SUPPORT VECTOR MACHINES FOR THE CLASSIFICATION
OF WESTERN HANDWRITTEN CAPITALS

FUSI WANG, LOUIS VUURPIJL AND LAMBERT SCHOMAKER
Nijmegen Institute for Cognition and Information
P.O.Boz 9104, 6500 HE Nijmegen, The Netherlands

E-mail: fswang(vuurpijl,schomaker)@nici.kun.nl
http://hwr.nici.kun.nl

In this paper, new techniques are presented using Support Vector Machines (SVMs)
for multi-class classification problems. The issue of decomposing a N-class clas-
sification problem into a set of 2-class classification questions is discussed. In
particular, the technique for normalizing the outputs of several SVMs is presented.
Based on these techniques, support vector classifiers for the recognition of West-
ern handwritten capitals are realized. Comparisons to several other classification
methods are also presented.

1 Introduction

Support vector machines (SVMs) are primarily designed for 2-class classi-
fication problems!. Although SVMs achieve substantial improvements over
the currently best performing methods and behave robustly over a variety of
different learning tasks when a problem is treated as a binary classification
problem?3, the application of SVMs to multi-class classification problems is
still a challenge.

Whereas in theory, the combination of n SVMs can be used to solve a
N-class (N > 2) classification problem, such a procedure requires some care
when applied to practical problems?. In this paper, the issue of decomposing
a N-class classification problem into a set of 2-class classification questions is
discussed. For combining the output of a set of SVMs, it is required that their
outputs are normalized. In this paper, we will address the normalization of
SVMs’ output, testing the proposed technique on the classification problem
of simple bitmaps of Western handwritten capitals.

Also, the use of several other classification methods, such as the Nearest
Neighbor (INN), k-Nearest Neighbor (kNN), Hidden Markov Model (HMM)
and Multi-Layer Perceptron (MLP) is discussed in this paper. The experi-
ments are performed with handwritten isolated uppercase English characters
which are extracted from the UNIPEN® data base and converted to pixel
images.

In this paper, section 2 is concerned with the basic idea of the Support
Vector Machine (SVM) and the problems faced to the SVM when it is applied

167

In: L.R.B. Schomaker and L.G. Vuurpijl (Eds.), Proceedings of the Seventh International Workshop on Frontiers in Handwriting Recognition,
September 11-13 2000, Amsterdam, ISBN 90-76942-01-3, Nijmegen: International Unipen Foundation, pp 167-176

to multi-class classification. In section 3, four other classifiers are briefly
introduced. Sections 4 and 5 show experimental results and give a summary
of our approach.

2 SVMs for multi-class classification

2.1 The Basic Idea of SVM

The Support Vector Machine is a classification technique which was developed
at AT&T Bell laboratories by Vapnik and co-workers!. SVMs are trained to
perform pattern recognition between two classes by finding a decision surface
determined by a subset of the complete training set, termed Support Vectors
(SV). For more details on SVMs, one can see for example the tutorials® 78,

Given a 2-class training set S = {(x1,¥1), ..., (X1,yr)}, where x; € R%,
y € {+1,—1}and i =1,..., L, the goal of training a SVM is to find the optimal
hyperplane defining the decision boundary between the two classes. In general
case, a separating hyperplane should satisfy:

yi(w-x; +b) > 1=¢; (1)

Where the &; is a nonnegative variable introduced in the non-separable
case, in the separable case & = 0. The pair {w,b} defines a separating
hyperplane:

w-x+b=0 (2)

If we denote with ||w]|| the Euclidean norm of w, the distance d(x;) of a
point x; from the separating hyperplane (w,b) is given by:
3)

Since the distance of the closest point equals 1/||w||, the optimal sepa-
rating hyperplane can be regarded as the solution of the convex optimization
problem of:

Minimize — jw-w+C Y ¢
Subject to y;(w-x; +b) >1-¢;

The term C') &; can be thought of as some measure of the amount of
misclassification, C' is an penalty parameter. This problem can be solved by

168

means of the classical method of Lagrange multipliers®, whose optimal solution
pair {w,, b, } defines the so-called optimal separating hyperplane. The w, can
be written as

l
Wo = Zaiyz'xi (4)
i=1

Here the feature vectors in set Ny, = {(X1,41),-.-, (X1, ¥1)} are the so-
called Support Vectors. Thus, we can get a linear classifier f(x) for a binary
classification problem of the form:

f(x) = sgn(w, -x +b,) (5)

Non-linear SVMs are defined as linear separators in a high-dimensional
space R" in which the input space R? is mapped through a non-linear mapping
function ¢(x). A non-linear classifier f(z) for a binary classification problem
has the form:

!
f(x)= S!J"(Z ayi K (x4,%) + bo) (6)

where
K(xi,x) = ¢(x;) - #(x) (7)

is a so-called kernel function which can be used to form arbitrarily complex
decision surfaces.

