
Some Fundamentals of an
Event-oriented Control Language

for Applications in Parallel Systems

Lambert R.B. Schomaker
NICI Technical Report, Feb. 1988

Nijmegen Institute for Cognition Research
and Information Technology (NICI),
University of Nijmegen, P.O.Box 9104,
6500 HE Nijmegen,
The Netherlands

Abstract

This short technical report informally describes some basic ideas for a com-
mand language that naturally incorporates the asynchronous nature of events
in the users’ working environment. The general idea, system components and
problem areas are dealt with briefly. Many concrete examples of the language
syntax are given.

1 Introduction

Office metaphors are an extension of the well-known desktop metaphor in a graphical
multi-room, multi-operator environment representing parts of the physical office and
the information channels and sources. It is clear that handling of events is extremely
important in such an environment as opposed to the single PC world where only the
user himself determines the occurrence of events. The idea is, that a user defines a
World in his personal profile file (i.e., ”login.com”, ”profile”,”autoexec.bat”), defining
the actions that the system must undertake if a special event occurs. Events are the
reception of electronic mail, the availability of data or of an application program, the
occurrence of a specified time of the day and so on. In current systems, functionality
that allows for the processing of asynchronous events is virtually lacking. This leads to
the situation where sophisticated system users start to build their own server tasks or
”demons” to solve the event handling problem by a dumb polling method. Obviously,
this is an undesirable situation because of the enormous computational overhead.

This report describes some ideas on a parallel operating system (OS) control lan-
guage that handles such real-life events, that are considered ”asynchronous” from the
point of view of a von Neumann machine. The functionality can be considered as sup-
plementary to the basic system functions that a general control language encompasses.
The language is built around the concept of

Event → Task

bindings.

An event is an internal (in-memory) or peripheral change in system conditions. Ex-
amples of events are: the creation of a file, the pressing of a key, the availability of a
data packet from a communication line, some global variable attaining some predefined
value, the arrival of an electronic mail message, etc.

A task is an independent program (image), running in its own context. When a
program is started, it is able to fetch and parse (a) command line arguments in the
interactive case, or to fetch and parse (b) passed arguments from a specified context
as defined by the Event → Task binding. The code of a normal application pro-
gram for a task triggered by a (combination of) predefined event types can stay free
from dependencies that are related to the parallel system that handles the firing of
the Event → Task bindings. Only the general argument handling facility would be
necessary.

If an event takes place, the Event → Task binding is Instantiated. A global table
E(Event) is filled describing the triggering circumstances and a task or process is

1

invoked. The context in which this task starts is determined by the binding statement.
The event status table E() need not be inspected by the average program if there is
no more extra event or status parsing necessary.

2 A preliminary syntax description

There are two main types of defining an Event → Task binding.
Syntax: 1

a Single event, single task, immediate binding, immediate activation:

event description [/options] → task[(context:arguments)] [/options]

Options are /NAME=name to give the event a symbolic name, and

/PRIORITY=number, to give the task execution some priority over or under the
priority of other tasks if the event occurs.

b Deferred activation: the binding table is filled, but bindings only become active after
the ENABLE keyword is encountered by the interpreting system:

DEFINE EVENTS: myworld
event description 1 [/NAME=nn] → task 1 [/PRIO=mm]
event description 2 [/NAME=nn] → task 2 [/PRIO=mm]

.

.

.
END;
ENABLE/WORLD=myworld/ALL EVENTS

The total set of bindings that belong together is called a World.

3 Event-handling and context

Context refers to a data structure containing symbols and logical names connected to
a task, as well as items such as the name of the current directory. The names of the
standard Input and Output ports are contained in symbols. The context is named after
the task for which it holds. Since task names are unique, there is no name collision
problem for the context names. By entering the context name in an Event → Task
binding, we declare the context that is to be used by a task. Context may be overlap-
ping, if needed, to provide for a blackboard mechanism. In the latter case, several tasks
have simultaneous access to symbols within one and the same context.

1Generally, UPPER case words denote pre-defined syntax items, or reserved names, lower case
words denote user-defined items.

2

Context Identifier: Meaning:
∗ (asterisk) Use current context.
task nam Use context of task nam.
task nam:symnam Use context of task nam

and send the contents of
symbol ”symnam”.

task nam:(symnam1,symnam2) Use context of task nam
and send the contents of
symbols ”symnam1” and ”symnam2” as
argument to the event-related task.

Table 1: context identifiers and their meaning.

Note that the default task creation mechanism determines what symbols there are in
a given context. Some symbols are local while others are inherited from parent tasks.
The following section give some examples of the principles described earlier.

4 Some syntax examples

DEFINE EVENTS: myworld
KEYBOARD(”PF4”) → handle event(*)

!When the key PF4 is pressed, a user task ”handle event” is executed
!as a subprocess, using the context of the current process,
!this is designated by (*). The event is nameless which means
!that it has a unique name provided by the system

KEYBOARD(”ABC”)/NAME=keyabc → handle event(*:(”file.dat”,arg2))
!When the sequence ABC is pressed, the task ”process event” is
!executed. It takes the arguments ”file.dat” and symbol arg2
!(from the current context). The event is named ”keyabc”.

