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Abstract

In this study, a comparison is made between a stroke-based, and a character-based
recognizer of connected cursive script. Experiments were performed with Kohonen’s
topology-preserving neural network. In one method, a feature vector was based on
single velocity-based strokes and a subsequent symbolic character classification stage,
as reported earlier. In an alternative approach, kinematically segmented characters were
time-normalized and represented in a feature vector as a whole. In the latter case, the
character classification is done completely within the Kohonen method and does not
require a separate symbolic matching stage. Two distance measures are used, Euclidean
and variance-weighted Fuclidean. The method displays a good unsupervised clustering
of allographs in a single network. Weighted Euclidean distance performs better than
a standard Euclidean distance, and results in less ”allonyms” (name confusion) per
allograph. It is concluded that by combining the discriminative stroke-matching method
and the more generalizing character-matching method in a single system, recognition rate
can be improved.

1. INTRODUCTION

In an earlier study [1], an on-line cursive-script recognition system was described
that is based on kinematical strokes, i.e., pieces of handwriting movement bounded by
minima in the tangential pen-tip velocity. These time-reference points are robust in adult
handwriting [2-5] and are associated with peaks in the curvature time function. In such
an approach, a character is defined as a ”"sequence of strokes”. Shape classification is done
at the stroke level. A Kohonen [6] self-organizing network (Topology Preserving Map)
was used to obtain feature vector quantization, reducing a 14-dimensional stroke feature
vector to two indexes 1,j into a 2-D Kohonen network with hexagonal connectivity between
neurons [7]. After stroke feature vector quantization, a symbolic classification procedure



Figure 1. Typical errors produced by a stroke-based cursive script recognizer. Left:
Correct shape classification of /lazy/. Right: misclassification of /b/ as /ir/ by
overdiscrimination, in the word /brown/. Also note a human writing error in /w/

is performed on strings of symbolic stroke codes to identify characters. This approach
yields an estimated 70-80% correct character classification of neatly written on-line cursive
script without the use of any linguistic statistics and/or context. This figure is an estimate,
since shape ambiguity in cursive script makes an elegant assessment of the recognition rate
complicated. From the geometric point of view, often more than one character candidate is
perfectly acceptable, whereas linguistically, only a single character is considered ”correct”.
A notorious example is the cursive word /minimum/ written without punctuation, which
allows for a very large number of interpretations containing /i/,/u/,/n/,/m/, and even
/c/,/v/. However, the stroke-based approach lacks the generalization capability that is
necessary to display invariance to the geometric distortions and variabilities inherent to
cursive script. This incomplete generalization capability, leading to a undesired proportion
of "rejected” handwriting fragments, is mainly due to the discrete and symbolic matching
phase, where all metric information on structural relations within characters is lost. There
are two motives for investing efforts in the improvement of bottom-up shape classification.

First, it is still evident to the human observer that our recognition system could have
incorporated geometrical information that is present in the input, but fails to do so (Figure
1). Since there is no between-stroke information represented, the system cannot make use
of high-order relations between parts of a character.

Second, although incorporation of linguistic context theoretically improves the
recognition rate, there are currently no generally accepted, robust and broadly applicable



large-capacity (> 100000 word dictionary) techniques available. A large variety of
techniques is being explored, varying from hash coding [8], triphone analysis [9], dictionary
tree [10] and trie search [11], to Hopfield networks [12], but there is apparently no
consensus about basic issues. Furthermore, finite dictionaries often deteriorate particular
texts by replacing partially distorted words (names, abbreviations) by completely wrong
word alternatives.

Thus, before considering the use of linguistic knowledge, the quality of geometric
shape classification should be optimized. To improve the performance in this area, an
alternative approach is studied as an enhancement to the existing stroke-based system.
In pilot studies it was noticed that taking Euclidean distances between user-identified
prototypical characters and a given stream of cursive handwriting input yields a large
proportion of spurious hits often even at non-character positions (Figure 2). The reason
for the spurious matches lies in (1) inherent ambiguities, and (2) in the redundance or
periodicity of the up-down movement sequence.

