HANDWRITING-RECOGNITION SYSTEM
BASED ON UNRELIABLE MODULES

HANS-LEO TEULINGS, LAMBERT R.B. SCHOMAKER, JAN GERRITSEN,
HANS DREXLER, and MARC ALBERS

Nijmegen Institute for Cognition Research and Information Technology (NICI)
P.O. Box 9104, 6500 HE Nijmegen, The Netherlands

ABSTRACT

In automatic recognition of unrestricted handwriting the ambiguities can
be solved by top-down processing. However, automatic systems never have
access to the extended background knowledge available to human readers.
In order to replace this higher-level information we need to improve the
reliability of the bottom-up processing. A handwriting-recognition system
can be split up into six discrete blocks: (1) digitizing, word segmentation,
pre-processing, and segmentation into strokes, (2) normalization of global
handwriting parameters, (3) extraction of features per stroke, (4) allograph
recognition, (5) optional word hypothesization, and, in order to allow
recognition (6) a learning phase. The present paper discusses the design
of three of these processing blocks: normalization, allograph recognition,
and learning and briefly specifies feature extraction. Normalization concerns
orientation, size, and slant. However, various alternative algorithms can
be chosen and some algorithms yield more reliable results than others. A
mechanism is proposed that will, sooner or later, find the most appropriate
normalization algorithms. Consequently, the features extracted from each
stroke in the handwriting pattern will be more uniform within a writer and
even between writers. In the recognition phase, handwriting patterns are
segmented into allographs using an algorithm that can handle allographs
with various numbers of strokes and with optional connection strokes
between them. In order to teach the recognizer the allographs a method
has been designed that builts non-interactively a lexicon of allographs by
automatically discovering the allographs in a large corpus of cursive script.

1. Introduction

Handwriting cannot be neglected as a universal tool to store a wide variety of graphical
information, such as personal notes containing non-standardized characters together with
graphs. Although this material may sooner or later be entered into a computer for further
processing, people might prefer a pen as it cannot replace mouse interaction or voice input.
In order to develop methods that optimally employ the movement information of the pen
we investigate the possibilities of on-line handwriting.

Thirty years ago automatic recognition of handwriting was considered an ’'excercise’
for automatic speech recognition (Harmon, quoted by Lindgren, 1965). Still, no cursive-script
recognition system appeared appropriate in a sufficiently wide range of applications. The need
for automatic handwriting recognition is high, though, also for entering non-western script
into computers (e.g., Chinese or Kanji, Hiragana, Katakana, Korean, Brahmi, Devanagari,
Tamil, Indian, Hebrew, Arabic). A useful recognizer should be able to deal also with digits,
arbitrary character sequences in handprint and cursive script where the identification has to

1

be based upon the bottom-up processing and in more redundant character sequences where
higher-level information is required to disambiguate the stroke pattern. User friendliness
requires recognition of all kinds of rapid and slow, cursive writing and handprint recognition
by a wide variety of subjects.

Two methods to enter handwriting data into the computer exist. The first is to
optically scan the picture of a sample of handwriting that was produced off-line. The second
is to record the movements of the pen tip on-line by means of a digitizer. We employ the
latter method because it is a richer source of information which allows us to exploit our basic
knowledge about the motor system. The lack of practical results from traditional approaches
is probably caused by the limitations of off-line recognition. Recent developments in the
field of digitizer-annex-displays and microcomputers enable us to employ on-line recognition
methods. This approach allows us to exploit dynamic movement information. Also promising
off-line cursive-script recognition methods are under development (e.g., Srihari & BoZinovié,
1987; Aoki & Yamaya, 1986), but we discuss here only on-line recognition of handprint and
cursive script.

A recent overview of on-line handwriting recognition is presented by Tappert et al.
(1988). They list four experimental cursive-script recognition systems, 10 experimental hand-
print recognition systems, and 15 commercial hand-print recognition systems. Most systems
act in a restricted domain such as boxed handprint characters or allowing specific words
only.

