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Abstract – The developments in behavior-based robotics
and in ecological psychology have had a strong effect
on theoretical development in some research communities.
A new belief has emerged under the name of anti-
representationalism, which is strongly opposed to the notion
of representations in cognition. This notion is spurred by the
inarguably fruitful insight that behavioral complexity can be
brought about by simple mechanisms at a low systemic level.
Although there are many problems with constructed formal
representations in the toy models of traditional artificial
intelligence, there is a fundamental problem with extreme
anti-representationalism, as well. Representations actually
do exist in the biological neural-information processing
system. In this paper, a review of neural representation
mechanisms will be given, looking at perception and motor
control in biological systems. Subsequently, it will be
illustrated that already in simple animal behaviors, simple
’representation-less’ reactivity does not suffice. Anticipation
exists even in jumping spiders, requiring the existence of a
representation as the computational basis for the prediction
of future system states.

Keywords: Representations in cognition, ecological theo-
ries of cognition, anti-representationalism

1 Introduction
Over the last decade, a new theoretical line of thinking

has evolved in the fields of cognitive science, robotics
research and biology. The work of Brooks [4] in robotics,
Braitenberg’s [3] revival of the ideas of Grey Walter [14,
15] on emergent complexity in behavior and the work of
ecological psychologists Gibson [10] and Kelso [23] have
provided its basis. A new belief has emerged under the
name of anti-representationalism, which is strongly opposed
to the notion of representations in cognition [17, 22]. Partly,
this development is spurred by the very fruitful insight
that some forms of behavioral complexity can be brought
about by simple mechanisms at a low systemic level,
taking into account embodiedness of the organism and its
embeddedness in an (ecological) context. Although we do
not really know what representations are, and although it
�
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is probably a good thing to be skeptical of the constructed
representations in some toy models of cognitive science
and traditional artificial intelligence, there is a fundamental
problem with extreme anti-representationalism. In the
context of the current paper, to represent the external world
means to present this external world again, internally within
a cognitive system, in an adopted form from its physical
projections which is however sufficiently informative for the
organism to allow for selection, preparation and control of
behaviors which are conducive to survival in its ecological
niche.

It should be noted, for the sake of argument, that
contrary to [13], it is assumed here that a given dynamical-
system parametrization (e.g., an instance of Watt’s governor)
actually does represent aspects of its environment, while
functioning. The difference between a biological control
system and an engineered negative-feedback device such
as Watt’s governor is that the parameters of the biological
control system are autonomously tuned during organism-
world interaction. No matter what type of dynamical system
is being implemented, the essence is that the parametric
details are being tuned by a complex neural apparatus itself,
just like the newly-born foal which quickly learns to stand
upright against gravity.

Biological beings are not composed of a limited set of
well-designed mechanical governors, they are composed
of an enabling complex bio-chemical and physiological
substrate that allows to learn to behave according to a set
of differential equations, if and when that is required for
survival or the performance of a playful complex motor
task (cf. juggling in humans [1]). For both systems,
engineered and biological, the representation will disappear
if the system is isolated structurally and functionally
from its operating context. Furthermore, the often-quoted
example of Watt’s governor constitutes a very unfortunate
example in the discussion, since it concerns an engineered
artifact representing an abstraction (a control field) par
excellence and is the result of deep cognitive efforts and
experimentation on the part of its designer. As such, Watt’s
governor is diametrically opposed to a genotypically and
phenotypically emerged biologically instance of dynamical
system control.



From a scientific viewpoint, the strongest objection
originates from the realization that anti-representationalism,
just as its ancestor ”dynamic-systems theory” is opposed
to the regular reductionist analysis of system structure and
behavioral process. It has been the tremendously important
contribution of cybernetics to science that it allowed for the
detailed modeling of a system architecture and the transfer
functions of the involved components. This is opposed to
holistic modeling, e.g., by means of ’global attractors’, as is
promoted by advocates of dynamic-systems theory, exempt
from an accompanying and healthy reductionist curiosity for
underlying mechanisms at physiological, biomechanical and
contextual levels.

Macroscopic modeling is useful, probably it is even nec-
essary, but it can never replace the fundamental understand-
ing of complex systems which emerges from detailed knowl-
edge on the substrate and its information-processing abili-
ties. What is more, macroscopic modeling can also be per-
formed without grandiose anti-representational claims, by
merely focusing on the essential aspects of macroscopic be-
havior and using rule-based modeling [12, 19]. However,
the apparent attraction of the anti-representational perspec-
tive constitutes an oddity, in light of the tremendous evidence
on a plethora of representational solutions in the biological
nervous system.

