Reference: Schomaker, L., Hoenkamp, E. & Mayberry, M. (1998). Towards collaborative agents for
automatic on-line handwriting recognition. Proceedings of the Third European Workshop on Handwriting
Analysis and Recognition, 14-15 July, 1998, London: The Institution of Electrical Engineers, Digest
Number 1998/440, (ISSN 0963-3308), pp. 13/1-13/6.

Towards collaborative agents for
automatic on-line handwriting
recognition

Lambert Schomaker (NICI)
Eduard Hoenkamp (NICT)
Marshall Mayberry (Univ. of Texas, Austin)

NICI, Nijmegen Institute for Cognition and Information
University of Nijmegen, P.O.Box 9104
6500 HE Nijmegen, The Netherlands

Tel: +31 24 3616029 / Fax: +31 24 3616066
schomaker@nici.kun.nl

projects in the Cognitive Engineering 2
group at NICI :

e On-line recognition approaches

e Comparison of forensic handwriting systems
e UNIPEN

e Multimodal speech and handwriting input

e Information Retrieval /Information Filtering

e Content-based image retrieval

e Hybrid (NN/AI) modeling

Schomaker et al. NICI, The Netherlands

overview 3

e Multi-level information integration
e Agents: old for new?

e A triple-agent system

Schomaker et al. NICI, The Netherlands

multi-level information integration 4

”context”

e Use of context: a panacea for limited bottom-up
classification performance?

e It is difficult to realize efficient use of context:

— in case of complex input
(cf. OCR of newspaper page
vs. OCR of mail envelope)

—under dynamic and free input conditions
(writing a letter on a pen computer)

Schomaker et al. NICI, The Netherlands

multi-level information integration 5

”context”

e What? (... are the relevant context bits: the
”frame” problem, Pylyshyn)

e How?

e No elegant solutions for multi-level information
integration exist, as yet

Schomaker et al. NICI, The Netherlands

how to exploit ”context” 6

syntax

e Earlier experiments with NLP & on-line
recognition: disappointing

e Parser for Dutch, using sentences from office
context

e Batch architecture
(strokes — characters — words — sentence)

— use of context postponed until last word of
sentence .
— was slow!

— written input may be syntactically incorrect

— writers don’t write job applications
or love letters in this way

Schomaker et al. NICI, The Netherlands

how to exploit ”context” 7

syntax, continued

Needed: interactive approach
(e.g., incremental parser)

e probabilistic language models

(works: but large corpus needed, many
parameters)

e grammars

(concise & explicit: but may lack information)

How to make a system which is modular and
dynamically configurable?

Schomaker et al. NICI, The Netherlands

the multiple-agent approach 8

old wine in new bottles?

e O.G. Selfridge (1958)

Pandemonium: a paradigm for learning in mechanisation of thought processes. Proceedings
of a Symposium Held at the National Physical Laboratory, pages 513-526, London, November
1958. HMSO.

e Daemons
e Critics gallery
e Multiple experts

e Society of mind

Schomaker et al. NICI, The Netherlands

the multiple-agent approach 9

what’s new?

e Good definitions (Wooldridge & Jennings)
e Game theory, negotiation algorithms
e Multi-sensor fusion algorithms

e Learning

— genetic algorithms

— case-based reasoning

e Formalisms: Knowledge Interchange Format
(KIF), Knowledge Query and Manipulation
Language (KQML)

e Try: http://ontolingua.nici.kun.nl

Schomaker et al. NICI, The Netherlands

multiple-agents in PR 10

Potential for pattern recognition:
e Realisation of complex decision boundaries

again: the double spiral argument

/ R

e Solve geometrically, e.g., with a MLP?
— Overfit!

e Solve algorithmically, by search?
— More powerful!

Schomaker et al. NICI, The Netherlands

a triple-agent system 11

experiment:

design a system
e simple
e interactive (user is present & time is real)
e using bottom-up and top-down information

e using agent architecture

— |in order to see what the use of
syntactic information may yield
under simplified conditions

Schomaker et al. NICI, The Netherlands

a triple-agent system 12

design issues

e no natural language input but Scheme
program input on a pen computer

e interactive:

— no machine font substitution, leave ink ’as is’
— use color for state feedback

— give user full control, using virtual buttons,
menus etc.

e bottom-up: Kohonen LVQ classifier of
unistrokes

e top-down: Scheme parser (LR, incremental)

Schomaker et al. NICI, The Netherlands

a triple-agent system 13

Scheme code example (towers of Hanoi)

hanoi.scm

(define ringlist
(lambda (1 n)
(define mring
(lambda (size)

(cons ’ring size)))

(if (= n 0)
1
(ringlist (cons (mring n) 1) (- n 1)))))

(define mpole
(lambda (ndisks)
(cons ’pole (ringlist nil ndisks))))

(define disks
(lambda (pole)
(cdr pole)))

Schomaker et al. NICI, The Netherlands

a triple-agent system 14
implementation

Agents:

1. shape classifier
2. expression classifier

3. user-+tuser interface

N

Shape EXpression
Classifier Classifier

| nternet socket 1/0

User
| nterface

Schomaker et al. NICI, The Netherlands

a triple-agent system 15

Shape Classifier agent

e Input: tokens of the Scheme language, written
as unistrokes

e unistrokes, resampled to 60 samples

e Kohonen LVQ, nearest centroid match
e translate to i = (0,0)

e normalize rms radius to o, = 1

e feature vector:

— (2, yx) 60 normalized coordinates

— (cos(@r), sin(¢y)) 59 pairs
—total 119x2=238

e training, 5-10 samples of a token
e learning rule f; =nz; + (1 —n)f;1

e token recognition rate ~ 85%

Schomaker et al. NICI, The Netherlands

a triple-agent system 16

Shape Classifier agent (pseudo code)

Init:
init-communication
read-table-with-token-templates
ask-parser-for-type-of-each-token

while(true) {
switch (read-request()) A
case unistroke
classify unistroke
query-parser
combine-parser—-expectancy-and-shape-classification
notify-user-agent

case train
update-token-shape-and-label
notify-user-agent

Schomaker et al. NICI, The Netherlands

a triple-agent system 17

Expression Classifier for Scheme

e context-free grammar
e LR parser: incremental, no look ahead

e use lex/yacc (shift/reduce)

e tokens:

(=

) and

* begin

+ BOOLEAN

- case
CHAR

cond let

define letx*

delay NUMBER

do or

else set!

if STRING

lambda VAR

Schomaker et al.

NICI, The Netherlands

a triple-agent system 18

Expression Classifier for Scheme

e Example of rule:

state 29
Def : LPAR DEFINE_VAR Expr RPAR
Def : LPAR DEFINE_LPAR VAR RPAR Body RPAR
Def : LPAR DEFINE_LPAR VAR DefFormals RPAR Body RPAR

VAR shift 55
LPAR shift 56
error

e After each token: generate list of expected
tokens and update state

e Requests to parser agent:
Accept_token
Reset_state
Delete_token
Forward_token

Schomaker et al. NICI, The Netherlands

a triple-agent system 19

Expression Classifier agent (pseudo code)

Init:
init-communication
read-grammar

while(true) {
switch (read-request()) A
case token
process-token
update-parser-state
return-expected-tokens

case reset
reset-parser-state

Schomaker et al. NICI, The Netherlands

a triple-agent system 20

User Interface agent (pseudo code)

init-communication
start-parser
start-classifier

create-windows
create-event->task-bindings

(ink events, parser events, classifier events)

wait-for-events(forever)

Schomaker et al. NICI, The Netherlands

a triple-agent system 21

User Interface

i,
e
_.-,.eﬁ'ﬂ,
(s

i

Schomaker et al. NICI, The Netherlands

a triple-agent system

22

interaction example

4 L

i
B

= [] ' | | |
File Options | 2 | : | & | | Help
1 | z | 3| a | 5 |
/ 0/ /ﬂ Y \ 6 | 7 8 | 9 | 0o |
(Oepre (o) | T
cond | cCons | define | equal | car |
;\ W \ (A Vi % | %h | if | % | %k |
) 7 list | map | numhber? | %0 | pair? |
% | cdr | set! | %t | % |
(lambda | %w | et | caar | cdar |
foo | fcn | hase |_ bar |
aap | do | quote | not | maker |
mak | size | Hngy | mpole | ndisks |
pole | nil | noot | or |
F Enter Value: |dog
i i
Expected tokens
var| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | |_Other |
<—= -—> | Ignore | Reset | Parse | Train | Accept |
M Message: I
] i

e VAR expected
e token dog written

e token dog rejected — must be new token!

Schomaker et al.

NICI, The Netherlands

a triple-agent system 23

results

good news:
e 100% ’recognition’
e users (Scheme programmers) like it!

e agent architecture is very convenient

Schomaker et al. NICI, The Netherlands

a triple-agent system 24

results

bad news:

e individual information contributions by the
agents must be analysed and quantified

e VAR becomes a problem in case of
unconstrained scope

e NUMBER and STRING are open categories

Schomaker et al. NICI, The Netherlands

a triple-agent system 25

results

Information content of Scheme source code

Symbols Naphaver | 2L0g(Nagphavet) | Entropy | Redundance
Raw token stream 2003 11.0 6.3 4.7
Lumped token stream 28 4.8 2.4 2.4

(Based on corpus of N=27310 tokens.

Lumped means: use placeholders instead of actual instances of VAR.)

Nalphabet

Entropy: — X, pi*log p;

Schomaker et al. NICI, The Netherlands

a triple-agent system 26

results

Parser expectancy

S ymbols AVg . N alternatives
Raw token stream (VAR scope=whole corpus) 1891.5
Raw token stream (VAR scope=single function) 97.4
Lumped token stream 16.0

(Scheme source-code corpus of 27310 tokens.

Lumped means: use placeholders instead of actual instances of VAR.)

— If scope is not limited to a single function,
the parser adds very little information. Reasons:
users’ naming creativity and the presence of
constants (string, number).

Schomaker et al. NICI, The Netherlands

Conclusion 27

e User actions are definitely needed!

e But their work can be made easier by using
syntactical context

e The virtues of a grammar:
”Look Ma’ - No probabilities!”

e Beware of placeholders (name slots) in the
grammar

e Just a first step towards the use of a
multiple-agent architecture

Schomaker et al. NICI, The Netherlands