The usefulness of a handwriting interface is stressed in Brocklehurst (1988). To
demonstrate the idea of ”electronic paper” they provide a prototype handwriting-recognition
system. In the frame of the Esprit Project 295, Wright (1988) designed a cursive-script
recognizer with efficient low-level processing but at the cost of reliance upon a dictionary
and higher-level linguistic processing. 94% of the characters of a data set of 112 people
was correctly recognized, which compares well with the rate of human recognition without
context. Higgins & Whitrow (1985) achieved good results using only a quadgram table based
on a dictionary. In the same project Doster & Oed (1984) and Mandler (1989) developed
a recognizer for handprint. Within the frame of Esprit Project 419 a recognizer for normal
cursive script, based on knowledge of the motor system is under development (Teulings et
al., 1987; Thomassen et al., 1988a; 1988b; Schomaker and Teulings, 1990; Morasso et al.,
1990). The system consists of a parallel structure of redundant modules and includes an non-
interactive learning phase. Ouladj et al. (1989) developed a cursive-script recognizer where
characters are hypothesized from left to right and are verified in parallel using a tree-like
representation of a word list. Using a word list of 100 different words 90% of the words by 5
writers were recognized correctly.

Leedham and Downton (1986) developed a shorthand recognizer but state that the
performance is still poor due to the simplified nature of the algorithms without knowledge
base and due to ergonomic deficiencies of the digitizer. Recognition of online Arabic script
is discussed by Amin, who states that the bottom-up analysis is still insufficient such that
complicated grammatical analyses are required due to the complexity and non-uniformity
of Arab grammar. In USA, Ward & Blesser (1985) developed a commercial handprint
recognizer. Tappert (1986) at IBM Watson Research Center is developing a cursive-script
recognizer using elastic matching techniques for IBM PC/AT. Plamondon & Baron (1986)
used a handwriting recognizer to input computer programs. Skrzypek & Hoffman (1989)
presented a neural network for cursive-script recognition. In Japan, Kondo (1989) realized a
recognizer of handprinted numerals based on a noisy character generator.

Our aim is to design a system based on knowledge of the motor system which is
able to recognize unrestricted handwriting (Schomaker & Teulings, 1990). In such a manner
a computer can be operated without using a keyboard, nor a mouse, or voice input (e.g.,

Higgins & Duckworth, 1989; Welbourn & Whitrow, 1989) as everything we want to do can
be done using a pen.

In Teulings et al. (1987) we introduced a modular architecture for the low-level
bottom-up analysis of handwriting of the so-called Virtual Handwriting System (VHS). A
handwriting recognition system can be split up into six discrete modules, in accordance with
Srihari, S.N., & Bozinovi¢ (1987):

1. Digitizing, preprocessing and segmentation of cursive script into words and
subsequently into sequences of discrete strokes, which are defined here as the segments
of pen movement between two successive minima of the absolute velocity

2. Normalizing handwriting patterns

3. Stroke feature extraction

4. Allograph recognition

5. Optional word hypothesization using higher-level information

6. Learning phase in order to build the allograph lexicon required for recognition

Of course, the higher-level subsystems of linguistic processing are essential in cursive-
script recognition (e.g., Higgins & Ford, 1989; Wells et al., 1989). However we want to
emphasize the importance of the optimal low-level handwriting processing because we doubt
whether the higher-level linguistic processing can restore the information lost by unreliable
lower level processing as it does not have available the extended knowledge of an educated
reader of a handwritten message. This holds especially if character sequences are used that
do not at all occur in the lexicon of words.

The present paper discusses the current status of four of these processing blocks:
normalization, feature extraction, allograph recognition, and learning.