KEYBOARD(”Control-Y”)/NAME=brkall → breaker(*)/PRIO=100
!When a Control-Y key is pressed, the task ”breaker” is
!executed at high priority. It uses the current
!context. The event is named ”brkall”. This set-up
!allows e.g. for a one shot selective removal of processes.

TIME(+100) → update(process x:(arg1,arg2))
!In 100 time ticks, the task ”update” will be executed.
!It uses the symbols arg1 and arg2 from context ”process x”
!as arguments.

3

TIME(17:00) → logout()
!At five-o-clock, the current process will logout.

CYCLIC(TIME(+1000) → myclock(*))
!Until now, the event definitions were one-shot.
!The keyword CYCLIC enables automatic re-ENABLING of an
!Event → Task binding after the event has taken place.
!The example provides e.g. for a user written clock.

CREATE(SYMBOL=”process a:ready”) → check ready(*)
DELETE(SYMBOL=”process a:ready”) → check ready(*)
CHANGE(SYMBOL=”process a:ready”) → check ready(*)
READ(SYMBOL=”process a:ready”) → check ready(*)
WRITE(SYMBOL=”process a:ready”) → check ready(*)

!These examples show how an action is undertaken if something
!happens to a symbol. In this case, symbols from process a are
!watched. If the specified event occurs, e.g. the creation of a
!symbol named ”ready”, the task ”check ready” will be executed,
!using the current context. Wild-carding of symbol name is allowed.

CREATE(FILE=”dum.dat”) → some action(*)
DELETE(FILE=”dum.dat”) → some action(*)
CHANGE(FILE=”dum.dat”) → some action(*)
READ(FILE=”dum.dat”) → some action(*)
WRITE(FILE=”dum.dat”) → some action(*)

!These examples show how an action is undertaken if something
!happens to a file. In this case, files from the current directory
!will be watched. If the specified event occurs, e.g. the creation
!of a file named ”dum.dat”, the task ”some action” will be
!executed, using the current context. Wild cards allowed.

WRITE(FILE=”mail.mai”) → warn(:”USR$TERM”)
!In this case the task warn is a context-less task, that uses
!the current user terminal as an output port to give a warning
!when something is being written into the mail.mai file.
!In combination with CYCLIC, e.g., CYCLIC(WRITE(FILE=”MAIL.MAI”))
!we can create a mail handler.

DATA RDY(PORT=ddv:) → read from DDV(*)
DATA REQ(PORT=ddv:) → write to DDV(*)

!These examples show how an action is undertaken if something
!happens to a device.

BIRTH(task calcul) → log(*:”task calcul starts”)
SLEEP(task calcul) → log(*:”task calcul sleeps”)

4

WAKEUP(task calcul) → log(*:”task calcul works again”)
EXIT(task calcul) → log(*:”task calcul stops”)

!Here a task is executed if something changes in the state of
!a task with the name ”task calcul”. The task ”log” stores
!the given string constants somewhere.
!Note that we talk about transitions: so SLEEP() means
!transition from any state to SLEEPing. Furthermore, these
!events put more detailed process status information into
!the global event table E().

END; !now these task bindings are defined.
ENABLE/WORLD=myworld/ALL EVENTS;

After the final ENABLE command, all the task bindings defined between DEFINE EVENTS
and END are open to instantiation.

5 More complex constructs: chaining and task-generated

events.

Complex systems can be built by using chaining: the definition of Event → Task bind-
ings that are made dependent on events that are generated by the tasks themselves
instead of being generated by external events. The most simple solution to chaining is
the attachment of a task to the occurrence of an EXIT event, e.g.:

EXIT(spreadsheet) → plot(*:”result.fil”)
EXIT(plot) → message(:”USR$TERM”)

Tasks may also create Autogene Events to control the subsequent flow of process-
ing. Autogene events differ from other events in that they occur artificially by deliberate
action of a task. A typical task that causes an autogene event to occur picks up the
associated symbolic event name from the invocation argument list, as in the following
example.
...some event... → task1(∗ : ..., event11, event12, event13)

event11 → task11(∗ : ..., event111)
event12 → task12(∗ : ..., event112)

The task & event numbering is only done for the sake of clarity. In any case, event
names must be unique: they must not collide with any pre-defined or autogene event
name.

Furthermore, detached tasks (demons) can be created to invoke user-defined autogene
events. Such a demon may be active all the time, and are initiated by the pre-defined
autogene event named RUN WATCHDOG. Ideally, such a watchdog runs on a separate
CPU. The mechanism is necessary for the detection of complex circumstances, such as
an intrusion to the system.

5

RUN WATCHDOG → intrusion checker(*:intrusion occurs)
intrusion occurs → warn(:”USR$TERM”,”Intruder”,E(intrusion occurs))

The task intrusion checker infinitely checks for some kind of intrusion event and
invokes the event called ”intrusion” if it happens. When the event ”intrusion occurs”
takes place, the task ”warn” is executed, sending some message to the user terminal.
Note that the warning task uses the event table E() under index ”intrusion occurs” to
see what actually happened.