2.2 SVM output normalization

SVM is well suited for binary classification problems, because the optimal
hyperplane defines the decision surface between two classes. When SVM
technique is applied to multi-class classification problems, usually the multi-
class classification problem is decomposed into a set of 2-class classification
problems®*. The output class should be determined by choosing the maximum
of the outputs of all sub-SVMs. However, before these outputs may be com-
pared, they have to be normalized. This subsection describes a technique for
normalizing the output of SVMs in a multi-class classification system.

The output g(x) of a SVM, on the decision between two classes, is defined
as:

169

{
g(x) = Z oy K (x4, %) + b, (8)

In the linear separable case, the mapping function ¢(x) = x. The Eu-
clidean distance d(x) of a point x from the separating hyperplane g(x) = 0 is
given by:

() = 1 ©)

A

The w, can be obtained by applying ¢(x) of the support vectors.

l
Wo = Y aigip(xi) (10)
i=1
The Euclidean norm ||w,]|| of w, can be calculated by
1 11
o= llwoll> =) cioyyiy; K (xi, %) (11)
1 i=1 j=1

To make it possible to compare the distance output of different SVMs,
for each SVM we define the scaling factor 72 as the mean over the positive
set. That is

i = %Zg(xi)ﬁl (12)

i=1
Here the p is the number of positive samples in training set. Finally, the
comparable distance output of one SVM can be get by

s(x) = g(x)mimy (13)

2.8 Decomposing N-class classification problem

Among the wide variety of methods available in the literature to learn clas-
sification problems, some are able to handle many classes, while others are
specific to 2-class problems. Traditionally, when the latter are used to solve
N-class classification problems, N-classifiers are typically trained to separate

170

one class from the N-1 others. The same idea can be applied with SVMs. This
way of decomposing a general classification problem into 2-class problems is
known as a one — against — others* decomposition, and is independent of the
learning method used to train the classifiers.

Suppose we need to classify an unknown sample into a set of classes
{c1,...,cn}, given the N-classes training set: S = {x1,...,xy }, divide it into
N subsets {S1,Sn }, where S; contains all training samples belong to ¢;. The
i-th SVM is trained in the set of {PE, NE}, where PE = S; and NE = S—S,.
If s;(x) is the normalized output of the i-th SVM, which is described in section
2.2, then the unknown example x will be classified into classes c; if:

fi(x) = argmaz(si(x)) i=1,..,N (14)

If there are not too many classes, the pairwise — coupling decomposition
scheme can be used to replace the one — against — others. In this scheme one
classifier is trained to discriminate between each pair of classes, ignoring the
other classes. This schemes make it possible to use the bubble sort algorithm
to get out the final category.

3 Description of the other classifiers used

For comparing the performance of the SVM to other classifiers, the Nearest
Neighbor (INN), k-Nearest Neighbor (kNN), Hidden Markov Model (HMM)
and Multi-Layer Perceptron (MLP) are introduced in this section.

8.1 kNN and 1NN method

For an unknown sample x, the kNN follows the following principle. Search
the k nearest neighbors'® of x from V samples in the training set using an
appropriate distance measure. Suppose there are N categories in the given
samples, k; samples in the k nearest neighbor of x coming from category ¢;,
now, if

kj = max(k;); i=1,...,N; (15)

then x can be classified to class ¢;. This is the basic rule of KNN. When
k = 1, the output is the nearest neighbor of x. ENN becomes the nearest
neighbor (INN) method in this case. For a large training set, the kNN method
implements the Bayes rule, and furthermore kNN is very easy to implement.
This is why kNN has become one of the most important pattern recognition

171

methods. The major problem of kNN is that all training samples have to be
available during classification, and for a unknown pattern x, the distance of
x to all samples has to be computed. This requires a lot of memory and time
resources. In references!®:!! there are some algorithms to speed up a kNN
classifiers.

3.2 MLP method

As a representative of neural network classifiers, the multi-layer perceptron'?
(MLP) is used in our approach. To design a MLP classifier, two problems
have to be solved. The first is what kind of neural network structure should
be adopted. For instance, how many hidden layers, how many nodes in each
layer and what kind of activation function should be used for each node. Up
to now there is no theory which can guide one to yield the optimal structure
of a neural network.