2. Normalizing Handwriting Patterns

In order to extract the feature vector of the handwriting patterns, several
normalization steps have to be performed (See Thomassen et al., 1988b, for an overview).
The reason is that a sample of a person’s handwriting contains various subject-specific
parameters, like size or slant (e.g., Maarse et al., 1988). On top of that, the motor system is
able to transform handwriting deliberately such as changing orientation, size or slant (e.g.,
Pick & Teulings, 1983). But all these parameters do not contain any information about the
identity of the characters. Therefore, the handwriting patterns have to be normalized first.

A particular problem is that different writers may also have different cursive-script
styles, and one writer may even employ various cursive-script versions of the same character.
For that purpose we use the term ”allograph” which is a subject-specific and context-specific
topological structure of a character. By ”character” we mean one symbol out of the series of
upper and lower case keys that can be typed using a keyboard. We suggest that normalizing
the handwriting patterns may reduce the between-writer differences to the extent that they
are not caused by differences in topological structure.

The sequence of levels of normalization we find the most appropriate are: orientation,
vertical position and size, and slant (Thomassen et al., 1988b). The rationale is that
orientation needs to be normalized in order to estimate vertical size and position, and that
vertical size and position, in turn, should be normalized in order to estimate slant. However,
various algorithms for each normalization step are available and not every algorithm may be
appropriate in all conditions. For instance, orientation of the word currently being processed

3

\'\.
o L3

WA Sy

Grisntat-gn

Figure 1: Figure 1. An example of an incorrectly estimated orientation of a word, which
causes subsequently an incorrect estimate of the slant.

Figure 2: Figure 2. The pride of the baseline estimate of the second word is higher than that
of the first word because of the additional evidence of several segmentation points consistent
with the base line in the second word.

can be estimated by a global algorithm based on a whole page or by a local algorithm based
on the very word only. Although the latter algorithm bases its estimate on less data, it
may yield a more relevant orientation estimate especially in writers who produce words with
varying orientations. Although several estimates for the orientation are available just one
orientation parameter is needed in the above example. In general, each normalization module
consists of three types of submodules: Several ”estimators” of a normalization parameter
(e.g., the orientation of a word), a "selector” of the optimal normalization parameter, and
an ”operator”, which finally performs the normalization using the parameter selected. The
selector is actually part of one larger unit (”Scheduler”) which surveys all levels and chooses
the most confident hypothesis to be evaluated next.

The problem is thus which estimate to adopt if they yield different values. Choosing
the wrong estimate of the orientation, for instance, may have dramatic effects upon the
subsequent slant estimation (See Figure 1). Taking the average of the estimates is probably
not a good choice because one of the estimators may be totally wrong. Evaluating all possible
combinations of estimates forms no solution either because it would yield an explosion of
computations. The solution we propose is evaluating only the most confident, non-evaluated
hypothesis.

In order to quantify the compound confidence of a certain estimator in a particular
case, two sources of confidence are employed. The first source of confidence is a measure
for the consistency of a specific instance of an estimate (”Pride”). For instance, the pride
of a specific baseline estimate increases with the number segmentation points that are on a
straight line. (See Figure 2 for an example). The second source of confidence is the cumulated
reliability demonstrated from the past (”Prejudice”). In previous cases, the prejudice of an
estimator was increased if its estimate has contributed to a successful final solution and was
decreased otherwise. The extent of the increase or decrease of the prejudice depends on the
value of the pride. For instance, if an estimator reports a high pride, but turns out to produce
an incorrect estimate the prejudice needs to be reduced badly.

In order to obtain the compound confidence of a specific estimate, the prejudice and
pride are multiplied (yielding the ”optimism”). The rationale is that the confidence should
only be high if both prejudice and pride are high. In case of several alternative estimator
algorithms, the algorithm producing the estimate with the highest optimism is selected to

Humber of Evaluations
('}
|

L
]

Figure 3: Figure 3. Simulation of the number of evaluations of an estimator (averaged across
three sequential trials) as a function of number of trials. The estimators were perturbated
with noise (the standard deviations of the added noise were 10, 20, and 50% of the exact
estimate values, respectively). The more noise added, the less frequently an estimator was
evaluated.

transform the data. If two or more estimators produced compatible estimates this provides
additional evidence. The estimators are then combined in a group (called a ”committee”)
and the estimators’ optimisms are added up. In this way a committee may outrule a single
estimator which happens to have an exceptionally high optimism.