In this paper, a review of neural representation
mechanisms will be given, looking at perception and motor
control in biological systems. The example of the jumping
spider will be used to illustrate that already in simple animal
behaviors, pursuit and prey catching simple ’representation-
less’ reactivity does not suffice. In fact, all forms of
anticipation require some form of representation as the
computational basis for the prediction of future system
states.

2 Symbolic representationalism
The idea that all information processing in intelligent

autonomous systems can be reduced to the triggering of
simple and isolated ”reactive behaviors” for which no
computational hidden state is necessary, is indeed appealing
at first sight.

At the peak of the traditional symbolic paradigm of
cognitive science and artificial intelligence in the middle
1980s there was a strong conviction that the sensory
patterns which reveal aspects of the complex physical
world had to be transformed into abstract symbolic entities
as soon as possible in intelligent information processing.
In computer vision, for example, it was believed -and
sometimes still is- that in order to perceive an object such
as a cube, the perceiver must have an internal and general
three-dimensional (e.g. wire-frame) model of cubes, in
order to solve the problem that the bottom-up information
coming from both retinas does not describe the object
completely. Explicit modeling was considered the starting
point for any form of intelligence, following Immanuel
Kant’s synthesizing (top-down) approach to perception and

cognition 1. In robot vision and navigation, for instance,
this approach implied that many details of the environment
needed to be represented in a 3-D model. The notion
of internal model or representation is appealing in many
ways and can occasionally be exploited in working systems.
However, several serious problems emerged with working
models based on symbolic formalisms:

a) World models needed to be handcrafted painstakingly
since autonomous learning of the world was considered
too difficult;

b) Models were never complete;

c) Models were never completely correct;

c) Systems appeared to be rather weak in handling real-life
problems.

Indeed, computer vision, speech and handwriting
recognition appeared to constitute extremely difficult
problems as opposed to artificial and constrained problems
(computer chess). Additionally, the handcrafted origin
of representations in symbolic models should be a source
of skepticism, indeed. Different modelers utilize vastly
different ways of modeling aspects of the world, and no
principled way has emerged to arrive at models of the
world which help an autonomous system-by-proxy to survive
in a complex world under variable task demands. If a
symbolic modeler starts out to mimic a process, it is likely
that some working system will emerge at the end of the
research project, but it is difficult to determine whether
general applicability can be guaranteed. Today, we know
that many properties of the physical world and of seemingly
intelligent agent behavior can be modeled in a descriptive
and at the same time effective manner, such as is realized,
e.g., in computer games or in dialog systems. However, such
examples are concerned with highly constrained conditions
and well-defined contexts. Usually, if such systems are
confronted with an open world containing unseen conditions,
their response will become erratic.

3 Connectionist representationalism
In reaction to the shortcomings in handcrafted symbolic

modeling, the tools which were developed in neural-network
research [25, 2] solved a number of practical problems along
the paths from perception to cognition and from cognition
to effector control. Instead of handcrafting particular
representations, it became convenient to utilize learning, i.e.,
parameter adaptation, to solve many of the problems that
were hampering progress in traditional Artificial Intelligence
research. In hindsight, the modeling tools of connectionism
are just a subset of (implicitly) statistical methods. Also
in this general class are the Bayesian and hidden-Markov

1A popular quote is: ”there is no perception without prior knowledge
and abilities”, which cannot be found verbatim in Kritik der reinen Vernunft
(1781): Kant was much more subtle, leaving a role for empirical experience.



models, where explicit statistical modeling takes place. Two
types of neural-network (NN) modeling can be identified.

In the first type of modeling, the property of learning
of connectionist methods is exploited to solve hitherto
difficult problems in pattern classification. This area of
application-oriented research, has been very fruitful. As
an example, multi-layer perceptrons can be found in many
technological applications, today. The availability of multi-
layer perceptrons now allows for a distillation and refinement
process, extracting logical propositions (symbols) from
complex sub-symbolic sensor-activation patterns. Once a
neural network has derived a Shannonian bit from the sensor
array, that output can be fed conveniently to a traditional
symbolic-reasoning process. From a practical point of
view, the NN approach alleviated the brittleness problem of
symbolic AI in real-life applications to a very large extent.