The second problem is how to choose a learning algorithm for the neural
network. Statistical methods can reach the global minimum point of a MLP
and yield the best performance, but this learning method needs a long training
time. Back-propagation is applied widely, but it may be plagued by the local
minima, problem.

Our MLP classifier uses the Back-propagation learning algorithm and a
256 * 128 x 32 x 26 neural network. The input layer represent the image of
the input characters and is fully connected to the hidden units in the second
layer. All units in the classifier have the same transfer function: They sum
their inputs, add a constant b called bias, and take a fixed function f, called
an activation function, of the result. The activation function of all hidden and
output layer units is the sigmoid function.

3.8 HMM method

Hidden Markov Models (HMMs) a popular method of statistical represen-
tation in speech processing is based on the representation of an object as a
random process that generates a sequence of states. The elements of a HMM
can be described as follows!3:14:

N : the number of states

M : the number of output symbols

T : the number of observations

Q = {q} : the set of states, t = {1,2,..., N}

V = {Vk} : the set of output symbols, k = {1,2,..., M}

172

o A= {A;;} : the transition matrix of the underlying Markov chain. Here
A;j is the probability of transition to state j given the current state i.

e B = {B;(Vk)} : the model output symbol probability matrix, where
B;(V}) is the probability of output symbol Vi given the state g;.

e a = {a;}: the initial probability vector, i =1,2,..., N

The character in this classifier is scanned vertically and horizontally to
generate the corresponding out-contour profiles. The discrete hidden Markov
models are generated using the Segmental k-means algorithm'? while a scoring
mechanism based on the Viterbi algorithms!® is used in test phase. Some
parameters of the HMM classifier are N =8, M =T = 16.

4 Experimental results

We have extracted 14967 uppercase isolated English characters from the
UNIPEN data base of the NICI. 5200 were used as training set (200 for each
letter), the rest was used as test set. This is a very difficult data set, with
characters written by many writers, in a wide range of tablets and systems.
The raw data of each isolated letter is converted into a 16x16 bitmap image.
The pen width is 2 pixels. Examples of test data can be observed in figure 1.
The raw 256 dimensional bitmap vector is used as the input for each classifier.
All classifiers are programmed in the C programming language, running on a
Pentium-IT 400Hz PC.

AAAMALAABABREARRALZCLLEZ
CLAMNBDODPDBDPDODEBREERBEEY
CERFECFELLEEL EEGMMA MM KM
BFIXIFRLIL /7 /7EAZTAST SIS DT REKRY
VKKl bL Lt i 4 AMMAMMMMAAMM
MRANNRNAVVOSOHDIOOLODOLPPRPEL
PPFAXRXGOIDORORAELLRELERIADS
[LHYLLZITTYTVI 77T MM
VUVYYYYYYRUMRDUW WK ANK
MXNRY - YYYTYESYERZEX

Figure 1. Some bitmap images of testing examples.

We designed some experiments to compare the performances of each
method. In the first experiment, we test the training time as a function

173

of the number of samples. There are 26 classes in these experiments. The
result is listed in Table 1. The 1NN and NN classifiers are not listed in this
table, because they do not need to be trained as the prototype set is the whole
training set.

Table 1. training time in seconds as a function of the number of training samples

[Sy__ [130 [260 [650 | 1300 | 2600 | 5200]
HMM | 30 [57 [133 | 262 [519 | 1046
MLP | 81 | 283 | 693 | 1422 | 6062 | 1561
SVC, | 7 | 15 | 67 | 123 | 960 | 8075
SVC: | 4 | 6 | 12 | 28 | 204 | 67628

We use a polynomial degree 2 kernel function for SVM classifier. The
one — against — others category is used when training SV Cy. The pairwise —
coupling decomposition scheme is used when training SV C5. From Table 1 we
can deduce that there is little difference between methods when the number of
training samples is small. When the number of samples increases, the HMM
classifier linearly increases its training time, whereas the SVC’s training time
increases dramatically.

Table 2. Test set correct recognition rate in percentages.

| | SVC2 | SVC1 | HMM | kNN | INN | MLP |
topr | 81.2 79.6 78.4 774 [769 | 76.9
topy | 89.0 86.2 86.5 86.7 | 874 | 852
tops | 92.1 88.6 89.8 88.9 | 91.1 | 884
tops | 93.9 90.2 91.9 89.5 | 932 | 90.2
tops | 95.1 91.2 93.2 80.6 | 945 | 914

The second experiment tests the recognition rate. The experimental re-
sults are shown in Table 2. In these experiments, the polynomial degree
2 kernel function and a penalty parameter 1000 are used for all SV classi-
fiers. The SV (> uses the pairwise — coupling decomposition scheme. The
one — against — others decomposition scheme is used in the SV C;. In the
SV, all SVMs outputs are normalized as described in section 2.2. For the
SV (s the bubble sort algorithm was used to sort the letters in the candidate
set.