Finally, the combined confidence score of a particular sequence of algorithms from the
first processing step to the current processing step is needed. A sequence of estimates receives
a confidence score which is equal to the product of all optimism scores of the individual
estimates. At any time, the estimator, with the highest confidence score will be evaluated
further. In this way, the system can backtrack to earlier levels where an erroneous decision
was made and finally arrive at the most appropriate sequence of choices of the estimator
algorithms. In this fashion, the system learns which estimators are in general reliable and
which are not. Gradually, the most reliable estimators are adopted by default and the system
gains efficiency by making fewer wrong choices of estimators (See Figure 3).

A problem of the present design is that it is rather conservative. If an estimator
happens to be acceptable, its prejudice keeps on increasing. If at a later stage another kind
of handwriting needs to be processed and if an alternative estimator yields better results, its
pride may be insufficient to compete with the high prejudice of the first estimator. In fact it
would have been better to require still some competition between estimators.

3. Feature extraction

Various sets of features per handwriting stroke have been used for different purposes.
In the present application strokes are characterized by the following set of 14 features
(Schomaker & Teulings, 1990) which make up the ”feature vector”:

5

(a) The vertical positions of the beginning (Y;) and end of a stroke (Y;) relative to
the base line and the path length of the stroke (S) all scaled to the average body height,
also called z-height, referring to the lower case x.

(b) The directions ¢, of the five, straight stroke segments between two subsequent
points corresponding with the time moments

t=1t14 (n/5) * (12 — t1),

where t1 and ¢2 are the time moments of beginning and end of the stroke and n = [0, 1, ..., 5],
i.e., (&1, P2, O3, Pa, ¢5). Here we explicitly use dynamic movement information. The rationale
is that in equal time intervals the movement direction is changing a relatively constant
amount (e.g., Thomassen and Teulings, 1985) such that each new stroke segment adds an
equal amount of new information. The two previous and the two following stroke segments
(respectively, @ps, Pps, and ¢e1, Peo) are included as well in order to capture the stroke’s
context.

(c) The size of the enclosed area between the end of the stroke and the subsequent
stroke ().) is rather a visually salient feature.

(d) A pen up indicator (P), which shows whether the pen is predominantly up or
down during a stroke. It may be noted that strokes above the paper also count as strokes.

Feature vectors can also be used to define a distance measure between two strokes,
called the ”stroke distance”. This distance is similar to the Euclidian distance of the
normalized feature vector with the exception that the features referring to directions are
not entered as the square difference but as the tangent of half of the difference. This is
most consistent with our notion that strokes with opposite directions should have maximal
distance. Finally, feature vectors are useful to define the average stroke across a set of strokes
with small distances between them.

The number of features is high, indeed. This number can be reduced by building a two-
dimensional self-organizing Kohonen network and then replacing the feature vector by the
two network coordinates of the cell closest to the feature vector (Morasso, 1989; Schomaker
& Teulings, 1990). This speeds up and improves the performance. Both representations are
still under consideration.

4. Allograph Recognition

In the recognition phase the handwriting patterns in terms of sequences of stroke
features are translated into characters using an ”allograph lexicon”. This allograph lexicon
relates specific stroke-vector sequences to the corresponding character. The building of this
allograph lexicon will be described in the section on the learning phase.

