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Introduction

In which I give an overview of the topic 
and introduce the methods.
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Introduction
It was at the beginning of my graduate time, when, during a guest lecture at the 
University of Chemnitz, Frank Ritter talked about his favorite scientific articles. 
One of them was Allen Newell’s 20 questions paper (1973). Newell had argued that 
psychology focuses too much on isolated, experimental phenomena and simplifying 
dichotomies, rather than working towards a precise and unified theory of cognition. If 
I would have read this paper in more detail then, and truly understood what Newell 
meant, working on my dissertation might have gone more smoothly. But I did not 
do that. Rather, I began working in “good psychological tradition”. I had studied my 
theories, I knew how to set up experiments and do an ANOVA, and I thought that 
was sufficient to investigate cognition. 

The starting point of my dissertation was the idea that automatic memory processes 
are an important aspect underlying decision making. Specifically I was interested 
in the role of memory activation in diagnostic reasoning. Diagnostic reasoning is 
the reasoning from observed data to explanations and involves the generation and 
evaluation of hypotheses that represent potential explanations. I wanted to know why, 
when confronted with a number of medical symptoms, possible diagnoses seem to pop 
up almost effortlessly in a physician’s head. And, why, when being in a certain context, 
one cannot help but interpret new information in the light of this context. My idea 
was that these phenomena were largely due to automatic memory processes, which 
make information that is associated to the current context (e.g., observed medical 
symptoms) available in memory. Such available information could then be subjected 
to more deliberate reasoning processes as they had been classically discussed in the 
reasoning literature. While the idea of automatic activation processes regulating the 
availability of memory contents was not new, direct experimental evidence for such 
memory processes in diagnostic reasoning was sparse. 

With the goal to present such evidence, we set out to conduct a series of experiments 
(Baumann, Mehlhorn, & Bocklisch, 2007; Mehlhorn, Baumann, & Bocklisch, 2008). 
In these experiments, we used a probe reaction task to track the availability of different 
diagnostic hypotheses in memory, while participants had to generate diagnoses for 
sequentially presented medical symptoms. The probe reaction task was based on the 
idea of lexical decision tasks, where participants respond faster to a probe that is 
more highly activated in memory than to a probe of lower activation (e.g., Meyer & 
Schvaneveldt, 1971). If observations indeed activate associated explanations in memory, 
then, when presented with symptoms like fever, nausea, and headache, a participant 
should react faster to the probe “influenza”, than to a probe that is less related to 
these symptoms (e.g., “pregnancy”), or to a neutral probe (e.g., “house”). To avoid the 
possible influence of previous experience on memory activation, in the experiments 
we used artificial medical knowledge, which consisted of medical symptoms that were 
caused by hypothetical chemicals. Chemicals were named with single letters, which 
allowed us to use letters in the probe reaction task, thereby preventing potential 
problems associated with the use of complete words (e.g., individual differences in 
reading speed and word frequency effects).
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Overall, the results seemed to support our theoretical considerations. For example, 
diagnostic hypotheses that were compatible to all observed symptoms caused the 
fastest probe reactions, suggesting that these compatible hypotheses were indeed more 
easily available in memory than their alternatives. Also, with an increasing amount of 
observed symptoms, reaction times to compatible hypotheses decreased faster than 
reaction times to other hypotheses. This suggested that the availability of hypotheses 
indeed might be a function of their association to observed symptoms. However, when 
trying to understand the results in detail, we quickly ran into open questions. Could 
it have been that the results were actually not caused by memory activation, but were 
merely byproducts of deliberate reasoning processes? And, assuming that it was indeed 
memory activation that caused our results, how would the underlying activation 
processes look precisely? What we needed was a detailed model of the assumed 
memory processes that would make precise predictions.

The first “model” that we generated consisted of several boxes and arrows (see 
Figure 1.1 and Baumann et al., 2007). The boxes represented medical symptoms (e.g., 
headache) and their potential explanations (e.g., influenza). The arrows represented 
the associations between symptoms and explanations that could be positive (solid 
lines) or negative (dashed lines). This model was useful to illustrate the processes 
that we assumed to cause the activation of diagnostic hypotheses. For example, we 
proposed that “After the integration phase the influenza explanation as a still relevant 
explanation should be strengthened as it receives activation both from the symptom 
fever and the symptom headache [...]” (Baumann et al., 2007, p. 804). However, the 
problem with this model was a lack of precision. For example, why exactly was there a 
positive association between headache and influenza and how strong was it precisely? 
As Allen Newell (1973) put it, in such a model “Too much is left unspecific and 
unconstrained.” (p. 301).

	
  
Figure Box and arrow model of memory processes assumed to 

underlie diagnostic reasoning as reported in Baumann et 
al. (2007). 

1.1
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The lack of theoretical precision, which we faced when trying to understand our 
data, is inherent to verbal theories of cognition (and their associated box and arrow 
models). A solution for that problem has been proposed by Allen Newell (1990) and 
many others. It is the use of computational cognitive models. These models should 
be specific and constrained enough to provide quantitative predictions that can be 
tested by comparing them to human data. After the initial difficulties described above, 
I moved on to using such models. In the remainder of the introduction I give a brief 
introduction of the two modeling approaches that I used in my dissertation and 
present an overview of the chapters in this thesis.

A Connectionist Approach: ECHO
In his theory of explanatory coherence, Thagard (1989a, 1989b, 2000) proposes that a set 
of propositions (e.g., observations and their potential explanations in memory) can be 
evaluated by automatic activation processes, purely on the basis of their coherence. In 
the connectionist constraint-satisfaction implementation of this theory, ECHO (e.g., 
Thagard, 1989a), propositions are represented by a network of interconnected nodes. 
The connections between the nodes represent the relations (constraints) between 
the respective propositions. Depending on these connections, when the network is 
integrated, activation or inhibition is spread between the nodes. After the network has 
been integrated, the strength of a proposition is indicated by the numerical activation 
of its node, which depends on its coherence to the other nodes in the network. 
Applying Thagard’s theory to diagnostic reasoning predicts that those explanations 
that are strongly associated with the observed data are most strongly available in 
memory (because they receive a large amount of activation) and that less strongly 
associated explanations have a lower availability (because they receive less activation 
and potentially also inhibition). 

As we will show in Chapter 3, such a connectionist account increases the precision 
compared to mere verbal predictions. It requires a detailed specification of the 
assumed memory processes (e.g., how strong is the connection between observation 
x and explanation y?) and it predicts precise numerical activation values that can be 
compared to behavioral data. However, this account has also some major limitations 
(see e.g., Fodor & Pylyshyn, 1988, for an overview). Maybe most importantly, it 
does not represent a fully functioning cognitive system. While presenting a precise 
account of activation dynamics within an assumed network, it remains mute about the 
interplay of these dynamics with, for example, perceptual, decisional, intentional, and 
motor processes, which might play an important role in human reasoners. Another 
problematic point is the interpretability of its results. The model predicts precise 
activation values, which can be plotted against and correlated with behavioral data. 
But what exactly do these values mean and how, precisely, do they correspond with 
behavioral data? 
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An Architectural Approach: ACT-R
An approach that not only endeavors precision, but also comprehensiveness in terms 
of understanding how the brain “achieves the function of the mind” (Anderson, 2007, 
p. 7) is the use of cognitive architectures1. The term “cognitive architecture” was, maybe 
most prominently, described by Allen Newell (1990) as a way towards the “ultimate 
goal” of a unified theory of human cognition. The idea is that the architecture is both 
a psychological theory, as well as a platform for constructing computational models, 
that allows for investigating different phenomena within one framework. This idea has 
been developed since then, resulting in various architectures, like for example EPIC 
(Meyer & Kieras, 1997), Soar (A. Newell, 1990), and ACT-R (Anderson et al., 2004).

The cognitive architecture I used in my dissertation is ACT-R, because it puts a 
strong emphasis on processes underlying memory activation. It has received empirical 
support and validation from a large number of studies in a variety of research areas, 
ranging from list memory (Anderson, Bothell, Lebiere, & Matessa, 1998) to car 
driving (Salvucci, 2006). ACT-R allows for modeling of the complete task as solved 
by the participant. Thereby, without requiring additional assumptions about how the 
model maps on the experiment, it produces results that are directly comparable to 
human data. This is possible because the underlying theory makes precise predictions 
not only about the probability and latency of retrieving facts from memory, but also 
about the time needed to perceive stimuli and give responses. 

In ACT-R, cognition is described by a number of independent modules. Each of 
the modules represents a different cognitive resource and is associated with specific 
brain regions. For example, a visual module allows ACT-R to perceive visual stimuli 
and a motor module allows for motor actions like pressing a key. Most important 
for the work presented in this thesis are three of the central cognitive modules: the 
imaginal module, the declarative module, and the procedural module. 

The imaginal module holds information necessary to perform the current task and is 
thereby comparable to the focus of attention in working memory (e.g., Borst, Taatgen, 
& van Rijn, 2010). In a diagnostic reasoning task, the imaginal module might, for 
example, hold observed medical symptoms, which determine the present usefulness of 
potential explanations. In Chapter 2 we investigate how such observed symptoms can 
affect the availability of explanations in long-term memory.

The declarative module allows for the storage in and retrieval of facts from 
declarative memory and thereby represents ACT-R’s account of long-term memory. 
In a diagnostic reasoning task, such facts could, for example, be possible diagnoses. 
Availability of the facts is determined by their activation (see Chapters 2, 4, and 5 for 
a detailed description of the underlying equations). Basically, the activation of a fact 

1 In the literature, the term cognitive architecture has also been used for connectionist models (e.g., Kintsch, 1998). In this thesis we 
use the term cognitive architecture exclusively for what Fodor and Pylyshyn (1988) referred to as “Classical architectures”, that is, 
architectures that are committed to a symbol-level of representation and thereby aspire “paying attention to three things: the brain, 
the mind (functional cognition), and the architectural abstractions that link them” (Anderson, 2007, p. 8). However, as Fodor 
and Pylyshyn (1988) point out, connectionism might provide “an account of the neural [...] structures in which Classical cognitive 
architecture is implemented” (p. 3). In fact, Lebiere and Anderson (1993) successfully created such a connectionist implementation of 
an early version of ACT-R.
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represents the likelihood that it will be needed in the near future and depends on 
two factors: its past and present usefulness. In Chapter 4 we explore the respective 
contribution of these two factors for the availability of hypotheses in diagnostic 
reasoning.

The procedural module allows for communication between the other modules. It 
contains production rules, which can recognize patterns of information in the modules’ 
so-called buffers, and react to these patterns by sending requests to the modules. A 
production rule might, for example, recognize that a visually presented symptom was 
encoded in the visual buffer and react by requesting the name of this symptom from 
declarative memory. Production rules implement strategies that the reasoner might use 
in a certain situation. For example, after retrieving an explanation for observed medical 
symptoms from memory, one strategy might be to simply give that explanation as 
diagnosis, whereas another strategy would be to deliberately test the explanation 
against potential alternatives. In Chapter 5 we use this module to implement different 
decision making strategies and test how well these strategies predict behavioral data.

Overview
In this thesis I will show how we used the approaches outlined above to implement 
and test precise models of decision making. 

In Chapter 2, we introduce our idea of how memory activation affects the 
availability of explanations. We present several ACT-R models that all share the 
assumption that observations stored in working memory can activate associated 
explanations in long-term memory. The models differ in their assumptions about how 
sequentially observed symptoms affect the activation of associated explanations over 
time. Using ACT-R allows us for testing these assumptions within a well-established 
and elaborate theory of human memory. It also allows for investigating the interaction 
of the assumed memory processes with other potentially task-relevant factors. The 
results of the models are compared to human data from two behavioral experiments 
in which we used the probe reaction task mentioned above to track the availability of 
different explanations during a sequential diagnostic reasoning task. 

In Chapter 3, we explore different methods of modeling sequential information 
integration with connectionist constraint satisfaction models, based on Thagard’s 
ECHO. Just like the ACT-R models presented in Chapter 2, the models share the 
basic assumption that observations can activate associated explanations, but they differ 
in how sequentially observed medical symptoms affect the activation of explanations 
over time. The models are evaluated on the probe reaction data from the same 
experiments as presented in Chapter 2.

In Chapter 4, we investigate how an explanation’s present usefulness, as reflected by 
the observed symptoms, interacts with its past usefulness, as reflected by the recency 
and frequency of previous encounters with the explanation. We thereby test whether 
the memory mechanisms as proposed by the ACT-R theory can explain why, out of 
all possible hypotheses, reasoners tend to generate those hypotheses from memory 
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that have a high a priori probability and a high usefulness in the current context. 
Model predictions are compared to behavioral data from an experiment in which we 
manipulated both memory components independently, by means of a secondary task 
that had to be solved next to a primary diagnostic reasoning task.

In Chapter 5, we move on to a slightly different domain of decision making. 
Whereas in Chapters 2 to 4 we investigate how automatic activation process affect 
the availability of information in memory as a function of the past and present 
environment, in Chapter 5 we investigate how reasoners use information from memory, 
given its availability. More specifically, we focus on a debate that has evolved over the 
last decade in the decision-making literature and is centered on the question whether 
decisions can better be described by simple non-compensatory heuristics or by more 
complex compensatory decision making strategies. In Chapter 5 we show how the 
precision and comprehensiveness provided by a cognitive architecture can be used to 
get beyond the simple dichotomy of non-compensatory versus compensatory decision 
strategies. We use ACT-R to implement various strategies that have been discussed 
in the literature and compare the resulting quantitative predictions to behavioral data 
from two previously published experiments (Pachur, Bröder, & Marewski, 2008).
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The Availability of 
Explanations in Memory 

for Diagnostic Reasoning

In which I use behavioral experiments and 
ACT-R models to test the idea that observations 

activate associated explanations in memory.

An earlier version of this chapter was published as:
Mehlhorn, K., Taatgen, N.A., Lebiere, C., Krems, J.F. (2011). 

Memory activation and the availability of explanations in 
sequential diagnostic reasoning. Journal of Experimental 

Psychology: Learning, Memory, & Cognition, 37, 1391-1411.
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Abstract
In the field of diagnostic reasoning, it has been argued that memory 
activation can provide the reasoner with a subset of possible explanations 
from memory that are highly adaptive for the task at hand. However, few 
studies have experimentally tested this assumption. Even less empirical and 
theoretical work has investigated how newly incoming observations affect 
the availability of explanations in memory over time. In this chapter we 
present the results of two experiments in which we address these questions. 
While participants diagnosed sequentially presented medical symptoms, the 
availability of potential explanations in memory was measured with an 
implicit probe reaction-time task. The results of the experiments were used 
to test four quantitative cognitive models. The models share the general 
assumption that observations can activate and inhibit explanations in 
memory. They vary with respect to how newly incoming observations affect 
the availability of explanations over time. The data of both experiments 
were predicted best by a model in which all observations in working 
memory have the same potential to activate explanations from long-term 
memory and in which these observations do not decay. The results illustrate 
the power of memory activation processes and show where additional 
deliberate reasoning strategies might come into play.



17Introduction

Introduction
A basic goal of human cognition is to explain and understand the events happening in 
the world. Whether it is in scientific discovery, medical diagnosis, software debugging, 
or social attribution, people try to find explanations based on what they observe. The 
kind of reasoning underlying this task is often called abductive ( Josephson & Josephson, 
1996) or diagnostic reasoning (Kim & Keil, 2003) and it is described as highly complex. 
First, complexity arises from the large number of potential observations that can each 
have a large number of potential explanations. Take for example a physician who is 
confronted with a patient’s symptoms. Each of the symptoms has a number of possible 
alternative explanations and only the combination of symptoms allows for selecting a 
diagnosis. The task is further complicated by the fact that information often does not 
become available all at once, but only over time. Even if given all at once, observations 
might be perceived and understood only over time due to limited cognitive capacities. 
Thus, the ability to integrate newly incoming information over the course of the 
diagnosis process is important. A related factor is uncertainty. The physician can never 
be sure if all symptoms necessary to find the correct diagnosis were observed and 
whether all observed symptoms were caused by the current disease. Despite all these 
constraints, people often generate explanations with high speed and accuracy (T. R. 
Johnson & Krems, 2001). 

Theories trying to understand diagnostic reasoning consistently make the distinction 
between, on the one hand, the generation of a potential set of explanations or 
hypotheses and, on the other hand, the evaluation of these explanations or hypotheses 
against potential alternatives. Often the evaluation of hypotheses is assumed to be 
performed in a second, deliberate reasoning stage after a first stage in which potential 
hypotheses are generated from memory (e.g., Evans, 2006; Kintsch, 1998; Thomas, 
Dougherty, Sprenger, & Harbison, 2008; Wang, Johnson, & Zhang, 2006a). For the 
deliberate stage of hypothesis evaluation, a number of strategies that allow reasoners 
to deal with the complexity of the task have been investigated (cf. T. R. Johnson & 
Krems, 2001). However, a key aspect of diagnostic reasoning is that observations can 
be associated with a large number of possible explanations in memory (in fact, the 
number of potential explanations has been shown to be computationally intractable; 
Bylander, Allemang, Tanner, & Josephson, 1991). Generating and deliberately 
evaluating the complete set of explanations is therefore often impossible due to 
constraints set by cognitive capacity and time available for diagnosis (Dougherty & 
Hunter, 2003a, 2003b). Consequently, already during the generation of explanations 
from memory a selection amongst potential alternative hypotheses has to be made 
(Dougherty, Thomas, & Lange, 2010; Thomas et al., 2008). 

The goal of this chapter is to more closely investigate how memory activation 
processes can provide the reasoner with such an adaptive selection. Specifically, we 
want to test how memory activation can help the reasoner to select amongst a large 
number of potential explanations and how this selection is affected by newly observed 
pieces of information over time. In the remainder of the introduction we first give 
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a short overview of empirical findings on hypothesis generation and then we take a 
closer look at the theoretical background. 

Empirical Findings on the Generation of Explanations
Thomas et al. (2008) stated, “Although the evaluation of prespecified hypotheses 
has been the subject of research for many years, relatively little research has been 
concerned with the initial generation of the to-be-judged hypotheses.” (p. 158; see also: 
Weber, Böckenholt, Hilton, & Wallace, 1993). Existing empirical findings concerning 
hypothesis generation consistently show that reasoners generate only a subset of up 
to four possible hypotheses from memory (Barrows, Norman, Neufeld, & Feightner, 
1982; Dougherty, Gettys, & Thomas, 1997; Dougherty & Hunter, 2003a; Elstein, 
Shulman, & Sprafka, 1978; Joseph & Patel, 1990; Mehle, 1982; Weber et al., 1993). 
Whereas this small number of generated hypotheses seems to contradict the large 
number of potential hypotheses, research has shown that the selection of hypotheses 
into the generated subset is highly adaptive. Out of all potential hypotheses, reasoners 
generate those hypotheses that have a high likelihood of being relevant as explanations 
in the current situation. Specifically, those hypotheses seem to be generated that (a) 
have a high a priori probability based on previous experiences (Dougherty et al., 1997; 
Dougherty & Hunter, 2003a; Gettys, Pliske, Manning, & Casey, 1987; Sprenger & 
Dougherty, 2006; Weber et al., 1993) and that (b) are most likely in the context of the 
current observations (Weber et al., 1993).

Although the studies mentioned above say something about the outcome of the 
hypothesis generation process, they say little about the cognitive processes that yield 
this outcome (exceptions are Dougherty & Hunter, 2003b, and Dougherty & Sprenger, 
2006, who showed that participants tended to generate those hypotheses that were 
most “active” as defined by a strength manipulation in the learning phase). To test if 
memory activation can indeed help the reasoner to select explanations from memory, 
the availability of explanations has to be assessed as a function of the observed 
information. In previous experiments, the availability of explanations has been 
estimated using explicit measures. For example, Wang, Johnson and Zhang (2006b) 
asked their participants for explicit belief ratings after serially presented observations, 
and Dougherty and Hunter (2003b) asked their participants for probability judgments 
of different explanations. However, such explicit measures have two major drawbacks. 
First, explicitly asking participants during the course of the task might influence the 
outcome of the task itself (cf. Hogarth & Einhorn, 1992). Second, although there have 
been efforts at clarifying this issue (Drewitz & Thüring, 2009; Thomas et al., 2008), it 
is not clear how the implicit concept of availability in memory translates into explicit 
concepts like ratings and judgments. Furthermore, to investigate how the availability 
of explanations is affected by newly incoming observations, availability should be 
tracked over time. With few exceptions (Baumann, Krems, & Ritter, 2010; Sprenger, 
2007; Wang et al., 2006b) this issue has received little attention in previous studies. 

Methods used in diagnostic reasoning research range from protocol analysis of 
physicians explaining a patient’s pathophysiology (Arocha, Wang, & Patel, 2005) to 
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simple laboratory experiments where only a few pieces of evidence and a few alternative 
hypotheses need to be considered (e.g., Wang et al., 2006b). Whereas the first method 
allows for high external validity of aspects like task complexity, the second method 
allows for high control of aspects like previous knowledge. For analyzing the subtle 
effects of memory activation it is essential to have an optimal trade-off between both. 

In this chapter we attempt to address the issues discussed above by designing 
experiments in which participants have to generate explanations in a diagnostic task 
that is more complex than in previously reported studies and that at the same time 
are controlled enough to study memory effects. During this diagnostic reasoning task, 
we assess the availability of explanations not only at the end of a trial, but we also 
track the availability while new symptoms are observed. We do this with an implicit 
probe reaction time measure, rather than with an explicit measure of the explanations’ 
availability. This should reduce potential effects of the measurement on the outcome 
of the task itself. Before we present the experiments in detail, we discuss the potential 
role of memory activation for the generation and evaluation of explanations. 

Memory Activation and the Generation 
and Evaluation of Explanations
To understand the role of memory activation in diagnostic reasoning, it is necessary 
to consider how diagnostic knowledge is represented in memory (Arocha et al., 2005). 
A large number of studies have shown that with increasing experience in a domain 
reasoners develop knowledge structures whose content reflects the structure of the 
environment (Anderson & Schooler, 1991; Gigerenzer, Hoffrage, & Kleinbölting, 
1991). To illustrate this using our earlier example, a physician will have a stronger 
memory representation of a diagnosis that has occurred frequently in the past, 
compared with a rare diagnosis. Similarly, the association between symptoms and 
their potential diagnoses in memory will increase with increasing experience of their 
co-occurrence. Given such a highly adapted knowledge structure, data extracted from 
the environment can serve as a cue for the retrieval of diagnostic hypotheses from 
long-term memory (Arocha & Patel, 1995; Ericsson & Kintsch, 1995; Kintsch, 1998; 
Thomas et al., 2008). An observation’s efficiency as retrieval cue will depend on how 
strongly it is linked to the explanation in memory; the stronger the link, the more 
activation will occur (Anderson et al., 1998). 

So far, we have looked at the question of how observed information can serve as 
a retrieval cue for one associated explanation from memory. However, a key aspect of 
diagnostic reasoning is that pieces of information are usually associated with a large 
number of possible explanations. Retrieving them all from memory is often impossible 
due to constraints set by cognitive capacity and the time available for diagnosis. To 
understand diagnostic reasoning it is therefore necessary to understand not only how 
one potential explanation is retrieved from memory but also how a selection is made 
among all the possible alternatives. For selecting explanations from a set of alternatives 
it is necessary to evaluate the alternatives in the set. A factor commonly linked to the 
evaluation of explanations is their coherence with the data. In his theory of explanatory 
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coherence, Thagard (1989a, 1989b, 2000) showed how a set of potential explanations 
can be evaluated purely on the basis of the coherence between the explanations and 
the observed data. In the computational implementation of this theory, ECHO, 
pieces of information are represented by interconnected nodes that, depending on 
their coherence to each other, spread activation or inhibition. The theory predicts that 
explanations most coherent with the observed data are most strongly available (because 
they receive a large amount of activation) and that explanations that are associated 
with only some of the observations have a lower availability (because they receive some 
inhibition). Applied successfully to explain phenomena in various domains, the theory 
has been described as a “computationally efficient approximation to probabilistic 
reasoning” (Thagard, 2000, p. 95). However, in its original implementation it is used to 
model the integration of information only at a certain point of time. 

An extension of Thagard’s theory that can account for sequential information 
integration has been proposed by Wang at al. (2006b; see also Mehlhorn & Jahn, 
2009). They assumed that activation and inhibition spreading from new observations 
would add to the activation of observations that were observed before. Referring to 
work on memory retention, they proposed that the impact of observations decays 
exponentially with the square root of time. Consequently, over time observations 
should increasingly lose their impact on memory activation. This assumption is in 
contrast to recent findings that suggest that information in working memory seems 
to be subject to very little decay (Berman, Jonides, & Lewis, 2009; Jonides et al., 2008; 
Oberauer & Lewandowsky, 2008) or even no decay (Lewandowsky, Oberauer, & 
Brown, 2009). Thus, whereas constraint satisfaction seems to be a plausible mechanism 
for information integration at a certain point in time, the integration over time leaves 
open questions. Furthermore, the implementation of the theory into a connectionist 
network makes it difficult to assess how such a hypothesis evaluation mechanism 
would interact with the constraints set by other aspects of cognition, like perception, 
memory, and deliberate decision strategies. 

A theory that takes into account the effect of limited cognitive resources on 
hypothesis generation and evaluation has recently been proposed by Thomas et al. 
(2008). In their HyGene model, diagnostic reasoning is described as a two-stage 
process, where a phase of automatic memory retrieval of hypotheses is followed by a 
phase of deliberate hypothesis evaluation. The memory retrieval stage itself consists 
of two parts. The first stage is a prototype extraction process, in which a memory 
trace is derived from episodic memory that “resembles those hypotheses that are most 
commonly (and strongly) associated with the data” (Dougherty et al., 2010, p. 308). 
In the second stage, this prototype is matched against known hypotheses in semantic 
memory. If sufficiently activated by the prototype, hypotheses from semantic memory 
are placed in working memory where they can be evaluated by deliberate reasoning 
processes. Although the authors stressed the importance of understanding sequential 
information integration and discussed possible related questions, they did not present 
predictions for the sequential integration of information. Such predictions are 
complicated due to the assumptions of two distinct memory systems that are involved 
in hypothesis generation. Would, for example, new observations lead to the retrieval 
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of different prototypes from memory? And if so, what would be the effects on the 
availability of hypotheses that were activated by previously retrieved prototypes?

Given the open questions presented above, we were interested in whether memory 
activation can indeed explain the generation and evaluation of explanations as found 
in an experimental setting. To answer this question, we extracted the most essential 
elements of the theories presented above and implemented them into a general 
cognitive architecture. For avoiding additional questions that might arise from 
understanding the interaction of episodic and semantic memory we focus on the 
effects on semantic memory. The basic assumption of the theories mentioned above 
is that each observation can affect the availability of explanations in memory. If an 
observation supports a particular explanation, the observation will spread activation 
to the explanation and will make it more available to the reasoner. If an observation 
does not support a particular explanation, the observation will spread inhibition to the 
explanation and make it less available to the reasoner.1 If an observation is completely 
unrelated to an explanation, the explanation’s activation will not be affected. Following 
the idea of Wang et al. (2006b), we assume that if several observations are currently in 
the focus of attention (that is, stored in working memory) they can serve as a sort of 

“combined retrieval cue” for explanations in long-term memory. 

