Schomaker, L.R.B. (1994). User-interface aspects in recognizing connected-cursive handwriting. Proceedings of the IEE
Colloquium on Handwriting and Pen-based input, 11 March, London: The Institution of Electrical Engineers, Digest Number
1994/065, (ISSN 0963—3308).

User-interface Aspects in Recognizing
Connected-Cursive Handwriting

L. Schomaker!

1 Introduction

There are at least two major stumbling blocks for user acceptance of pen-based computers:
(1) the recognition performance is not good enough, especially on cursive handwriting, and (2)
the user interface technology has not reached a mature stage. The initial reaction of product
reviewers and potential user groups to pen-based computers varies. The realistic assessment
is that this is a technology with a large potential, but still too brittle for serious real-world
use. The application area of form filling, for instance, is characterized by acceptable digit
recognition rates, but the essential punctuations such as decimal points and commas are still
handled poorly. Similarly, there are problems in handling text input. Novice users seem to have
a very high expectation of the pen technology. They start quickly writing a paragraph of text
in their style (mostly a mix of handprint and cursive) and are amazed at the resulting strings
of question marks and characters which they do not remember having entered. Also, whereas
users seldomly blame the keyboard for their typing errors, the pen computer is blamed for not
recognizing script which shows evident shape errors after close inspection. It seems to be clear
that there are problems both at the system and at the user side.

As long as the pattern recognition systems fail to recognize clearly-written material and
keep coming up with counter-intuitive recognition results, there is room for refining the
algorithms. Current problems have to do with the multi-cultural handwriting styles and
methods for adapting to new users. The diversity of handwriting styles, with often conflicting
shapes, makes the notion of a true user-independent recognition system seem unrealistic. In a
project on within- and between-writer variability it was found that the number of stroke-shape
interpretations in cursive script keeps increasing with each new writer in a trainable system, and
the existence of an asymptote was not apparent. The problem is that in a large set of templates,
a substantial portion of the templates will act as noise with respect to the handwriting style of
the current user. Given the fact that training is useful to ameliorate this problem, how can we
be sure that end users are able to train the system in a consistent way? Already, the importance
of user interface design becomes evident.

Furthermore, there are several indications - to be discussed below - that the upper limit of
the recognition rate in practical applications is lower than the 100% goal. In order to increase
the user acceptance, this deficit must be compensated for, and the place where this must happen
is the user interface. This is not so strange, since even the keyboard only became usable after
the addition of edit control keys like " Rubout”.

INICI, Nijmegen University, P.O. Box 9104, 6500 HE Nijmegen, The Netherlands

2 Handwriting glitches: common errors

In what follows, we will concentrate on the entering of textual material, but much of it probably
holds for other forms of input (numbers, gestures) as well. A collected set of handwritten words
from a text copying task can be categorized in a number of ways.

e There may be canceled material, e.g., writers starting a word and scribbling over it in an
unpredictable way.

e The input may consist of discrete noise events, like dots or short lines caused by
inadvertently dropping or tapping the pen on the writing surface.

e Also, the input may consist of badly formed shapes, illegible by both human and machine.

e Still another type of input is legible by humans but not by the algorithm, e.g.,
in case of fused characters. If an algorithm was designed with the constraint that
individual characters should be present and correctly shaped, this type of input is deemed
inappropriate for testing. However, there may exist another algorithm which can handle
it.

e Individual characters may be legible but the words are badly spelled.

e Words are written correctly, but are unsollicited (not prompted for) in the data collection
process.

e The handwriting input may contain device-generated errors: random noise, stiction of
pen-down switches, unresponsiveness of switches, pen tilt errors.

This list is not exhaustive: more types of errors exist. The difference between reported
academic pattern recognition rates and the real-world recognition rates which an end user does
experience comes from the useful academic practice to discard samples falling in any of the
above categories. Thus, a typical test set is of the generic handwriting style the algorithm was
designed for; it does not contain spelling or device errors; and is what the scientific community
considers to be ”clean data”.

3 Usability problems in ”truthing” as indicators of the
recognition performance asymptote

Indeed, the laboratory benchmarking of pattern recognition algorithms, as envisaged in the
UNIPEN project [2], will have to be based on neat data. Such data are obtained during
a truthing process, where human operators assess the data prior to execution of an actual
test of recognition performance. Already at this level, problems arise, despite the expected
high recognition and cognition capabilities of the truther. In fact, the truthing job in cursive-
connected handwriting is virtually impossible without prior knowledge of the text or a list of
words which were presumably entered by the subject. This problem was studied in four small-
scale experiments, using different types of contexts, presenting human readers with samples of
cursive handwriting or handprint written with ballpoint on white paper (Table 1).

Exp. Context Style Writers | Target | Readers | Words Recog-
Words nized

A frequently-used Dutch words handprint 1 30 12 N=360 | 98%
frequently-used Dutch words neat cursive | 1 30 12 N=360 | 88%

B sentence fragments, same writer cursive 3 15 12 N=180 | 85%

C sentence fragments, same writer cursive 4 13 20 N=260 | 85%
unrelated words, same writer cursive 4 13 20 N=260 | 77%

D unrelated words, same writer fast cursive 12 12 15 N=180 | 72%
unrelated words, different writers | fast cursive 12 12 15 N=180 | 54%

Table 1. Human recognition rates of handwritten words on paper. Explanation of Experiments. A: single-word recognition;
B-D: three-word sequences, middle-word recognition

As can be observed, only in handprint does human recognition reach a high recognition rate
of 98%, whereas the recognition of cursive words varies from 54-88%. It is most likely that in
the truthing of samples of handwriting the operator is confronted with similar problems like
the subjects in these experiments (or worse, due to CRT screen resolution). The combination of
sloppy writing and absence of linguistic and shape context leads to a poor 54%. These findings
suggest that it is unrealistic to assume that the asymptote for cursive recognition is 100%. In
real applications things are worse since there is no extra intelligence like a truther between the
tablet and the recognition algorithm. Traditionally, this problem is approached by trying to
improve the preprocessing of the data, but there will always be a portion of the input which
is inherently problematic. As an example we can take the process which segments a stream
of pen movements into words. Whatever heuristics are used, there will always be a portion of
the input which is segmented erroneously (e.g., because the white space between two words
happens to be 0.1 mm closer than the threshold used). The portion of badly segmented words
will lower the net recognition rate considerably. Below, a number of solutions to these types of
problems are proposed.