Inherent ambiguities exist when the Euclidean distance between a part of a character®
and a prototype is very small, as in, e.g., the first stroke of a cursive /a/or /d/that may
have a perfect fit (zero distance) with the single-stroked character /c/.

The redundance problem occurs when, e.g., down-up-down-up-down sequences display a
spuriously small distance from /m/. This phenomenon will also lead to a poor performance
when classifying connected cursive script by means of multi-layer perceptrons (MLPs)
trained by back propagation (BP) as we have found. However, these networks do appear
to work well on isolated characters [13] where this type of redundance is absent. Simon
& Baret [14] makes a distinction between regularities and singularities in handwriting, to
solve the redundance problem by only concentrating on the geometric singularities in the
classification process, but the singularities are defined a priori, which is a disadvantage
from the trainability point of view.

The purpose of the present study is to find a method that reduces the
“overgeneralization” that occurs in the case of (Euclidean) character matching, but that
still displays a degree of generalization that is sufficient to fill in the gaps (misses and false
hits) that are present in the existing "overdiscriminating” symbolic stroke-based approach
[1]. To implement a character-base recognition system for on-line connected cursive script,
a number of problems must be solved:

1.1 Data acquisition

Pen-tip movements are recorded by a Calcomp 2500 or 9060 digitizing tablet at 100
samples/second, measuring displacement (X,Y) and axial pen force ("pressure”) (7).
The recorded handwriting is of an adult male writer and consists of English and Dutch
paragraphs of text, as well as a limited number of isolated block print letters and digits,
yielding a total of 629 words, and 5327 labeled characters. The labeling is done manually
with an interactive "mouse”-pointer user interface. However, it is desirable to do this
(semi-)automatically, for which methods are being developed [15]. A separate test set
consisted of 244 cursive words.

*In cursive script, it is often preferable to substitute the term ”characters” by ”allographs”,
i.e., different shapes for the same symbol. Also, there exist ”allonyms”, i.e., different symbol

names for the same shape ({ /0/, /o/ and /O/ }, or cursive {/e/ and /I/}).



Figure 2. Misclassification in template matching of cursive script using an
Euclidean distance measure. The correct /k/ actually has a higher distance from
the input than an /h/-shaped prototype. The smallest distance is obtained by
matching the first two strokes with an /I/ shape. The word /gemakkelijks/ is
Dutch and means "something easy”.

1.2 Preprocessing

The handwritten input word is pre-processed (low-pass filtered, differentiated,
unrotated, unslanted, size-normalized) and segmented on the basis of minima in the
tangential velocity by standardized software [1,2,16].

1.3 The coding of the movement signals

In the newly proposed system, a feature vector does not describe a stroke, but a
complete character. The character feature vector consists of a sequence of consecutive
X,y coordinates of pen-tip movement, normalized to a centroid position of (0,0) and a
maximum excursion of 1. Thus, the feature set is homogeneous: all features are in the same
unit, and there are no structural features. No provisions have been made for pen lifting
within characters, as yet. In real connected cursive script, pen-lifting is not supposed to



occur. Note that pen-lifts actually are incorporated in the stroke-based recognition system
[1].
1.4 The varying-duration problem

The varying duration of different characters, expressed in the number of samples and /or
the number of strokes leads to feature vectors of varying sizes for different characters.
In an attempt to solve the varying-duration problem, Morasso et al. [7] propose the
employment of separate Kohonen networks for 2 to 7-stroked characters separately. The
disadvantage is that one cannot make use of the clustering capability of the Kohonen
network over all possible n-stroked characters: the ”Voronoi tesselation” only takes place
within a network dedicated to characters of a fixed number of strokes and there is no
mutual influence between these networks during training. In the current study, however,
we will try to represent all allographs in a single Kohonen network. In order to achieve
this, characters must be represented by a single fixed-size feature vector. The adopted
solution is to take the kinematic stroke segmentation moments in time as anchor points
for a time axis normalization. The number of normalized time samples is chosen to be
30 samples, yielding a worst case of 5 samples per stroke in a 6-stroked character (e.g.,
some allographs of /m/). At the other end, single-stroked characters like /i/and /¢/ are
represented with 30 samples per stroke. The time-axis normalization is performed using a
quadratic interpolation procedure [17] which has the advantage of requiring substantially
less computing time than more sophisticated methods [18, 19] but exhibiting better
performance than linear interpolation at the peaks and dips of the displacement time
functions.