The pairwise-coupling decomposition scheme is more efficient than one-
against-others as can be seen in table 2. Although we need to train more

174

sub-SVMs, In the case of large training set sizes, it takes less training time.
This is because in the pairwise-coupling decomposition scheme each sub-SVM
uses less training samples as they are coming from two classes only. In the
one-against-others case each SVM is trained with data originating from all
classes.

In the recognition procedure, if we focus only on the top; result, the
pairwise-coupling decomposition scheme takes less time. If we need a candi-
date set, the SV (5 recognition time will increase quadratic in the number of
classes. This can be observed in table 3.

Table 3. Recognition time in seconds for the classification of 9767 samples.

| | SVCs | SV | HMM | kNN | 1NN | MLP |
Need only top; 284 692 227 523 522 46
Need tops 4397 702 240 572 542 54

From these observations we can conclude that the SV Cs is more robust
than the other classifiers.

5 Conclusions

In this paper, a technique is introduced for using support vector machines
for multi-class classification. A solution for the problem of normalizing the
output of several SVMs is highlighted. Different decomposition techniques
are discussed. The result of several experiments are presented. The classifi-
cation performances are not so high because of the difficult data and crude
feature vectors. In contrast to the conventional classification methods, when
considering training and recall times, support vector classifiers are consider-
ably slower. However when considering recognition rates, the pair-wise SVC
proves to outperform all other classifiers. Our future work will be focused on
the improvement of the feature vectors and the combination of SV 5y with
the other classifiers.

References

1. V. Vapnik. The nature of statistical learning theory. Springer-Verlag,
Berlin, 1995.

2. D.M.J. Tax, R.P.W. Duin, and M. van Breukelen. Support vector clas-
sifiers: A first look. In H.E. Bal, H. Corporaal, P.P. Jonker, and J.F.M.

175

10.

11.

12.

13.

14.

Tonino, editors, ASCI’97, Proc. 8rd Annual Conference of the Advanced
School for Computing and Imaging, pages 253-258, Delft, 1997.

T. Joachims. Making large-scale svm learning practical. In B. Schlkopf,
C. Burges, and A. Smola, editors, Advances in Kernel Methods — Support
Vector Learning. MIT — Press, 1999.

Ethem Alpaydm Eddy Mayoraz. Support vector machines for multi-class
classification. Technical report, IDIAP, 1998.

I. Guyon, L. Schomaker, R. Plamondon, and S. Liberman, R.and Janet.
Unipen project of on-line data exchange and recognizer benchmarks. In
Proceedings of the 12th International Conference on Pattern Recognition,
ICPR’9/, pages 29-33, Jerusalem, Israel, October 1994. IAPR-IEEE.
Christopher C.J. Burgess. A tutorial on support vector machines for pat-
tern recognition. available at http://svm.research.bell-labs.com,
1998.

Alex J. Smola and Bernhard Schélkopf. A tutorial on support vector
regression. Technical Report NC2-TR-1998-030, GMD, October 1998.
Massimiliano Pontil and Alessandro Verri. Properties of support vec-
tor machines. Technical report, Massachusetts Institute of Technology
Artificial Intelligence Laboratory, 1997.

M Bazaraa and C.M. Shetty. Nonlinear programming. Jon Wiley, New
York, 1979.

D. Mangalagiu and M. Weinfeld. Tree search technique for the opti-
mization of the k nearest neighbors algorithm. In Proceedings of the 6th
IWFHR, Taejon, Korea, August 1998.

L. Schomaker, D. Mangalagiu, L. Vuurpijl, and M. Weinfeld. Two tree-
formation methods and fast pattern search using nearest neighbour and
nearest-centroid matching. Technical report, NICI, Nijmegen University,
The Netherlands, 2000.

C.M. Bishop. Neural Networks for Pattern Recognition. Oxford Univer-
sity Press, 1995. ISBN 0 19 853864 2.

Rakesh Dugad and U. B. Desai. A tutorial on hidden markov models.
Technical report, Department of Electrical Engineering, Indian Institute
of Technology — Bombay, 1996.

Sang Kyoon Kim Hang Joon Kim, Kyung Hyun Kim and Jong Kook
Lee. On-line recognition of handwritten chinese characters based on
hidden markov models. Pattern Recognition, 30(9):1489-1500, 1997.

176