Current Chapter
As mentioned above, not much progress has been made in understanding how exactly 
sequentially made observations will affect memory activation over time. To shed light 
on this question, we implemented four different cognitive models. These models all 
share the general assumptions about memory activation and inhibition as presented 
above, but they vary with regard to how strongly newly incoming observations affect 
the availability of explanations over time. In a first model, model-current, at each 
point in time only the most recent observation affects the availability of explanations. 
This model is designed to test whether the assumption that sequentially observed 
symptoms serve as combined retrieval cue is necessary, or whether the activation and 
inhibition spread by the current symptom alone can fit the activation curves found in 
the experiments. In the remaining three models the observations serve as combined 
retrieval cue and, thus, all affect the explanations’ availability. The models vary with 
regard to how strong each observation is weighed. One of the models, model-time, tests 
the assumption that observations are weighed according to the times since they were 
observed, as proposed by Wang et al. (2006b). As decay of information in working 
memory has been questioned (Berman et al., 2009; Jonides et al., 2008; Lewandowsky 
et al., 2009; Oberauer & Lewandowsky, 2008), we implemented two alternative 
models in which observed information does not decay. One model, model-constant, 
tests the assumption that observations are weighed according to the total amount of 
1 In contrast to the concept of spreading activation between positively associated memory elements, the concept of spreading inhibition 
between negatively associated memory elements is neglected in many theories of memory retrieval, as it often has little practical 
impact (cf. Anderson & Lebiere, 1998). However, in diagnostic reasoning making a certain observation does not only increase the 
probability for positively associated explanations being the correct diagnosis, but it also decreases the probability of other explanations. 
Consequently, inhibition between observations and nonsupported explanations becomes important (Dougherty & Sprenger, 2006).
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information that is currently held in working memory. This assumption arises from 
the idea that the total amount of activation that can be spread from working memory 
is a limited and constant amount that will be equally divided between the elements 
in working memory (Lovett, Daily, & Reder, 2000). The fourth model, model-number, 
tests the assumption that all observations currently stored in working memory are 
weighed equally, independent of the time since they were observed and independent 
of the number of observations. Consequently, in this model, the total amount of 
activation and inhibition spread into long-term memory will increase with the number 
of observed symptoms.

To test the models, we conducted two behavioral experiments. In the experiments, 
participants had to find diagnoses for sequentially presented series of medical 
symptoms. The knowledge necessary to solve this task consisted of a number of 
symptoms, each of which was associated with a number of alternative explanations. 
Whereas the symptoms were real medical conditions, their association with the 
explanations was artificial to avoid possible effects of prior knowledge and for being 
able to fully balance the material. To be able to investigate the effects of memory 
activation on the generation of explanations, we tried to minimize the role of 
deliberate hypothesis evaluation strategies in the task. Therefore, experimental trials 
were generated in a way such that in most trials to find the correct diagnosis it was 
sufficient to retrieve the one explanation from memory that was most coherent to the 
set of observed symptoms. Thus, although each of the serially presented symptoms 
had a number of possible explanations that should vary in their availability over the 
course of the trial, at the end of the trial the most active explanation would also be the 
correct diagnosis. We expected the activation of explanations in memory to depend 
upon the serially observed symptoms as described above, with supporting symptoms 
increasing an explanation’s availability and nonsupporting symptoms decreasing its 
availability. Activation was measured with a probe reaction task. The idea behind this 
task is based on lexical decision tasks where participants respond faster to a probe 
that is more highly activated in memory than to a probe of lower activation (e.g., 
Meyer & Schvaneveldt, 1971). We now first describe the method and the data from 
Experiment 1. Then we describe the cognitive models in detail and present the model 
results. Subsequently, we present Experiment 2, compare its results to predictions of 
the models, and discuss the implications of our findings.

Experiment 1
The goal of Experiment 1 was to test whether the availability of explanations over 
the course of diagnostic reasoning indeed depends upon the information observed 
over time. Therefore, we tracked the activation of three different kinds of memory 
elements during trials of a diagnostic reasoning task: (a) explanations that were 
supported by all the observed symptoms (compatible explanations), (b) explanations 
that were not supported by all of the observed symptoms (incompatible explanations), 
and (c) explanations that were completely unrelated to the symptoms (foils). (See the 
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experimental-material section below for a more detailed description of the different 
kinds of explanations.) If the availability of explanations in memory depends on the 
observed symptoms as described above, we would expect symptoms to increase the 
activation of compatible explanations and to decrease the activation of incompatible 
explanations. The availability of foils should not be affected by the observed symptoms.

To introduce some uncertainty in the task, we varied the reliability of the symptoms 
presented in each trial. Whereas in 75% of the trials each of the symptoms reliably 
pointed towards the correct diagnosis (coherent trials), in 25% of the trials a misleading 
symptom was added that did not correspond to the correct diagnosis (incoherent 
trials). Participants were not told whether a trial was coherent or incoherent.

Method

Participants

Twenty-three undergraduate students from the Chemnitz University of Technology 
took part in this experiment. Of those, one participant had to be excluded from 
analysis, because she did not reach the required performance in the training session. 
Twelve of the remaining 22 students were female. The mean age was 24.1 (SD = 6.8). 

Tasks

Diagnosis task. Participants were told that the main task they had to solve was to 
diagnose hypothetical patients after a “chemical accident”. In each experimental trial, 
a set of three to four symptoms was presented and the chemical that explained the 
combination of these symptoms had to be found (see Figure 2.1 for a sample trial). 
This task allowed us to assess overall performance in the trials.

Probe task. The second task to be solved in the experiment was a probe task. After 
one of the symptoms in each trial, a probe was presented. Participants had to decide 

+headache

+

+

cough

vomiting

+

itching

T +

Enter your 
diagnosis:

2sec
1sec

2sec
1sec

2sec
1sec

???
1sec

2sec
1sec

???

Figure Illustration of the trial procedure for a sample trial from 
Experiment 1.

2.1
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as fast as possible whether the probe (e.g., T in Figure 2.1) was the name of one of 
the chemicals learned in the training session (see Table 2.1) or not. Participants were 
told that the two tasks were not related to each other. This task allowed us to track the 
availability of explanations over the course of the diagnosis task.

Material

Learning material. The material that participants had to learn before the experiment 
consisted of nine different chemicals (see Table 2.1). Chemicals were named 
with single letters, which allowed us to construct balanced, artificial connections 
between symptoms and explanations about which participants would have no prior 
knowledge. Furthermore, using single letters as chemical names allowed us to use 
letters in the probe task, avoiding potential problems associated with the use of whole 
words (e.g., individual differences in reading speed and word frequency effects). The 
chemicals were grouped into the three artificial categories Landin, Amid, and Fenton. 
Participants were told that chemicals from the three categories differed in their state 
of aggregation: Landin chemicals, for example, were gasiform and affected especially 
the respiratory system because they were inhaled. This organization of knowledge 
into a hierarchical structure was used to ease the learning of the material by allowing 
participants to connect it to their knowledge about the biological workings of the 
human body. It reflects in a simplified form the hierarchical knowledge organization 
found in medical diagnosis (Arocha & Patel, 1995). Each chemical caused three to four 
medical symptoms. Symptoms had either a relatively small number of two or three 

Aggregate state 
and source of 

contamination
Category Chemical Specific symptoms Unspecific symptoms

Gasiform, 
inhaled Landin

B Cough Shortness 
of breath Headache

T Cough Vomiting Headache Itching

W Cough Eye 
inflammation Itching

Crystalline,
skin contact Amid

Q Skin 
irritation Redness Headache

M Skin 
irritation

Shortness 
of breath Headache Itching

G Skin 
irritation

Eye 
inflammation Itching

Liquid,
drinking 

water
Fenton

K Diarrhea Vomiting Headache
H Diarrhea Redness Headache Itching

P Diarrhea Eye 
inflammation Itching

Note. Original materials were presented in German.

Domain knowledge participants had to acquire before Experiment 1.2.1 Table
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explanations (specific symptoms like cough) or a larger number of six explanations 
(unspecific symptoms like headache). This variance in the number of explanations was 
introduced because it is an important feature of real-world diagnostic knowledge that 
increases the complexity of the task.

Experimental material. Coherent trials were generated by presenting the three or 
four symptoms caused by one of the chemicals. In those trials all symptoms pointed 
coherently toward the correct diagnosis. Incoherent trials were generated by inserting 
an additional misleading symptom into the symptoms of one of the three-symptom 
chemicals (see Table 2.2 for a coherent and an incoherent sample trial). Apart from 
this manipulation, the order in which symptoms were presented in each trial and the 
order of trials were randomly chosen for each participant. Each diagnosis occurred 
with equal frequency during the experiment. Participants were told that, throughout 
the experiment, the second symptom of each trial might be misleading.2 To keep 
them aware of this, the second symptom of each trial was printed in normal letters, 
whereas all other symptoms were printed in bold letters. Participants had no means of 
distinguishing coherent from incoherent trials until they observed the third symptom 

2 Although manipulating uncertainty in this way represents a strong simplification of real-life diagnostic uncertainty, we chose this 
design for two main reasons. First, varying the position of the unreliable information within trials would have required a far larger 
number of trials. The number of trials already being very large, we decided against this (potentially very interesting) manipulation. 
Second, not informing participants about the potential unreliability of the second symptom might have resulted in a variety of 
potential strategies in dealing with incoherent trials (see Chinn & Brewer, 1998 for an overview of potential strategies in dealing 
with incoherent data). By informing participants which symptom might be unreliable, we attempted to reduce the amount of possible 
strategies.

Order Symptoms
Explanations 
supported by 

current symptom

Possible target probes
Possible foils

Compatible Incompatible

Coherent trial - Correct diagnosis: T
1st Cough BTW BTW QMGKHP FZVDNCXLR
2nd Vomiting TK T QMGKHP FZVDNCXLR
3rd Itching TWMGHP T QMGKHP FZVDNCXLR
4th Headache BTQMKH T QMGKHP FZVDNCXLR

Incoherent trial - Correct diagnosis: B
1st Cough BTW BTW QMGKHP FZVDNCXLR
2nd Eye inflammation WGP W QMGKHP FZVDNCXLR
3rd Shortness of breath BM B QMGKHP FZVDNCXLR
4th Headache BTQMKH B QMGKHP FZVDNCXLR

Note. Shown for each symptom are supported explanations, possible target probes, and foils. Note that the set 
of potential incompatible probes stayed the same over the trial (it consisted of those explanations that were 
not supported by the first symptom), whereas the set of potential compatible probes changed as the number 
of explanations supported by all symptoms decreased.

Coherent and incoherent sample trials for Experiment 1.2.2 Table
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of the trial, which was either coherent with the second symptom (coherent trials) or 
not (incoherent trials). 

To track the activation of explanations, a probe was presented after one of the 
symptoms in each trial. Each probe was a single letter that was either a target probe 
(one of the names of the nine chemicals) or a foil (see Table 2.2 for examples of the 
different probe types). Target probes were either compatible targets or incompatible 
targets.3 Compatible targets probed explanations that were supported by all the 
symptoms preceding the probe (except for the misleading symptom in incoherent 
trials). Incompatible targets probed explanations that were not supported by all 
symptoms. The incompatible targets were chosen such that they were not supported 
by at least the first symptom of the trial. This allowed us to test the possible effect of 
inhibition beginning directly after the first symptom, where explanations that were 
supported by the symptom (compatible targets) could be compared to explanations 
that were not supported (incompatible targets). Foils were randomly sampled from 
nine letters that were not associated with any of the symptoms (see Table 2.2).

The type of probe (compatible target, incompatible target, or foil) and the position of 
the probe in the trial (after the first, second, third, or fourth symptom) were randomized 
over trials, with the constraints that (a) target probes and foils appeared equally often 
and (b) probes of each type appeared with equal frequency at all the positions. In 8.3% 
of the trials no probe was presented. Instead, after one of the symptoms of those trials, 
participants were asked to provide the set of diagnoses they currently had in mind. 
These ‘no-probe’ trials were intended merely to prevent participants from expecting a 
probe in each trial and were not analyzed.

Procedure

Each participant completed 5 sessions, which took part over a maximum of 10 days, 
with the first and second session on consecutive days.

Training session. The first session was a training session to ensure a high familiarity 
with the material and the task. It consisted of several blocks that were repeated until 
participants solved them with at least 80% accuracy. First, participants were presented 
with the cover story “diagnose patient after chemical accident” and with the complete 
knowledge (see Table 2.1). After a paper-and-pencil exercise in which they could 
use the table to write down which chemicals were associated with each symptom, 
participants had to study each chemical category separately on the screen. They were 
asked to memorize and report the name of the category, of the chemicals, and their 
respective symptoms. When they could report complete knowledge of the category at 
least once without error, they completed two more training blocks for that category. In 
the first block, sets of symptoms were displayed on the screen, and participants had to 
enter the chemical that caused this set of symptoms. In the second block, symptoms 
3 In incoherent trials a third type of target probe was used (rejected targets). Rejected targets probed explanations that were 
compatible with early symptoms but incompatible with later symptoms. The reactions to those probes were in line with our predictions. 
However, as those probes were presented only in the incoherent trials, we will not report them here.
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were presented sequentially on the screen. After each symptom, participants were 
asked to enter all chemicals from the currently practiced category that could explain 
the symptoms seen so far.

After the training blocks for the single categories were completed, participants 
could again study the complete material (see Table 2.1). They were then presented 
with four training blocks for the complete material. The first block was identical to the 
final one in the single category training, but now all categories were tested. The second 
block was used to familiarize participants with the concept of incoherent trials; that is, 
they learned that the second symptom of each trial might be misleading. In the third 
block the probe task was introduced. After an explanation of the task, participants were 
presented with probes and had to decide whether they were targets (chemicals) or foils. 
The last block consisted of trials identical to the trials in the experiment. Participants 
were sequentially presented with symptoms. After one of the symptoms they had to 
react to a probe, and after all symptoms had been presented, they were asked for their 
diagnosis. Depending on a participant’s performance, this session lasted between 60 
and 90 min.

Experimental sessions. The experimental phase was split into four sessions. Each 
session began with a short practice block to refresh the participants’ knowledge of the 
material. Afterwards participants solved 96 diagnostic reasoning trials, of which 75% 
were coherent and 25% were incoherent. The completion of the experimental trials in 
each session took about 30 min. Each trial was started self-paced. The symptoms of 
the trial were presented sequentially in the middle of the screen for 2 s each, with a 
fixation cross presented for 1 s in between (see Figure 2.1). After one of the symptoms 
in each trial, either the probe or the question for the current set of explanations was 
presented. The probe appeared in the form of a letter, and participants had to indicate 
if the letter was the name of a chemical by pressing a button on a response box. At 
the end of each trial, participants were asked to enter their diagnosis on a standard 
keyboard. Participants were instructed to solve the diagnosis and the probe task as 
accurately and fast as possible. Reactions times for probes and diagnoses were recorded 
from the moment that the probe/question for diagnosis appeared on the screen. After 
each input participants received feedback about their response accuracy.

Results

Probe reactions

To test the activation of explanations during the diagnostic reasoning trials, reaction 
times of correct probe responses were analyzed in coherent and incoherent trials with 
correct diagnoses. Scores above and below 3 SD from the condition mean of each 
participant were excluded from analysis, resulting in the elimination of 1.7% of the 
correct probe responses. 4

4 To test for the robustness of our findings, we also conducted all analyses of the reaction time data based on the medians (without 
excluding outlier values). The primary results are consistent across analyses.
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Coherent versus incoherent trials. To test if the reaction time patterns differed 
depending on whether the third and fourth symptoms were coherent (coherent trials) 
or incoherent (incoherent trials) with the second symptom, we conducted an ANOVA5 
with the factors coherence (coherent vs. incoherent trial) and type of probe (compatible 
target, incompatible target, or foil). Symptoms before probe (three vs. four) was used 
as a numerical regressor variable. Neither the main effect of coherence, F(1,21) = 1.642, 
p = .214, hp

2 = .073, nor any of the interactions involving coherence were significant: 
coherence × type of probe: F(2,42) = 2.776, p = .074, hp

2 = .117; coherence × symptoms 
before probe: F(1,21) < 1; coherence × type of probe × symptoms before probe: F(2,42) 
< 1. Consequently, for further analyses we collapsed the data over the factor coherence.

Compatible versus incompatible versus foil. Figure 2.2a shows the reaction times of 
the different probe types over the course of the trials. Table 2.3 shows the results of 
the ANOVAs performed to analyze this data. First, an ANOVA with the factor type 
of probe (compatible target, incompatible target, or foil) and the numerical regressor 
symptoms before probe (one, two, three, or four) confirmed a significant interaction. 
To check whether this interaction was indeed caused by different slopes of all probe 
types, we conducted additional ANOVAs for each pair of probe types. They confirmed 
significant interactions for each pair, except for the pair compatible-foil. For this pair, 

5 All ANOVAs were repeated-measures ANOVAs.

Figure Mean (±1 SE) reaction time to probes over the course of trials in Experiment 1, showing (a) 
human data and (b) model data. The models are described later in the text.
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we additionally looked at the main effect of probe type, which showed to be significant, 
confirming that compatible probes are reacted to faster than foils. To test the course 
of availability over the course of the trial in more detail, we conducted additional 
simple effects analyses for each probe type. They confirm decreasing reaction times for 
compatible probes and foils. Incompatible probes did not vary over the course of the 
trial. Finally, simple effects analyses for symptoms before probe revealed significant 
differences between the probe types after all but the second symptom of the trial.

Diagnoses

To assess participants’ performance in the diagnosis task, we measured diagnosis 
accuracy and diagnosis time at the end of each trial. For the analysis of diagnosis time, 
wrong diagnoses and diagnoses exceeding 3 SDs from the condition mean of each 
participant  were excluded (resulting in an exclusion of 1.8% of the correct diagnoses). 
Diagnosis accuracy was equally high in coherent trials (M = 95.5%; SD  = 4.1) and 
in incoherent trials (M = 95.5%; SD = 4.0), t(21) < 1. The equivalence between the 

Effect Factors F p hp
2

Interaction Type of probe (compatible, incompatible, foil) ∑ 
Symptoms before probe (one, two, three, four) 	(2,42) = 5.03  	 .011 	 .19

Interaction Type of probe (compatible, incompatible) ∑ 
Symptoms before probe (one, two, three, four) 	(1,21) = 7.15 	 .014 	 .25

Interaction Type of probe (compatible, foil) ∑
Symptoms before probe (one, two, three, four) 	(1,21) = 2.35 	 .140 	 .10

Main effect Type of probe (compatible, foil) 	(1,21) = 4.49 	 .046 	 .18

Interaction Type of probe (incompatible, foil) ∑ 
Symptoms before probe (one, two, three, four) 	(1,21) = 3.70 	 .068 	 .15

Simple effect for 
compatible Symptoms before probe (one, two, three, four) 	(1,21) = 20.21 	< .001 	 .49

Simple effect for 
incompatible Symptoms before probe (one, two, three, four) 	(1,21) = 0.46 	 .506 	 .02

Simple effect 
for foil Symptoms before probe (one, two, three, four) 	(1,21) = 25.56 	< .001 	 .55

Simple effect 
after symptom 1 Type of probe (compatible, incompatible, foil) 	(2,42) = 12.49 	< .001 	 .37

Simple effect 
after symptom 2 Type of probe (compatible, incompatible, foil) 	(2,42) = 1.21 	 .309 	 .05

Simple effect 
after symptom 3 Type of probe (compatible, incompatible, foil) 	(2,42) = 29.13 	< .001 	 .58

Simple effect 
after symptom 4 Type of probe (compatible, incompatible, foil) 	(2,42) = 17.41 	< .001 	 .45

Note. p values <.1 are shown in bold. For nonsignificant interactions the main effect of type of probe is also 
reported.

Results of the ANOVAs for compatible targets, incompatible targets, and foils after each 
symptom in Experiment 1.

2.3 Table
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conditions was supported by a Bayes factor (BF) t-test, which showed clear evidence in 
favor of the null hypothesis (BF = 6.13).6 This shows that the participants could solve 
the task well and, again, that there was no effect of a trial’s coherence.  Participants’ 
time for entering correct diagnoses was fast overall but was significantly slower in 
coherent (M = 795 ms; SD = 211) than in incoherent trials (M = 496 ms; SD = 125), 
t(21) = 8.612, p < .001.7

Discussion
The results of the probe reaction task in Experiment 1 support the assumption that 
the availability of explanations over the course of diagnostic reasoning depends on 
the observed symptoms. Compatible targets (explanations supported by all symptoms) 
were responded to faster than incompatible targets (explanations not supported by all 
symptoms) and foils (not related to any symptom). This is in line with the prediction 
that explanations in memory receive activation from symptoms that support them. 
Incompatible targets were responded to not only slower than compatible targets 
but also slower than foils. This is in line with the prediction that symptoms inhibit 
explanations that they do not support. 

An unexpected result of the probe reaction task was that the reaction times not only 
to compatible targets decreased over the course of the trial but also those to foils. Foils 
were letters that did not name chemicals and were therefore not related to any of the 
symptoms. Given a pure memory activation account, these letters should not change 
in their level of activation over the course of the trial, as they receive no activation or 
inhibition from any of the observed symptoms. A possible reason for the unexpected 
reaction time decrease might lie in our methodology. By presenting the probes with 
equal frequency after one of the four symptoms, we might have caused participants 
to be increasingly prepared to respond to the probe toward the end of the trial. Such 
an increasing response preparedness can be described by a hazard function (Chechile, 
2003) and is comparable to the foreperiod effect (Vallesi, Shallice, & Walsh, 2007). 
The foreperiod effect is “usually observed when a range of variable FPs [foreperiods] 
occur randomly and equiprobably, [and] consists of reaction times (RTs) decreasing as 
the FP increases” (Vallesi et al., 2007, p.466). In our experiments, participants knew 
that after one of the symptoms in almost every trial a probe would appear. The position 
of the probes’ occurrence was randomly and equiprobably distributed over the trials. 
With each symptom that went without a following probe, the likelihood for a probe 
increased. Participants could thus prepare for the probe and react slightly faster to it 
later on in the trial. Consequently, it is likely that part of the increase in response times 
6 Bayes factors larger than 1.0 are taken as evidence in factor of the null, whereas Bayes factors less than 1.0 are taken as evidence 
in favor of the alternative. See Rouder, Speckman, Sun, Morey, and Iverson (2009) for derivations and a guide for interpreting the 
magnitude of Bayes Factors.
7 Although the result of higher diagnosis times in coherent trials might seem counterintuitive, it is most likely caused by the number of 
symptoms presented before the diagnosis, rather than by the coherence of the trial. Incoherent trials always consisted of four symptoms, 
whereas coherent trials could consist of three (56% of all coherent trials) or four (44% of all coherent trials) symptoms. Analyzing 
coherent three-symptom and four-symptom trials separately shows that coherent four-symptom trials were in general responded to 
faster than coherent three-symptom trials (Mfour = 644 ms, SD = 208; Mthree = 915 ms, SD = 223, t(21) = 11.233, p < .001, and 
that the diagnosis times in coherent four-symptom trials were significantly faster than in incoherent trials, t(21) = 4.684, p < .001.
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to all probe types is caused by an increasing response preparedness over the course of 
the trial.

The manipulation of the symptoms’ coherence affected neither the probe reaction 
times nor the accuracy of diagnoses. As explained above, participants could determine 
the correct diagnosis in incoherent trials by remembering that the second symptom of 
each trial is potentially misleading. A very simple strategy to use this knowledge would 
be to simply ignore the second symptom of each trial. Whereas such a strategy would 
lead to good performance in the incoherent trials and in most coherent trials, it would 
lead to suboptimal performance in a small part of the coherent trials, where ignoring 
the second symptom does not allow for unambiguously identifying the correct 
diagnosis (this was the case in 15% of the coherent trials). Nevertheless, a closer look 
at the probe reaction data seems to support such a strategy. Whereas reaction times 
differ significantly between the different probe types after the first, third, and fourth 
symptoms, they do not differ after the second symptom.8

Although the probe reaction time patterns are in line with our predictions, the 
comparison between verbal hypotheses and empirical data is usually reduced to a 
qualitative descriptive level. To test if memory activation, combined with ignoring the 
misleading symptom and increasing response preparedness over the trial, can also 
quantitatively explain the data, we developed computational cognitive models of the 
task. The models entail (a) the assumptions about memory retrieval as described in the 
introduction, as well as (b) the strategy to ignore potentially misleading information 
and (c) the participants’ increasing preparedness to respond over the trial.9

Models
Model Description
To reach maximum comparability between the models, we implemented them all 
within one modeling framework, the cognitive architecture ACT-R (Anderson et 
al., 2004). From all the variants of potential modeling accounts we chose ACT-R 
because it puts a strong emphasis on processes underlying memory activation 
(Anderson et al., 1998; Anderson & Schooler, 1991) and integrates these processes 
with general assumptions about human cognition. It accounts for both subsymbolic 
and symbolic components of cognition and, therefore, allows for the implementation 
8 To further test if participants indeed ignored the second symptom, we compared the diagnostic performance in coherent trials 
where ignoring the second symptom allowed for unambiguously finding the correct diagnosis (unambiguous coherent trials) and 
coherent trials where ignoring the second symptom did not allow for finding the correct diagnosis (ambiguous coherent trials). Indeed 
diagnosis accuracy was marginally higher in unambiguous (M = 95.8%; SD = 3.8) than in ambiguous coherent trials (M = 93.8%; 
SD = 7.4), t(21)=1.815, p = .084. Diagnosis times for correct diagnoses were considerably faster in unambiguous (M = 757 ms; SD 
= 195) than in ambiguous coherent trials (M = 1053 ms; SD = 363), t(21)=5.297, p < .001, suggesting that participants used time 
at the end of the trial to solve the ambiguity caused by ignoring the second symptom.
9 Building the ignoring of misleading information and the increasing response preparedness into the models allowed us to assess 
whether the response pattern indeed could have been caused by the interaction of memory activation and these task- specific factors. It 
is important to note however, that these additional model components alone would not have been able to fit the participants’ responses. 
Without an effect of observations on reaction times to the probes, ignoring the second symptom would not predict any effect on the 
reaction time data by itself. Increasing response preparedness alone would predict a decrease of reaction times over the trial, but no 
differences or interactions between the different probe types.
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of automatic memory processes as well as deliberate reasoning strategies and their 
possible interaction. It has received empirical support and validation from a large 
number of studies in a variety of research areas (ranging from simple list memory 
tasks, Anderson et al., 1998;  to language acquisition, Taatgen & Anderson, 2002; see 
http://act-r.psy.cmu.edu for an extended list of publications). Furthermore, ACT-R 
allows for modeling of the complete task, as solved by the participant. Thereby, without 
requiring additional assumptions about how the model maps on the experiment, it 
produces results that are directly comparable to human data. This is possible because 
the ACT-R theory predicts not only the probability and latency of retrieving facts 
from declarative memory but also the time taken to perceive a stimulus and give a 
response (e.g., by pressing a key).