1.5 Creating a training set and handling allographic variation

Allographic variation refers to the phenomenon that a given letter can be written in
several, topologically different ways, such as an upper-case variant, a block print variant,
and a cursive variant of the letter /t/. In cursive script, with its idiosyncratic writer
styles, labeling a character by its letter name only does not automatically make it unique
compared to its competitors or similar to its namechildren. Different letter labels do not
automatically ensure that the allograph shape indeed is unique. Without a scale context,
cursive /e/’s and /l/’s may have exactly the same (size-normalized) shape. On the other
hand, a writer may have several variants (allographs) for a /t/, topologically differing to
such an extent that it is not sensible to define the different shapes as belonging to the
same shape class. As an example, in a MLP, containing 26 output nodes for the alphabet,
allographic variation for a given letter will very soon lead to mutual interference of weights
and a consequently reduced convergence and recognition rate in such an architecture. By
normalizing the time axis and using a fixed-dimension feature vector (see above), we can
now take advantage of a single self-organizing Kohonen network that settles down to a
least-squares, topologically correct map of all the allographs in a training set. A sufficient
number of the obtained feature vectors must be labeled with its letter name to obtain
a robust representation of allographs. As a rule of thumb, Jain & Chandrasekaran [20]
mention a number of examples per class that is five times the number of features. In the
current case, this implies 300 examples per class, which is a number that cannot easily
be reached in an interactive system were the user must provide for the complete training
set.



1.6 Training

The training of the Kohonen network was done in 50 epochs, starting with a learning
rate of 0.5 and ending with 0.01, with a steepness factor of 5. The steepness factor is used

o= (V31— v s+ v ) (1)

where s(> 0) is the steepness factor, = is a decreasing training parameter (here learning
rate or Kohonen bubble radius), k = [1, N] is the epoch number and N is the total number
of epochs. If s = 1, x, is a linear function. Network bubble radius similarly decreased from
full network size to 0 with a steepness factor of s = 5. This relatively high steepness speeds
up the self-organizing process by reducing the duration of the initially irregular state space
evolution. The network size was 20x20 neurons, organized in a hexagonal-connectivity 2-D

grid.

1.7 Operation: The segmentation of the data into characters

Assuming there exists a fixed-dimensional feature vector for each allograph as a class
prototype, segmenting unknown input handwriting into characters can be done in a
similar fashion as described above, with the difference, that we are now dealing with
unlabeled input. This means that for each given stroke position, handwriting fragments
must be time-normalized and presented to the trained Kohonen network. For each stroke
of an input word, pieces of handwriting containing from 1 to 6 strokes are resampled
to 30 samples and presented to the Kohonen network, determining the closest match is
determined. Thus, for each stroke position, 6 hypotheses concerning the character identity
are generated, along with a measure of their fit with the actual input.

2. RESULTS

After training, a Kohonen network of cursive characters evolved that is presented in
Figure 3. The labeled training set was presented to the Kohonen network once again, this
time not to update the weights (prototypical feature vectors), but to label the nearest
neighboring neuron with the name of its matching example. Of the 400 neurons, 387 were
actually labeled, the remaining neurons representing intermediate character shapes and
irrelevant mixtures. The fact that not all neurons were needed shows that the number of
neurons was sufficient to represent the topology of the allographs present in the training
set. Note that the presence of a large number of connecting strokes in the training set
caused a salient presence in the network.