Two ways to do this job are under investigation. The first method is based on a
neural-network approach (E.g., see Schomaker and Teulings, 1990). The second method,
which is the one described here, is an algorithmic approach. The advantage of the latter
method is that it optimally splits up the input sequence of strokes into more or less adjacent
sub-sequences of strokes, where each sub-sequence forms one entry in the allograph lexicon.
An established procedure to segment a sequence into adjacent sub-sequences is the Viterbi
algorithm. However, the standard Viterbi algorithm is not applicable in the present case
because it was designed for equal-length sub-sequences. In cursive script, however, the
allographs have different numbers of strokes. Moreover, the algorithm has to detect which of
the strokes are the connecting strokes between the allographs. The algorithm we developed
to detect the allographs, is a modified version of the Viterbi algorithm.

Apart from the stroke distance introduced earlier, the algorithm requires two other
distance measures, In order to quantify the resemblance of a piece of handwriting and an
allograph of the allograph lexicon, we define the ”allograph distance” as the average stroke

6

hoofdiahali)

hootdric

ticrofdrnl

hiw

Figure 4: Figure 4. A representation of the allograph-distance table and a few examples of
discontinued survivors and the most confident survivor. (Horizontal are all strokes of the
Dutch word ’hoofdzakelijk’ and vertical are all characters in the allograph lexicon. For the
sake of simplicity, the distances of the allographs representing the same character have been
collapsed. The darker the entry the lower the distance.)

distance between the corresponding strokes. In order to quantify the confidence of a sequence
of hypothesized characters, we define the ”word distance” as the average allograph distances.
The connection strokes are not rated in the distance scores.

The algorithm estimates first the allograph distances between each allograph in
the lexicon and each part of the to-be-recognized handwritten word. By storing only the
allographs having relatively small distances in a table, reduces the number of possible
allograph sequences dramatically (see Figure 4). Now, the modified Viterbi algorithm is
started. During the first iteration, each allograph starting at the first or at the second stroke
of the input word is selected. Namely, the first stroke of the input word may be either an
irrelevant connection stroke or the allograph’s initial connection stroke and is not necessarily
included in the allographic lexicon, because they vary with context.

The allographs selected constitute the ”survivors” of length one. In subsequent
iterations, each survivor is extended by the best fitting allograph which fits either
immediately after the survivor or with one intermediate, connection stroke. If an expanded
survivor covers the whole handwritten word, it is added to a list of word hypotheses. The
iterative process continues until all survivors are added to this list.

A problem in the present design is that the Viterbi algorithm is not optimal for cursive
handwriting patterns where allographs have varying numbers of strokes whereas the initial
strokes may be highly similar. The consequence is that the system cannot decide between

two survivors of similar quality without incorporating the between-word context. Too many
solutions are competing at any serial position.

5. Learning Phase

Before a cursive-script recognition system is able to work, it has to learn the name
of specific stroke sequences If the written text is available, the learning module could just
assign each allograph to a character in the text. However, in cursive handwriting it appears
to be a rather cumbersome task to teach a system each allograph, that may occur in a
person’s handwriting. The reason is that the allograph boundaries in cursive script have to
be specified somehow. The simplest solution would be to set the number of strokes of the
characters manually. For instance, characters 'a’ and ’b’ count three strokes and character ’c’
counts one stroke apart from optional connection strokes, etc. However, this may not work
in natural, sloppy handwriting because the number of strokes may vary. Another method is
to segment cursive script into allographs using a-priori assumptions about the shape of the
connection strokes between allographs (e.g., Maier, 1986). However, such a method produces
persistent errors (e.g., segmenting allographs like cursive b, v, w, u, or y into two parts).
A third and promising method has been proposed by Morasso et al. (1990). First a few
representative prototype allographs are identified manually. If a stroke sequence is presented
together with the character sequence it is representing, the sequence of strokes can be split
into sub-sequences where each sub-sequence matches the prototype allograph with minimum
distance. In this way, more prototype allographs can be identified. Although the set of
prototypes may form the allograph lexicon, it is wise to condense the set of prototypes.
For that purpose they built ”allographotopic maps” in an array of Kohonen networks for
sequences of two, three, ... strokes, respectively.