A second subfield of neural-networks research concerns
connectionist modeling of perceptual, cognitive and motor
functions. This field of research attracted mainly cognitive
psychologists who focus on the modeling of cognitive
phenomena known from experimental psychology. Here,
highly intricate neurally-inspired models are developed
which aimed more at fitting experimental data than
truly displaying the target cognitive functionality at a
believable scale. Relevant examples are the McClelland &
Rumelhart [25] interactive activation model of reading, the
Elman [6] model of word-sense learning and the work of
Seidenberg [16].

In any case, the fundamental breakthrough which was
brought about by the neural-network modeling wave is the
insight that there are many ways to represent information
in local or distributed neuronal activation patterns. Non-
linear function approximation by means of polynomials
or Fourier analysis had existed before, but neural-network
modeling did force researchers to think more precisely
about connectivity and architecture in relation to the
formation of representations. The connectionist notion of
representation is in many ways less problematic than is
symbolic representationalism: (a) learning is an intrinsic
aspect of neural-network modeling; (b) the gap between
model and biological system is still large but considerably
narrower than is the case in symbolic modeling.

However, the design space of an artificial neural-network
model is huge. It is necessary to constrain the models to
a larger degree than is possible on the basis of the amount
of empirical training data alone. Additional constraints
are needed which may, e.g., be derived from the original
biological neural architecture, as will be illustrated in the
next section.

At this point, it is important to note that the
discontent of anti-representationalists with the status of
affairs in cognitive science and artificial intelligence is
completely understandable. Rather than saving the world
from arbitrarily handcrafted representations, neural-network
research put us back in the same ballpark as the symbolic
systems research, i.e., the ballpark of extensive tinkering

and handcrafting. At the same time, however, it is
also increasingly clear that throwing away the concept of
representation may be similar to throwing the baby with the
bathing water. Apart from being autonomously learnable, as
neural-network research has shown, representations are also
actually abundant in biological neural systems.

4 Biological neural representations
In this section we will give a brief overview on neural

representations, i.e., neural architectures and processes that
have evolved to represent physical variables at the input
or output. To represent the external world means, in this
context, to present this external world again, internally, in
a slightly different form from its physical projections which
is sufficient for the organism to select, prepare and produce
the behaviors which are conducive to survival.

The parameters of the control functions in a living
organism will be strongly determined by the physical
properties of its ecological niche. Body mass, muscle
strength, sensory modalities and their acuity all will have
evolved to support survival, given the type of food, the type
of shelter and the modes of transport which are typical of the
given ecological niche.

A number of general neural representational mechanisms
exist:

� Topological coding: Firing of a particular cell at a
particular location in the tissue represents an important
aspect of the current state (examples: vision, hearing,
tactile sensing)

� Firing rate: (spikes/s) representing a physical signal
(e.g., in motor control) or representing the likelihood
of an observed feature (perception)

� Recruitment: the number of active neurons represents a
quantity (e.g., force in motor control)

� Distributed representations and coherence: multimodal-
ity and information fusion

� Temporal coding, vetoing, synchronisation: low-level
gating mechanisms

The concrete examples of representations which will first
be given are located in peripheral sensory-motor information
processing. However, it will be noted at the end of this
section that neural representations of intermediate (central)
processing stages are (a) unlikely to be absent and are (b)
unlikely to differ substantially from the mechanisms which
are used by the neural substrate in the processing of sensory-
motor information.

4.1 Visual sensing
Light enters the eye and is projected onto the retina, a

random raster of sensors for luminance and color. The
central part of the projection is captured (i.e., represented)
in high spatial resolution but low temporal resolution.



The peripheral visual field, on the contrary, is represented
as a low-resolution signal, however, with high temporal
resolution. Rather than being a passive full-field camera
projection of the environment, the visual information is
sensed by sequences of head and eye movements in
most animals, such that the integrated (combined) visual
information over a time window contains the essential
elements of the outside world which are relevant to
the species at hand. Extensive spatial and temporal
preprocessing takes place, already within the eyes [18].
A stylized log-polar modeling of the retinal projection is
sometimes used in robotics [28]. Figure 1 shows a schematic
picture of this common biological representation for visual
sensing.

Figure 1: Schematic retinal layout[28], showing high central
spatial resolution and reduced peripheral resolution.