During the automatic labeling of neurons, the software kept track of the squared
deviations between prototype and input for each feature of each neuron to obtain an
estimate of the variability of the feature per allograph o?. Normalizing by also correcting
for covariance (Mahalonobis distance) was avoided because of the anticipated error of
the covariance estimates in the high-dimensional (=60) space used [21,22]. The resulting
distance measure is more sensitive to essential (i.e. invariant) sections within the feature
vector. Table 1 shows the distribution of neurons as a function of the number of
interpretations.



Figure 3. The complete 20x20 Kohonen network representing the allographs in the training
set after 50 epochs.



Table 1.
The histogram of neurons per number of interpretations (labels).

D}, DE;

Nlabels Nneurons Nneurons
1 102 130

2 145 133

3 81 51

4 33 32

5 26 36
emply 13 18
Total 400 400

Column D,%j denotes the use of the simple, column ﬁ,%] the use of the
weighted Euclidean distance.

Two distance measures were used to find the closest prototype of an input character,
Euclidean:

N
1 feat
Dij=~— > (i — fii)? (2)
]\feat =1

and feature-variance normalized (weighted) Euclidean:

Neat
e LN U= S 3
Nfeat — U}%i

where k denotes the prototype index, j is the input pattern index, f; are the feature
values and o}, is the variance of differences for feature i between prototype k and all
corresponding examples in the training set. In using the Euclidean distance (middle
column, Table 1), most neurons can have 2 interpretations (145), followed by 1
interpretation/neuron (102), then dropping steeply. In case of the weighted Euclidean
distance, the number of neurons with a single interpretation increases (130), right column:
the extent of the confusion decreases.

Table 2 shows the confusion list. Numbers indicate the frequency of occurrence in
the training set. Up to four confusions are shown (the maximum is five, see Table 1).
Confusions are sorted in order of decreasing frequency of occurrence. Note that there are
special codes: # refers to a horizontal spacing movement, a _ refers to a connecting stroke,
and a ~ refers to unclassifiable fragments.

Figure 4 shows the variation around some character prototypes of the 20x20 Kohonen
network using ellipsoids, representing the horizontal and the vertical rms error. As can be
seen, there are differences between the characters with respect to their motoric writing
variability. Also, the variance is not homoscedastical over features (e.g. the /r/in panel
(8,8). Occasionally, neurons contain meaningless shapes when they lie a transition area
of very different allographs. These outliers belong mostly to the group of unlabeled
neurons. Table 3 displays preliminary recognition results for a single writer. The results



are expressed as the percentage of words that could be identified in the solution space of
best matching characters.

Table 2.
The confusion list for the labels attached to the (20x20) Kohonen neurons.