Knowledge about facts is represented in the form of chunks in ACT-R’s long-
term memory, which is commonly referred to as declarative memory. Chunks can 
represent observations (e.g., medical symptoms), as well as their potential explanations 
(e.g., medical diagnoses). Access to the chunks depends on their activation in memory 
(Anderson, 2007; Lovett et al., 2000). Only chunks whose activation exceeds a certain 
amount, the retrieval threshold, τ, can be retrieved. The probability, p, that a chunk i will 
cross the retrieval threshold, τ, depends on its activation, Ai:

		  (2.1)

where s reflects the amount of noise added to the chunk’s activation.
If a chunk i is activated strongly enough to be retrieved, its activation, Ai, determines 

the time required for the retrieval. The more active the chunk, the faster it can be 
retrieved. The time it takes to retrieve chunk i is a negative exponential function of its 
activation, Ai, as shown in Equation 2.2:

		  (2.2)

where F is a parameter scaling the latency of retrievals.
The idea behind the concept of a chunk i’s activation, Ai, is that the strength of 

activation reflects the likelihood (specifically, the log odds) of the chunk being needed 
in the near future (Anderson & Schooler, 1991). This likelihood is determined by three 
factors: the chunk’s usefulness in the past, Bi, its usefulness in the current context, Si, 
and a random noise component, ε:

 	 	 (2.3)

The chunk’s usefulness in the past is reflected by the base-level activation, Bi. ACT-R 
predicts that the more often a chunk has been retrieved from memory and the more 
recent these retrievals were, the higher its activation. This prediction can explain 
empirical findings that show that explanations with high base-rates of occurrence are 
generated more often and earlier than explanations with low base-rates. Although 
the effects of an explanation’s previous use are an interesting aspect of memory effects 

p = 1

1+ e
τ −Ai
s

Time = Fe− Ai

Ai = Bi + Si + ε
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in diagnostic reasoning, they are not the focus of the current chapter. Therefore, base 
levels were kept at a constant level in the model. This was plausible because participants 
received extensive training on the task (leading to a saturation effect) and all symptoms 
and explanations appeared equally often in the experiment. 

The important factor for our research question is the second part of Equation 2.3: 
the chunk’s usefulness in the current context, Si. A chunk’s usefulness in the current 
context reflects the likelihood that the chunk will be needed given the information 
currently available from the environment. In diagnostic reasoning, the current context 
is defined by the to-be-explained observations (e.g., the medical symptoms displayed 
by a patient;  Arocha et al., 2005; T. R. Johnson & Krems, 2001; Thomas et al., 2008). 
ACT-R predicts that an explanation i that is stored in long-term memory receives 
activation, Si, from each observation j that is currently stored in working memory:10 

	 	 (2.4)

where the amount of spreading activation, Si, is determined by the associative strength, 
Sji, between explanation i and observation j, scaled by the amount of activation that can 
be spread  from working memory, Wj. As we describe in detail below, we manipulated 
this scaling parameter, Wj, to implement different ways of sequential information 
integration in the different models. The associative strength, Sji, represents the extent to 
which observation j increases or reduces the likelihood that the explanation i is needed 
from memory. This relationship can be described by a log conditional probability ratio 
(Anderson & Lebiere, 1998): 

	 	 (2.5)

where the numerator describes the probability that observation j has been observed 
when explanation i is needed (i.e., is valid in this context) and the denominator 
describes the probability that j has been observed when i is not needed. Using an 
example, the equation describes the probability for observing the symptom cough 
while having the flu divided by the probability for observing cough while not having 
the flu. As the likelihood to observe cough is higher when having the flu than when not 
having the flu, Equation 2.5 predicts a positive associative strength between cough and 
flu. In contrast, if an observation (cough) does not support an explanation (pregnancy), 
the likelihood to observe cough when the patient is pregnant decreases. This results in 
a negative associative strength. 

Although Equation 2.5 provides a good estimate for associative strengths between 
chunks, their exact calculation is often computationally intractable (Anderson & 
Lebiere, 1998). Following ACT-R, we approximate positive associative strengths, Sji, 
between chunks as

	 	 (2.6)
10 To model working memory we use one of the buffers of ACT-R’s cognitive modules, the imaginal buffer. The imaginal buffer is 
commonly used to hold a mental representation of the problem currently in the focus of attention (Borst et al., 2010).

Si = WjS ji
j
∑

S ji = log
p(observation j |explanationi )

p(observation j |not(explanationi ))

S ji = S − ln( fan ji )
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where S is a parameter for the maximum associative strength between chunks in 
memory and fanji is the number of chunks i that are positively associated with a chunk 
j. Following this equation, an observation that is associated with only few explanations 
(e.g., a medical symptom that is specific to a certain group of diseases) has a lower fan 
and therefore a higher associative strength to the explanations than an observation that 
is associated with many explanations (e.g., a medical symptom that is associated with 
a variety of diseases). Although the associative strength between positively associated 
symptom-explanation pairs can be estimated as shown in Equation 2.6, the estimation 
of “negative associations” is problematic. Depending on the certainty that is assumed 
in the task, the values for Sji resulting from Equation 2.5 would lie somewhere between 

-∞ (if it is absolutely certain that an explanation can be excluded from consideration 
when a certain observation is made) and 0 (if it is not known whether a certain 
observation and explanation can occur together). As ACT-R provides no solution for 
this issue, we treat negative associative strengths as a free parameter that we estimate 
from our empirical data.

Four Different Models of Sequential Information Integration

To implement the different assumptions of how observations might affect the 
availability of explanations over time, we used the parameter Wj. This parameter scales 
the amount of activation and inhibition that each observed symptom can spread to 
long-term memory. For reaching maximum comparability between the models, we 
kept the total amount of W after the fourth symptom at a constant level between the 
models.11 Consequently, in all four models, the same amount of activation is spread 
from working memory after all symptoms have been observed. The models vary in 
how this activation is distributed amongst the symptoms and in how it varies over the 
course of the trial in the following ways.

Model-current

In the first model, at each point in the trial, only the most recently observed 
symptom spreads activation and inhibition to explanations in long-term memory. We 
implemented that by setting Wj for all but the current observation to zero. The current 
observation was scaled with value W.

11 For being able to directly compare the levels of explanations’ availability over the course of the trial, we kept the total amount of 
the scaling parameter W constant after the fourth symptom of the trial. This choice was somewhat arbitrary, as we could have kept W 
constant at any other point during the trial (e.g., using a constant value W1 after the first symptom of the trials). Note however, that 
this would have not changed the results substantially, as it would have merely produced a linear transformation of all scaling values. 
To test this we implementing all models with a constant value of W1=.16. This produced the same pattern over the course of the trial, 
however, with much smaller differences between the different probe types at each point during the trial, leading to much smaller 
values for R2 and lower diagnosis accuracies for all models except model-number.
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Model-time

In the second model, all observed symptoms spread activation and inhibition. As 
proposed by Wang et al. (2006b), the amount of activation spread by each of the 
symptoms depends on the time since the observation was made. The most recently 
observed symptom is weighed most strongly. Earlier observations are weighed with a 
decayed strength, with the strength decaying exponentially in the square root of time:

	 	 (2.7)

Model-constant 

In the third model, all observed symptoms spread activation and inhibition. As 
proposed by Lovett et al. (2000), the total amount of activation that can be spread 
from working memory has a constant value W. If several observations j are stored in 
working memory, they share this total activation. Consequently, the more symptoms 
are observed, the smaller is the impact of each of these symptoms:

	 	 (2.8)

Model-number

In the fourth model, the total amount of activation spread from working memory 
at a certain point in time depends on the number of observed symptoms. Each 
symptom can spread a fixed amount of activation, resulting in an increasing amount 
of spreading activation and inhibition with an increasing amount of observed 
symptoms. Consequently, in this model the amount of activation spread by each of the 
observations neither depends on the time since the observation was made nor on the 
number of observations. Each symptom is scaled with the same value Wj.

Model Procedure
All models follow the same procedure, with the only difference between the models 
being the setting of parameter W as described above. The model code can be 
downloaded from http://www.ai.rug.nl/~katja/models. As for the participants in our 
experiments, the models observe sequentially presented medical symptoms, diagnose 
the chemical that caused these symptoms, and react to the probe that is presented 
after one of the symptoms. The knowledge necessary to solve this task (see Table 2.1) 
is represented in the models’ declarative memory and consists of two different types of 
facts, represented as chunks. The first type reflects the possible symptoms. The second 
type represents the letters that can be presented during the experiment (chemicals and 
foils) and their associated information. Each letter is represented by a chunk that holds 

Wj =Wj−1(1− d ) t

W j =
W
n
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the letter’s name, the information stating whether it is a chemical or a foil, and, for 
chemicals, the associated symptoms.12

When a symptom is presented on the screen, the model moves its attention to the 
symptom, reads it, and retrieves its meaning from declarative memory. The symptom is 
then stored in working memory. This process is repeated for each observed symptom so 
that, over the course of a trial, working memory is successively filled with the observed 
symptoms. Stored in working memory, symptoms automatically spread activation 
and inhibition to explanations in declarative memory as described by Equation 2.4. 
To simulate the strategy of ignoring the potentially misleading symptom, the second 
symptom observed in each trial is not stored in working memory. When the question 
for the final diagnosis is presented on the screen, the model retrieves that explanation 
from declarative memory that receives the most activation from the symptoms in 
working memory and enters the respective letter. The letter representing the correct 
explanation is most strongly associated with the observed symptoms. However, as 
described above, the different models vary in how the associative strength between 
the symptoms and their explanations are weighed. In model-current, only the current 
symptom spreads activation. Thus, at the point of diagnosis, only the last of the 
observed symptoms affects activation of explanations in memory. In the remaining 
models all observed symptoms spread activation at the point of diagnosis. In model-
time, the strength of activation depends on the time since an observation was made. 
Consequently, even though all observations affect explanations’ availability in memory, 
availability is most strongly affected by newer observations. In model-constant and 
model-number, at the point of diagnosis, each symptom is weighed with equal strength. 
As the letter representing the correct explanation is most coherent with the symptoms, 
it obtains the highest amount of spreading activation and is the one most likely to 
be retrieved. However, as shown in Equation 2.3, due to random noise also in these 
models it can happen that an alternative explanation receives more activation and is 
incorrectly entered as diagnosis.

When a probe is presented, the models move their attention to the probe and 
retrieve the chunk representing the probe letter. If that letter is stored as a chemical, 
the models respond “yes”; if it is stored as a foil, the models respond “no”. As described 
by Equation 2.2, the speed with which a chunk can be retrieved depends on its 
activation. The more spreading activation the chunk receives from the symptoms in 
working memory, the higher it will be activated and the faster the retrieval. Thus, as 
in human participants, the time the models need to respond to a probe can be used 
as a measure of the activation of explanations in memory. To simulate the participants’ 
increasing response preparedness over the trial, the models retrieve expectations about 
whether the upcoming stimulus is a symptom or a probe. If the retrieved expectation 
is met by the presented stimulus, the stimulus is processed as explained above. If the 
expectation is violated, the models need to make a change to their expectation before 
they can process the stimulus. This change in expectation costs 50 ms. The later in the 
12 Note that not only the chemicals but also the foils are represented in memory. This is because, contrary to lexical decision tasks, 
where a constrained number of words stands against an unconstrained number of non-words, in our experiment chemicals and foils 
each consisted of a set of nine letters which were taught to the participants in the training session.
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trial the probe is presented, the higher the chance that it is expected by the models and 
that no time-costly expectation changes have to be made.13 

Results and Discussion of the Models
The models were run for each participant on the trials that this participant had solved. 
As described above, the four different models varied in their setting of the values for the 
parameter, Wj, that weighs the strength of observations j in working memory. All other 
parameters were kept constant between the models. To fit the models, we estimated 
the speed and stochasticity of memory retrievals, the base-level activation of facts in 
memory, and the amount of spreading activation from symptoms to explanations.14 All 
other parameters were kept at the default values of ACT-R 6.0 (Anderson, 2007).

Following the analysis of the human data, we collapsed the models’ data over the 
factor coherence. The resulting reaction times to the probes are shown in Figure 2.2b. 
13 Reflecting the probabilities for upcoming stimuli, the base-level activations of the expectations vary. As probes are presented equally 
often after one of the four symptoms, the probability of a probe being presented after the first symptom is only .25. Consequently, the 
base level of an expect-probe chunk after the first symptom is so much lower than the base level of an expect-symptom chunk that the 
model will retrieve an expect-probe chunk only in about 25% of all trials. With each additional symptom that is presented without 
a probe, the probability of a probe (reflected by the base levels of the expect-probe chunks) increases (to .33, .5, and 1 respectively). 
Consequently, the earlier in the trial the probe appears, the higher the chance that the model retrieves no expect-probe chunk and has 
to make a time-costly change to its expectation. The model changes its expectation by firing an additional production rule (costing 
50 ms).
14 ACT-R’s latency factor (F) was set to 1.4 and activation noise (s) to .05. All facts in memory were set to equal, relatively high base 
levels of 2, modeling trained participants. Positive associative strengths (Sji) were calculated using Equation 2.6, with the maximum 
associative strength (S) set to 2.5. Negative associative strengths (Sji) were estimated from the data to be -.75. The total amount of W 
that the models spread after four symptoms were presented was set to .48.

R2 RMSD 
(ms)

Diagnosis 
Accuracy (%)

Diagnosis 
Time (ms)

Experiment 1
Human Data, M (SD) 95.5 (3.7) 705 (167)

Model-current 	.79 30 28 586
Model-time 	.79 28 53 597

Model-constant 	.70 38 86 592
Model-number 	.85 27 85 569

Experiment 2
Human Data, M (SD) 95.9 (3.9) 574 (264)

Model-current 	.24 61 27 566
Model-time 	.37 75 71 584

Model-constant 	.45 60 95 587
Model-number 	.71 83 92 589

Note. The best fitting model is indicated in bold. RMSD = root-mean-
square-deviation.

Fits for probe reaction times (R2 and RMSD) and diagnostic 
performance (Diagnosis Accuracy and Diagnosis Time) of 	

	 each model for Experiments 1 and 2.

2.4 Table
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Fits for the probe reaction times and the diagnostic performance reached by each model 
are shown in Table 2.4. All models produce the basic result that, overall, compatible 
probes are reacted to fastest. This happens because in all models compatible probes 
receive more activation from the observed symptoms than do all other probe types. 
In all models, incompatible probes are slower than or at about the same level as foils. 
This happens, because in all models incompatible probes receive inhibition as well as 
activation from the observed symptoms. The reaction times to foils over the course of 
the trial are identical in all models, because these reaction times are not affected by 
spreading activation. As in the human data, they decrease over the trial. In the models 
this decrease is solely caused by the varying expectations about upcoming stimuli, 
suggesting that part of the decrease of reaction times to all probes was indeed caused 
by an increasing preparedness to respond. All models produce comparable diagnosis 
times. The models differ in the course of activation for compatible and incompatible 
probes and in the accuracy of their diagnoses in the following ways. 

Model-current 

Merely using the current symptom at each point in time, the model produces a 
surprisingly good fit to the probe reaction pattern. The model produces no difference 
between probe types after the second symptom, because no activation and inhibition is 
spread to long-term memory at this point. After all other symptoms, reaction times for 
compatible probes are faster than for foils because compatible probes receive activation 
from the current symptom. However, contrary to the human data, reaction times to 
compatible targets do not increase over the course of the trial. Incompatible probes 
are slower than foils, with a decrease of reaction times over the course of the trial. This 
happens because incompatible explanations are explanations that are incompatible 
to at least the first symptom of the trial. Consequently, incompatible probes always 
receive inhibition from the first symptoms, and they can receive inhibition, as well 
as activation, from the later symptoms. The model has poor diagnostic performance, 
which is not surprising, as in this model only the last symptom of the trial affects 
activation of explanations at the point of diagnosis.

Model-time 

Letting the impact of observed symptoms decay over time, the model produces a good 
fit to the empirical probe reaction data. After the second symptom the difference 
between probe types is smallest, because at this point in the trial, only the decayed 
activation and inhibition of the first symptom affect explanations’ availability. After all 
other symptoms, reaction times to compatible probes are faster and decrease over the 
course of the trial as the amount of spreading activation increases with each observed 
symptom. However, this decrease is much less pronounced than in the human data. 
Reaction times to incompatible probes also decrease, because the later in the trial, 
the higher the chance that incompatible probes not only receive inhibition but also 
activation from the observed symptoms. The model produces correct diagnoses in 
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about half of the trials, because in this model, symptoms that are presented late in the 
trial have an overproportional impact on explanations’ availability.

Model-constant

By letting the observations at each point in time share a constant amount of total 
working-memory activation, this model also produces a good overall fit. However, here 
the visual inspection of the time course of explanations’ activation also shows some 
deviations from the human data. In the model, at each point in time a constant amount 
of activation is spread from working memory. Consequently, compatible explanations 
stay at a constant level over the course of the trial (with a slight decrease caused by 
increasing response preparedness over the trial). Incompatible explanations stay at a 
constant and relatively high level of reaction times between the first and the second 
symptom and then decrease considerably. The model produces a high proportion of 
correct diagnosis, which is only slightly lower than in the empirical data.

Model-number

By increasing the amount of spreading activation and inhibition with each observed 
symptom, the model produces the best overall fit to the human data. As in the human 
data, reaction times to compatible probes do not change from the first to the second 
symptom and do decrease afterwards. This happens because compatible probes receive 
an increasing amount of activation with all but the second symptom. Incompatible 
probes slightly decrease over the course of the trial as they receive inhibition as well 
as activation. Like model-constant, the model does not reproduce the dip in reaction 
times to incompatible probes after the second symptom. The model produces the same 
proportion of correct diagnoses as model-constant, because after the last symptom of 
the trial they are identical due to the setting of the total amount of parameter W at 
this point.

To summarize, all models produce the overall pattern of probe response times as 
found in the human data. The models vary in how well they fit details of activation 
levels over the course of the trials. Only model-constant and model-number are able 
to produce high diagnostic performance, because they weigh all symptoms with 
equal strength at the point of diagnosis. However, even these models underpredict 
the diagnosis accuracy as well as the diagnosis times found in the human data. This 
underprediction is caused by the fact that in part of the coherent trials, ignoring the 
second symptom does not allow for finding a correct diagnosis. Whereas, as discussed 
earlier, participants might try to remember the second symptom once they realize 
that they cannot distinguish between explanations otherwise, the models do not have 
such knowledge. When simply relying on memory activation they have no means to 
correctly distinguish between alternatives if they receive an equal amount of activation 
from the observed symptoms. This result is a good illustration of the importance of 
automatic memory activation to interact with deliberate reasoning. Whereas in most 
experimental trials it was sufficient to enter the diagnosis suggested by memory 
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activation, in coherent trials where ignoring the second symptom led to equal activation 
of alternatives, participants most likely used additional deliberate reasoning processes 
to find the correct explanation.

In the experiment, participants had to diagnose coherent and incoherent sets of 
symptoms, because we wanted to add uncertainty to the task and because we were 
interested in seeing what happens in cases where memory activation alone might 
not be sufficient to find the correct explanation. As the empirical and model data for 
diagnoses and probe reactions suggest, participants dealt with that challenge by simply 
ignoring the potentially misleading symptom. They did so even though they were told 
to use all the presented symptoms for their diagnosis, they were trained to do so in 
the practice session, the information was misleading in only 25% of the trials, and 
ignoring the second symptom reduced diagnosis performance in 15% of the coherent 
trials. As suggested by the probe reaction data and the models, using this strategy was 
highly adaptive, because it allowed for finding the correct diagnosis by simply relying 
on memory activation in the vast majority of the trials.

Experiment 2
Experiment 2 had three main goals. First, we wanted to test the reliability of the key 
findings from Experiment 1 with an experimental setup that allowed us more control 
over participants’ strategies. Therefore, symptoms in this experiment always coherently 
pointed toward the correct diagnosis. During trials we again tracked the activation of 
compatible explanations (supported by all symptoms), and incompatible explanations 
(not supported by at least the first symptom), and foils (not related to the symptoms). 
Second, we wanted to investigate in more detail the availability of explanations that 
are associated with only part of the symptoms observed in the trials. Therefore, in this 
experiment we tracked the availability of an additional group of explanations: rejected 
explanations. These explanations are supported by the initial symptoms of a trial but 
not by symptoms presented later on in the sequence. Consequently, they have to be 
rejected from the set of potential explanations at some point in the trial. Being able 
to inhibit such no-longer-compatible explanations has been described as one of the 
crucial aspects of diagnostic performance (Dougherty & Sprenger, 2006). To assess 
the activation of rejected explanations over the course of the task, we compared the 
activation of explanations that were (a) rejected at different points in the trial and (b) 
measured at different time spans after rejection. Third, we wanted to test how well the 
different models generalized to a new data set.

Method

Participants

Twenty-nine undergraduate students from the Chemnitz University of Technology 
who did not participate in Experiment 1 took part in this experiment. Three of them 
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had to be excluded from data analysis, as they did not reach the required performance 
in the training phase. The resulting 16 female and 10 male participants had a mean age 
of 22.8 (SD = 3.6).

Material

Training material. The material that participants had to acquire in the training phase 
(see Table 2.5) was a slightly modified version of the material from Experiment 1. 
Again, chemicals were grouped into categories and caused three or four symptoms 
each. Whereas in Experiment 1 each symptom was caused by chemicals of either 
one, two, or all three categories, symptoms in this experiment were caused either by 
chemicals of only one category (specific symptoms like cough) or by chemicals of all 
three categories (unspecific symptoms like headache). 

Experimental material. In the experimental phase participants solved trials that 
were comparable to the coherent trials of Experiment 1 (see Table 2.6 for a sample 
trial). The only difference was that now rejected explanations were also probed. These 
explanations varied in the point of their rejection during the trial and in the number of 
symptoms presented between the rejection and the respective probe. This manipulation 
resulted in three different types of rejected target probes: rejected-after-2, which could 
be presented after the second, third, or fourth symptom; rejected-after-3, which could 

Aggregate state 
and source of 

contamination
Category Chemical Specific symptoms Unspecific symptoms

Gasiform, 
inhaled Landin

B Cough Shortness 
of breath Headache Eye 

inflammation

T Cough Shortness 
of breath Headache Itching

W Cough Eye 
inflammation Itching

Crystalline,
skin contact Amid

Q Skin 
irritation Redness Headache Eye 

inflammation

M Skin 
irritation Redness Headache Itching

G Skin 
irritation

Eye 
inflammation Itching

Liquid,
drinking 

water
Fenton

K Diarrhea Vomiting Headache Eye 
inflammation

H Diarrhea Vomiting Headache Itching

P Diarrhea Eye 
inflammation Itching

Note. Original materials were presented in German.

Domain knowledge participants had to acquire before Experiment 2.2.5 Table
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be presented after the third or fourth symptom; and rejected-after-4, which could only 
be presented after the fourth symptom. This allowed us to investigate not only the 
course of an explanation’s activation after its rejection but also the potential effect 
of the point when it is rejected in the trial. To prevent participants from expecting 
a probe in each trial, in 14% of the trials no probe was presented, but instead the 
question for the current diagnosis was asked after one of the symptoms. Again, these 
‘no-probe’ trials were not analyzed.

Procedure

The experiment consisted of one training session and two experimental sessions. In 
both experimental sessions participants solved 170 diagnostic reasoning trials, with a 
5-min break after half of the trials were completed. Except for this, the procedure was 
identical to Experiment 1.

Models
To generate predictions for the data of this experiment we used the models as 
described above, with the only change being that the models now did not ignore the 
second symptom of the trial. Except for the total amount of memory activation that 
was increased to reflect the higher number of observed symptoms in the trial, none of 
the parameters of the model were changed.15 

15 As no symptoms were ignored, the models now had one more symptom to integrate than in Experiment 1. To account for this, we 
adjusted the setting of parameter W. The total amount of W that the models spread after four symptoms were presented was set to .64.

Order Symptoms
Explanations 
supported by 

current symptom

Possible target probes

Compatible In-
compatible

Rejected-
after-2

Rejected-
after-3

Rejected-
after-4

Correct diagnosis: T

1st Headache BTQMKH BTQMKH WGP

2nd Cough BTW BT WGP QMKH

3rd Shortness 
of breath BT BT WGP QMKH -

4th Itching TWMGHP T WGP QMKH - B

Note. Shown for each symptom are supported explanations and possible target probes. Dashes indicated 
where cells cannot be filled in this particular trial. Foils were identical to those in Experiment 1.

Sample trial for Experiment 2.2.6 Table
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Results

Probe reactions

Reaction times of correct probe responses were analyzed in trials with correct final 
diagnoses. Scores above and below 3 SDs from the condition mean of each participant  
were excluded from data analysis, resulting in the elimination of 2.0% of the correct 
probe responses. The reaction times to all types of probes are presented in Figure 2.3a. 
Due to the incomplete design, analyzing the data with standard analyses is difficult. 
Here we present analyses for three subsets of the data that are most interesting to test 
our predictions. Subsequently we present the model fits, which cover the complete 
data set.

Compatible versus incompatible versus foil
First, we tested whether our results for compatible and incompatible target probes 
and foils could be replicated. Therefore, we did the same analyses as in Experiment 1; 
detailed results of the corresponding ANOVAs are shown in Table 2.7. An ANOVA 
with the factor type of probe (compatible target, incompatible target, or foil) and 
the numerical regressor symptoms before probe (one, two, three, or four) confirmed 
a significant interaction. To check whether this interaction was indeed caused by 
different slopes of all probe types, we conducted additional ANOVAs for each pair of 
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Figure Mean (±1 SE) reaction time to probes over the course of trials in Experiment 2, showing (a) 
human data and (b) model data.
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probe types. As in Experiment 1, they confirmed significant interactions for each pair, 
except for the pair compatible-foil. For this pair, we additionally looked at the main 
effect, which again was significant, confirming that compatible probes are reacted 
to faster than foils. To test the course of availability over the course of the trial in 
more detail, we conducted additional simple effects analyses for each probe type. They 
showed that, for all probe types, reaction times decrease over the course of the trial. 
Finally, simple effects analyses for the symptoms before probe revealed significant 
differences between the probe types after all but the second symptom of the trial.

Compatible versus incompatible versus rejected-after-2 versus foil
To test how the activation of rejected explanations changes with time after their 
rejection, we analyzed the course of activation of explanations that were rejected after 
the second symptom. Detailed results of the corresponding ANOVAs are shown 
in Table 2.8. An ANOVA with the factor type of probe (compatible, incompatible, 
rejected-after-2, and foil) and the numerical regressor symptoms before probe (two, 

Effect Factors F p hp
2

Interaction Type of probe (compatible, incompatible, foil) ∑ 
Symptoms before probe (one, two, three, four) 	(2,50) = 3.84 	 .028 	 .13

Interaction Type of probe (compatible, incompatible) ∑ 
Symptoms before probe (one, two, three, four) 	(1,25) = 5.65 	 .025 	 .19

Interaction Type of probe (compatible, foil) ∑ 
Symptoms before probe (one, two, three, four) 	(1,25) = 0.90 	 .352 	 .04

Main effect Type of probe (compatible, foil) 	(1,25) = 10.88 	 .003 	 .30

Interaction Type of probe (incompatible, foil) ∑ 
Symptoms before probe (one, two, three, four) 	(1,25) = 3.39 	 .077 	 .12

Simple effect for 
compatible Symptoms before probe (one, two, three, four) 	(1,25) = 34.46 	< .001 	 .58

Simple effect for 
incompatible Symptoms before probe (one, two, three, four) 	(1,25) = 9.49 	 .005 	 .28

Simple effect 
for foil Symptoms before probe (one, two, three, four) 	(1,25) = 68.46 	< .001 	 .73

Simple effect 
after symptom 1 Type of probe (compatible, incompatible, foil) 	(2,50) = 4.37 	 .018 	 .15

Simple effect 
after symptom 2 Type of probe (compatible, incompatible, foil) 	(2,50) = 2.10 	 .133 	 .08

Simple effect 
after symptom 3 Type of probe (compatible, incompatible, foil) 	(2,50) = 3.76 	 .030 	 .13

Simple effect 
after symptom 4 Type of probe (compatible, incompatible, foil) 	(2,50) = 7.60 	 .001 	 .23

Note. p values <.1 are shown in bold. For nonsignificant interactions the main effect of type of probe is also 
reported.

Results of the ANOVAs for compatible targets, incompatible targets, and foils after each 
symptom in Experiment 2.