4.2 Auditory sensing
Acoustic waves impinge on the mechanical parts of the

hearing system and are transfered onto the basilar membrane,
a structure containing vibration-sensitive hair cells. The
auditory system in many animals realizes a representation
of the complete necessary frequency spectrum through a
combination of three encodings: (1) tonotopic place coding
(Fig. 2) of spectral energy, (2) direct neural firing frequencies
which match sound frequencies in a simple harmonic
relation, (3) phase or volley encoding, where the sum of
a number of low-frequency spike trains represents a high-
frequency audio signal, made possible through fixed delays.
The joint information of the three coding schemes yields a
homogeneous and clear acoustical percept which spans 20Hz
to 20 kHz, notwithstanding the considerable differences in
the constituting neural encodings.

C(f)

a(t)

Figure 2: Tonotopic representation of sound on the
basilar membrane. Air-pressure variations �����
	 yield an
approximate spectral representation �����	 .

Somato−sensory Input Motor output

Figure 3: Input and output representations in the area
for movement control, which covers two strips over the
full width of the central cortex of each human brain
hemisphere. The somato-sensory strip, representing tactile
and proprioceptive input, which is located posterior to the
central sulcus, is depicted on the left. The motor output strip,
which is located anterior of the central sulcus, is depicted on
the right. Both strips thus address a single half of the body.
A morphed human-like ’homunculus’ can be discerned,
illustrating the topological representation of the body’s skin
and muscle tissues (after Penfield & Rasmussen [27]).

4.3 Tactile sensing and propriocepsis
The somatosensory post-central cortex picks up a

morphed version of the tactile sensing pattern in the skin:
the well-known homunculus projection of Penfield [27].
Propriocepsis allows for an inference of body and limb
orientations by integrating length-difference signals coming
from muscle-spindle sensors all over the body. The gamma-
efferent system [24] is used for top-down feed-forward
fine tuning of the sensitivity of the proprioceptive sensors
(muscle spindles) to muscle-length variations on the basis of
expected and imminent motor-task demands. Figure 3 shows
the topological representation for this somato-sensory input,
as well as for its counterpart, motor output.

4.4 Spatial orientation
In many animals, a vestibular system allows for the

recording of head orientation changes along the three
Cartesian axes. Apparently the biological system has
evolved into an architecture that represents complex motion
parsimoniously in an almost 3-D Cartesian fashion. Here,
evolution has effectively carried out principal-components
analysis (PCA), converging on a frugal three-dimensional
representation of angular acceleration and therefore angular
velocity and orientation of the head (Figure 4). Additionally
and separately within the vestibular system, the gravity
vector is represented by the otolithic subsystem in the
following manner: Calcium carbonate pebbles (otoconia) are
present on a layer of sensitive hair cells in an endolymph
filled cavity which is part of the vestibular system. Gravity
will make sure that the density of otoconia and the force
exerted by those is largest in the spot which represents the
gravity vector best. Neighboring hair cells cooperate in



improving the signal-to-noise ratio. Note that the biological
system is re-utilizing the basic trick of sensitive hair cells
located in an endolymph cavity three times, i.e., in acoustic,
orientational and gravitational sensing.

X

Y Z

Figure 4: Schematic layout of vestibular system. A hair
cell-based sensor in each of the rings detects head rotation,
for each of the three Cartesian orientation axes (existing
long before Descartes). This system effectively represents
physical motion.

4.5 Motor control
All animals which make use of the muscle as the

effector for navigation, object manipulation, attack/defense
and mating will have to solve one very basic problem:
muscles constitute an intrinsically non-linear component in
the control system. On the basis of a single neural action
potential, a group of muscle fibers will contract briefly
and relax, yielding a single motor-unit twitch. Muscular
contractility is up to 50%, energy expenditure is limited and
the amount of force that can be delivered is considerable,
such that this evolutionary product provided an attractive
solution, at the cost however, of needing a complex control
system.
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Figure 5: Required force is realized by firing-rate variation
and recruitment of motor neurons. This representation
scheme fulfills the requirement of both fine and coarse force
control, given that motor units only produce brief all-or-none
twitches.