In the present paper we describe an algorithmic approach which may achieve the
segmentation of cursive script into allographs completely automatically, but without using
prototypes, and also without specific knowledge about the structure of the allographs
used, nor their numbers of strokes, nor assumptions about the properties of connection
strokes. The method assumes that handwriting recordings have been collected from a specific
text, containing words with all kinds of character sequences. The corpus of handwriting is
segmented into words and these words, in turn, into strokes. Subsequently, the feature vector
of each stroke is determined. The method is based The first step is to select the largest
group of words starting with the same character. Those words starting also with the same
allograph will show small mutual stroke distances for the first few strokes. In order to find out
which words show relatively small stroke distances a nearest neighbor clustering method is
employed. However, an allograph may or may not start with an arbitrary connection stroke.
Therefore, the stroke sequences have to be aligned first. This can be done by clustering the
stroke distances of the first and the second strokes and selecting the strokes in the largest
cluster.

After aligning the selected words all first strokes will be very similar. The group of
similarity of the first strokes implies that the cluster analysis on the first stroke’s feature
vector forms at least one large cluster. The next step is to estimate the average inter-stroke
distance of the second stroke, etc. As an example, consider the selected words starting with
the character 'b’, which has three strokes, apart from one optional connection stroke at the
beginning or one at the end. Because all kinds of characters may follow the first character in
the selected group of words, the cluster size will decrease markedly beyond the third stroke
(See Figure 5). Using an appropriate threshold, the number of strokes that actually belong to
character 'b’ can be estimated. Finally, the average stroke pattern belonging to this character
will be appended to the allograph lexicon.

In order to identify the second and following allographs in the corpus of handwriting,
the initial character is removed from the words that were part of the resulting cluster and

8

| | i | |
£
”5_ B B -
m
A
._'
]
c i g 7 —
-
ol
&+l
g3l
2 -
a
—
4 -
&
w |l -
o
L&
.glu |
=
0 | | |] L
| 2 3 4) 6

Strcocke Popsition

Figure 5: Figure 5. The cluster size of the feature vectors of the first six strokes from four
subgroups of aligned words (The groups of words are words starting with an allograph ’b’
(N=5), ’a’ (N=4), 'h’ (N=5), and 'z’ (N=T7). The cluster size in the words starting with
'a’ decreases significantly after the fourth stroke, indicating that this allograph counts four
strokes. Similarly, ’b’, "h’, and 'z’ count three strokes.)

the corresponding feature vectors are removed from the sequence of feature vectors of the
words in the corpus. Then the previous step is repeated. Processing all data in this way
may yield a condensed list of prototypes, which forms the lexicon of allographs. In fact it
may be possible to identify even various allographic versions of the same character. As the
condensed prototypes found on the basis of the writings of different writers do not need to
be inconsistent their lists of allographs may be merged. The number of times that a certain
allograph is used in the recognition phase indicates how universal each prototype allograph is.
These numbers enable the system to discriminate between useful and redundant allographs.

Specific problems in the present design are still the necessity of tuning parameters
for deciding when the cluster size drops significantly. Another problem is introduced by the
artificial left-to-right scanning of the words, making the algorithm less reliable for the final
characters of the words. In both respects the approach by Morasso et al. (1990) seems more
appropriate.