2.7 Table
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three, or four) showed no overall interaction but a significant main effect of type 
of probe. To compare rejected-after-2 targets to each of the other probe types, we 
conducted additional pairwise ANOVAs. They reveal that rejected-after-2 targets 
interact with compatible targets, but do not interact with or differ from incompatible 
targets and foils. To test the course of availability of targets rejected-after-2 symptoms 
over the course of the trial, we conducted a simple effects ANOVA. It showed that 
reaction times for these targets also decrease over the course of the trial. Finally, simple 
effects analyses for reactions after two, three, and four symptoms revealed significant 
differences between the probe types after the third and fourth symptoms.

Time since rejection
The analysis of rejected-after-2 targets that is reported above sheds some light on the 
course of explanations’ activation after rejection. However, a potential problem with 
this analysis is that it confounds the time since rejection and the time of measurement. 
Systematic effects of the time of measurement (e.g., the foreperiod effect or the number 
of compatible explanations at the point of testing) might thereby drown out the effects 
of the time since an explanation’s rejection. Therefore, we conducted an additional 

Effect Factors F p hp
2

Interaction
Type of probe (rejected-after-2, compatible, 
incompatible, foil) ∑ Symptoms before probe 

(two, three, four)
	(3,75) = 1.89 	 .138 	 .07

Main effect Type of probe (rejected-after-2, compatible, 
incompatible, foil) 	(3,75) = 8.44 	< .001 	 .25

Interaction Type of probe (rejected-after-2, compatible) ∑ 
Symptoms before probe (two, three, four) 	(1,25) = 4.52 	 .043 	 .15

Interaction Type of probe (rejected-after-2, Incompatible) ∑ 
Symptoms before probe (two, three, four) 	(1,25) < .01 	 .980 	 < .01

Main effect Type of probe (rejected-after-2, Incompatible) 	(1,25) = .06 	 .811 	 < .01

Interaction Type of probe (rejected-after-2, foil) ∑ 
Symptoms before probe (two, three, four) 	(1,25) = 1.20 	 .284 	 .05

Main effect Type of probe (rejected-after-2, foil) 	(1,25) = .06 	 .149 	 .08
Simple effect for 
rejected-after-2 Symptoms before probe (two, three, four) 	(1,25) = 5.80 	 .024 	 .19

Simple effect 
after symptom 2

Type of probe (rejected-after-2, compatible, 
incompatible, foil) 	(3,75) = 2.09 	 .108 	 .08

Simple effect 
after symptom 3

Type of probe (rejected-after-2, compatible, 
incompatible, foil) 	(3,75) = 2.70 	 .052 	 .10

Simple effect 
after symptom 4

Type of probe (rejected-after-2, compatible, 
incompatible, foil) 	(3,75) = 6.91 	< .001 	 .22

Note. p values <.1 are shown in bold. For nonsignificant interactions the main effect of type of probe is also 
reported.

Results of the ANOVAs for rejected-after-2 targets, compatible targets, incompatible targets, and 
foils after symptoms two, three, and, four in Experiment 2.

2.8 Table
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analysis in which we compared the different types of rejected targets (rejected-after-2, 
rejected-after-3, and rejected-after-4) when tested after the fourth symptom. An 
ANOVA with the factor type of probe (compatible, incompatible, foil, rejected-after-2, 
rejected-after-3, and rejected-after-4) confirmed that after the fourth symptom, 
reaction times differed significantly between the probe types, F(5,  125)  =  5.085, p 
< .001, hp

2 = .169. Holm-corrected pairwise comparisons showed that reactions to 
compatible targets were faster than reactions to all other probes (p < .04), except for 
probes rejected after the fourth symptom (p = .172). No other difference reached 
significance. This confirms the prediction that explanations supported by all symptoms 
receive the most activation and suggests that the activation of rejected targets indeed 
differs depending on the time since rejection. 

Diagnoses

Again, we assessed accuracy and time for entering the diagnoses at the end of each 
trial. For the analysis of diagnosis times, wrong diagnoses and diagnoses above and 
below 3 SDs from the condition mean of each participant were excluded (resulting in 
an exclusion of 2.5% of correct diagnoses). The high diagnosis accuracy (95.9%; SD 
= 3.9) and short time for entering correct diagnoses (574 ms; SD = 264) show that 
participants could solve the diagnosis task with high performance. 

Model predictions

Model predictions for the probe reaction times are presented in Figure 2.3b. The 
associated fits and the diagnostic performance reached by each model are shown in 
Table 2.4. The model that also produced the best fit in Experiment 1, model-number, 
generalizes best to the probe reaction data of Experiment 2. A visual inspection of the 
model predictions shows that this model predicts the time course of compatible and 
incompatible probes very well and better than the other three models do. For rejected 
probes the picture is less clear. Model-constant and model-number make almost identical 
predictions for rejected probes. Whereas these predictions are very good for rejected-
after-4 probes, model-time seems to predict the time course of rejected-after-2 and 
rejected-after-3 probes better. However, in interpreting these results, it should be kept 
in mind that all predictions of the best fitting model, model-number, are within the 
standard errors of the empirical data. Again, only model-constant and model-number are 
able to produce the high diagnostic accuracy as found in the empirical data.

Discussion
Experiment 2 had three main goals: (a) to replicate the findings about the availability of 
compatible and incompatible explanations and foils in a more controlled setup, (b) to 
allow a closer evaluation of the availability of rejected explanations, and (c) to test how 
well the models generalize to a new data set. We were able to replicate the results for 
compatible and incompatible explanations. The inspection of rejected probes suggests 
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some difference between these probes, depending on the time since their rejection. The 
model comparison reveals large differences in generalizability of the models. Model-
number predicts the probe reaction data time and the diagnostic performance well, 
whereas the remaining models show clear deviations from the data. Model-number 
is able to predict the effects for compatible and incompatible targets and foils. More 
interestingly, it is also able to approximate the pattern of the different types of rejected 
targets. The explanations rejected at different points in time had not been probed in 
Experiment 1 and therefore it was not self-evident that any of the models would be 
able to predict them. 

Given that the parameters of the models were fit to Experiment 1 and not adjusted 
to the data of this experiment, the best fitting model, model-number, also reaches a 
lower fit in Experiment 2 than in Experiment 1. This is not surprising, as reaction 
times in Experiment 2 decreased more strongly than reaction times in Experiment 
1. Reasons might be found not only in differences between the samples but also in 
differences between the tasks of the two experiments. In Experiment 1, participants 
had to keep in mind that symptoms might potentially be misleading and therefore that 
the current explanation might have to be changed during the trial. In Experiment 2, 
no such uncertainty existed and therefore participants could allocate more resources 
to the probe task. By adjusting parameters characterizing the sample (e.g., duration 
of memory retrievals) and the task (e.g., how strong response preparedness increases 
over the trial), the model could be fit to produce reaction times closer to those of the 
humans. In the current chapter we decided to forgo this adjustment, because we were 
interested in seeing how well the models generalize to a new data set (see Böhm & 
Mehlhorn, 2009, for earlier versions of the models that were fit to part of this data 
set). The fact that without parameter adjustment model-number was able to predict 
the major effects found in the human data lends additional support to this model, as 
the ability of a model to generalize to a new data set, without any further parameter 
adjustments, has been described as an important standard by which models should 
be evaluated (Marewski & Olsson, 2009; Pitt, Myung, & Zhang, 2002; Roberts & 
Pashler, 2000).

General Discussion
In diagnostic reasoning, reasoners have to generate and evaluate possible explanations 
for data observed from the environment. Whereas the number of potential explanations 
is often large, reasoners usually generate and deliberately evaluate only a small subset of 
explanations. Empirical research has shown that the selection of explanations into the 
generated subset seems to be highly adaptive to previous experience and the current 
reasoning context (Dougherty et al., 1997; Dougherty & Hunter, 2003a; Gettys et 
al., 1987; Sprenger & Dougherty, 2006; Weber et al., 1993). However, although the 
idea that currently available observations affect the generation of explanations from 
memory seems obvious, few studies have experimentally tested this assumption. Even 
less work has investigated how newly incoming observations affect the availability 
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of explanations over time. The goal of this chapter was to more closely investigate 
how automatic memory processes can provide the reasoner with an adaptive selection 
from memory over time. We report the results of two behavioral experiments that 
were designed to overcome potential problems of earlier studies. The results of the 
experiments are compared with predictions of four cognitive models. Implemented 
in the cognitive architecture ACT-R, these models test hypotheses about how 
sequentially observed information might affect the availability of explanations in 
memory over time.

In both experiments participants diagnosed quickly and with high accuracy. Whereas 
all models diagnosed equally fast, only the models that weighed each observation 
equally strongly at the point of diagnosis (model-constant and model-number) were 
able to replicate the high diagnosis accuracy. The models reached this performance 
by merely relying on spreading activation between symptoms and explanations, 
suggesting that, given sufficient knowledge, memory activation can indeed provide the 
reasoner with a highly adaptive selection of explanations from memory. The models’ 
underprediction of diagnostic performance in trials of Experiment 1 where memory 
activation alone was not sufficient to find the correct diagnosis shows where deliberate 
reasoning processes might come into play.

The probe reaction task proved to be a useful measure for the availability of different 
explanations over the course of the reasoning task. Whereas for the participants 
the probe task seemed unrelated to the diagnosis task, reaction times to probes of 
different explanations varied, as predicted, as a function of the observed symptoms 
over time. All models were able to reproduce the overall activation differences between 
explanations found in the human data. This lends support to the basic assumption of 
spreading activation and inhibition as it was implemented in all models. The models 
differed in their ability to reproduce the courses of explanations’ activation over time. 
In Experiment 1, all models reached a high overall fit, with varying success in fitting 
details of the activation curves. Furthermore, all models but model-constant reflected the 
ignoring of the second symptom in their curves. The generalization test of Experiment 
2 shows that model-number generalizes best to the new data set. The success of this 
model suggests that the impact of observations on memory activation might depend 
neither on the time since an observation was made nor on the number of observations. 
Rather, the results suggest that all observations that are stored in working memory 
seem to be weighed equally at each point in time until an explanation is found. 

Generalizing to Real-World Diagnostic Reasoning
To allow for the experimental control that was necessary to test our assumptions 
about memory activation, the experiments and models in this chapter present a 
simplified version of diagnostic reasoning.  In real-world diagnostic reasoning, the task 
characteristics, the memory representation, and the reasoning strategies will often be 
more complex. This increased complexity raises a number of issues, which we briefly 
discuss here.
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An important issue for understanding real-world diagnostic reasoning is the 
interaction of automatic processes as investigated here with more deliberate 
reasoning strategies. Our models assume a very simple strategy: Observed symptoms 
are successively stored in working memory and, when asked for the diagnosis, the 
explanation that receives the most activation from the observed symptoms is retrieved 
from memory. Obviously, such a simple strategy oversimplifies diagnostic reasoning. 
Whereas we chose to implement such a simple strategy to test different assumptions 
about automatic memory activation processes over time, it is very likely that people use 
additional deliberate strategies. People probably start to retrieve possible explanations 
early on in the reasoning process (see, e.g., Just & Carpenter, 1987, for evidence 
that people interpret evidence as soon it becomes available). Thus, presumably, not 
only are the sequentially acquired observations stored in working memory but also 
potential explanations that have been retrieved from long-term memory. Such an 
additional strategy of retrieving explanations earlier in the reasoning process might 
explain some of the deviation between our probe data and the model predictions. For 
example, all models underpredicted the decrease of the slope of reaction times for 
compatible targets in both experiments. If the reasoner additionally would retrieve 
candidate explanations and store them in working memory, these explanations would 
be available at low time cost. Therefore, mean reaction times to compatible targets 
would decrease over the course of the trial to a stronger extent than predicted by our 
pure activation-based models.

The question about reasoning strategies is closely linked to another important 
question for understanding real-world diagnostic reasoning. How do people represent 
the sequentially observed data and the generated explanations in working memory? As 
discussed above, for the sake of simplicity, in our models only observations are stored 
in memory. Storing observations is not implausible, as it has been found that not 
yet explained observations are kept in a more active state in memory than explained 
observations (Baumann, 2001). However, a more comprehensive account of diagnostic 
reasoning will also have to incorporate predictions about the representation of already 
retrieved explanations and their influence on memory activation over time.

A key aspect of such considerations has to be the contrast between limited human 
working-memory capacity and the large number of observations and explanations that 
might have to be maintained during diagnostic reasoning tasks. In our experiments 
participants had to maintain up to four symptoms in working memory, a number 
that lies within the accepted range of 4±1 (Cowan, 2001). However, assuming that 
participants also store retrieved candidate explanations in memory, one would quickly 
reach capacity limits. Furthermore, in most real-life diagnostic reasoning tasks, a 
higher number of observations needs to be explained. An interesting question for 
further research will be to investigate what happens if the amount of information to be 
actively maintained during the task exceeds working-memory capacity. In such a case, 
the least activated information might be dropped from working memory (Chuderski, 
Stettner, & Orzechowski, 2006; Thomas et al., 2008) and therefore should lose its 
ability to spread activation to long-term memory, unless it is actively recovered from 
long-term memory.
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Also time and task constraints will be more complex in many real-world settings. 
In our experiments, symptoms were presented at a fixed rate, with a relatively small 
spacing over time, and with (almost) no interference from other tasks. It has been 
proposed that information will be held by a cognitive resource like working memory 
until the resource is needed for another task (Salvucci & Taatgen, 2008). Applied 
to diagnostic reasoning as proposed in this chapter, this would mean that observed 
symptoms would remain in working memory until working memory is needed for 
something else (see also Berman et al., 2009). With increasing spacing of the symptoms 
over time, and with increasing complexity of the diagnostic situation, the chance for 
interfering working-memory use grows. Consequently, the probability for observed 
symptoms to be lost from working memory also grows under these conditions. Also 
in this case, symptoms would have to be actively recovered from long-term memory 
before they could affect memory activation again.

Another open question is related to the representation of knowledge in long-
term memory. As we discussed in the introduction, memory activation processes can 
only provide the reasoner with an adaptive set of possible explanations if diagnostic 
knowledge is represented in a way that fits the requirements of the task. Memory 
activation might for example favor the retrieval of an explanation that has been 
successfully used in the past compared with the retrieval of an explanation that has 
rarely occurred in the reasoner’s experience but fits the current patient better. The 
representation of knowledge in long-term memory will most probably vary depending 
on the task structure and the way in which it was learned. In our experiments, the task 
structure was clearly defined, and the knowledge was learned in an explicit semantic 
fashion through a series of practice trials. This simplification of knowledge acquisition 
compared with real-life situations allowed us to focus on the effects of memory 
activation by keeping the effects of knowledge representation relatively constant. It will 
be an interesting question for future research to investigate the role of different ways 
of knowledge representation in memory activation processes. By proposing an episodic 
as well as a semantic representation and specifying the memory activation processes 
related to these representations, Thomas et al. (2008) already made an important step 
in this direction. We suspect, however, that a more detailed investigation of different 
ways of knowledge representation will not call the implications of our findings 
into question. A less clearly defined task structure and a more implicit acquisition 
of knowledge as they would be expected to occur in real-life will only increase the 
importance of memory activation processes (Dijksterhuis & Nordgren, 2006).

Conclusion
 To conclude, our results support the assumption that automatic memory activation can 
adaptively regulate the availability of explanations in memory and thereby provide the 
reasoner with a subset of explanations that have a high probability of being relevant in 
the current context. This regulation of explanations’ availability was evident not only at 
the point of the diagnosis but throughout the whole reasoning process. Future research 
must show whether simple models of memory activation as we tested them in this 
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chapter prove to be sufficient to explain memory processes in real-world diagnostic 
reasoning tasks. Further research is also needed to investigate how such simple memory 
models can be extended into more comprehensive models of diagnostic reasoning that 
take into account the interaction and respective contributions of automatic memory 
activation and deliberate reasoning strategies.
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Abstract
An important aspect of human cognition is the sequential integration of 
observations while striving for a coherent mental representation. Recent 
research consistently stresses the importance of fast automatic processes for 
integrating information available at a certain point in time. However, it 
is not clear how such processes allow for maintaining a coherent and up to 
date mental representation in the light of new information. We compare 
variants of two methods of modeling sequential information integration 
with parallel constraint satisfaction models: (1) carrying over results from 
the previous integration step and (2) decaying input strength of older 
observations. Results of these models for coherent and incoherent sets of 
observations are compared to human data from a diagnostic reasoning task.
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Introduction
A key feature of many everyday reasoning tasks is that observations are processed 
sequentially. Whether it is in diagnostic reasoning, in decision-making, or in belief 
updating, often information becomes available step by step. If a large amount of 
information is given all at once, it might only be perceived and understood sequentially 
due to limited cognitive capacities. Although possible implications of the sequential 
nature of tasks (e.g., order effects) have been discussed (e.g., Hogarth & Einhorn, 1992; 
Wang et al., 2006b), the underlying cognitive mechanisms are not fully understood. 
Recent research consistently points out the importance of fast automatic processes for 
integrating information available at a certain point in time (e.g., Glöckner & Betsch, 
2008). However, it is not clear how such processes allow for maintaining a coherent 
mental representation in the light of new incoming information. In this chapter, 
we explore alternative implementations of such processes in connectionist parallel 
constraint satisfaction models. 

Previous research has shown that reasoners hold knowledge structures that reflect 
the structure of the task in the environment (Anderson & Schooler, 1991; Gigerenzer 
et al., 1991). For example, a physician learns, with an increasing number of patients 
encountered, which symptoms are associated with which diseases and how strong 
these associations are. Given such an adapted knowledge structure, observations can 
serve as a cue for the retrieval of associated knowledge from long-term memory (e.g., 
Baumann et al., 2007; Kintsch, 1998; Thomas et al., 2008). To maintain a coherent 
representation of the task at hand, this newly activated information somehow needs 
to be integrated with previous observations and previously activated knowledge. How 
is this achieved?

Wang et al. (2006b) have proposed a connectionist model of sequential information 
integration based on the idea of explanatory coherence that, probably most prominently, 
was introduced by Thagard (1989a, 1989b, 2000) in the field of scientific discovery. 
Thagard implemented explanatory coherence among interconnected propositions 
in a connectionist constraint satisfaction model (ECHO). In ECHO, propositions 
are represented by nodes. The nodes are interconnected by symmetric excitatory 
and inhibitory links representing the relations (constraints) between them. Nodes 
representing observed information are additionally connected to a special activation 
node (special evidence unit = SEU), which always has an activation value of 1 and 
is the model’s “energy source”. Connecting not all, but only these data nodes to the 
energy source reflects the idea that empirical data are weighted more strongly than 
theoretical hypotheses held by the reasoner (Thagard, 1989a). 

The strength of a proposition in the network is indicated by the numerical 
activation of its node. Before the network is integrated, activation of all nodes is set to 
default values. Then, activation spreads from the SEU to the data nodes and then to 
other connected nodes. The net input each node receives is calculated as the weighted 
sum of the activation of all nodes it is connected to. After calculating the input for 
each node, the activation of all nodes is updated synchronously. These two steps are 
repeated iteratively, until activation stops changing substantially. The more coherent 
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a proposition is with the observed information and other related propositions, the 
higher is the activation of its node when the network settles.

The idea of constraint satisfaction has been widely applied to areas such as text 
comprehension (Kintsch, 1998), social impression formation (Thagard, Kunda, Read, 
& Miller, 1998), visuo-spatial reasoning (Thagard & Shelley, 1997), causal reasoning 
(Hagmeyer & Waldmann, 2002), medical diagnosis (Arocha & Patel, 1995), and 
decision making (Glöckner & Betsch, 2008). In all of these different tasks, reasoners 
need to find an interpretation that is more coherent with the available information 
than possible alternative interpretations. Such coherent interpretations can be the 
meaning of a word that fits best in the current context, the impression about a person 
that is most coherent with one’s previous impression about him/her, or it can be the 
diagnosis that best explains the set of a patient’s symptoms.

Applied successfully to model various phenomena in all the above domains, 
constraint satisfaction models have been described as a “computationally efficient 
approximation to probabilistic reasoning” (Thagard, 2000, p. 95). However, Thagard’s 
ECHO has some major limitations. For our question most importantly, it only models 
the parallel integration of information given at a certain point in time. To incorporate 
newly incoming observations in a sequential task, a new network would have to be 
constructed. 

Wang et al.’s UECHO (uncertainty-aware ECHO; 2006b), shares the basic features 
of ECHO, but can handle sequentially incoming observations. This is achieved by two 
basic changes. First, the network contains not only the currently available information 
as in ECHO, but all possible observations are included from the beginning. Thus, 
when new observations come in, the network does not have to be restructured. Second, 
the models differ with regard to which observations are connected to the special 
evidence unit (SEU). While in ECHO, all observation-nodes are connected to the 
SEU, in UECHO, only those nodes representing information observed up to the 

S1 S2 S4

E1 E2

S3

SEU

S1 S2 S4

E1 E2

S3

SEU

a(start)t+1=a(end)t a(start)t+1=a(end)t

DE(start)t+1=DE(start)t *(1-d)√t

Figure Two basic approaches to model sequential data in a constraint-satisfaction network. Either the 
previous state of the model is preserved by retaining the initial activation of the explanation 
nodes (left) or previous symptoms keep influencing the activation in the network by a (decaying) 
connection to the SEU (right).

3.1
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current point in time are connected to the SEU. Due to these two changes, when a 
new piece of information is observed, the model does not have to be rebuilt, but only a 
new connection between that observation and the SEU needs to be added.

For modeling sequential information integration, it is not only important to 
incorporate new observations into the network, but also to coherently integrate this 
new information with the previous state of the network. One could think of two basic 
approaches for implementing this preservation of the previous state (illustrated in the 
networks in Figure 3.1). In both networks, the upper nodes, E1 and E2, represent 
possible explanations of the possible observed symptoms S1-S4 (represented by the 
nodes in the middle row). Solid lines between the nodes represent coherent relations 
(e.g., E1 explains S1), dashed lines represent incoherent relations (e.g., E1 and E2 
contradict each other). In both networks, the symptoms S3 and S1 have been observed.

In the left network the previous state of the network is preserved by retaining the 
activation of the explanation nodes. When the first symptom (S3) is observed, S3 is 
connected to the SEU and the activation for the explanation nodes (E1 and E2) is 
calculated. The resulting activation values are used as starting values for the integration 
of the new symptom (S1). 

The right network illustrates the approach proposed by Wang et al. (2006b). Here, 
the activation of all nodes is reset to default before each new run. The preservation of the 
previous state is obtained indirectly, by connecting not only the new information, but 
also previously observed information to the SEU. In the example, S3 as well as S1 are 
connected to the SEU. Therewith, the older observation (S3) can continue influencing 
the current activation in the network. To account for sequential observations, the 
strength of this influence decays over time. The most recently observed symptom (S1) 
gets a strong connection to the SEU, whereas older observations (S3) are connected to 
the SEU with a decayed strength. This strength (data excitation, DE) is a function of 
a decay rate d and the time interval since the symptom was observed. By referring to 
work on memory retention, Wang et al. (2006b) propose to let DE decay exponentially 
in the square root of time.

We will show that the first modeling alternative - retaining output activation 
from previous runs - is not appropriate for modeling the integration of sequential 
information, because of the dynamics of spreading activation in the network. The 
second alternative is explored in more detail. The resulting activation for both 
approaches is tested against human data.

Experiments
Design and Procedure
Human data on memory activation during sequential symptom integration was 
obtained in two diagnostic reasoning experiments: Experiment 1 (Mehlhorn et al., 
2008) and Experiment 2 (Baumann et al., 2007). (For a more detailed description of 
the experiments, see also Chapter 2 of this thesis.) In these experiments, participants 
diagnosed hypothetical patients after a chemical accident. For each patient, a set of 
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symptoms was presented sequentially on a computer screen and the task was to find 
the chemical that best explained the set of symptoms. The knowledge necessary to 
solve this task was taught to participants in an extensive training session. In both 
experiments, the knowledge consisted of nine different chemicals (named with single 
letters), grouped into three categories. Each chemical caused three to four symptoms. 
Symptoms were ambiguous, because each symptom could be caused by two to six 
different chemicals. Consequently, only the combination of symptoms allowed for 
unambiguously identifying the correct diagnosis (see Table 3.1 for the knowledge used 
in Experiment 1).

Two types of trials were used: In both experiments, coherent trials were presented. 
Additionally, in Experiment 1, incoherent trials were presented (see Figure 3.2 for a 
coherent and an incoherent sample trial). In coherent trials, all symptoms coherently 
pointed toward one explanation. Thus, the participants’ initial explanation was 
supported by all later symptoms. In incoherent trials, the explanation suggested by the 
first two symptoms was incoherent with the later symptoms. Here, participants needed 
to revise their initial explanation after observing the third symptom. In such incoherent 
trials, it should be particularly difficult to integrate symptoms while maintaining a 
coherent mental representation. In total, in Experiment 1, participants were presented 
with 384 trials, of which 75% were coherent and 25% were incoherent. In Experiment 
2, 340 trials were presented, which were all coherent.

In both experiments, two types of dependent measures were obtained. First, after all 
symptoms of a patient were presented, participants explicitly provided their diagnosis. 
Second, a probe reaction task was used as an implicit measure of the activation of 

Aggregate state 
and source of 

contamination
Category Chemical Specific symptoms Unspecific symptoms

Gasiform, 
inhaled Landin

B Cough Shortness 
of breath Headache

T Cough Vomiting Headache Itching

W Cough Eye 
inflammation Itching

Crystalline,
skin contact Amid

Q Skin 
irritation Redness Headache

M Skin 
irritation

Shortness 
of breath Headache Itching

G Skin 
irritation

Eye 
inflammation Itching

Liquid,
drinking 

water
Fenton

K Diarrhea Vomiting Headache
H Diarrhea Redness Headache Itching

P Diarrhea Eye 
inflammation Itching

Note. Original materials were presented in German.

Domain Knowledge Participants had to Acquire Before Experiment 1.3.1 Table



59Experiments

explanations during the sequential task. This measure is based on the idea of lexical 
decision tasks (Meyer & Schvaneveldt, 1971) according to which participants should 
respond faster to a probe that is highly activated in memory than to a probe of low 
activation. Each probe was a single letter that was either one of the names of the nine 
chemicals (targets) or one of nine other letters (foils). Participants were to decide as 
fast as possible whether the probe was a chemical name or not. To reduce possible 
influences of the probes on each other, only one probe was presented in each trial. 
Using this measure, it was possible to monitor the activation of explanations over the 
course of the sequential reasoning task with as little impact on the task itself as possible.

Such an implicit measure that directly tracks the activation of explanations in 
memory is especially suited to evaluate the validity of constraint satisfaction models. 
The usual approach to test these models is to compare the activation calculated in the 
model to an explicit measure obtained in human experiments. For example, Wang et al. 
(2006b) asked their participants for explicit belief ratings after each new observation. 
However, explicitly asking participants during the course of the task might influence 
the outcome of the task itself (Hogarth & Einhorn, 1992). Directly assessing the 
activation in memory with an implicit task reduces such a possible influence.

In this chapter, we use response times to target-probes (chemical names) for 
three different types of explanations to test the constraint satisfaction models. First, 
we are interested in explanations that are compatible with all symptoms observed 
before the probe’s presentation (compatible explanations). Second, we are interested in 
explanations that are compatible with the initial symptoms, but that are incompatible 
with later symptoms (rejected explanations). Third, we look at explanations that are 
incompatible with at least the first symptom of the trial (incompatible explanations). 
Reactions to probes for the three kinds of explanations are compared at three different 
times of measurement over the course of the reasoning task (after two, three, and four 
symptoms). In Experiment 1 rejected explanations were only presented in incoherent 
trials. Therefore, below we report the data from the incoherent trials of Experiment 1 
and compare them to the coherent trials from Experiment 2.