The control problems can be enumerated as follows:
(a) neural delay between motor neuron and end plate, (b)
neuro-mechanical delay between arrival of the neural action
potential at the end plate and the peak of mechanical force
buildup and thirdly (c) the non-linearity of the muscle-fiber
twitch, which can be modeled as an over-damped second-

order function. The motor system is able to represent
the required force and/or muscle-length ratios through two
mechanisms: (1) firing rate control and (2) recruitment
(Fig. 5). The first mechanism dictates that for a required
pattern of small-force variations, a motor-unit pool is able
to generate the necessary force by adapting the motor-unit
firing frequency. However, there is an asymptote in the
maximum force per motor unit. This problem is solved by
the second mechanism, i.e., recruitment and de-recruitment.
Motor-units are activated on demand. The total muscular
output thus is a function of a weighted sum of twitch trains
for the active motor units and of their firing rates. The
stochastic spike pattern and the visco-elastic properties of
muscle tissue guarantee smooth control.

4.6 Central neural representations
Between sensors and muscles, a number of neural

pathways can be traveled, potentially passing neurons and
axons whose activation may represent abstract pieces of
information concerning the external world. The amount of
examples in this domain is increasing quickly, due to better
electrode technology and search methods which are guided
by brain imaging techniques. Therefore, an exhaustive
overview cannot be given here.

In navigation it has long been known that the activity of an
individual neuron may be coupled to an absolute location in
the world, after learning. These place cells [26] are located
in the old brain (hippocampus) and are demonstrated in rats
and squirrel monkeys. A place cell fires only if the animal is
at a particular location in its cage. After getting acquainted
to another environment, the new mapping will be unique
but different. Apparently the place cells represent conjoint
stimulus configurations which are characteristic of a location
in the environment.

The second example concerns the mirror neuron system,
which is involved in the recognition of body movements of
conspecifics and non-conspecifics. Such neurons, which are
at the premotor and parietal side of the brain in humans, will
fire if a particular movement is observed, without actually
activating the corresponding muscles in the observer. The
map follows Penfield [27], i.e., a mirror neuron in the foot
area will react if a moving foot is observed, etc. Computing
such correspondences between retinal images and the motor
map of the observer is far from trivial. Apart from a
visual resonance between observed and known gestures, also
acoustical associations may trigger mirror-neuron activity
(cf., sound of a tapping foot).

The third example of an abstract representation concerns
the invasion of ego-centric space as detected by neurons in
the medial intraparietal area in some primates [5]. As soon
as an arbitrary object becomes within reach of the arm, such
neurons will fire.

The final example shows that abstract aspects of control
are split at an early stage in image processing. There exists
a distinction between the where and the what pathways, both
addressing relevant but different aspects contained in the



sensory-visual information stream [11].

4.7 Representations galore!
Considering the topic of representation at this point, it

appears to be counterproductive to maintain a rigid anti-
representationalist stance in view of the richness and pin-
pointed effectivity of the neural representations, the details
of which are becoming increasingly clear. Only if dynamic-
systems modeling and anti-representational approaches will
yield predictions which can be confirmed at the low levels of
the neural substrate, the value of this stance will be widely
recognized. For now, we will precise the argument, noting
that even in relatively simple animals, such as the jumping
spiders (Salticidae), the notion of representation cannot be
missed.

5 Anticipation and Representation
As noted before, the use of the muscle as an effector

system poses important constraints on the controlling
system. The delays which are involved in muscle activation
necessitate the presence of a predictive functionality. In
animals with a long spine, this situation is exacerbated by the
cortico-muscular delay line (and its reverse proprioceptive
connections). Therefore, most non-reflexive movements
need to be planned ahead in time, as the environment and the
objects contained in it will also be time variant. In primates,
the frontal lobe of the brain has evolved as an extension of
the predictive components of the motor and pre-motor areas,
allowing for future-related computation. However, even in
a relatively simple creature such as the jumping spider, its
behavior can only be understood by assuming the presence
of state-preservation as a representational mechanism to
compute parameter settings for future system states. First we
will deal with the question why it is anticipation in particular
that calls for representation. Assume an acting (control)
system with a non-linear transfer function ������� , producing
activity � in time, as a function of perceptual input � and of
its internal parameters � . Given this basic description (Eq.
1), a number of systems can be described differing in their
use of the temporal context of � and � (Eqs. 2-5):
����� �"!$#%��&('�) (1)����� �"!$#"* ��+%,.- �0/ &�'1) (2)� � � �"!$#"* ��+%,.- �0/ &2�3* ��+%,.- ��+.45�6/ &('�) (3)� � � �"!$# * ��+%,.- �0/ &2� * ��+%,.- ��+.45�6/ &87# * �$9345��- �:9;,</ &�'1) (4)����� �"!$#"* ��+%,.- �0/ &2�3* ��+%,.- ��+.45�6/ &87#"* �$9345��- �:9;,</ &=7�3* �$9%4>��- �$9;,�/ &('�) (5)