6 Preventing avalanches.

If events occur at a rate, faster than the rate at which tasks can be finished, essentially
two modes can be described. These modes are determined with an optional qualifier
when defining an Event → Task binding. An option called /DUPLICATE means
activation, even if the task is already active. This consumes system resources so it
seems reasonable to take /NODUPLICATE as the default mode. An example:

EVENTX → TASKY(*)/NODUPL

prevents instantiation of a binding when the bound task is already active and has
not finished yet. Bindings that cannot be instantiated at event time are put in a queue,
possibly with a time-out value attached. This queue is implemented in the global table
E().

Other safety mechanisms involve the deletion of Event → Task task bindings,

DELETE/EVENT=brkall

or the temporary enabling or disabling of an Event → Task binding:

DISABLE/EVENT=brkall/WORLD=myworld
ENABLE/EVENT=brkall/WORLD=myworld

Temporarily enabling or disabling of a whole binding world:

DISABLE/WORLD=myworld/ALL
ENABLE/WORLD=myworld/ALL

7 Temporal logic.

Needed are logical operators that include temporal specifications of order and temporal
vicinity. The following syntax refers to the description of the occurrence of events within
a specified time window.

6

(within time window(1sec(event1.and.event2))→ my task
(within time window(24hour(event1.or.event2))→ my task

The occurrence of a predefined sequence of events can be described and implemented
in one of the following two ways:

(event1.then.event2.then.event3)→ my task

or:

(event1 →
(event2 →

(event3 → my task)))

In the latter nested set-up (event2→ ...) is a Nameless Task that activates (event2→ ...)
that activates the user-defined task ”my task” in turn.

8 What event types should be hard-wired into the

design?

Event Types are pre-defined types of events. Since the handling of a large amount
of events is costly in terms of computation, a dedicated architecture must be designed
that allows for the efficient processing of a set of such pre-defined event types.

Question: should the number of event types be large (Rich and Specific Set) or be
reduced (Reduced and General Set), delegating fine event characterization to the
task once started? Example: should we use a single event called ”FILE ACCESS”
for any kind of access to a file and let the task decide what access type actually
happened, or should we use a detailed event description at the top level as de-
picted earlier?

Event types Advantages Disadvantages
Rich and Less spurious task activation Top-level is complex
Specific Decisions left to OS&hardware Preferably impl. in hardware
Set Inflexible through hard-wired nature

Top level shows dependencies

Reduced Easier implementation Tasks are activated often
and Top level has limited complexity Tasks have to take decisions
General Less predictable behaviour
Set Flexible: more things possible

if the user is able to program.

7

Table 2. Advantages and disadvantages of the Rich Set approach and the Reduced
(general) Set approach.

Solution: provide as much hard-wired event types as possible so the implementation
can be fast, but give hackers the opportunity to create their own events if these
cannot be produced by any combination of given event types. This is done by
means of the autogene event mechanism.

9 Security

It must be possible to protect Context and Event Type from access by tasks of other
system users.

10 Problem areas

The general disadvantage of the proposed system is the reduced predictability of sys-
tem behaviour if the number of bindings increases. Also, the consumption of systems
resources will be much higher than in in existing systems.

11 Implementation aspects

This section is written without the claim that the author has specific hardware exper-
tise. Ideally, bindings are delegated to different watchdog CPU’s, DMA connected to
the general bus. Thus, such a CPU can handle several bindings while the big central
processing unit is not bothered by this low-level polling. These processors scan memory
structures for events and generate an interrupt if an event happens, or just pass device
interrupts to the central CPU. Before the interrupt is generated or passed, a table is
filled with the event description. A equalizing algorithm assigns watchdog functions to
these CPU’s.

Dedicated hardware may provide for task activation: normally some base pages of
each task already reside in memory, but the copying of additional pages can be done
by a dedicated CPU or chip. Maybe in large-memory systems these problems are not
so important as they are now.

In any case, testing of the ideas above can be done fully in software, e.g.in an existing
VMS or Unix environment, starting with a simulating top layer first, before descending
to the lower levels of these existing operating systems.

12 An application example

The following is an example in which a customized intelligent mail handling and sorting
facility is implemented. Assuming that the arrival of an electronic mail message is
identical to the creation of a new file, we can set up the following application.

8

CREATE(FILE=”/mydir/mailfiles/mail.*”)/NAME=”new mail arrived”
→ mail sort(*:E(”new mail arrived”))

The user application ”mail sort” is a program that checks the contents of the newly
received mail file. The name of this file is looked up in the global event table E() un-
der event ”new mail arrived”. Typically, the program will search for keywords in the
”sender” and ”subject” fields. This way, the system can sift out important mail from
trivial messages (”OPERATOR”-originating, e.g.).

(finished 2 feb 1988)

9

Contents

1 Introduction 1

2 A preliminary syntax description 2

3 Event-handling and context 2

4 Some syntax examples 3

5 More complex constructs: chaining and task-generated events. 5

6 Preventing avalanches. 6

7 Temporal logic. 6

8 What event types should be hard-wired into the design? 7

9 Security 8

10 Problem areas 8

11 Implementation aspects 8

12 An application example 8

10