Headache
(B)

Short 
breath

(B)
Vomiting

(T)
Cough
(BTW)

Headache
(T)

(T)
Vomiting

(T)
Cough
(BTW)

Itchingcoherent 
trial

incoherent 
trial

Figure Example for a coherent and an incoherent trial in Experiment 
1. Letters in parentheses show the compatible explanations after 
each symptom; they where not visible to the participants.

3.2



60 Chapter 3  Modeling Information Integration with Parallel Constraint Satisfaction

Results

Diagnosis. In both experiments and in both types of trials, the accuracy of diagnoses 
given at the end of each trial was high (around 95%). This suggests that also in 
incoherent trials participants were able to solve the task easily.

Probe reaction task. In both types of trials, the fastest probe responses occurred 
for compatible explanations. Rejected explanations were responded to slower than 
compatible explanations, but faster than incompatible explanations (see Figure 3.3; see 
also Chapter 2 of this thesis for a more elaborate analysis of the behavioural data from 
the experiments). Coherent and incoherent trials differed in the course of activation 
over time. In coherent trials, reaction times decreased with an increasing number 
of symptoms, with the highest decrease for compatible explanations. In incoherent 
trials, this decrease was less visible, possibly because integrating the information was 
more difficult than in coherent trials. Nevertheless, the fast responses to compatible 
explanations suggest that, also in incoherent trials, participants managed to integrate 
the symptoms correctly. 

Models
To assess the validity of the alternative modeling approaches, we implemented the 
knowledge used in the experiments into different constraint-satisfaction networks 
(see Figure 3.4 for an example). All networks consisted of the complete material 
participants needed to learn before the experiment. We used 9 nodes representing 
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trials from Experiment 1 (Mehlhorn et al., 2008).
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the symptoms, 9 nodes representing the explanations (chemicals), and connections 
representing the relations between those nodes. Nodes representing explanations were 
interconnected by inhibitory links, because the symptoms of each trial were caused 
by only one chemical. Symptoms were connected to their associated explanations by 
excitatory links.

In the networks, four basic parameters can be varied:

1.	The initial activation of the explanation nodes before each run. 
2.	The initial activation of the symptom nodes before each run. 
3.	The strength of the connection between the nodes. 
4.	The strength of the connection between the symptom nodes and the special 

evidence unit (SEU).

To model the two basic approaches described above, we used variations of the 
parameters 1 and 4. The values of parameters 2 and 3 were set to fixed values: The 
initial activation of symptom nodes (parameter 2) was set to 1 for the currently 
observed symptom and to 0 for all other symptoms. The connection-strength between 
the nodes in the network (parameter 3) was set to 0.04 for excitatory and to ‑0.04 for 
inhibitory links.

To evaluate the models’ capacity to emulate human information integration during 
the course of the task, we will now take a closer look at the process measure. For each 
model, we calculated the activation for the three types of explanations (compatible, 
rejected, and incompatible) at the three different times of measurement (after two, 
three, or four symptoms). This activation is compared to the human probe reaction- 
time data, which indicates memory activation of explanations. 

GT W PHQ M

SEU

short
breath

diarrhea

K

head-
ache redness skin-

irritation
vomiting

itching
cough

B

eye-
inflam.

Figure Network for an incoherent trial (cough - vomiting - short breath - headache) in Simulation 3. 
Dashed lines: inhibitory connections, solid lines: excitatory connections. B has the strongest 
activation when the network settles.
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Initial Activation of the Explanation Nodes

Simulation 1 and 2. One method to model sequential data in constraint-satisfaction 
models that might seem feasible is to use the output activation of the explanation nodes 
of one run as the input activation of these nodes in the next run (left side of Figure 
3.1). Thus, activation values of explanation nodes are not reset before integrating a new 
symptom, but the values that resulted when integrating the previous symptom are used 
as start values. The observation of symptoms is modeled by connecting the currently 
observed symptom to the SEU (with a connection strength of .1). Subsequently, this 
model is referred to as Simulation 1.

The reason why this method does not work is the continuous influx of activation 
from the SEU through the currently observed symptom. Any activation at the 
beginning of a run is overwritten by the activation spreading from the SEU and only 
the connection strengths to the SEU determine the stable state of the network. This 
can be easily demonstrated by comparing the results of Simulation 1 to a model that is 
identical except for the fact that the explanation nodes are reset to zero after each run 
(Simulation 2). Simulation 1 and Simulation 2 produce basically the same activation 
results. 

In Figure 3.5, the inverted activation values calculated by Simulation 1 are plotted 
against the human data for coherent (r = -.58) and incoherent trials (r = -.63). The 
model has an overall bad fit. Although compatible explanations are activated highest 
in the model as well as in the human data, the model does not show an increasing 
activation over the course of the trials as it is found in the human data. In incoherent 
trials, the models’ activation even decreases with an increasing number of observed 
symptoms. Furthermore, contrary to the human data, rejected explanations in the 
model are activated less than incompatible explanations. Such a pattern of activation 
should only be expected if incoming information is not integrated properly.
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Figure Inverted activation values from Simulation 1 and human reaction times for coherent (left) and 
incoherent trials (right). (Activation values are inverted so that they can be plotted directly 
against the reaction time data.)
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Connection Strength to the SEU
Simulation 3. An alternative approach for modeling sequential data in constraint-
satisfaction models is to use the connection strength between the evidence nodes and 
the SEU as proposed by Wang et al. (2006b) (see Figure 3.4 and right side of Figure 
3.1). Contrary to Simulations 1 and 2, here not only the current symptom but also 
previously observed symptoms are connected to the SEU. The strength of the links 
to the SEU depends on the time elapsed since the respective symptom was observed. 
The most recently observed symptom gets a full connection to the SEU (.1). Earlier 
observations are connected to the SEU with a decayed strength as proposed by Wang 
et al. Before each run, the network is reset to its default values. That is, the activation of 
all chemicals and of all but the currently observed symptom is set to zero. 

Again, the model was run for coherent (r = -.66) and for incoherent trials (r = -.73). 
As illustrated by Figure 3.6, this model produced a better fit than Simulations 1 and 
2. As in the human data, compatible explanations receive the highest activation and 
incompatible explanations receive the lowest activation. However, the model again has 
difficulties to fit the change in activation over time. For example, in coherent trials, 
the model strongly underpredicts the increasing activation of compatible explanations 
over time.

Simulation 4. For better capturing the increasing activation over time, we presumed 
that the influence of each single symptom would need to be higher. Therefore, we 
developed a fourth model in which higher weights were given to the connection 
between observed symptoms and the SEU. The full connection, that is, the weighting 
of the most recent symptom, was now set to 1, and the respective decayed connections 
were calculated based on this value for the full connection. Except for this change, the 
model was identical to Simulation 3. 
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Figure Inverted activation values from Simulation 3 and human reaction times for coherent (left) and 
incoherent trials (right).
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Results of this model are shown in Figure 3.7 for coherent (r = -.70) and incoherent 
trials (r = -.81).  As was to be expected, the differences between the different explanations 
increase compared to Simulation 3. Also the course of activation over time is fit better 
by this model. However, in coherent trials, the model still underpredicts the increase of 
activation over time for compatible explanations and it produces a pattern for rejected 
explanations that is not found in the human data. For incoherent trials, overall, the 
model predicts the difference between explanations, but it does not fit the change of 
activation over time.

 In Simulations 3 and 4, the previous state of the models is retained by connecting 
not only the current, but also previous symptoms to the SEU. By letting the strength 
of these connections decay over time, the order of observed information is modeled. 
But is the decay of connection strengths necessary to model sequential information 
integration? 

Simulation 5. To clarify this question, we developed a fifth model where, as in 
Simulations 3 and 4, all previously observed symptoms are connected to the SEU. 
However, previous symptoms do not decay, but they keep the full connection strength 
of 1.

Results are shown in Figure 3.8 for coherent (r = -.75) and incoherent trials (r = 
-.85).  For coherent trials, this simplified version of the model produces the best fit to 
the human data. It shows the activation differences between the explanations and it 
fits the activation pattern over time considerably well. However, also this model has 
difficulties in fitting the incoherent trials. Whereas the participants’ reaction times 
reflect a change in their diagnosis in the light of the new, incoherent evidence (the 
third symptom of the trial), the model does not produce a clear activation difference 
between compatible and rejected explanations after the incoherent evidence is observed. 
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incoherent trials (right).
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Conclusion
We evaluated two possible approaches for modeling sequential information integration 
in diagnostic reasoning. These approaches differed in the mechanism implemented 
to integrate new information with information obtained earlier. In the first approach, 
activation results from the previous integration step were carried over to the next step, 
where they were integrated with the new information. In the second approach, the 
previous state of the network was preserved more indirectly, by connecting not only the 
current but also earlier observations to the “energy source” (the SEU) of the network. 

Results show that the first approach (Simulations 1 and 2) does not work. The initial 
activation of the network’s nodes is overwritten by the activation spreading from the 
SEU. The second approach was more successful. Following a suggestion from Wang 
et al. (2006b), we implemented versions of models that differed with respect to how 
strongly symptoms that were observed over time influence the current activation of 
the network (Simulations 3 and 4). Both models were able to reproduce the activation 
differences between explanations found in the human data, with higher weights of 
the connection between SEU and observed symptoms resulting in better model fits. 
However, also these models had difficulties in fitting the course of activation over time. 
A simplified version of these models (Simulation 5), where the influence of earlier 
evidence did not decay over time, produced a surprisingly high fit in coherent trials, 
but failed to model the time course of activation in incoherent trials.

Concluding, our results support the approach for modeling sequential information 
integration as it was proposed by Wang et al. (2006b). However, our results suggest 
the parameter setting proposed by Wang et al. to be reconsidered. To model the course 
of activation during the task, we needed to implement a much higher amount of 
activation spreading from the observed symptoms. Furthermore, our results suggest 
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that not yet explained observations do not decay over time, as suggested by Wang et al., 
but retain a stable influence on the network.  

We must stress that none of the models was able to sufficiently fit the pattern of 
activation in incoherent trials. Although Simulations 3 and 4, where observations 
decayed over time, produced at least the differences between explanations as found 
in the human data, they did not model the course of activation adequately. This might 
have several reasons. First, the implementation of constraint satisfaction may be 
inappropriate. Second, and more plausible given the success of constraint satisfaction 
models in various areas, the deviation between human and model data demonstrates 
the involvement of more conscious reasoning processes during incoherent trials. In 
coherent trials, the automatic activation processes modeled by the constraint satisfaction 
networks is perfectly sufficient to solve the task. In incoherent trials however, a pure 
activation-based approach struggles. Nodes would have to be added or connections 
other than connections to the SEU would have to be manipulated. As we discussed 
in more detail in Chapter 2, to fully capture cognitive processes involved in such trials 
and in tasks with more complex knowledge structures, hybrid modeling approaches 
which allow for investigating the interaction of automatic memory activation with 
more deliberate reasoning strategies, might be promising.
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The Influence of  
Experience and Context 

on Hypothesis Generation

In which I use behavioral experiments and an ACT-R 
model to investigate the respective contribution 

of previous experience and the current context 
on explanations’ availability in memory.
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Abstract
Recent theories of diagnostic reasoning propose that automatic memory 
activation processes are involved in the generation of hypotheses from 
memory.  Two aspects have been suggested to play a role: (1) a hypothesis’ 
past usefulness and (2) its usefulness in the current context. Based on 
a general theory of memory, we present two mechanisms that might 
explain theses aspects: (1) a hypothesis’ base-level activation, reflecting 
its past usefulness, and (2) the spreading activation it receives from 
current observations, reflecting its usefulness in the current context. We 
conducted an experiment in which participants had to generate hypotheses, 
while both memory components were independently manipulated by 
an ostensibly unrelated secondary task. The results show an effect of both 
manipulations and are quantitatively predicted by an ACT-R model in 
which we implemented both memory mechanisms. Discrepancies between 
the behavioral data and the predictions of the mere memory-based model 
were also revealed and their potential reasons are discussed.
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Introduction
A doctor trying to find the best diagnosis for his patient’s symptoms, a scientist trying 
to understand her data, or a person trying to deduce someone else’s intentions are 
all examples in which hypotheses need to be generated and evaluated from memory. 
Traditionally, cognitive psychology has focused on deliberate reasoning processes that 
are engaged in solving such tasks (e.g., T. R. Johnson & Krems, 2001; Klahr & Dunbar, 
1988). More recently, researchers have started investigating the role of automatic 
memory processes for hypothesis generation (e.g., Arocha & Patel, 1995; Mehlhorn, 
Taatgen, Lebiere, & Krems, 2011; Thomas et al., 2008; see also Chapter 2 of this thesis). 

The basic idea is that automatic memory processes can provide an adaptive subset 
of possible hypotheses from memory, which can serve as input to a more deliberate 
evaluation process (Thomas et al., 2008). Such a distinction between a memory-based 
and a reasoning-based component is also a central aspect of dual-process theories. 
They assume fast, automatic processes to provide a possible answer, which might then 
be justified or revised by more time consuming, deliberate reasoning (Evans, 2008).

Empirical evidence suggests that the generation of hypotheses from memory 
depends on two aspects. A first aspect is the hypotheses’ usefulness in the past. It has 
been shown that from all potential hypotheses, reasoners tend to generate those that 
have a high a priori probability based on previous experiences (Dougherty & Hunter, 
2003a; Weber et al., 1993). A second aspect is the hypotheses’ usefulness in the current 
context. For example, Weber et al. (1993) have shown that physicians generate those 
diagnoses that are most likely in the light of a patient’s symptoms. While both aspects 
have received empirical support, the underlying mechanisms, as well as their respective 
contribution for hypothesis generation have received relatively little attention in the 
literature (for an exception, see Thomas et al., 2008).

The goal of this chapter is to show the respective contribution of both aspects and 
to test in how far general memory mechanisms can explain the effects. We first give 
an overview on the memory mechanisms, before we describe an experiment in which 
we manipulated both aspects. Subsequently, we show how we generated quantitative 
predictions from a cognitive model and compare these predictions to the data from the 
experiment.

Memory Processes in Hypothesis Generation
A general assumption of memory theories is that “the memory system […] makes most 
available those memories most likely to be needed” (Anderson, 2007, p. 109). How 
does it do that? While theories differ on the exact proposed mechanisms and the used 
vocabulary, commonly, two components are assumed to determine the likelihood of an 
item to be needed from memory: its a priori probability based on previous experiences 
and its usefulness in the current context. 

Previous experience. Anderson and Schooler (1991) investigated how previous 
experience predicts an item’s likelihood to be needed from memory. Based on their 
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results it has been suggested (e.g., Anderson, 2007), that the inherent availability of an 
item in memory can be described by its base-level activation, Bi, which depends on the 
frequency and recency of the items past usage:

		  (4.1)

where n is the number of previous encounters with item i, tk is the time since the kth 
encounter, and d is a decay parameter (producing the power law of forgetting). Using 
the example of a physician, this mechanism could for example explain why, especially 
during flu season, the flu will seem to be a more likely diagnosis for a patient’s 
symptoms than throat cancer.

Current context. Various memory theories share the assumption that information 
in the environment can serve as a cue for the retrieval of items from memory (e.g., 
Anderson, 2007; Kintsch, 1998; Thomas et al., 2008). A frequently proposed mechanism 
underlying this cued retrieval is spreading activation between observed information 
and associated items in memory (e.g., Anderson, 2007; Thagard, 2000). Specifically, 
Anderson proposes that an item i in memory receives spreading activation, Si, from 
each associated piece of information j, which is currently stored in working memory:

		  (4.2)

where Wj represents a weighting of j in working memory and Sji represents the 
associative strength between i and j. This associative strength reflects the extent to 
which an observed piece of information increases the likelihood of an associated item 
to be needed from memory. Using the physician’s example again, this mechanism 
could explain why, in the context of symptoms that point specifically at throat cancer, 
this diagnosis might become available in memory.

In a previous study (Mehlhorn et al., 2011; see also Chapter 2 of this thesis), 
we investigated whether the current context could indeed affect the availability of 
hypotheses in memory as predicted by such a spreading activation account. In two 
experiments, participants had to generate diagnoses for sequentially presented medical 
symptoms, while we tracked the availability of different hypotheses in memory with a 
probe reaction task. As predicted, availability was found to vary over time as a function 
of the observed symptoms. 

Respective contribution of the memory processes. While the results of Mehlhorn 
et al. (2011) provide evidence for the influence of the current context via spreading 
activation mechanisms, the respective contribution of a hypothesis’ past usefulness was 
not investigated in that study. Anderson (2007) argued that base-level activation, Bi, 
and spreading activation, Si, are independent additive components that determine the 
availability of an item i in memory:

		  (4.3)

Bi = ln tk
−d

k=1

n

∑⎛⎝⎜
⎞
⎠⎟

Si = WjS ji
j
∑

Ai = Bi + Si + ε
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where Ai is an item’s activation in memory and ε is a random noise component (see 
e.g., Anderson, 1990, for the underlying Bayesian statistics). For our physician, this 
could, explain why, depending on whether the base-level or the spreading-activation 
component are stronger, the flue or throat cancer are more strongly available in memory. 

Overview of the Experiment
To investigate the memory components outlined above, we conducted an experiment 
in which participants had to solve a diagnostic reasoning task, while at the same time 
carrying out a secondary choice-reaction task. In each experimental trial, the medical 
symptoms of a hypothetical patient were presented one at a time on the screen. At the 
end of the trial, participants had to report the diagnosis that explained the patient’s 
symptoms. During presentation of the symptoms, participants were auditorily 
presented with letters and had to indicate as fast as possible whether the letter was a 
consonant (target) or a vowel. This choice-reaction task was used to manipulate both 
memory components independently. 

The base-level component was manipulated by the targets presented in the choice-
reaction task. Targets were either neutral consonants or consonants that were also 
used to name potential diagnoses. We expected that retrieving such diagnosis-naming 
targets from memory would increase the base-level activation of the respective 
diagnoses. Consequently, performance in the diagnosis task should be reduced, as the 
diagnoses whose base-level activation was increased by the diagnosis-naming targets 
are not necessarily the correct diagnoses for the presented symptoms.

The spreading activation component was manipulated by requiring participants to 
count the targets presented in the choice-reaction task in part of the trials. The idea 
behind this manipulation is that counting, as well as generating hypotheses, both rely 
on a central working-memory resource, which can only be used for one task at a time 
(Borst et al., 2010; Oberauer, 2002). The to be expected working memory conflicts can 
result in losing part of the observed symptoms from working memory. Consequently, 
performance in the diagnosis task should be reduced, as the correct diagnosis receives 
less spreading activation from the reduced amount of symptoms in working memory.

Method
Participants
Twenty-five native German speaking undergraduate students from the University of 
Groningen took part in this experiment for course credit (19 female; mean age 21.2, 
SD = 1.3). 

Material
Diagnostic knowledge. The knowledge participants needed to learn before solving 
the diagnosis task was adapted from Mehlhorn et al. (2011; see also Chapter 2 of 
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this thesis) and consisted of nine hypothetical chemicals (all single consonants, see 
Table 4.1). The chemicals were grouped into three artificial categories and caused 
four symptoms each. To reflect the complexity of real-world diagnostic knowledge, 
symptoms were either specific for a category (e.g., cough) or unspecific (e.g., headache).

Audio stimuli. For the choice-reaction task we generated three sets of audio files: 
chemical consonants (the 9 chemical names), non-chemical consonants (the letters 
SKQFVDNP), and vowels (the letters AEIOUÄÖÜ). In the non-chemical condition, 
audio stimuli were randomly sampled from the non-chemical consonants and vowels. 
In the chemical condition, audio stimuli were randomly sampled from the chemical 
consonants and vowels. In this condition, we additionally varied whether the set of 
consonants included the correct diagnosis for the presented symptoms (correct diagnosis 
primed) or not (correct diagnosis not primed).  

Procedure
Training. To learn the diagnostic knowledge, participants were visually presented 
with the four symptoms caused by one of the chemicals and had to enter a diagnosis. 
By receiving feedback, they learned which chemicals where associated with which 
symptoms. Categories were first trained separately, before the same training was 
repeated for the complete material. The order of categories, diagnoses, and symptoms 

Aggregate state 
and source of 

contamination
Chemical Specific symptoms Unspecific symptoms

Gasiform, 
inhaled

B Cough Shortness 
of breath Headache Dizziness

T Cough Sneezing Headache Fever

W Sneezing Shortness 
of breath Fever Dizziness

Crystalline,
skin contact

L Redness Rash Headache Dizziness

H Redness Itching Headache Fever

G Itching Rash Fever Dizziness

Liquid,
drinking water

C Diarrhea Cramps Headache Dizziness

M Diarrhea Vomiting Headache Fever

R Vomiting Cramps Fever Dizziness

Overview of diagnostic knowledge participants had to acquire before the experiment (original 
material in German).

4.1 Table
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was randomized for each participant. After acquiring the diagnostic knowledge 
(performance criterion: 100%), the choice-reaction task was first practiced alone and 
then in combination with the diagnosis task. Participants were informed that in the 
experiment it was important to do both tasks as fast and accurately as possible. 

Experiment. The experiment was split into 8 blocks. In each block, 9 trials from one 
of the four conditions (non-chemical – no count, non-chemical – count, chemical – no 
count; chemical – count) were presented. The conditions were assigned to the blocks in 
random order, with the constraint that each condition had to be presented once in the 
first four and once in the second four blocks. 

In each trial, 12 to 14 audio stimuli were presented with a SOA of 2 s (Figure 
4.1). Six to twelve of the stimuli were consonants (the exact numbers were randomly 
drawn from a uniform distribution for each participant for each trial). Additionally, 
the four symptoms of one of the chemicals were visually presented for 2 s each. The 
1st symptom was presented 1.5 s after the onset of the 2nd, 3rd, or 4th audio stimulus, 
with the exact position depending on the total number of stimuli in the trial. Before 
each subsequent symptom, 3 audio stimuli were presented. The final audio stimulus 
was presented .5 s after onset of the 4th symptom. The presentation order of audio 
stimuli and symptoms was randomized for trials and participants. Each chemical 
occurred with equal frequency as correct diagnosis in each block. After all stimuli 
had been presented, participants had to enter their diagnosis within maximum 5 s 
and, in the count condition, to enter the number of consonants. Participants received 

B

2 sec R

W

O
cough

A1.5 sec

I
fever

G

Ö

L
sneezing

H

U

Ü

U
headache

C

2 sec2 sec Diagnosis?

max. 5 sec
(diagnosis 

time)
T is correct

Count?

7 is correctno time limit

1 sec

Figure Sample trial for the chemical–count condition. In this trial, 14 audio stimuli were presented 
of which 7 were consonants. T was the correct diagnosis for the medical symptoms. 

4.1
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visual feedback for their diagnosis and count. Auditory feedback was presented for the 
choice reactions if the response was wrong or not given within 1.25 s. 

Model
Based on a previously published model of hypothesis generation (Mehlhorn et al., 
2011; see also Chapter 2 of this thesis), we implemented a cognitive model in the 
ACT-R architecture (Anderson, 2007). ACT-R makes precise predictions about 
how the memory mechanisms described above affect the probability and latency of 
memory retrieval. It allows for modeling the task, as solved by the participant, and 
thereby produces results that are directly comparable to the human data. Below we 
briefly describe the model (the model code, including more detailed explanations, can 
be downloaded from http://www.ai.rug.nl/~katja/models).1

The model is presented with the same tasks as the participants, that is, it has to 
discriminate between the auditorily perceived consonants and vowels, it has to 
count the consonants (in the count condition), and it has to generate a diagnosis 
for the visually perceived symptoms. The knowledge necessary to solve these tasks is 
represented in the model’s long-term memory (the declarative memory). 

To solve the choice-reaction task, the model tries to retrieve the perceived letter 
from declarative memory, assesses if the retrieved letter is a consonant or vowel, and 
enters its response. To count, the model keeps track of the current count in working 
memory.2 The count is incremented when a retrieved letter is classified as consonant. 
When asked for the count, the model enters the current count. To solve the diagnosis 
task, the model stores the observed symptoms in working memory, from where they 
spread activation to associated diagnoses in declarative memory. When asked for the 
diagnosis, the model retrieves and enters that diagnosis from declarative memory that 
has the highest activation as calculated by Equation 4.3. 

In the no-count condition, all observed symptoms are stored in working memory 
until the model is asked for a diagnosis. In the count condition, the set of symptoms 
that is currently stored in working memory has to be swapped out to declarative 
memory whenever the model needs working memory for counting, because working 
memory can only be used for one task at a time (see Borst et al., 2010, for empirical 
support). Whenever working memory is needed for the diagnosis task again, the 
current count is swapped out and the set of symptoms is swapped back in. Information 
can be lost during swapping because, due to noise, the model might erroneously 
retrieve older working-memory contents (e.g., an incomplete set of symptoms) from 
declarative memory.
1 To fit the model, we estimated the latency and stochasticity of memory retrievals, the base-level activation of facts in memory at the 
beginning of each trial, and the maximum associative strength between items. Based on earlier results (Mehlhorn et al., 2011), we 
assumed the associative strength of each symptom in working memory to be weighted by a constant value of Wj, independent of the 
number of symptoms (see the model code for the exact parameter values). The model was run 40 times for each participant. Results 
were calculated for each run and then averaged across runs.
2 To model working memory we use one of the buffers of ACT-R’s cognitive modules, the imaginal buffer. The imaginal buffer is 
commonly used to hold a mental representation of the problem currently in the focus of attention (Borst et al., 2010).



75Results

Results
Performance in the Diagnosis Task

Effects of target and counting. To investigate the respective impact of both 
manipulated memory components, we analyzed diagnosis accuracy and time for the 
factors target (non-chemical, chemical) and counting (no count, count). The results 
are shown in Figure 4.2 and Table 4.2. As correctly predicted by the model, chemical 
targets lead to lower diagnosis accuracy than non-chemical targets, but do not affect 
diagnosis times. Also the effects of counting are correctly predicted by the model: 
counting leads to lower diagnosis accuracies and higher diagnosis times than no 
counting. However, the model generally underestimates diagnosis times.

Effect of priming the correct diagnosis. To further test the effect of the base-level 
manipulation on diagnosis performance, we compared chemical-condition trials in 
which the correct diagnosis was among the presented chemical consonants (correct 
diagnosis primed) to chemical-condition trials in which this was not the case (correct 
diagnosis not primed). As shown in Table 4.3, the model predicts higher diagnosis 
accuracy in primed than in not-primed trials, while participants do not show this 
effect on diagnosis accuracy. However, participants do show an effect on diagnosis 
time, with primed diagnoses being faster than not-primed ones. The model correctly 
predicts this effect on diagnosis time, but underpredicts its magnitude. 

Performance in the Choice-Reaction Task
Reaction and counting accuracy. Participants discriminated between consonants and 
vowels with a reasonably high accuracy (M = 88.5%, SD = 6.0), which is approximated 
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well by the model (M = 91.3%, SD = 1.0). The correct count was reported in 57.1% 
(SD = 20.2) of the trials in the count condition. The model reaches a slightly lower 
counting accuracy (M = 39.7%, SD = 8.3). 

Reaction accuracy over the trial. Due to the nature of memory activation, we also 
expected the diagnosis task to influence performance in the choice-reaction task. For 

Dependent 
measure Priming Human 

M (SD)
Model
M (SD)

Diagnosis 
accuracy [%]

correct diagnosis primed 	 52.1 (22.5) 	 58.4 (11.4)
correct diagnosis not primed 	 51.7 (22.8) 	 45.1 (11.7)

t(24) = .08, p = .940

Diagnosis time 

[ms] a

correct diagnosis primed 1339 (363) 853 (53)
correct diagnosis not primed 1533 (551) 902 (66)

t(24) = -2.50, p = .020

Note. p values <.1 are shown in bold. For simplicity, here we collapsed over the factor counting, 
which was justified by a lack of interactions with the factor. a Only correct responses. No diagnosis 
times differed more than 3 SD from a participant’s condition mean.