where ?�@BADC and interval E is the same in case of past and
future, for convenience. Eq. 1 concerns a system with a state-
less, static transfer function. In Eq. 2, a system is described
whose output �.F at time @ can be known if its perceptual
history �HG F2I�JLK F:M in interval E is known, in other words, a non-
linear finite-impulse response (FIR) system. A large class
of systems can be described already, but the model is not
suitable for systems whose previous output states influence
the next output. Therefore, Eq. 3 introduces a system which
needs a window of perceptual input and of previous action,
yielding a non-linear combined finite + infinite (FIR+IIR)

impulse response. In the case of intrinsic delays, the
systems described hitherto will fail in stable control, because
corrective actions will always occur too late, as already noted
by Wiener, in the case of guided-missile design. Therefore,
it will be conducive if a control system can compute an
estimate of expected future perceptual states N�OG FQPSR>F2K FQPTJ3M
(Eq. 4). Finally, and most advanced, Eq. 5 describes a
system which not only takes into account perceptual-motor
history and expected perceptual input, but also its expected
action state over a time window in the future. With the
introduction of signals for expected future perceptual and
action states, something interesting happens for realizable
causal systems. Whereas information on past states can
easily be represented by inertial properties of a (bio)physical
substrate, a predictive system will need to set aside internal
’slots’ for the computation and storage of estimated future
states. In systems with anticipatory cognitive abilities, anti-
representationalism becomes untenable.

Similarly, on a larger time scale, the learning function US�����
of system parameters � can be categorized into a number of
possibilities, depending on their usage of temporal context,
introducing V for hidden internal states:

'����XW"!$#"* ��+%,.- �6/ &(' ��+.45� ) (6)'����YW"!$#L* ��+.,%- �6/ &Z�%* ��+.,.- ��+.45�6/ &(' ��+.45� ) (7)' � �XW"!$# * ��+.,.- �6/ &
[ * ��+.,.- ��+.45�6/ &(' ��+.45� ) (8)' � �XW"!$# * ��+%,.- �6/ &Z� * ��+%,.- ��+<4>�0/ &
[ * ��+.,%- �$9345�6/ &(' ��+.45� ) (9)'����XW"!$#"* ��+%,.- �6/ &Z�%* ��+%,.- ��+<4>�0/ &\7�3* ��- �$93,</ &(' ��+.45� ) (10)

Examples of these learning approaches are as follows: E-
q. 6 would encompass regular static multi-layer perceptrons;
Eq. 7 concerns, e.g., recurrent Jordan multi-layer perceptron-
s; Eq. 8 concerns, e.g., recurrent Elman multi-layer percep-
trons using the internal state V ; Eq. 9, interestingly, shows
the possibility of systems learning from their own estimates
of future output (which may be very useful but is likely to
be unstable). The most important conclusion at this point is
that some form of state preservation, specifically dedicated
to predicting future states will be needed as an internal rep-
resentation for anticipatory control.

5.1 The jumping spider
The jumping spiders (Salticidae) are able to pursue a prey

but also to jump onto a moving prey in order to catch it.
This is an impressive feat for such an animal. Salticidae
are equipped with an excellent visual apparatus, consisting
of four eyes. The head is rigid, but the principal binocular
pair of eyes can be moved to keep the image of prey centered
on the retina. The parameters which can be derived from
this feedback process can be used in continuous tracking
(pursuit) but also in the computations which are needed for
a jump with the intention to catch the prey. Salticidae have
a multilayered retina with color vision. It is possible that the
chromatic aberration is used for depth perception. The brain



Figure 6: A photograph of a jumping spider (Phidippus
pulcherrimus). The lure can be a housefly on a thread [20]
or a black ellipse on the inside of a rotating cylinder [8].
Photographs kindly provided by dr. D.E. Hill