) B () R TV A V() ETEY
7 (73)  T(22) r(19) 79 |U a(h0) n(35) u(19) U(8)
£ (109) " (93) #(33) e(13) |V o(45)  v(38) V(8) (1)
(66) T (61) ’(28) 7(6) | W  w(31) W) m(1) r(1)
Co) s C® 6 X X k) V()
. T(68)  _(h9) =#(17)  (15) | Y  g(11) Y(7) X(6) y(6)
0 o(64) 0(21) e(14) i(8) |Z  2(20) 2(12)  Z8)  7(2)
1 i(44)  1(20) T (10) £7) |- (1174) " (132) ©(26) o(25)
22017 8 (@) i®) | (@) () 7(6) (3)
3 3(16)  ?(9) .(4) “(3) |a a(l7l) o(62) n(14) k(13)
4  4(14) e(13) b(7) h(s) | b b(73) h(61)  t(14) k(10)
5 5(11) y(9) s(4) T(4) | ¢ ¢(69) i(69) n(49) e(22)
6  6(13) (2 iy  G(1) | d d(126) m(35) 1(9) x(6)
7 2(17)  7(13)  Z()  JI(3) |e  e(541)  (297) 1(85) n(36)
8  8(14)  j(3) ‘(1) f f(45) t(39) 6(7) e(5)
9 g(60) 9(24) q(23) y(16) | g g(78)  y(65) q(29) 9(23)
: f(2) (1) h h(86) k(28)  b(14) t(11)
? 1(10)  ?(10)  3(8) i i i(182)  u(32) ¢(31) 1(30)
A 08 AMD) We) NG | veo) @) 100 - @®)
B B(7) K((B) Q4 R@3) |k k(102) h(b3) b(5)  K(5)
C  <(52) CQA7) e(7) i(5) |1 e(244)  1(105)  t(34) b(12)
D D(12) n(10) H(G) Y@) |m  m@3) o(10) w(9) - (4)
E  E(6) FGB) ~“3) n(l) |n  n(249) u(46) ~(29) x(17)
F  F6) U2 d2) R() |o o228 a(53) n(42) v(42)
G o(46)  6(6) 0) GM) |p p(74) o(25) H(8) x(6)
H x(13) H(10) D(7) p(5) |a  g(64)  y(45) a(33) 9(19)
I i(8) 1(5) 1(5) i(4) |r r(219) i(52) o(47) T (34)
J 309) J(6) 7(3) i(3) | s s(141) r(71) T (22) i(17)
K K(B) B() Q@) R@3) |t (220) f(36) y(26) 1(23)
L t(4) k(4) L(4) h(2) |u n(125) u(77) a(h0)  U(6)
M o(6) D(6) H(4) M(@3) | v o(129) v(106) V(8) -(6)
N n(l1) N9 A2 w(l) |w w(bh6) W() vid) T (4)
O o75) a(b0) 0(10) O(9) | x n(l45) x(30) e(14) a(13)
P p(47)  P(6) y o y(90)  g(51)  q(19) 9(17)
Q K(B) B(B) QM4 R@3) |z z(63) h(16) r(9) Z(6)
R K(5) B(5) R@A) QM) |~  (654) " (408) e(25) r(24)
S s(44) S(13)  t(4) L(3)

There were 5327 characters in total. The reader is referred to the text for more details.



Figure 4. Some prototypical feature vectors (allographs) detected by the Kohonen
neural network and the horizontal and vertical rms error at each normalized-time sample
represented as an ellipsoid.

Table 3.

Average recognition results for one writer (N=244 test words).

Recognizer % Identifiable words Number of competing

letter hypotheses
A. Stroke-based 47 4.0
B. Character-based 65 13.2
A. & B. 83 16.6

The second column gives the percentage of identifiable words (if lexical post-processing were
applied), the third column displays the average number of competing letter hypotheses per
cursive stroke in the input stream (A: stroke-based recognizer, B: character-based recognizer,
A & B: the results if the solution space is a combination of the output of A and B).



The character-based recognizer yields a better (+18%) performance at the cost of
a larger number (4+9) of competing letter hypotheses per stroke. Combining letter
hypotheses from the stroke-based approach and the character-based approach yields a
83% word identification. It should be noted, however, that the character-based approach
requires a large amount of computation due to the high dimensionality of the feature
vectors (60 vs 14) and the multiple (6x) matching per serial stroke position.

3. CONCLUSION

The presented self-organizing approach offers new possibilities in the recognition of
connected cursive script. A useful system will heavily rely on user trainability, given the
broad range of cursive writing styles. Among other things, the approach illustrates that
spatial resampling is not necessary because of the existing movement replicability. The
use of the writing velocity as the basis for finding temporal anchor points in matching
appears equally applicable to single strokes and to characters as a whole. Results on one
writer show that by combining a discriminative stroke-matching method with the more
generalizing character-matching method presented here, recognition rate can be improved.
The post-hoc use of a weighted Euclidean distance measure raises the question whether
this measure could be also used during the training of a Kohonen self-organizing map,
instead of the usual Euclidean or city-block distance. Theoretically, this is possible if each
neuron has a representation of a running-average squared-feature vector as the basis for the
feature variance estimation. Future work will be concerned with questions of training set
requirements and with more detailed comparisons between the two recognition methods.

This study was supported by an Esprit grant, project P5204.
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