Human and model data in the chemical-consonants condition, depending on whether 
the correct diagnosis was primed or not.

4.3 Table

Dependent 
measure Effects F p hp

2

Diagnosis 
accuracy

Main effect of target 
(non-chemical, chemical) (1,24) = 11.15 	 .003 	 .317

Main effect of counting 
(no count, count) (1,24) = 27.47 	 < .001 	 .534

Interaction of target and 
counting (1,24) = 2.60 	 .120 	 .098

Diagnosis 
timea

Main effect of target 
(non-chemical, chemical) (1,23) = .07 	 .792 	 .003

Main effect of counting 
(no count, count) (1,23) = 14.72 	 < .001 	 .390

Interaction of target  
and counting (1,23) = .01 	 .942 	 < .001

Note. p values <.1 are shown in bold. a Only correct responses. Data points that differed more 
than 3 SD from a participant’s condition mean were excluded (0.1% of the diagnosis time data). 
Additionally, one participant had to be completely excluded from this analysis, because of a 
diagnosis accuracy of 0 in the non-chemical – count condition.

Results of repeated-measures ANOVAs for the factors target (non-chemical, chemical) 
and counting (no count, count).

4.2 Table
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example, if observed symptoms indeed spread activation to associated hypotheses, the 
availability of the respective chemical consonant letters should increase, resulting in 
an increased chance to retrieve consonants and thereby to more errors in reacting to 
vowels. To test this assumption, we analyzed the accuracy of reactions to the different 
types of stimuli (chemical consonant, non-chemical consonant, vowel), depending on 
counting, and on the stimulus’ position in the trial (1-14). 

As correctly predicted by the model, overall accuracy in the choice-reaction task 
was indeed lower for vowels than for consonants (Figure 4.3). In the count condition, 
the model correctly predicts a drop of response accuracy to vowels whenever a new 
symptom is observed. This happens because, due to the swapping of information 
between the diagnosis and counting task, observed symptoms spread activation to 
associated chemical consonants at these points. In the no-count condition, the model 
predicts a slightly more gradual decrease of response accuracy to vowels than found 
in the human data. The decrease in the model is caused by the increasing amount of 
spreading activation from the increasing number of symptoms in working memory. 
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trial had a 14th stimulus, but only trials with 14 stimuli had a 1st stimulus). Vertical lines indicate 
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Discussion
Empirical research has shown that, when generating hypotheses from memory, 
reasoners generate only a small subset of all potential hypotheses. However, this 
subset seems to be highly adaptive, as it contains those hypotheses that have (1) a 
high a priori probability based on previous experience and (2) a high usefulness in the 
current context. The results of our study can help to understand this adaptive selection 
in terms of general memory mechanisms. We presented base-level activation as a 
memory mechanism that is sensitive to a hypothesis’ past usefulness. It predicts the 
availability of a hypothesis in memory to increase with the frequency and recency of 
its usage. We presented spreading activation as a mechanism that can regulate the 
influence of the current context on a hypothesis’ availability in memory. It predicts the 
availability of a hypothesis in memory to increase with the amount of observations 
in working memory that are associated with this hypothesis and with the strength of 
their association.

While the influence of the current context via spreading activation mechanisms 
was already supported in an earlier study (Mehlhorn et al., 2011; see also Chapter 2 
of this thesis), the respective contribution of a base-level activation mechanism that 
reflects a hypothesis’ past usefulness had not yet been shown. To test this contribution, 
we manipulated both components within one experiment. Diagnosis performance 
showed main effects of both manipulations, suggesting that the components might 
indeed reflect two distinct aspects of memory activation. This assumption is supported 
by the cognitive model, which revealed both base-level activation and spreading 
activation to be important components for fitting the behavioral data. 

The model explains the reduced performance in the chemical compared to the 
non-chemical condition by an increase in base-level activation of wrong diagnoses, 
which were presented as letters in the choice-reaction task. Finding behavioral 
evidence for this influence is especially interesting because, objectively, participants 
had to do the same choice-reaction task in both conditions: discriminate between 
consonants and vowels. It is additionally interesting because the letters were used in 
semantically different meanings in both tasks: In the choice-reaction task, they were 
used to discriminate between consonants and vowels, while in the diagnosis task, they 
were used as potential diagnoses. Nevertheless, diagnosis performance decreased, as 
predicted by the model, when the consonants of the choice-reaction task were names 
of chemicals. This demonstrates the impact of automatic memory activation on 
hypothesis generation. 

The model explains the reduced performance in the count condition compared to 
the no-count condition by a decrease in spreading activation to the correct diagnosis. 
This decrease is caused by working-memory conflicts between the count and diagnosis 
task, which result in the loss of observed symptoms from working memory in the 
count condition. Together with the findings presented in Chapter 2, this illustrates 
how hypothesis generation depends on the current context that is available in working 
memory.
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It has been proposed that automatic hypothesis-generation processes interact 
with deliberate hypothesis evaluation (Thomas et al., 2008). Deviations between the 
results of our merely memory-based model and the behavioral data suggest such an 
interaction also in our study. The absence of an effect of priming on human diagnosis 
accuracy, as well as the model’s general underprediction of diagnosis times, suggest 
that participants did not simply enter the diagnosis made most available by memory 
activation as in the model. Rather, participants might have used additional time to 
evaluate and justify the retrieved hypotheses. 

De Neys (2006) showed that the use of deliberate reasoning strategies increases 
with the availability of working-memory resources. Such an increased use of 
deliberate reasoning might explain why, in our choice-reaction data, the model which 
did not use any deliberate reasoning strategies fitted better in the count condition 
(with high working memory demands) than in the no-count condition (with lower 
working memory demands). However, despite participants’ potential additional use 
of deliberate reasoning, the mere activation-based model fits the choice-reaction 
data quite well. This is remarkable, because this fit directly emerges from the memory 
activation mechanisms implemented in the model, without us adding any additional 
assumptions.

Are the results of our laboratory study generalizable? Real-world hypothesis 
generation will often be more complex and less structured than the diagnosis task 
participants solved in our experiment. We decided for such a simplified hypothesis-
generation task, because it allowed for the experimental control necessary to test our 
assumptions about the subtle effects of memory activation. However, we do not expect 
this simplification of the task to limit the validity of our results. Higher complexity 
and a less well defined task structure are expected to even increase the importance of 
memory activation processes (Dijksterhuis & Nordgren, 2006).

Before closing, we want to stress that the main point of this chapter is not to promote 
one particular memory theory, but to show how taking into account the importance 
of automatic memory activation can help to understand hypothesis generation. While 
memory theories differ in the exact proposed mechanisms, many theories share the 
assumption that the probability of an item to be needed from memory depends on the 
two factors discussed in this chapter: the item’s a priori probability based on previous 
experiences and its usefulness in the current context (e.g., Anderson, 2007; Thomas et 
al., 2008). 
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Abstract
Hypotheses about decision processes are often formulated qualitatively 
and remain silent about the interplay of decision, memory, and other 
cognitive processes. At the same time, existing decision models are specified 
at varying levels of detail, making it difficult to compare them. We provide 
a methodological primer on how detailed cognitive architectures such as 
ACT-R allow remedying these problems. To make our point, we address a 
controversy, namely, whether noncompensatory or compensatory processes 
better describe how people make decisions from the accessibility of memories. 
We specify 39 models of accessibility-based decision processes in ACT-R, 
including the noncompensatory recognition heuristic and various other 
popular noncompensatory and compensatory decision models. Additionally, 
to illustrate how such models can be tested, we conduct a model comparison, 
fitting the models to one experiment and letting them generalize to another. 
Behavioral data are best accounted for by race models. These race models 
embody the noncompensatory recognition heuristic and compensatory 
models as a race between competing processes, dissolving the dichotomy 
between existing decision models.
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Introduction

Even if the mind has parts, modules, components, or whatever, they 
all mesh together to produce behavior. [...] If a theory covers only 

one part or component, it flirts with trouble from the start.
(Allen Newell, 1990, p. 17)

One way to increase the precision of theories of decision making is to specify 
the cognitive processes decision-making mechanisms are assumed to draw on. 
Corresponding process models predict not only what decision a person will make, 
but also how the information used to make the decision will be processed. The past 
decades have seen repeated calls to develop process models, and in fact, such models 
have become increasingly popular (e.g., Brandstätter, Gigerenzer, & Hertwig, 2006; 
Einhorn, Kleinmuntz, & Kleinmuntz, 1979; Ford, Schmitt, Schechtman, Hults, & 
Doherty, 1989; Gigerenzer & Goldstein, 1996; Gigerenzer et al., 1991; Marewski, 
Gaissmaier, & Gigerenzer, 2010a, 2010b; Payne, Bettman, & Johnson, 1988, 1993; 
Schulte-Mecklenbeck, Kühberger, & Ranyard, 2010). The predictions made by these 
models have motivated a number of debates; for example, whether people rely on 
noncompensatory, lexicographic as opposed to compensatory, weighted-additive 
processes in inference, choice, and estimation (e.g., Bergert & Nosofsky, 2007; Bröder 
& Schiffer, 2003, 2006; Cokely & Kelley, 2009; E. J. Johnson, Schulte-Mecklenbeck, 
& Willemsen, 2008; Lee & Cummins, 2004; Marewski, 2010; Mata, Schooler, & 
Rieskamp, 2007; B. R. Newell, Weston, & Shanks, 2003; Nosofsky & Bergert, 2007; 
Rieskamp & Hoffrage, 1999, 2008; Rieskamp & Otto, 2006; von Helversen & 
Rieskamp, 2008). 

Yet, often such process models are underspecified relative to the process data against 
which they can be tested. In this chapter, we show how precision can be lent to process 
models by implementing them in a cognitive architecture. We will make our point by 
focusing on a class of models that assume people to make decisions by exploiting the 
accessibility (e.g., Bruner, 1957; Higgins, 1996; Kahneman, 2003) of memory contents. 
These models have been at the focus of a debate about what processes describe 
people’s decisions best when they make inferences about unknown states of the world; 
such as when predicting which sports teams are likely to win a competition, which 
politician will win an election, or which cities are likely to grow fastest in the number 
of inhabitants.

A Case Study of Underspecified Process Hypotheses 
Numerous accessibility-based decision models have been proposed, featuring concepts 
such as familiarity, fluency, availability, or recognition (e.g., Dougherty, Gettys, & 
Ogden, 1999; Jacoby & Dallas, 1981; Koriat, 1993; Pleskac, 2007; Tversky & 
Kahneman, 1973). One such model is the recognition heuristic (Goldstein & Gigerenzer, 
2002). As suggested by its name, this simple decision strategy operates on our ability 
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to discriminate between recognized alternatives that we have encountered in our 
environment before, and unrecognized ones that we do not remember to have seen or 
heard of before. In doing so, the heuristic can help us to infer which of two alternatives 
(e.g., two cities, York and Stockport), one recognized and the other not, has the larger 
value on an unknown criterion (e.g., city size). The heuristic reads as follows: If only one 
of two alternatives is recognized, infer the recognized one to be larger.

The recognition heuristic is a noncompensatory model for memory-based decisions: 
Even if further knowledge beyond recognizing an alternative is retrieved, this 
knowledge is ignored when the heuristic is used. Instead, the decision is based solely 
on recognition. In contrast to the recognition heuristic and related accessibility-based 
heuristics (e.g., Schooler & Hertwig, 2005), many other decision models posit that 
people evaluate alternatives by using knowledge about their attributes as cues (Bröder 
& Schiffer, 2003; Hauser & Wernerfelt, 1990; Lee & Cummins, 2004; Payne et al., 
1993). For instance, to infer which of two cities is larger, a person could rely on one of 
the classic compensatory unit-weight linear integration strategies (e.g., Dawes, 1979): 
The person could recall whether the cities have industry sites, airports, or famous 
soccer teams. For each city, the person could count the number of positive and negative 
cues (e.g., having an airport would be a positive cue and lacking one a negative cue) 
and then infer the city with the larger sum to be larger (Einhorn & Hogarth, 1975; 
Gigerenzer & Goldstein, 1996; Huber, 1989). The assumption in such compensatory 
models is that an alternative’s value on one cue is traded off against its value on another 
cue.

Figure The memory paradigm. In a two-alternative forced-choice task, on a computer screen a person is 
first shown a fixation cross, and thereafter presented with the names of two alternatives (e.g., two 
city names). The person’s task is to infer which of the two has a larger value on the criterion (e.g., 
which of two cities is larger). To make this decision, the person has to retrieve all information she 
wants to use from memory. For instance, the person may believe to recognize a city’s name and 
additionally remember that the city has an industrial site, suggesting that it is a large city. Once 
a person has made her decision, she presses a key to respond. Gigerenzer and Goldstein (1996) 
referred to such experimental paradigms as inferences from memory.

5.1
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Process Hypotheses in the Memory Paradigm

The recognition heuristic has triggered a debate about what processes describe people’s 
decisions best when they make inferences from the accessibility of memories: Do 
people rely on this noncompensatory heuristic, ignoring further knowledge, or do they 
use compensatory strategies instead? (Bröder & Eichler, 2006; Davis-Stober, Dana, 
& Budescu, 2010; Dougherty, Franco-Watkins, & Thomas, 2008; Erdfelder, Küpper-
Tetzel, & Mattern, 2011; Gaissmaier & Marewski, 2011; Gigerenzer & Brighton, 
2009; Gigerenzer & Goldstein, 2011; Gigerenzer, Hoffrage, & Goldstein, 2008; 
Glöckner & Bröder, 2011; Goldstein & Gigerenzer, 2011; Hertwig, Herzog, Schooler, 
& Reimer, 2008; Hilbig, Erdfelder, & Pohl, 2010; Hilbig & Pohl, 2009; Hochman, 
Ayal, & Glöckner, 2010; Hoffrage, 2011; Marewski, Gaissmaier, Schooler, Goldstein, 
& Gigerenzer, 2009, 2010; Marewski, Pohl, & Vitouch, 2010, 2011a, 2011b; McCloy, 
Beaman, & Smith, 2008; B. R. Newell & Shanks, 2004; Oeusoonthornwattana & 
Shanks, 2010; Oppenheimer, 2003; Pachur, 2010, 2011; Pachur & Biele, 2007; Pachur 
& Hertwig, 2006; Pachur, Mata, & Schooler, 2009; Pachur, Todd, Gigerenzer, Schooler, 
& Goldstein, 2011; Pohl, 2006, 2011; Reimer & Katsikopoulos, 2004; Richter & Späth, 
2006; Scheibehenne & Bröder, 2007; Volz et al., 2006).

In this debate, many researchers have used the memory paradigm shown in Figure 
5.1. The time it takes a person to make the decision – the decision time measured 
from stimulus onset until the person presses a key – is used to test hypotheses about 
the processes underlying the decision (Hertwig et al., 2008; Hilbig & Pohl, 2009; 
Marewski, Gaissmaier, Schooler et al., 2010; Richter & Späth, 2006; Volz et al., 2006). 
For instance, Pachur and Hertwig (2006) hypothesized that recognition memory 
would be more easily assessed than memories about cues, enabling people to make 
decisions based on the recognition heuristic faster than decisions based on cues. 

Importantly, although tests of such process hypotheses are central to the debate 
about the recognition heuristic, thus far the hypotheses put forward in this debate 
lack precision. First, in the memory paradigm, in no study were decision times 
actually quantitatively predicted. Rather, mostly qualitative (e.g., ordinal) decision 
time hypotheses were tested. Second, in no study these hypotheses took into account 
the interplay among perceptual, memory, decision, intentional, and motor processes 
governing decision times in the memory paradigm (but see Marewski, 2008; Marewski 
& Schooler, 2011). In a recent test of process hypotheses with the memory paradigm, 
Hilbig and Pohl (2009), for example, derived qualitative decision time hypotheses 
for the recognition heuristic and compared them against corresponding hypotheses 
they derived from evidence accumulation processes, as they have been outlined by B. 
R. Newell (2005) and others (e.g., Lee & Cummins, 2004). Broadly speaking, the 
assumption of such evidence accumulation processes is that evidence (e.g., cues and 
other information) for each of two alternatives is accumulated sequentially until a 
decision threshold is reached (e.g., D cues are retrieved) and a decision made (e.g., in 
favor of the alternative with most accumulated evidence). In testing their hypotheses, 
Hilbig and Pohl subsumed a number of models under this broad notion of evidence 
accumulation, including a connectionist parallel constraint satisfaction model (Glöckner 
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& Betsch, 2008), and decision field theory (Busemeyer & Townsend, 1993). According 
to them, their decision time data could be accounted for by compensatory evidence 
accumulation models but were inconsistent with the recognition heuristic. However, 
Hilbig and Pohl did not actually specify a single evidence accumulation model, and 
correspondingly, they also did not apply any model to their data. This is problematic, 
as different evidence accumulation models will make different predictions, depending 
on the specific model and its parameter values. Moreover, the recognition heuristic on 
its own does not make predictions about decision times in the memory paradigm (see 
also Gigerenzer & Goldstein, 2011, for a discussion). 

In the memory paradigm, decision times are subject, at least, to the following: 
the time it takes to read alternatives’ names, the time it takes to judge alternatives as 
recognized or unrecognized, the time it takes to retrieve cues about the alternatives, the 
time it takes to make a decision as to which alternative to pick, and the time it takes 
to press a key. In addition a person’s intentions (e.g., to respond as quickly as possible) 
can affect decision times. As a result, decision time predictions warrant not only a 
model of decision making, but also models of how decision processes interplay with 
other processes. The recognition heuristic, as formulated by Goldstein and Gigerenzer 
(2002), remains silent about this interplay; and so do, in fact, most other accessibility-
based models of decision making that have been tested in the memory paradigm, 
including the evidence accumulation and parallel constraint satisfaction models that 
Hilbig and Pohl (2009) focused on.1

Overview
In this chapter, we will model the respective contributions of perceptual, memory, 
decision, intentional, and motor processes by quantitatively specifying a number 
of the process hypotheses that have been formulated in the literature in a cognitive 
architecture. A cognitive architecture is a quantitative theory that applies to a broad 
array of behaviors and tasks, formally integrating theories of memory, perception, 
action, and other aspects of cognition (for an introduction to cognitive architectures, 
see, e.g., Gluck, 2010). Among the architectures developed to date (e.g., EPIC, Meyer 
& Kieras, 1997, and  SOAR, A. Newell, 1992), the ACT-R architecture (Anderson 
et al., 2004) provides perhaps the most detailed account of the various processes that 
may play a role in accessibility-based decisions. ACT-R has been successfully used to 
explain phenomena in a variety of fields, ranging from list memory (Anderson et al., 
1998), visuospatial working memory (Lyon, Gunzelmann, & Gluck, 2008), diagnostic 
1 The recognition heuristic has been proposed for the kind of memory-based decisions that are the focus of this chapter (see Figure 5.1; 
e.g., Gigerenzer & Goldstein, 2011; Goldstein & Gigerenzer, 2002). Using another (i.e., not memory-based) paradigm, Glöckner 
and Bröder (2011) tested decision time hypotheses they derived from Glöckner and Betsch’s (2008) parallel constraint satisfaction 
model against decision time hypotheses they derived from the recognition heuristic. The testing of these decision time hypotheses 
represents progress over past studies. However, also these hypotheses fall short of the type of quantitative decision time predictions 
we advocate. First, on their own, both the recognition heuristic and the parallel constraint satisfaction model remain mute about 
the interplay of decision, memory, intentional, and motor processes on which decision times in the memory paradigm depend. Second, 
Glöckner and Bröder’s hypotheses concerning decision times are not based on absolute decision times, but on contrast predictions (i.e., 
one decision strategy will take n times longer than the other).
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reasoning (Mehlhorn et al., 2011; see Chapter 2 of this thesis), and probability 
learning (Gaissmaier, Schooler, & Rieskamp, 2006), to flying (Gluck, Ball, & 
Krusmark, 2007), driving (Salvucci, 2006), and the teaching of thousands of children 
in U.S. high schools with tutoring systems (Ritter, Anderson, Koedinger, & Corbett, 
2007). Here, we will use ACT-R to implement 39 process models. These models are 
the recognition heuristic, as well as various other noncompensatory and compensatory 
decision strategies, including models that incorporate central aspects of integration, 
connectionist, evidence accumulation, and race models. In a model competition, we 
will test the 39 process models’ ability to predict people’s decisions and decision times 
in the memory paradigm.  

Before we start, three comments are warranted. First, the goal of this chapter is not 
so much to advocate any particular process model, but rather, using the debate about 
the recognition heuristic as a case study, to provide a methodological primer on how 
architectures like ACT-R can be used to lend precision to the theorizing about decision 
processes. That is, while we also test process models against each other, the model 
competition’s objective is to illustrative methodological principles, and not necessarily 
to identify the very best model. For those interested in identifying the best model, the 
main contribution of this chapter is, perhaps, to provide 39 precisely specified process 
models, cast into the computer code of a detailed cognitive architecture, and ready to 
be tested in studies beyond the limited data we use here. 

Second, there are many research programs that are built around quantitative 
models (e.g., Busemeyer & Townsend, 1993; Ratcliff & Smith, 2004; Rumelhart, 
McClelland, & the PDP Research Group, 1986). Certainly, our critique of the lack 
of specification of process hypotheses only applies to these models to the extent that 
they remain silent about the interplay of perceptual, memory, decision, intentional, and 
motor processes. Moreover, we are not the first who discuss decision strategies such 
as the recognition heuristic and related models in the context of ACT-R or other 
architectures (Dougherty et al., 2008; Gaissmaier, Schooler, & Mata, 2008; Hertwig et 
al., 2008; Marewski & Schooler, 2011; Nellen, 2003; Schooler & Hertwig, 2005; Van 
Maanen & Marewski, 2009).

Third, while it is possible to test evidence accumulation, the recognition heuristic, 
and other models against each other without implementing these models in a 
cognitive architecture, such direct model comparisons are not without problems, 
because these models tend to be specified at different levels of description and 
computational precision, resulting in different levels of detail and precision of the 
models’ predictions. For instance, many evidence accumulation models are specified 
mathematically and include several free parameters (e.g., Ratcliff & Smith, 2004). 
The recognition heuristic, in turn, consists of a verbally formulated if-then statement. 
(If one alternative is recognized, then choose the recognized alternative.) While the 
parameterized evidence accumulation models can yield predictions about decision 
time distributions, on its own the recognition heuristic’s if-then-statement does not 
predict such distributions. Much the same can be said with respect to comparisons of 
other models, including the aforementioned parallel constraint satisfaction and classic 
integration models. By implementing models of different levels of description and 
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specificity in one architectural modeling framework, we make the models and their 
predictions comparable, providing a basis for future model tests beyond the ones we 
will provide below.

The chapter is structured as follows. First, we will describe the experimental data we 
used to test the models. Second, we will explain the methodological principles guiding 
our modeling. Third, we will provide an overview of ACT-R as well as of the models 
we implement. Fourth, we will illustrate how these models’ ability to predict people’s 
decisions and decision times can be tested.

Experimental Data
We developed models for memory-based decisions about city size, which is the task 
most studies on the recognition heuristic have used (Figure 5.1). Specifically, we 
reanalyze Pachur et al.’s (2008) Experiments 1 and 2.2 These experiments are well-
suited for our purposes, because they entail good control over peoples’ recognition and 
cue-knowledge, this way simplifying our modeling exercise.

Summary of Pachur et al.’s (2008) Pre-studies   
To create stimulus materials for their experiments, Pachur et al. (2008) conducted 
pre-studies wherein they presented participants with names of British cities and had 
them indicate whether they had heard or seen the names prior to participating in the 
study, that is, whether they recognized them. Six highly recognized and 10 poorly 
recognized cities (R cities and U cities, respectively) were selected as stimuli. Pachur et 
al. also surveyed what people thought were useful cues for inferring the cities’ sizes to 
establish a stimulus set of cues. These cues were whether a city had significant industry 
(industry cue), an international airport (airport cue), or a premier league soccer team 
(soccer cue).

Summary of Pachur et al.’s (2008) Experiment 1

Learning task

The experiment was run with a new group of participants (N = 40, 19 females; mean 
age = 24.6 years). The experiment started with a learning task (as, e.g., used by Bröder 
& Eichler, 2006; Bröder & Schiffer, 2003), in which participants were taught the three 
cues about the six R cities. During learning, cities and cues were presented repeatedly 
in a random order until participants correctly recalled all cities’ values on the cues. 
Table 5.1 summarizes the cues.

2 When the article on which this chapter is based was accepted for publication, a part of Pachur et al.’s (2008) data had never been 
published. This was the case for the reaction times recorded in Pachur et al ’s experiments, which are modeled using ACT-R below. 
After the article’s acceptance for publication, the authors learned about a new (then still unpublished) manuscript by Pachur (2011), 
in which an analysis of the reaction times is reported.
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Decision task

After having learned the cues, participants performed the decision task. In this task, 120 
pairs of British cities were presented on a computer screen (one city on the left side of 
the screen, the other on the right). Participants were instructed to choose the one with 
more inhabitants by pressing a key (see Figure 5.1). 

For each trial, a pair of cities was drawn at random from three types of city pairs. 
In the main type (i), six R cities that were mostly recognized in the pre-studies were 
combined with 10 cities that were mostly unrecognized in the pre-studies, yielding 
60 RU pairs. These 60 pairs were critical for Pachur et al.’s (2008) and our purposes, 
because they were most likely to allow people to apply the recognition heuristic. We 
used these pairs to test our models. To balance the presentation frequency of the R and 
U cities as much as possible, (ii) there were 30 filler pairs consisting of two cities that 
were mostly unrecognized in the pre-studies (UU pairs) as well as (iii) 30 filler pairs 
consisting of two recognized cities (RR pairs).

Recognition task

The decision task was followed by a recognition task. Participants were presented all 
cities in a random order and had to indicate for each city whether they had heard 
of it before participating in the experiment. The purpose of this recognition task 
was to make sure that the RU pairs, which were identified based on the pre-studies, 
also represented RU pairs for the participants of Experiment 1, whose recognition 
judgments were likely to be similar but not identical to the recognition judgments 
made in the pre-studies. We used participants’ responses in this task to model their 
recognition of cities.

Cue-memory task

After the recognition task, participants performed a cue-memory task in which they had 
to reproduce the cue values (“yes” or “no”) they had learned for the six R cities in the 
learning task. If they could not recall the correct values, they were allowed to respond 

Cue
City

Aberdeen Bristol Nottingham Sheffield Brighton York
Industry + + +  +  +/- a +/-a  
Airport + + -  -  -  -  
Soccer + + +  +  - - 

Note. + = positive cue value. - = negative cue value. a The design of Experiment 1 and 2 differed slightly. In 
Experiment 1, Pachur et al. (2008) taught participants positive values on the industry cue for Brighton and 
York. In Experiment 2, Pachur et al. taught participants negative values on the industry cue for Brighton 
and York.

Cues taught in the learning tasks of Experiments 1 and 2.5.1 Table
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“don’t know”. The purpose of this task was to test how well participants remembered 
the cues they were taught. We used participants’ responses in this task to model their 
retrieval of cues; for instance, whether they believed a city to have an airport.

 Summary of Pachur et al.’s (2008) Experiment 2 
In Experiment 2 (N = 40; 25 females; mean age = 25.2 years), for two cities the positive 
values on the industry cue were replaced by negative ones, such that recognition was 
contradicted by three negative cues (see Table 5.1). In all other respects, Experiment 2 
was identical to Experiment 1.