6. Conclusion

The present paper discussed some of the modules designed for on-line cursive script
recognition. However, the modules are still fragile and slow. But this is not the major problem
we are dealing with: How to quantify the performance of each of the modules such that
they can be compared with the performance of other designs. The four modules described
above do their task but what does this tell us? In the present paper the modules were
processing natural, purely cursive script of arbitrary sequences of only lower case allographs
with omission of all diacritical signs such as dots on i and j. In fact the performance varies
more with the properties of the sample of cursive script than with the appropriateness of the
algorithms? This implies that the modules should be tested in a large number of subjects,
while each subject should produce a considerable amount of cursive script. It would be wise to
distinguish several ”qualities” of handwriting ranging from extremely regular handwriting
till the normal, sloppy handwriting, and several ”character sets” ranging from only some
lower case allographs till all kinds of allographs. Even if the modules are tested with large
amounts of handwriting it may be hard to tell whether it performs well. The least subjective
quality criterion of, for instance, normalization of the orientation, may be requiring the
subjects to write horizontally on lined paper and to look for the closest-to-zero and the
least-variance orientation estimator. The best known quality measure is probably still the
overall percentage-of-characters correctly recognized, but this implies that the modules of a
complete recognition system have been realized and run in a realistic time scale.

The second problem is the sensitivity of some modules’ parameters. It would be ideal
if a module could operate using only selection criteria like ”the largest”, or "the smallest”,
or "the closest to zero”. But very often discrete parameters are required. They may be
as harmless as ”the maximum number of strokes per character is eight” till more suspect
parameters as ”select only strokes longer than a fixed stroke size”. We feel that the micro-
architecture design rules of a complex system of a cursive-script recognizer are important.

7. Acknowledgement
This research was supported by ESPRIT Project 419, Image and Movement Understanding.

8. References

Amin, A. IRAC: Recognition and understanding systems. Internal Report.

Aoki, K., & Yamaya, Y. (1986). Recognizer with learning mechanism for hand-written script
english words. Proceedings of the Eight International Conference on Pattern Recognition,
690-692.

Brocklehurst, E.R. (1988). The NPL electronic paper project. NPL Report DITC 133/88.

10

Doster, W., & Oed, R. (1984). Textbearbeitung auf Personal-Computern mit handschriftliche
Direkteingabe. PC-Praxis.

Higgins, C.A., & Ford, D.M. (1989). A comparison of N-grams and tree structure for letter
graph reduction Fourth IGS Conference (p. 26), Trondheim, July.

Higgins, C.A., & Whitrow, R. (1989). The pad (pen and display): A demonstrator for the
electronic paper project. Fourth IGS Conference (p. 45), Trondheim, July.

Higgins, C.A., & Whitrow, R. (1985). On-line cursive script recognition. In B. Shakel (Ed.),
Human-Computer Interaction - INTERACT ’84 (pp. 139-143).

Kondo, S. (1989). A model of the handwriting process and stroke-structure of character-
figures. In R. Plamondon, C.Y. Suen, M. Simner (Eds.), Computer recognition and human
production of handwriting (pp. 103-118). Singapore: World Scientific.

Leedham, C.G., & Downton, A.C. (1986). On-line recognition of Pitman’s handwritten
shorthand: an evaluation of potential. International Journal of Man-Machine Studies,
24, 375-393.

Lindgren, N. (1965). Machine recognition of human language: Part III - Cursive script
recognition. IEEE Spectrum, 2, 104-116.

Maarse, F.J., Schomaker, L.R.B, & Teulings, H.L., (1988). Automatic identification of
writers. In G.C. van der Veer & G. Mulder (Eds.), Human-Computer Interaction:
Psychonomic Aspects (pp. 353-360). New York: Springer.

Maier, M. (1986). Separating characters in scripted documents. FEight International
Conference on Pattern recognition (ISBN: 0-8186-0742-4), 1056-1058.

Mandler E. (1989). Advance preprocessing technique for on-line recognition of handprinted
symbols. In R. Plamondon, C.Y. Suen, M. Simner (Eds.), Computer recognition and
human production of handwriting (pp. 19-36). Singapore: World Scientific.

Morasso, P. (1989). Neural models of cursive script handwriting International Joint
Conference on Neural Networks, Washington, DC, June.

Morasso, P., Kennedy, J., Antonj, E., Di Marco, S., & Dordoni, M. (1990). Self-organisation
of an allograph lexicon. International Joint Conference on Neural Networks, Lisbon,
March.