of a jumping spider includes a comparatively large region
for visual processing. The principal eyes have a set of six
muscles each for prey-image foveation. Salticidae may hunt
other spiders, using mimicry and trial-and-error learning [29]
to choose an appropriate signal for tampering with the web
of a particular prey spider. Salticidae are able to make
detours which involve evaluation of a situation, planning
ahead to execute a pathway which may take it initially
out of sight of the prey spider, then executing the detour,
using a cognitive map [29]. Such skills place this animal
among the top ranks in invertebrate cognition. However,
we only need to concentrate on its ability to jump onto a
moving prey to illustrate that intermediate representations
are needed, even in relatively simple animals. Although
a jumping spider can jump more than fifty times its body
length, none of its legs has enlarged muscles: Apart from
the exoskeletal leg-muscle contraction, it is assumed that
a phasic contraction of muscles in the front part of the
body increases the blood pressure in the exoskeleton, which
causes the legs to extend rapidly. The effective control
of this bi-modal motor system will require accurate and
correctly timed neural excitation. The jumping spider is able
to pursue prey efficiently by predicting its trajectory upto
several seconds [8, 9]. Although pursuit will most probably
involve the computation of first-order temporal differences
which requires an internal state representation containing
a slightly earlier perceptual-motor state, the context is one
of closed-loop feedback with delays. To many researchers
in dynamics-systems theory, this state of affairs would not
be interpreted as entailing representations. However, the
most interesting phase of the hunt concerns the final jump,
which must be completely prepared. In a pro-active, feed-
forward manner the parametrization of contractions in the
bi-modal muscular system needs to be realized, taking into
consideration the ballistics and aerodynamics of ego flight,
in order to succeed in the catch at a predicted position
of the moving prey. Figures 6 and 7 show photographs
of two jumping spiders, one before and during a jump
towards a (stationary) lure. Figure 8 depicts schematically
the order of the involved processes in a jump towards a

Figure 7: A stroboscopic photograph of a downward spider
jump towards a lure [20]. Apart from aiming at the target
position, the legs perform a grasping movement.

moving prey. It is important to note that the essence of
the argument presented in this paper concerns the fact that
the spider is planning a jump towards a position in space
where there is no prey, as yet. This planning implies an
extraction of prey-trajectory parameters, transforming those
into a parametric representation of muscular control, taking
into account flight ballistics after lift off. It is assumed
that the necessary computation can be derived from the
prey-tracking eye movements. Such complex pro-active
behavior requires intermediate representations to solve the
involved differential equations and can hardly be compared
to the purely reactive collision avoidance in Braitenberg [3]
vehicles using linear feedback without the necessity for
representation.
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Time
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Motor force buildup/release
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Mechanical catch event

Optical prey−appearance event

t1 Jump
t2 Lift off

Spider trajectory

t0 Prey visible Prey trajectory

Figure 8: A schema of processes in the spider’s jump &
catch. The time functions at the top depict sequential order
rather than time scale (the time axis is arbitrary). The
bottom part of the figure shows the possible corresponding
trajectories for prey and spider, from time of entering the
visual field to the catch.



6 Conclusions
In order to apply simple rules, one may need complex

systems and representations. The case of the jumping
spider which is hunting for a moving prey and catches
it through a ballistic jump shows that already in ’simple’
animals, there are forms of behavior which are not purely
reactive (i.e., non Brooksian) but pro-active, depending on
estimates of future states of the world which cannot be
realized in a simple linear manner. The control of the
effector system and its ensuing flight are by no means a
trivial implementation of a ”time-to-contact” variant. The
fact that learning[29] plays an important role in this species is
an extra support for the notion that we do not deal with hard-
wired representationlessness, even in this creature. Finally,
within the context of the theme (i.e., cybernetics), it is
interesting to point out that control systems which have to
solve a steering task in finite time _a` b c3d5egf are very
well described in literature. The jumping spider effectively
solves a Bolzano problem, a control-problem which can be
modeled on the basis of Pontryagin’s Maximum Principle,
yielding the necessary steering functions if a penalty function
is given [21].

As regards the use of pro-active control in the robots,
we are currently experimenting with a trajectory-control
mechanism in typical ”Robocup”-type Pioneer-II robots,
which is based on the ballistic jump, however in the two-
dimensional plane. For safety reasons, the control signal
for this catching behavior will be superimposed on the
regular ultra-sonic collision avoidance behavior. The idea
is to accept the risk of missing a target, but effectively
increasing the speed of field exploration if salient features
are detected, by means of series of ’jumps’. It is expected
that such behaviour will be much more akin to purposive
natural navigation than the moth-like meandering which is
so typical of the real representation-less Braitenberg vehicles
which can be observed in many robot competitions. Rather
than hunting flies, our models will be directed at collection
colored balls in the environment, or hunt for legible text
patterns in a human-made environment.
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