Model-Testing Approach: Methodological Principles
To strengthen our modeling efforts, we embraced five methodological principles.

Nested modeling
Any new model should be related to its own precursor (e.g., including it as special cases) 
and should be tested on data that the old model was able to account for (Grainger 
& Jacobs, 1996; Jacobs & Grainger, 1994). Our models implement the qualitative 
hypotheses discussed in the literature in a stepwise, nested fashion, and are tested on 
Pachur et al.’s (2008) data.

Competitive modeling
A model’s ability to account for data should not be evaluated in isolation, but in model 
comparisons (e.g., Fum, Del Missier, & Stocco, 2007; Gigerenzer & Brighton, 2009; 
Marewski, Schooler, & Gigerenzer, 2010). In such comparisons, a model’s ability to 
account for data can be compared to that of competing models. For instance, this way 
it is possible to learn that no model accounts for the data perfectly, but some account 
for them better than others. This way it is also possible to establish benchmarks in 
model evaluation; for example, a new model should be able to account for data better 
than previously existing models that are already known to account well for those data. 
Unfortunately, this competitive approach to model testing has rarely been taken in 
recognition heuristic research (but see Glöckner & Bröder, 2011; Marewski et al., 2009; 
Marewski, Gaissmaier, Schooler et al., 2010; Pachur & Biele, 2007, for exceptions). 
Here, we test all models competitively.

Constrained modeling
Models should be tested by constraining their parameters in separate tasks (Anderson, 
2007; A. Newell, 1990). We calibrated all models’ free parameters to the tasks of 
Experiment 1, using a stepwise procedure to constrain the parameter space. Specifically, 
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we first fitted the parameters associated with recognition and cue retrieval on data of the 
recognition and cue-memory tasks of Experiment 1, creating separate ACT-R models 
of recognition and cue retrieval. With these parameters fixed, we then estimated the 
remaining parameters from participants’ decisions and decision times in the decision 
task of Experiment 1 (see Supplementary Online Material A).

Predictive modeling
We use the term “predicting” (or “generalizing”) to refer to situations in which a 
model’s free parameters are fixed such that they cannot adjust to the data on which the 
model is tested. In contrast, we reserve the term “fitting” (or “calibrating”) to refer to 
situations in which a model’s parameters are allowed to adapt to the data. Predicting 
data well lends credence to a model and is one standard by which models should be 
evaluated (e.g., Busemeyer & Wang, 2000; Marewski & Olsson, 2009; Pitt et al., 2002; 
Roberts & Pashler, 2000). We used the parameters fitted on Experiment 1 to predict 
behavior in Experiment 2.3

Distributional modeling
Rather than just predicting means of behavioral data, we strive to predict the associated 
distributions, which further helps evaluating our ACT-R models’ ability to account for 
human data (for a related approach, see Ratcliff & Smith, 2004). Next, we will turn to 
ACT-R and these models.

Thirty-Nine ACT-R Models of Inference
ACT-R describes human cognition as a set of independent modules that interact 
through a production system, the procedural module (Figure 5.2). The production 
system consists of production rules (i.e., if–then rules) whose conditions (i.e., the “if ” 

3 The participants of Pachur et al.’s (2008) experiments were recruited and tested in the same laboratories.

External world 
(e.g., experimental task) 

ACT-R 

Intentional Module 

Procedural 
Module 

Declarative Module 

Imaginal Module 

Retrieval Buffer 

Imaginal Buffer Goal Buffer 

Manual Module 

Visual Buffer 

Visual Module 

Manual Buffer 

Figure
The organization of ACT-R. Note 
that the modules of the architecture 
have been mapped onto brain regions, 
enabling detailed process predictions of 
functional magnetic resonance imaging 
(fMRI) data (see e.g., Anderson, 
Fincham, Qin, & Stocco, 2008). While 
it is beyond the scope of this chapter to 
test fMRI predictions, we would like to 
point out that all models reported in 
this chapter actually allow making such 
predictions, inviting future model tests.

5.2
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parts of the rules) are matched against the modules. If the conditions of a production 
rule are met, then the production rule can fire. In this case, the action specified by the 
production rule is carried out. 

Each module implements different cognitive processes. The declarative module allows 
information storage in and retrieval from declarative memory, the intentional module 
keeps track of a person’s goals, and the imaginal module holds information necessary 
to perform the current task. By this token, the imaginal module is comparable to the 
focus of attention in working memory (Anderson, 2007; Borst et al., 2010; Oberauer, 
2002). A visual module for perception and a manual module for motor actions (e.g., 
pressing a key on a computer keyboard) are used to simulate interactions with the 
world. While the different modules can operate in parallel, information within each 
module can only be processed in a serial manner (Byrne & Anderson, 2001). 

In coordinating the modules, the production rules can act only on information that 
is available in buffers, which can be thought of as processing bottlenecks (Salvucci & 
Taatgen, 2008), linking the modules’ contents to the production rules. For instance, the 
production rules cannot access all contents of the declarative module, but only the part 
of information that is currently available in the retrieval buffer.

Production rules 
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Production rules 
 

1 If there is visual information on the screen that has not been attended before 
Then move the attention to this information 
 

2 If the information on the screen is attended 
Then read and encode it in the visual buffer 
 

3 If the name of a city has been read 
Then attempt to retrieve a chunk representing that city name 
 

4 If no chunk representing the city name (here city 1) can be retrieved 
Then encode in the imaginal buffer that this city is unrecognized 
 

5 If a chunk representing the city name (here city 2) can be retrieved 
Then encode in the imaginal buffer that this city is recognized 
 

6 If a recognized and an unrecognized city are encoded in the imaginal buffer 
And the goal is to decide which city is larger 
Then press a key to enter the recognized city as larger than the unrecognized city

Figure Processing stream for Model 1, one of our implementations of the recognition heuristic. Light 
grey boxes depict processing an unrecognized city name; white boxes depict processing a 
recognized city name. Dark grey boxes depict actions related to the response. Note that predicted 
decision times represent examples; the model’s decision time predictions can vary across different 
decision trials, for instance, as a function of noisy perceptual and motor processes (Supplementary 
Online Material A). Production rules are stylized representations of the LISP code productions 
rules that have been used to implement the models in ACT-R.

5.3
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ACT-R distinguishes a symbolic and a subsymbolic system. The symbolic system is 
composed of the production rules as well as the modules and buffers. Access to the 
information stored in the modules and buffers is determined by the subsymbolic 
system. This system is cast as a set of equations and determines, for instance, the timing 
of memory retrieval. Before turning to these equations, let us provide two examples of 
the ACT-R models we implemented.

Implementing Accessibility-Based Decision 
Strategies in ACT-R: Two Examples

Our ACT-R models perform the same decision task as Pachur et al.’s (2008) 
experimental participants: They “read” the city names off the computer screen, process 
them, decide which city is larger, and enter the response by “pressing” a key. 

Figure 5.3 shows the processing stream of Model 1, which is one of our 
implementations of the recognition heuristic. As can be seen, the various processing 
steps assumed by the model are coordinated by a set of production rules. Specifically, 
the model assumes that people first read the names of both cities. In doing so, the 
model attempts to retrieve a memory trace of the cities’ names, called a chunk. Chunks 
are facts like “York is a city” or “York has industry” and model people’s recognition of 
city names and their cue knowledge, respectively. If a chunk representing the name 
of one city can be retrieved, then this city is recognized.4 In Model 1, retrieving the 
chunk of one city but not the chunk of the other, is sufficient information to enter the 
recognized city as the larger city.

To compare, Figure 5.4 shows one of the compensatory strategies we implemented. 
As can be seen, Model 4.H.PN assumes that, after assessing recognition, a person will 
retrieve chunks about the recognized city, such as the industry cue. The retrieved cues 
are stored in the imaginal buffer. As we will explain below, from the imaginal buffer 
the cues spread a memory signal called activation to intuitive knowledge that large 
cities tend to have airports, premier league soccer teams, and significant industry. In 
the model, this knowledge is labeled big chunk. If the big chunk receives sufficient 
spreading activation from the retrieved cues, then Model 4.H.PN will recall that 
the recognized city is a large city and enter this city as response. If the big chunk’s 
activation is too weak, then the big chunk will not be retrieved. Consequently, the 
model has no reason to assume that the recognized city is large and will respond with 
the unrecognized city. The assumption is that such subsymbolic processes describe how 
people make implicit and intuitive, rather than explicit, deliberate judgments.   

As can be seen by comparing the x-axes of Figures 5.3 and 5.4, decision times are 
longer in Model 4.H.PN than in Model 1, because Model 4.H.PN assumes more 
processing steps than Model 1. In what follows, we give a short overview of the 
subsymbolic processes that determine the timing of the processing steps in these and 
all other models.
4 In modeling recognition, we follow Anderson et al. (1998) and Schooler and Hertwig (2005) in assuming that a chunk’s retrieval 
implies recognizing it.
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Subsymbolic Memory Processes Assumed by ACT-R

Access to chunks such as “York is a city” or  “York has industry” is determined by the 
chunk’s activation (Lovett et al., 2000). The activation, Ai, of chunk i (e.g., a city or 
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1–5 Identical to in Model 1 
 

6 If a recognized and an unrecognized city are encoded in the imaginal buffer 
And it has not yet been probed whether the recognized city has significant industry 
Then try to retrieve information indicating whether the city has such industry 
 

7 If information that the recognized city has significant industry has been retrieved  
Then encode in the imaginal buffer that this city has significant industry 
 

8 If a recognized and an unrecognized city are encoded in the imaginal buffer 
And it has not yet been probed whether the recognized city has a premier league soccer team 
Then try to retrieve information indicating whether it has such a team 
 

9 If information is retrieved that the recognized city has no premier league soccer team  
Then encode in the imaginal buffer that the recognized city the has no premier league soccer team 
 

10 If a recognized and an unrecognized city are encoded in the imaginal buffer 
And it has not yet been probed whether the recognized city has an international airport 
Then try to retrieve information indicating whether it has such an airport 
 

11 If information can be retrieved that the recognized city has no international airport 
Then note in the imaginal buffer that the recognized city has no international airport 
 

12 If a recognized and an unrecognized city are encoded in the imaginal buffer  
And information indicating whether the recognized city has industry, soccer and an airport 
Then try to retrieve the big chunk 
 

13 If the big chunk can be retrieved 
Then press a key to enter the recognized city as larger than the unrecognized city  

Figure Processing stream for Model 4.H.PN. Light grey boxes depict processing an unrecognized 
city name; white boxes depict processing a recognized city name. Striped boxes depict actions 
related to the retrieval of cues. Dark grey boxes depict actions related to the response. Note 
that predicted decision times represent examples; the model’s decision time predictions can vary 
across different decision trials, for instance, as a function of noisy perceptual and noisy motor 
processes, or as a function of whether to-be-retrieved cues are positive, negative, or unknown 
(Supplementary Online Material A). As we explain in detail below, also the order in which cues 
are processed (i.e., productions 6-11) will vary across trials (see also Footnote 7). Production 
rules are stylized representations of the LISP code productions rules that have been used to 
implement the models in ACT-R.

5.4
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a cue) reflects the likelihood that the chunk will be needed in the future (Anderson 
& Schooler, 1991) and is determined by three components—the chunk’s base-level 
activation, Bi, the spreading activation the chunk receives from the current context, Si, 
and a noise component, ε:

		  (5.1)

The first component that influences a chunk’s activation, Ai, its base-level activation, Bi, 
reflects the chunk’s past usefulness:

		  (5.2)

where n is the number of presentations of chunk i, tk is the time since the kth presentation, 
and d is a decay parameter. Consequently, the more often a city name or a cue was 
encountered (e.g., in an experimental task) and the more recent these encounters were, 
the higher the city’s or cue’s activation.5

The second component that influences a chunk’s activation, Ai, spreading activation, 
Si, reflects the chunk’s usefulness in the current context. The amount of spreading 
activation is determined by the chunk’s association to other chunks that are currently 
stored in the buffers (Anderson & Lebiere, 1998). In our models, reading a city name 
and encoding it in the imaginal buffer would, for example, increase the likelihood of a 
cue associated with this city being needed. The city would spread activation to the cue 
as described by Equation 5.3:

		  (5.3)

where cue i receives spreading activation, Si, from city j. The amount of spreading 
activation Si is determined by the associative strength, Sji, between i and j, which is 
weighted by the source activation, Wj, of j in the imaginal buffer. The associative strength, 
Sji, between chunks is approximated with

		  (5.4)

where S is a parameter for the maximum associative strength between chunks and fanji 
is the number of chunks i that are associated with a chunk j. Consequently, the more 
cues are associated with a city in memory, the lower the associative strength between 
the city and each of the cues.

5 In modeling Pachur et al.’s (2008) experimental tasks, we assume the base level activations (i.e., of the cities, cues, and the big 
chunk) to vary only across the time it takes to make a decision in a trial in the decision task, as well as across the times it takes to make 
a judgment in a trial of the recognition and cue memory tasks, respectively. For instance, decisions that take a long time are more 
likely to allow for the base level activations to decay away than decisions that are made quickly. For simplicity, we re-set the base 
level activations to their initial values (see Supplementary Online Material A) each time a new trial was presented. For example, 
upon presentation of a trial consisting of the cities of York and Stockport, the base level activations would be allowed to vary until a 
decision is made for that trial. For the next trial, say the cities of Bristol and Poole, the base level activations would first be re-set to 
their initial values, and then be allowed to vary until a decision is made in that trial.

Ai = Bi + Si + ε

Bi = ln tk
−d

k=1

n

∑⎛⎝⎜
⎞
⎠⎟

Si = WjS ji
j
∑

S ji = S − ln( fan ji )
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The third component that influences a chunk’s activation, Ai, is the retrieval noise, ε. 
It is added to the activation of a chunk when a retrieval request is made. With s being 
a free parameter, ε is generated from a logistic distribution with a mean of zero and a 
variance of

		  (5.5)

Only chunks that exceed a certain amount of activation, Ai, as defined by the 
retrieval threshold, τ, can be retrieved. For instance, only cues with activations falling 
above τ would be retrieved. The retrieval probability, p, is:

		  (5.6)

If a chunk i can be retrieved, the time required for the retrieval is determined by the 
latency factor, F, and the activation of the chunk, Ai:

		  (5.7)

Thus, the more strongly city names and cues are activated in memory, the faster they 
can be retrieved. 

If no chunk matches a retrieval request or if the matching chunk with the highest 
activation is below the retrieval threshold, a retrieval failure will occur. For example, 
reading the name of an unknown city will result in a retrieval failure. The time it takes 
to note such a failure is:

		  (5.8)

Detailed Description of the 39 Models
The above-described subsymbolic memory processes as well as the corresponding 
parameter values are identical in all models and the models also do not differ with 
respect to the perceptual and motor processes they assume (Supplementary Online 
Material A). 

However, the models do differ with respect to the decision processes. In implementing 
these processes, we had to make a series of assumptions, for instance, about the order in 
which people will assess recognition as opposed to cues. All assumptions are grounded 
in the decision, memory, and ACT-R literatures. Often, however, these literatures offer 
more than one plausible assumption. Following the principle of competitive modeling, 
we dealt with such competing assumptions by creating different models to implement 
them, which allowed us to test the assumptions against each other. Following the 
principle of nested modeling, we additionally combined part of these assumptions 
with each other, resulting in 39 models. These models are summarized in Tables 5.2 
and 5.3. 

σ 2 = π 2

3
s 2

p = 1

1+ e
τ −Ai
s

Retrieval  Time = Fe− Ai

Retrieval  Failure  Time = Fe−τ
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Retrieve and 
encode city 

names 
Retrieve 

positive cues 
Retrieve 

negative cues 
Number of 

retrieved cues a

Retrieved 
cues can be 
forgotten 

Encode cues 
in the imaginal 

buffer
Model 1 class: Stopping and decision rules noncompensatory—simple model
Model 1 X 0
Model 2 class: Stopping rule compensatory, decision rule noncompensatory—simple models
Model 2.PN X X X 3
Model 2.P X X 3
Model 3 class: Stopping rule compensatory, decision rule noncompensatory—simple models
Model 3.PN X X X 3 X
Model 3.P X X 3 X
Model 1&3 class: Stopping rule noncompensatory and compensatory, decision rule noncompensatory—race models
Model 1&3.PN X X X 0 to 3 X
Model 1&3.P X X 0 to 3 X
Model 1&3.PN.F X X X 0 to z b X X
Model 1&3.P.F X X 0 to z b X X
Model 4 class: Stopping rule compensatory, decision rule compensatory—simple models
Model 4.H.PN X X X 3 X
Model 4.H.P X X 3 X
Model 4.L.PN X X X 3 X
Model 4.L.P X X 3 X
Model 1&4 class: Stopping rule noncompensatory and compensatory, decision rule noncompensatory and compensatory—race models
Model 1&4.H.PN X X X 0 to 3 X
Model 1&4.H.P X X 0 to 3 X
Model 1&4.H.PN.F X X X 0 to z b X X
Model 1&4.H.P.F X X 0 to z b X X
Model 1&4.L.PN X X X 0 to 3 X
Model 1&4.L.P X X 0 to 3 X
Model 1&4.L.PN.F X X X 0 to z b X X
Model 1&4.L.P.F X X 0 to z b X X
Model 5 class: Stopping rule compensatory, decision rule compensatory—simple models
Model 5.1.PN X X X 1 to 3 X
Model 5.1.P X X 1 to 3 X
Model 5.2.PN X X X 2 to 3 X
Model 5.2.P X X 2 to 3 X
Model 5.3.PN X X X 3 X
Model 5.3.P X X 3 X
Model 1&5 class: Stopping rule noncompensatory and compensatory, decision rule noncompensatory and compensatory—race models
Model 1&5.1.PN X X X 0 to 3 X
Model 1&5.1.P X X 0 to 3 X
Model 1&5.1.PN.F X X X 0 to z b X X
Model 1&5.1.P.F X X 0 to z b X X
Model 1&5.2.PN X X X 0 to 3 X
Model 1&5.2.P X X 0 to 3 X
Model 1&5.2.PN.F X X X 0 to z b X X
Model 1&5.2.P.F X X 0 to z b X X
Model 1&5.3.PN X X X 0 to 3 X
Model 1&5.3.P X X 0 to 3 X
Model 1&5.3.PN.F X X X 0 to z b X X
Model 1&5.3.P.F X X 0 to z b X X

Note. PN = Positive and negative cues. P = positive cues. F = forgetting cues. a As retrieved cues, we count all (positive, 
negative, and unknown) cue values that have been probed in memory. b The maximum number of retrieved cues is variable, 
because cues can be retrieved again when they are forgotten. For a description of the parameter settings, see Supplementary 
Online Material A; for model codes see http//www.ai.rug.nl/~katja/models.

Overview of the perception and memory processes used in the 39 models.5.2 Table
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As can be seen in Table 5.2, the labeling of the models is organized around eight 
main classes: the Model 1, 2, 3, 4, 5, 1&3, 1&4, and 1&5 class, with each class 
embodying different sets of assumptions. Specifically, as we will discuss in more detail 
below, the Model 1 class implements what one may loosely term noncompensatory 
processes; the Model 2 and 3 classes implement noncompensatory and compensatory 
processes; and the Model 4 and 5 classes implement only compensatory processes.6 
The Model 1&3, 1&4, and 1&5 classes were generated by partially combining the 
Model 1, 3, 4, and 5 classes with each other. For example, combining Model 1 and 
Model 3 resulted in the Model 1&3 class. In what follows we will describe the models 
in more detail. Complete model codes can be downloaded from http://www.ai.rug.
nl/~katja/models.

Primacy of recognition

As a first processing step, all models read the city names (in Table 5.2, column labeled 
retrieve and encode city names). If they can retrieve a city, they encode it as recognized 
in the imaginal buffer. If they cannot retrieve a city, they encode it as unrecognized.  Put 
differently, we assume that people will first assess their recognition of the city names 
before retrieving further cues. This assumption is grounded in our experimental setup, 
in which participants were shown the city names but no cues (Figure 5.1). Moreover, 
this assumption is consistent with the literature, which suggest that familiarity (i.e., 
recognition) arrives on the mental stage earlier than recollection (e.g., Gronlund & 
Ratcliff, 1989; Hertwig et al., 2008; Hintzman & Curran, 1994; McElree, Dolan, & 
Jacoby, 1999; Pachur & Hertwig, 2006; Volz et al., 2006).    

The models differ in the steps that are executed after recognition has been assessed. 
Whereas Model 1 bases decisions only on recognition, the remaining 38 models 
additionally retrieve cues. In all of these 38 models, the retrieval of cues is instantiated 
by three sets of production rules, which attempt to retrieve a city’s value on the soccer, 
industry, and airport cues, respectively. If such a retrieval attempt is successful, the 
cue value is retrieved from memory. If the attempt is not successful (a retrieval failure 
occurs), the value of this cue is unknown to the model. (For simplicity, in both cases 
we speak of the respective cues as having been “retrieved”, because, even if the cue 
value is unknown, the cue has been probed in memory.) Which production fires 
first, and correspondingly, which cue is retrieved first, is determined at random. We 
implemented this random cue retrieval order, because during the learning task all cues 
were presented equally often in random order until they were remembered perfectly, 
making it equally likely for a person to remember that a city has a premier league 
soccer team, a significant industry, or an international airport, respectively.
6 Note that we use the terms “noncompensatory” and “compensatory” in a loose sense to help readers to map the verbal descriptions 
of our ACT-R models to the existing literature on the recognition heuristic. However, there is, perhaps, no one-to-one mapping. A 
more adequate way of thinking about our models might be that they represent the dimension recognition-based versus cue-based, 
which in fact also reflects the dichotomy on which the controversy about noncompensatory versus compensatory process models of 
decision making has focused on in the recognition literature. We would like to point interested readers to our model codes for precise 
information on what our models look like.
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Information used in the decision process Outcome of the decision process
Use 

recognition 
to choose 
between 

cities

Use cues 
to choose 
between 

cities

Use cues 
via sub-
symbolic 
system

Use cues via 
symbolic 
system

Always 
choose 

recognized 
city

Sometimes 
choose un-
recognized 

city

Decision 
time is 

influenced 
by cues

Model 1 class: Stopping and decision rules noncompensatory—simple model
Model 1 X X
Model 2 class: Stopping rule compensatory, decision rule noncompensatory—simple models
Model 2.PN X X X
Model 2.P X X X
Model 3 class: Stopping rule compensatory, decision rule noncompensatory—simple models
Model 3.PN X X X
Model 3.P X X X
Model 1&3 class: Stopping rule noncompensatory and compensatory, decision rule noncompensatory—race models
Model 1&3.PN X X X
Model 1&3.P X X X
Model 1&3.PN.F X X X
Model 1&3.P.F X X X
Model 4 class: Stopping rule compensatory, decision rule compensatory—simple models
Model 4.H.PN X X X X
Model 4.H.P X X X X
Model 4.L.PN X X X X
Model 4.L.P X X X X
Model 1&4 class: Stopping rule noncompensatory and compensatory, decision rule noncompensatory and compensatory—race models
Model 1&4.H.PN X X X X X
Model 1&4.H.P X X X X X
Model 1&4.H.PN.F X X X X X
Model 1&4.H.P.F X X X X X
Model 1&4.L.PN X X X X X
Model 1&4.L.P X X X X X
Model 1&4.L.PN.F X X X X X
Model 1&4.L.P.F X X X X X
Model 5 class: Stopping rule compensatory, decision rule compensatory—simple models
Model 5.1.PN Xa X X X X
Model 5.1.P Xa X X X X
Model 5.2.PN Xa X X X X
Model 5.2.P Xa X X X X
Model 5.3.PN Xa X X  Xb  Xb X
Model 5.3.P Xa X X X X
Model 1&5 class: Stopping rule noncompensatory and compensatory, decision rule noncompensatory and compensatory—race models
Model 1&5.1.PN X X X X X
Model 1&5.1.P X X X X X
Model 1&5.1.PN.F X X X X X
Model 1&5.1.P.F X X X X X
Model 1&5.2.PN X X X X X
Model 1&5.2.P X X X X X
Model 1&5.2.PN.F X X X X X
Model 1&5.2.P.F X X X X X
Model 1&5.3.PN X X X  Xb  Xb X
Model 1&5.3.P X X X X X
Model 1&5.3.PN.F X X X  Xb  Xb X
Model 1&5.3.P.F X X X X X

Note. PN = Positive and negative cues. P = positive cues. F = forgetting cues. a Models of the Model 5 class use recognition 
to decide between cities if they cannot reach their decision criterion of D cues. b In Experiment 1, the PN versions of the 
Model 5.3 and 1&5.3 classes always choose recognized cities, because these models require at least three negative cues to 
choose unrecognized cities (D = 3). In Experiment 2, the models sometimes choose unrecognized cities, because in this 
experiment cases with three negative cues occurred (see Table 5.1).

Overview of the decision process and its outcome for the 39 models.5.3 Table
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Positive and negative cues

It has been argued that people are more likely to use positive cues rather than negative 
ones (Dougherty et al., 2008; Glöckner & Bröder, 2011). We incorporated this 
hypothesis in the models. As can be seen in Table 5.2, except for Model 1, which does 
not retrieve any cues, for all models we created two versions, one that retrieves positive 
and negative cues (labeled PN version, e.g., Model 2.PN) and one that retrieves only 
positive cues (labeled P version; e.g., Model 2.P). Note that retrieving negative cues is 
not necessary to decide in favor of unrecognized cities (see descriptions of Model 4 
and Model 1&4 below). Also note that we assume positive cues to be more strongly 
activated and therefore to be retrieved faster than negative ones (Supplementary 
Online Material A).

Model 1, 2, and 3 classes: Models with noncompensatory decision rules

As mentioned above, Model 1 assesses recognition only, always inferring recognized 
cities to be larger than unrecognized ones (see Table 5.3). Also Models 2.PN, 2.P, 
3.PN, and 3.P always infer recognized cities to be larger than unrecognized ones. 
Yet, these four models additionally retrieve cues. Adding yet another processing step, 
Models 3.PN and 3.P do not only retrieve the cues, but also encode their values (e.g., 
in Model 3.PN: positive, negative, or unknown) in the imaginal buffer. This encoding 
is time costly (see Supplementary Online Material A, imaginal-delay), but it allows 
the cues to be available in working memory (i.e., in the imaginal buffer) for further 
processing steps and to spread activation to other information in memory.   

In the terminology often used to describe the recognition heuristic and related 
heuristics, in Models 2.PN, 2.P, 3.PN, and 3.P what one may term “compensatory 
processes” govern the models’ stopping rules, that is, the models’ rules for deciding when 
to stop information retrieval. What one my term “noncompensatory processes” direct 
the models’ decision rules, that is, the rules on how available information is used to 
make a decision. In Model 1, in contrast, both the stopping and the decision rules are 
noncompensatory. 

Model 1 corresponds to what we deem to be the simplest recognition heuristic 
implementation; Models 2.PN, 2.P, 3.PN, and 3.P in turn, also implement the 
recognition heuristic, but incorporate more recent hypotheses about the heuristic’s 
stopping rule (Gigerenzer & Goldstein, 2011; Pachur et al., 2008). For example, the 
compensatory stopping rule in Model 3.PN will cause the model to stop information 
retrieval when it has retrieved and encoded the information of all three cues. The 
noncompensatory decision rule will then cause the model to ignore the cues and to 
decide based on the recognition of the cities.