Ouladj, H., Lorette, G., Petit, E., Lemoine, J., & Gaudaire (1989). From primitives to letters:
A structural method to automatic cursive handwriting recognition. In Pietikainen, M. &
Roning, J. (Eds.), Proceedings of the Sixzth Scandinavian Conference on Image analysis,
593-598.

Pick, H.L., Jr., & Teulings, H.L. (1983). Geometric transformations of handwriting as a
function of instruction and feedback. Acta Psychologica, 54, 327-340.

Plamondon, R., & Baron, R. (1986). On-line recognition of handprinted schematic
pseudocode for automatic fortran code generation. Proceedings of the Eight International
Conference on Pattern Recognition, 741-744.

Schomaker, L.R.B., & Teulings, H.L. (1990). A handwriting recognition system based
on properties of the human motor system. International Workshop on Frontiers in
Handwriting Recognition, Montreal, April.

Skrzypek, J., & Hoffman, J. (1989). Visual Recognition of Script Characters; neural network
architectures. Technical report UCLA MPL TR 89-10, Computer Science Department
University of California, Los Angeles

Srihari, S.N., & Bozinovié¢, R.M. (1987). A multi-level perception approach to reading cursive
script. Artificial Intelligence, 33, 217-255.

Tappert, C.C. (1986). An adaptive system for handwriting recognition. In H.S.R. Kao, G.P.
van Galen, & R. Hoosain (Eds.), Graphonomics: Contemporary research in handwriting
(pp- 185-198). Amsterdam: North-Holland.

Tappert, C.C., Suen, C.Y., & Wakahara, T. (1988). On-line handwriting recognition: A

11

survey. Proceedings of the 9th International Conference on Pattern Recognition, 2, 1123-
1132, Rome, November 1988.

Teulings, H.L., Schomaker, L.R.B., Morasso, P., & Thomassen, A.JJW.M. (1987).
Handwriting-analysis system. In R. Plamondon, C.Y. Suen, J.-G. Deschenes, & G. Poulin
(Eds.), Proceedings of the Third International Symposium on Handwriting and Computer
Applications (pp. 181-183). Montreal: Ecole Polytechnique.

Thomassen, A.JJW.M., & Teulings, H.L. (1985). Time, size, and shape in handwriting:
Exploring spatio-temporal relationships at different levels. In J.A. Michon & J.B. Jackson
(Eds.), Time, mind, and behavior (pp. 253-263). Heidelberg: Springer.

Thomassen, A.J.W.M., Teulings, H.L., & Schomaker, L.R.B (1988a). Real-time processing
of cursive writing and sketched graphics. In G.C. van der Veer & G. Mulder (Eds.),
Human-Computer Interaction: Psychonomic Aspects (pp. 334-352). New York: Springer.

Thomassen, A.J.W.M., Teulings, H.-L., Schomaker, L.R.B., Morasso, P., & Kennedy, J.
(1988b). Towards the implementation of cursive-script understanding in an online
handwriting-recognition system. In Commission of the European Communities: D.G.
XIII (Ed.), ESPRIT ’88: Putting the technology to use. Part 1 (pp. 628-639). Amsterdam:
North-Holland.

Ward, J.R., & Blesser, B. (1985). Interactive recognition of handprinted characters for
computer input. IEEE, Computer Graphics and Applications, 5 (9), 24-37.

Welbourn, L.K. & Whitrow, R.J. (1989). A gesture based text and diagram editor. Fourth
IGS Conference (p. 48), Trondheim, July.

Wells, C.J., Evett, L.J., & Whitrow, R.J. (1989) The use of orthographic information for
script recognition. Fourth IGS Conference (p. 27), Trondheim, July.

Wright, Ph.T. (1988). Design and implementation of a handwriting recognizer. Plessey New
technology, 2, 1988.

12

