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projects in the Cognitive Engineering 2
group at NICI :

e On-line recognition approaches

e Comparison of forensic handwriting systems
e UNIPEN

e Multimodal speech and handwriting input

e Information Retrieval /Information Filtering

e Content-based image retrieval

e Hybrid (NN/AI) modeling

Schomaker et al. NICI, The Netherlands



overview 3

e Multi-level information integration
e Agents: old for new?

e A triple-agent system

Schomaker et al. NICI, The Netherlands



multi-level information integration 4

”context”

e Use of context: a panacea for limited bottom-up
classification performance?

e It is difficult to realize efficient use of context:

— in case of complex input
(cf. OCR of newspaper page
vs. OCR of mail envelope)

—under dynamic and free input conditions
(writing a letter on a pen computer)

Schomaker et al. NICI, The Netherlands



multi-level information integration 5

”context”

e What? (... are the relevant context bits: the
”frame” problem, Pylyshyn)

e How?

e No elegant solutions for multi-level information
integration exist, as yet

Schomaker et al. NICI, The Netherlands



how to exploit ”context” 6

syntax

e Earlier experiments with NLP & on-line
recognition: disappointing

e Parser for Dutch, using sentences from office
context

e Batch architecture
(strokes — characters — words — sentence)

— use of context postponed until last word of
sentence .
— was slow!

— written input may be syntactically incorrect

— writers don’t write job applications
or love letters in this way

Schomaker et al. NICI, The Netherlands



how to exploit ”context” 7

syntax, continued

Needed: interactive approach
(e.g., incremental parser)

e probabilistic language models

(works: but large corpus needed, many
parameters)

e grammars

(concise & explicit: but may lack information)

How to make a system which is modular and
dynamically configurable?

Schomaker et al. NICI, The Netherlands



the multiple-agent approach 8

old wine in new bottles?

e O.G. Selfridge (1958)

Pandemonium: a paradigm for learning in mechanisation of thought processes. Proceedings
of a Symposium Held at the National Physical Laboratory, pages 513-526, London, November
1958. HMSO.

e Daemons
e Critics gallery
e Multiple experts

e Society of mind

Schomaker et al. NICI, The Netherlands



the multiple-agent approach 9

what’s new?

e Good definitions (Wooldridge & Jennings)
e Game theory, negotiation algorithms
e Multi-sensor fusion algorithms

e Learning

— genetic algorithms

— case-based reasoning

e Formalisms: Knowledge Interchange Format
(KIF), Knowledge Query and Manipulation
Language (KQML)

e Try: http://ontolingua.nici.kun.nl

Schomaker et al. NICI, The Netherlands



multiple-agents in PR 10

Potential for pattern recognition:
e Realisation of complex decision boundaries

again: the double spiral argument

/ R

e Solve geometrically, e.g., with a MLP?
— Overfit!

e Solve algorithmically, by search?
— More powerful!

Schomaker et al. NICI, The Netherlands



a triple-agent system 11

experiment:

design a system
e simple
e interactive (user is present & time is real)
e using bottom-up and top-down information

e using agent architecture

— |in order to see what the use of
syntactic information may yield
under simplified conditions

Schomaker et al. NICI, The Netherlands



a triple-agent system 12

design issues

e no natural language input but Scheme
program input on a pen computer

e interactive:

— no machine font substitution, leave ink ’as is’
— use color for state feedback

— give user full control, using virtual buttons,
menus etc.

e bottom-up: Kohonen LVQ classifier of
unistrokes

e top-down: Scheme parser (LR, incremental)

Schomaker et al. NICI, The Netherlands



a triple-agent system 13

Scheme code example (towers of Hanoi)

hanoi.scm

(define ringlist
(lambda (1 n)
(define mring
(lambda (size)

(cons ’ring size)))

(if (= n 0)
1
(ringlist (cons (mring n) 1) (- n 1)))))

(define mpole
(lambda (ndisks)
(cons ’pole (ringlist nil ndisks))))

(define disks
(lambda (pole)
(cdr pole)))

Schomaker et al. NICI, The Netherlands



a triple-agent system 14
implementation

Agents:

1. shape classifier
2. expression classifier

3. user-+tuser interface

N

Shape EXpression
Classifier Classifier

| nternet socket 1/0

User
| nterface

Schomaker et al. NICI, The Netherlands



a triple-agent system 15

Shape Classifier agent

e Input: tokens of the Scheme language, written
as unistrokes

e unistrokes, resampled to 60 samples

e Kohonen LVQ, nearest centroid match
e translate to i = (0,0)

e normalize rms radius to o, = 1

e feature vector:

— (2, yx) 60 normalized coordinates

— (cos(@r), sin(¢y)) 59 pairs
—total 119x2=238

e training, 5-10 samples of a token
e learning rule f; =nz; + (1 —n)f;1

e token recognition rate ~ 85%

Schomaker et al. NICI, The Netherlands



a triple-agent system 16

Shape Classifier agent (pseudo code)

Init:
init-communication
read-table-with-token-templates
ask-parser-for-type-of-each-token

while(true) {
switch (read-request()) A
case unistroke
classify unistroke
query-parser
combine-parser—-expectancy-and-shape-classification
notify-user-agent

case train
update-token-shape-and-label
notify-user-agent

Schomaker et al. NICI, The Netherlands



a triple-agent system 17

Expression Classifier for Scheme

e context-free grammar
e LR parser: incremental, no look ahead

e use lex/yacc (shift/reduce)

e tokens:

( =

) and

* begin

+ BOOLEAN

- case
CHAR

cond let

define letx*

delay NUMBER

do or

else set!

if STRING

lambda VAR

Schomaker et al.

NICI, The Netherlands



a triple-agent system 18

Expression Classifier for Scheme

e Example of rule:

state 29
Def : LPAR DEFINE_VAR Expr RPAR
Def : LPAR DEFINE_LPAR VAR RPAR Body RPAR
Def : LPAR DEFINE_LPAR VAR DefFormals RPAR Body RPAR

VAR shift 55
LPAR shift 56
error

e After each token: generate list of expected
tokens and update state

e Requests to parser agent:
Accept_token
Reset_state
Delete_token
Forward_token

Schomaker et al. NICI, The Netherlands



a triple-agent system 19

Expression Classifier agent (pseudo code)

Init:
init-communication
read-grammar

while(true) {
switch (read-request()) A
case token
process-token
update-parser-state
return-expected-tokens

case reset
reset-parser-state

Schomaker et al. NICI, The Netherlands



a triple-agent system 20

User Interface agent (pseudo code)

init-communication
start-parser
start-classifier

create-windows
create-event->task-bindings

(ink events, parser events, classifier events)

wait-for-events(forever)

Schomaker et al. NICI, The Netherlands



a triple-agent system 21

User Interface

i,
e
_.-,.eﬁ'ﬂ,
(s

i
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a triple-agent system

22

interaction example

4 L

i
B

= [ ] ' | | |
File Options | 2 | : | & | | Help
1 | z | 3| a | 5 |
/ 0/ /ﬂ Y \ 6 | 7 8 | 9 | 0o |
( Oepre (o ) | T
cond | cCons | define | equal | car |
;\ W \ ( A Vi % | %h | if | % | %k |
) 7 list | map | numhber? | %0 | pair? |
% | cdr | set! | %t | % |
( lambda | %w | et | caar | cdar |
foo | fcn | hase |_ bar |
aap | do | quote | not | maker |
mak | size | Hngy | mpole | ndisks |
pole | nil | noot | or |
F Enter Value: |dog
i i
Expected tokens
_var_| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | |_Other |
<—= -—> | Ignore | Reset | Parse | Train | Accept |
M Message: I
] i

e VAR expected
e token dog written

e token dog rejected — must be new token!

Schomaker et al.

NICI, The Netherlands
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results

good news:
e 100% ’recognition’
e users (Scheme programmers) like it!

e agent architecture is very convenient

Schomaker et al. NICI, The Netherlands
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results

bad news:

e individual information contributions by the
agents must be analysed and quantified

e VAR becomes a problem in case of
unconstrained scope

e NUMBER and STRING are open categories

Schomaker et al. NICI, The Netherlands



a triple-agent system 25

results

Information content of Scheme source code

Symbols Naphaver | 2L0g(Nagphavet) | Entropy | Redundance
Raw token stream 2003 11.0 6.3 4.7
Lumped token stream 28 4.8 2.4 2.4

(Based on corpus of N=27310 tokens.

Lumped means: use placeholders instead of actual instances of VAR.)

Nalphabet

Entropy: — X, pi*log p;

Schomaker et al. NICI, The Netherlands
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results

Parser expectancy

S ymbols AVg . N alternatives
Raw token stream (VAR scope=whole corpus) 1891.5
Raw token stream (VAR scope=single function) 97.4
Lumped token stream 16.0

(Scheme source-code corpus of 27310 tokens.

Lumped means: use placeholders instead of actual instances of VAR.)

— If scope is not limited to a single function,
the parser adds very little information. Reasons:
users’ naming creativity and the presence of
constants (string, number).

Schomaker et al. NICI, The Netherlands



Conclusion 27

e User actions are definitely needed!

e But their work can be made easier by using
syntactical context

e The virtues of a grammar:
”Look Ma’ - No probabilities!”

e Beware of placeholders (name slots) in the
grammar

e Just a first step towards the use of a
multiple-agent architecture

Schomaker et al. NICI, The Netherlands