4 User-interface solutions for improving handwriting
recognition rate

The solution to these types of problems is to design user interfaces which:

1. Constrain the writer where possible
2. Give the writer more control

3. Provide more powerful mechanisms for error handling

e

. Clarify to the user what is going on.

4.1 Constrain the writer?

In order to obtain cleaner pen data, the writer’s attitude may be constrained in some acceptable
way. Boxes and so-called combs are useful in handprint but not in cursive script. A single
guideline is helpful in imposing constraints on cursive script, but this does not by itself
facilitate the temporal segmentation. Current cursive word recognition technology requires a
segmentation into words due to the dependence on a lexicon. Since automatic word segmentation
is almost as brittle as the word recognition itself, new pen-driven word segmentation techniques
have to be defined. Again, in the case of the keyboard, it is a generally accepted practice to
use the "Enter” or "Return” key for input validation. In our lab a number of pen-driven word
segmentation methods are under study. Three methods are considered here:

1. Gesture-driven word segmentation where the user enters a tap on the digitizer on the
right of the end of the current word (> 2c¢m);

2. "OK-button” word segmentation;

3. Time-out driven word segmentation.

Subjects performed a lowercase text-copying task. There were three texts, randomly
distributed over the three conditions, and all subjects copied a different text in all three
conditions. Results are given in Table 2. Results for three time-out values (0.8,1.0, and 1.4s)
were combined since differences where statistically negligible. The entered words were off-line
truthed and processed by a stroke-based cursive recognition program reported earlier [1]. It
was trained on the handwriting of 32 multinational writers and used without extra training for
the 18 subjects. The word list for lexical post processing contained the words present in the
text to-be-copied. Subjects were allowed to write in their own style, which was mainly mixed
cursive and handprint, and often contained small-written capital characters as ”lower case”.
The recognizer was originally designed for connected cursive.

Gesture OK-button | Time-out
Text reading time/word | 2.0 1.9 1.7 [s] N.S.
Writing time/word 2.9 2.5 2.5 [s] p i 0.001
Top word correct 56% (20-81) | 62% (21-80) | 60% (8-90) | N.S.
Correct word in top five | 64% (24-88) | 70% (21-88) | 67% (13-94) | N.S.
Avg. words/subject 55 53 53 N.S.

Table 2. Human reading and writing times, and machine recognition rates as a function of
word segmentation method (N=18 subjects)

Statistically, the only significant difference is in word writing time, due to slower writing in
the gesture method. This may be due to cognitive overhead in anticipation of the newly learnt
gesture movement. From the user-interfacing point of view, the "OK-button” method has the
advantage that it is compatible and consistent with a ”Cancel-button” option, for input which
the user considers to be sloppy. In the other two methods, this can only be robustly solved by
allowing for post-hoc editing.

4.2 Give the writer more control

New visual widgets and methods have to be designed for handling the input of material for
which no acceptable recognition performance can be reached. Punctuations are often difficult
to recognize, because they may interfere with the cursor placement gesture or text selection
methods. A visible and limited-size toolbar for punctuations [., * ’ :; | is probably perfectly
acceptable. Gestures are nice, but they require highly motivated users who must store and
recall them in/from human memory. The success of todays desktop metaphors is largely due to
the fact that functions and objects are identified by visual association, a much less demanding
cognitive task than recall from memory. Also needed are easier methods for cursor placement
and cutting and pasting. Currently, sometimes two modes of cursor control are implemented,
confusingly mixed at the same time: relative (to the current cursor location) and absolute
(below the pen tip) mode.

4.3 Improve the recovery from error

The rate of erroneous movement in a pen-based system can be very high, especially in novice
users. Therefore, a single-level "Undo” does not suffice and a large "Undo” stack is necessary
to restore an earlier uncorrupted state of the system.

4.4 Clarify to the user what is going on

Instead of entering directly a recognition result into the application, the user interface must
allow for input validation by the user. Less intrusive, before executing gestures or entering
characters, symbols may be graphically echoed in their shape-as-recognized, both to give the
user confidence in control over the pen computer and to remind him/her of the shapes known
by the system.

4.5 Give up the paper metaphor

Some of the problems in pen computing experienced today are most probably due to the
fact that the paper-mimicking approach without on-line guidance leads to unrealistic user
expectations and consequently low real-life recognition rates.

5 References

1. Schomaker, L.R.B. (1993). Using Stroke- or Character-based Self-organizing Maps in the
Recognition of On-line, Connected Cursive Script. Pattern Recognition , 26(3), 443-450.

2. Guyon, 1., Schomaker, L., Plamondon, R., Liberman, M. & Janet, S. (1994, in press). The
UNIPEN project of data exchange and recognizer benchmarks. To Appear in Proceedings of
the 12th ICPR, October 9-13, Jerusalem.