Model 4 and 5 classes: Models with compensatory decision rules

The Model 4 and 5 classes implement both compensatory stopping and compensatory 
decision rules. As such, these models are representatives of the type of decision 
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strategies that is often discussed as antipode to both the recognition heuristic and 
related noncompensatory heuristics (e.g., Bergert & Nosofsky, 2007; Bröder & Eichler, 
2006; Bröder & Gaissmaier, 2007; Bröder & Schiffer, 2003; Glöckner & Hodges, 2011; 
Hilbig & Pohl, 2009; Mata et al., 2007; B. R. Newell & Fernandez, 2006; B. R. Newell 
& Shanks, 2004; Oeusoonthornwattana & Shanks, 2010; Pohl, 2006; Richter & Späth, 
2006; Rieskamp & Hoffrage, 2008). Specifically, models of the 4 and 5 classes retrieve 
the city names and cues and encode them in the imaginal buffer, just as Models 3.PN 
and 3.P do. However, in contrast to Models 3.PN and 3.P, the Model 4 and 5 classes 
actually use the cues in the decision rules. We distinguish between two pathways of 
cue usage: subsymbolic, capturing how people make implicit, intuitive decisions, and 
symbolic, modeling explicit, deliberate decisions.

Subsymbolic use of cues. In the Model 4 class, the retrieved and encoded cues 
influence the decision through subsymbolic channels, that is, through spreading 
activation (Equation 5.3). If for a given city, positive cues are encoded in the imaginal 
buffer, then these positive cues can spread activation to a chunk, labeled big chunk 
(Figure 5.4). If the activation is strong enough for the big chunk to cross the retrieval 
threshold, the big chunk will be retrieved and the model will judge the recognized city 
as large. If the big chunk does not receive sufficient spreading activation to cross the 
retrieval threshold, the model chooses the unrecognized city. As explained above, we 
assume this big chunk to reflect intuitive knowledge implicating that a city is large.

How easily the big chunk will be retrieved varies between the models. In Models 
4.H.PN and 4.H.P, the big chunk’s base-level activation is higher (hence H) than the 
retrieval threshold (Supplementary Online Material A),  such that the big chunk 
is likely to be retrieved. As a result these two models often (but not always) judge 
recognized cities to be larger than unrecognized ones. In Models 4.L.PN and 4.L.P 
the big chunk’s base-level activation is lower (hence L) than the retrieval threshold. 
Therefore, the retrieval of the big chunk will more strongly depend on how much 
activation is spread from positive cues to the big chunk. Importantly, all variants 
of Model 4 can decide in favor of unrecognized cities even if no negative cues are 
available, because such decisions depend on the big chunk, which only receives 
spreading activation from positive cues.

By assuming subsymbolic spreading activation and intuitive knowledge to be 
responsible for compensatory decision processes, the Model 4 class implements a 
central feature of connectionist parallel constraint satisfaction models (Glöckner & 
Betsch, 2008; Thagard, 1989a, 2000), which Glöckner and Bröder (2011) and others 
(e.g., Hilbig & Pohl, 2009; Hochman et al., 2010) have argued account for behavior 
better than the recognition heuristic.

Symbolic use of cues. In the Model 5 class, retrieved and encoded cues influence 
the decision through symbolic pathways, reflecting more deliberate, explicit decision 
processes. Specifically, production rules check whether a required number of cues has 
been retrieved to decide whether the recognized city is larger than the unrecognized 
one or vice versa. As soon as D positive cues have been encoded, the models decide 
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for the recognized city; as soon as D negative cues have been encoded they decide 
for the unrecognized city, with D representing the decision criterion. If the models 
cannot retrieve D cues, they use recognition as their best guess, deciding in favor of 
the recognized city. This also reflects the hypothesis that it is easier to go with than 
against recognition when making decisions (Pachur & Hertwig, 2006; Volz et al., 
2006). Models 5.3.PN and 5.3.P employ a decision criterion of D = 3. The decision 
criterion of Models 5.2.PN and 5.2.N is D = 2. Models 5.1.PN and 5.1.P have the 
lowest decision criterion, with D = 1. 

For example, assume Model 5.1.PN infers whether York or Stockport is larger. 
After judging York as recognized and Stockport as unrecognized, the model retrieves 
cues. The first retrieved cue has a positive value. Thus, the model decides that York 
is the larger city. If the first retrieved cue had had a negative value, then the model 
would have decided that the unrecognized city, Stockport, is larger. If the value of the 
first cue had been unknown (i.e., attempting to retrieve one cue would have resulted 
in a retrieval failure), then the model would have continued to retrieve cues, until the 
decision criterion of D = 1 positive or negative cues would have been reached. If all 
cue values had turned out to be unknown, then the model would have used recognition 
and decided for York.7

In sampling as many cues as needed to reach a decision criterion, the Model 5 
class implements a feature of sequential sampling and evidence accumulation models 
that some have suggested describe behavior better than the recognition heuristic and 
related noncompensatory heuristics (e.g., Hilbig & Pohl, 2009; Lee & Cummins, 
2004; B. R. Newell, 2005; B. R. Newell & Lee, in press). By specifying a decision 
criterion to decide in favor of unrecognized cities, the Model 5 class also resembles 
the type of compensatory strategies discussed by Marewski, Gaissmaier, Schooler et 
al. (2010); which, however, assume no sequential sampling of cues. Finally, by placing 
equal importance on sampled (i.e., retrieved) cues, the Model 5 class implements a 
feature of classic unit-weight linear integration strategies (e.g., Dawes, 1979; Dawes & 
Corrigan, 1974; Einhorn & Hogarth, 1975; Gigerenzer & Goldstein, 1996); but also 
these classics assume no sequential cue sampling.   

7 To clarify, the order of cue retrieval has no impact on the decisions or decision times in models that retrieve all cues before a decision 
is made (in the experiments we modeled, these are the Model 2, 3, 4, 5.3 classes). The order of cue retrieval does have an impact 
on the decision and decision times in the Model 5.1, 1&5.1, 5.2, and 1&5.2 classes, because these models require fewer than three 
cues to be retrieved before a decision is made (D = 1 and D = 2, respectively). In these models, the same comparison of cities can lead 
to different decisions and decision times, depending on cue order. Note that decision times in these models also depend on cue order 
because positive cues will be retrieved faster than negative ones (Supplementary Online Material A), resulting in shorter decision 
times when positive cues are retrieved than when negative ones are retrieved before a decision is made. Due to the different retrieval 
times for positive and negative cues, the order of cue retrieval can also impact decision times in the Model 1&3, 1&4, and 1&5.3 
classes, even though in these models the decisions do not depend on cue order.
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Model 1&3, 1&4, and 1&5 classes: Race models

We refer to all models described above as simple models and distinguish them from race 
models (Logan, 1988).8 Simple models implement only one type of decision process. 
Race models, in contrast, implement a race between competing processes. The outcome 
of this race determines which process will ultimately be responsible for the decision. 
Specifically, the Model 1&3 class implements a race between Model 1, that is, the 
simple noncompensatory process to respond with the recognized city, and Model 
3, that is, the compensatory process to retrieve and encode cues. The Model 1&4 
class implements a race between the noncompensatory process of Model 1 and the 
subsymbolic compensatory processes to retrieve, encode, and use cues as assumed by 
Model 4.9 The Model 1&5 class implements a race between the noncompensatory 
process of Model 1 and the symbolic compensatory processes to retrieve, encode, and 
use cues as assumed by Model 5. 

To give an example from the Model 1&3 class, Model 1&3.PN first reads and 
encodes the city names. After these first steps, a race between responding directly with 
the name of the recognized city (i.e., as in Model 1) and retrieving and encoding one 
of the three cues (i.e., as in Model 3.PN) takes place. If a retrieve-cue process wins, the 
retrieved cue is encoded in the imaginal buffer and the race starts again. This race is 
repeated either (a) until the model responds with the recognized city before all three 
cues are retrieved (as in Model 1), or (b) until all three cues are encoded and a decision 
is made in favor of the recognized city (as in Model 3.PN).  

As is explained in detail in Supplementary Online Material B, in all race models, 
we assume that the respond-with-recognized-city process (i.e., Model 1) competes 
with all other processes of the respective simple model version (i.e., Model 3, Model 4, 
or Model 5). Consequently, the more steps are required prior to a decision being made, 
the more often the respond-with-recognized-city process will compete against other 
processes. To illustrate this, in the Model 1&4 class, the respond-with-recognized-city 
process competes not only with the retrieve-cue process, but, once all cues are retrieved, 
also with the process of retrieving a big chunk (as in the Model 4 class). 

8 In the literature, the terms “race” or “race model” are sometimes used in similar ways as the terms “evidence accumulation” or  
“sequential sampling models”. For instance, Gold and Shadlen (2007) define race models as models where “evidence supporting 

the various alternatives is accumulated independently to fixed thresholds” (p. 541) and as soon as one of the alternatives reaches 
the threshold, it is chosen. Applying the race to production rules, we implemented a simplified version of that mechanism, where 
competing production rules have equal utilities (Anderson et al., 2004) and are therefore chosen at random. Put in Golden and 
Shadlen’s terms, the production rules have equal chances of reaching the threshold. We choose this implementation, because we did not 
want to add additional assumption about the relative speed of the various processes involved. Note that the utilities of the production 
rules did not change over the experiment (i.e., put in ACT-R’s terminology, there was no utility learning). We decided for this 
implementation because participants (and thus also the models) did not receive feedback during the decision phase of the experiments.
9 Note that in all representatives of the Model 4 and 1&4 classes, cue knowledge will be used for the decision only once all cues have 
been retrieved from memory. We decided for this implementation, because constraint satisfaction models are usually concerned with 
the integration of information at one certain point in time (see Mehlhorn & Jahn, 2009, and Wang et al., 2006b, for attempts to 
extent constraint satisfaction models to sequential reasoning). By letting the models do the implicit evaluation of the alternatives only 
after all cues have been retrieved, we try to stay as close as possible to constraint satisfaction models as proposed in the decision making 
literature (e.g., Glöckner & Betsch, 2008).
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Whereas in the Model 1&3 and 1&4 classes potentially all three cues can be 
retrieved (i.e., if the respond-with-recognized-city process does not win the race prior 
to retrieving all three cues), in the Model 1&5 class the number of cues that can 
be retrieved depends on the decision criterion D. For example, in Model 1&5.1.PN, 
which has a decision criterion of D = 1 positive or negative cue, the respond-with-
recognized-city process competes with the retrieve-cue process until one positive or 
one negative cue has been retrieved. In Model 1&5.2.PN (D = 2) the race continues 
until two positive or negative cues have been retrieved. In Model 1&5.3.PN (D = 3) 
the race continues until three positive or negative cues have been retrieved. If a model 
of the Model 1&5 class has retrieved all cues without reaching its decision criterion D, 
it will use recognition as its best guess (as in the Model 5 class).   

For all race models, we additionally implemented variants that not only assume a 
race between noncompensatory recognition and compensatory cue retrieval and usage, 
but additionally assume that retrieved cues will at times be forgotten, such that these 
cues have to be retrieved again. These models are marked with an F in their name (e.g., 
Model 1&3.PN.F). The intuition is that the various retrieval, encoding, and decision 
processes can detract from previously retrieved cues (see Lewandowsky et al., 2009, for 
a discussion of interference-based forgetting in working memory). Specifically, these 
models start with a race between responding with the recognized city and retrieving 
and encoding more cues. As soon as at least two cues have been encoded in the 
imaginal buffer, an additional race against a forgetting process takes place.10 If this 
forgetting process wins the race, the retrieved cues are forgotten (i.e., they are removed 
from the imaginal buffer). If cues are forgotten, then the race between responding with 
the recognized city and retrieving and encoding cues takes place again. These processes 
continue until a decision is made.  

As can be seen in Table 5.2, the 1&4 and 1&5 race Model classes consist of 8 and 
12 different models, respectively. The large number of models within these race model 
classes is a product of our principle of nested modeling: Recall that the Model 4 class 
exists in two versions, L and H, representing low and high activation levels of the big 
chunk. Likewise, the Model 5 class exists in 3 versions, with each one making different 
assumptions about the number of cues that will be processed (i.e., D = 1, 2, or 3). To 
spare the reader from having to parse long lists of model names, below we subsume 
the models from these different versions of the Model 1&4 and 1&5 classes under the 
labels Model 1&4.L and 1&4.H classes, as well as Model 1&5.1, 1&5.2, and 1&5.3 
classes, respectively.

10 For simplicity, we implemented the forgetting process by means of production rules. We determined the threshold of two cues based 
on ad-hoc considerations about the positive skew in the human decision time distribution. The possibility of forgetting cues as soon as 
two cues have been retrieved and encoded results in an increased upper spread (i.e., visible in the 3rd quartile) of the models’ decision 
time distributions.
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Description of the Data Analyses
Individual Differences 

It has been pointed out that people may differ in the strategies they use when making 
decisions from the accessibility of memories (e.g., Bergert & Nosofsky, 2007; Bröder 
& Gaissmaier, 2007; Cokely, Parpart, & Schooler, 2009; Gigerenzer & Brighton, 2009; 
Hilbig, 2008; Marewski et al., 2009; Marewski, Gaissmaier, Schooler et al., 2010; B. 
R. Newell & Shanks, 2004). For instance, Pachur et al. (2009) provided evidence that 
processing speed influences people’s reliance on recognition. 

Also Pachur et al. (2008) interpreted their data as being suggestive of individual 
differences: While some of their participants always chose recognized cities 
irrespective of the cues they had been taught, other participants’ decisions seemed to 
have been influenced by these cues (see also Pachur, 2011). In reanalyzing Pachur et 
al.’s data, we took possible individual differences into account by examining the data 
separately for (a) those participants who always inferred recognized cities to be larger 
than unrecognized ones (recognition group; nExperiment 1 = 25, nExperiment 2 = 19), and (b) 
those participants who sometimes inferred unrecognized cities to be larger (cue group; 
nExperiment 1 = 15, nExperiment 2 = 21). 

Moreover, we tailored the 39 models to each individual participant in two steps. 
First, each participant’s responses in the recognition and cue-memory tasks were used 
to model the contents of that participant’s declarative memory. That is, we did not 
give the models perfect knowledge of the cities and cue profiles as shown in Table 
5.1 but rather let the models operate on each individual participant’s recognition and 
knowledge, as assessed by the recognition and cue-memory tasks, respectively (see 
http://www.ai.rug.nl/~katja/models for each participants’ knowledge as used by the 
models). Second, using participants’ individual recognition and cue knowledge, all 
models were run on each participant’s trials in the decision task.

Assessing the Correspondence Between the 
Models’ Predictions and the Human Data

For simplicity and following the principle of nested modeling, we assessed the 
correspondence between the models’ predictions and the human data by analyzing 
these data in the same way Pachur et al. (2008) analyzed the human data. Specifically, 
we collapsed the human data across participants, calculating means and standard 
errors for proportions (for decisions) as well as medians and the 1st and 3rd quartiles 
(for decision times) separately for each of 2x3 categories of comparisons of cities. In 
Experiment 1, these categories were: the recognized city is associated with (a) one 
positive cue, (b) two positive cues, or (c) three positive cues, and the recognized city is 
associated with (a) two negative cues, (b) one negative cue, or (c) zero negative cues. In 
Experiment 2, the 2x3 categories were: the recognized city is associated with (a) zero, 
(b) two, or (c) three positive cues and with (a) three, (b) one, or (c) zero negative cues. 
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In both experiments, the definition of the 2x3 categories was based on the cue profiles 
participants had been taught in the learning tasks (Table 5.1).11

Decisions and decision times produced by the models could vary between individual 
runs, due to noise and, where applicable, due to the race between different processes. 
Therefore, to compute the models’ predictions, for each participant of Experiments 1 
and 2, each model was run 40 times. For each of these 40 runs, we calculated means 
and standard errors as well as medians and 1st and 3rd quartiles, separately for each of 
the 2x3 categories of each experiment in an analogous way as for the human data. For 
each category, the means, standard errors, medians, and quartiles were then averaged 
across the 40 simulation runs. 

Results of the Model-Fitting Competition in Experiment 1
Due to the large number of models, in what follows we will mainly discuss the best 
models’ fits. All models’ fits are summarized in Table 5.4 and discussed in more detail 
in Supplementary Online Material C. Supplementary Online Material C also includes 
a complete set of graphs of all models’ fits.

Recognition group

Figure 5.5 shows the human decisions and decision times in the recognition group 
as well as the decisions and decision times produced by the Model 1&3 class. Within 
this model class, Model 1&3.P.F produced the smallest RMSDs (root mean square 
deviations) to the human data. As can be seen, neither the human decisions nor the 
model’s decisions vary as a function of the cues. At the same time, the human and the 
model’s decision times increase with the number of negative cues, decrease with the 
number of positive cues and show overall a large spread. Also the three remaining 
models of the 1&3 class, Models 1&3.PN, 1&3.PN.F, and 1&3.P, fit the decisions 
and decision times well. These three models are identical to Model 1&3.P.F except 
that they make no assumptions about the forgetting of cues (Models 1&3.PN, 1&3.P) 
and/or assume negative cues to be represented in memory (Models 1&3.PN, 1&3.
PN.F). 

As can be seen in Table 5.4 as well as by comparing Figures 5.5 and 5.6, those 
representatives of the Model 1&5 class that assume a decision criterion of 3 cues 
(Model 1&5.3.PN, Model 1&5.3.PN.F, Model 1&5.3.P, Model 1&5.3.P.F) fit the 
decisions and decision times about as well as the Model 1&3 class. For example, the 
best-fitting model from the Model 1&5.3 class, Model 1&5.3.P.F, produces basically 
the same decision time pattern as the best-fitting model from the Model 1&3 class, 
Model 1&3.P.F, and virtually the same RMSDs. Also those representatives of the 
11 Note that categories defined by positive cues are not necessarily identical to categories defined by negative cues, because both 
participants and models may sometimes fail to recall whether a cue is positive or negative (i.e., reflected by unknown cue values in 
the cue-memory task). For instance, the category “two positive cues” does not necessarily correspond to the category “one negative cue”. 
Yet, most of the time the categories as defined by positive and negative cues are identical, because unknown cue values were very rare 
in the data (see Pachur et al., 2008). Therefore, the results tend to be similar when plotting the data either as a function of positive 
cues or as a function of negative cues.
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Recognition group Cue group
Decisions (%) Decision times (ms) Decisions (%) Decision times (ms)

Model 1 class: Stopping and decision rules noncompensatory—simple model
Model 1 0 409 9.4 b 511
Model 2 class: Stopping rule compensatory, decision rule noncompensatory—simple models
Model 2.PN 0 258 9.4 b 355
Model 2.P 0 283 9.4 b 376
Model 3 class: Stopping rule compensatory, decision rule noncompensatory—simple models
Model 3.PN 0 357 9.4 b 449
Model 3.P 0 379 9.4 b 469
Model 1&3 class: Stopping rule noncompensatory and compensatory, decision rule noncompensatory—race models
Model 1&3.PN 0 110 9.4 b 219
Model 1&3.P 0 97 9.4 b 201
Model 1&3.PN.F 0 73 9.4 b 185
Model 1&3.P.F 0 67 9.4 b 169
Model 4 class: Stopping rule compensatory, decision rule compensatory—simple models
Model 4.H.PN 10.7 a 427 0.9 499
Model 4.H.P 10.7 a 477 1.5 518
Model 4.L.PN 58.6 a 461 49.4 514
Model 4.L.P 59.1 a 511 49.6 534
Model 1&4 class: Stopping rule noncompensatory and compensatory, decision rule noncompensatory and compensatory—race models
Model 1&4.H.PN 1.3 a 105 8.1 223
Model 1&4.H.P 1.3 a 100 8.1 198
Model 1&4.H.PN.F .8 a 71 8.5 177
Model 1&4.H.P.F .7 a 55 8.6 157
Model 1&4.L.PN 7.3 a 109 1.9 218
Model 1&4.L.P 7.3 a 95 2.1 197
Model 1&4.L.PN.F 4.2 a 63 5.1 176
Model 1&4.L.P.F 4.3 a 56 5.1 155
Model 5 class: Stopping rule compensatory, decision rule compensatory—simple models
Model 5.1.PN 40.7 a 259 32.4 389
Model 5.1.P 0 193 9.4 b 286
Model 5.2.PN 48.1a 304 39.5 395
Model 5.2.P 0 352 9.4 b 431
Model 5.3.PN 0 357 9.4 b 449
Model 5.3.P 0 379 9.4 b 469
Model 1&5 class: Stopping rule noncompensatory and compensatory, decision rule noncompensatory and compensatory—race models
Model 1&5.1.PN 15 a 243 8.3 372
Model 1&5.1.P 0 209 9.4 b 326
Model 1&5.1.PN.F 15.1 a 244 8.1 370
Model 1&5.1.P.F 0 205 9.4 b 324
Model 1&5.2.PN 8.1 a 133 6.8 248
Model 1&5.2.P 0 118 9.4 b 220
Model 1&5.2.PN.F 5.7 a 106 6.8 212
Model 1&5.2.P.F 0 96 9.4 b 189
Model 1&5.3.PN 0 109 9.4 b 223
Model 1&5.3.P 0 97 9.4 b 203
Model 1&5.3.PN.F 0 75 9.4 b 188
Model 1&5.3.P.F 0 70 9.4 b 167

Note. PN = Positive and negative cues. P = Positive cues. F = Forgetting cues. For decisions, RMSDs were calculated on 
the mean percentage of choices for the recognized city. For models that always decide for the recognized city, RMSDs 
for decisions will–by definition–always be 0 in the recognition group. For decision times, RMSDs were calculated on 
the median and the 1st and 3rd quartile and then averaged. Evaluations of the models’ fit based on RMSDs should be 
complemented by visual inspections of the data produced by the models (see Figures 5.5-5.8 and Supplementary Online 
Material C: Figures 5.C1-5.C18). a These models do by definition not fit the decision of the recognition group, because they 
sometimes decide for the unrecognized city whereas participants in the recognition group always decide for the recognized 
city. b These models do by definition not fit the decision of the cue group, because they always decide for the recognized city 
whereas participants in the cue group sometimes decide for the unrecognized city.

Root mean square deviations between the model and the human data in Experiment 1. 5.4 Table
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Figure Decisions (a) and decision times (b) for the recognition group in Experiment 1. Human data and 
fits of the four models from the Model 1&3 class. Models are ordered from the top left to the 
bottom right in the same order as in Tables 5.2 - 5.5. In each graph, the upper grey x-axis shows 
the number of negative cues; the corresponding data points (decisions in Panel A, decision times 
in Panel B) are plotted in grey font (triangles). In each graph, the lower black x-axis shows the 
number of positive cues; the corresponding data points are plotted in black font (circles). For 
instance, in Panel B the median of the human decision times is 1335 ms for two negative cues 
and 1332 ms for one positive cue. 

5.5

Figure Decisions (a) and decision times (b) for the recognition group in Experiment 1. Human data 
and fits of those six models from the Model 1&5.2 and 1&5.3 classes that always decide for the 
recognized city in Experiment 1. Models are ordered from the top left to the bottom right in 
the same order as in Tables 5.2 - 5.5. In each graph, the upper grey x-axis shows the number of 
negative cues; the corresponding data points (decisions in Panel A, decision times in Panel B) 
are plotted in grey font (triangles). In each graph, the lower black x-axis shows the number of 
positive cues; the corresponding data points are plotted in black font (circles).

5.6
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Model 1&5 class that assume a decision criterion of 2 positive cues (Model 1&5.2.P, 
1&5.2.P.F) fit the decisions and decision times well.

 Importantly, while technically (i.e., by virtue of their RMSDs) Models 1&3.P.F 
and 1&5.3.P.F are the best-fitting models in Experiment 1’s recognition group, all 
models of the 1&3 and 1&5.3 classes, as well as the P versions of the Model 1&5.2 
class produce relatively similar fits. Therefore, we caution to declare any specific model 
from these classes to be considered the single winner. Rather, we would prefer to 
consider these classes the winner. In short, in Experiment 1’s recognition group, the 
best-fitting model classes implement a race between Model 1’s recognition-based 
noncompensatory stopping and decision rules and other processes; namely (i) Model 
3’s compensatory stopping rule and its recognition-based noncompensatory decision 
rule (i.e., as in the Model 1&3 class) as well as (ii) Model 5’s compensatory stopping 
and decision rules (i.e., as in the Model 1&5 class). 

We would like to add three observations with respect to the Model 1&5 class. 
First, note that Model 1&5.3.PN’s and Model 1&5.3.PN.F’s comparatively good 
fit of the recognition group’s decisions (Figure 5.6) can be explained by Experiment 
1’s design. These two models need to retrieve 3 negative cues to decide against the 
recognized city (D = 3). As 3 negative cues were not taught in Experiment 1 (Table 
5.1), Model 1&5.3.PN and Model 1&5.3.PN.F could not reach this decision criterion 
in Experiment 1, resulting in the models to always decide in favor of recognized cities. 
Had 3 negative cues been taught in Experiment 1, Model 1&5.3.PN and Model 
1&5.3.PN.F would have produced decisions in favor of unrecognized cities, resulting 
in poor fits in the recognition group.12

Second, while one could thus argue that Model 1&5.3.PN’s and Model 
1&5.3.PN.F’s good fit is an artifact of Experiment 1’s design, the comparatively good 
fit of Model 1&5.3.P and Model 1&5.3.P.F is no such artifact: As these two models 
do not use negative cue knowledge, they never decide against unrecognized cities, but 
use recognition and positive cues to decide in favor of recognized ones. On the other 
hand, one may wonder whether compensatory, cue-based models that can never decide 
against unrecognized objects are theoretically plausible, or, what such models would 
add beyond models with simpler recognition-based, noncompensatory decision rules 
(e.g., as implemented by the Model 1&3 class).

Third, also Models 1&5.1.P and 1&5.1.P.F, which assume a decision criterion D 
of 1 positive cue, exhibit relatively small RMSDs (Table 5.4). By this token, also these 
representatives of the Model 1&5 class may belong to the winners. However, note that 
Models 1&5.1.P and 1&5.1.P.F produce a much smaller spread in the decision time 
distribution than the spread that can be found in the human times (Figure 5.C13 in 
Supplementary Online Material C). 

12 To compare, the PN versions of the Model 1&5.1 and 1&5.2 classes (i.e., Model 1&5.1.PN, 1&5.1.PN.F, Model 1&5.2.PN, 
and 1&5.2.PN.F), do reach their decision criterion of  D = 1 and D = 2 negative cues, respectively, letting these models occasionally 
decide for unrecognized cities. As a result, the PN versions of the Model 1&5.1 and 1&5.2 classes cannot fit the decisions in the 
recognition group (Table 5.4; Supplementary Online Material C, Figures 5.C13 and 5.C15).
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Cue group

Figure 5.7 shows the human decisions and decision times as well as the decisions and 
decision times produced by the Model 1&4.L class, which is the class that best fits 
the combination of decisions and decision times in the cue group. As can be seen, the 
human decisions and decision times as well as the models’ decisions and decision times 
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Figure Decisions (A) and decision times (B) for the cue group in Experiment 1. Human data and fits 
of the four models from the Model 1&4.L class. Models are ordered from the top left to the 
bottom right in the same order as in Tables 5.2 - 5.5. In each graph, the upper grey x-axis shows 
the number of negative cues; the corresponding data points (decisions in Panel A, decision times 
in Panel B) are plotted in grey font (triangles). In each graph, the lower black x-axis shows the 
number of positive cues; the corresponding data points are plotted in black font (circles). For 
instance, in Panel A the mean percentage of participants’ choices for the recognized city is 88 for 
two negative cues and 89 for one positive cue.
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vary as a function of cues. The decision times show a large spread. While the Model 
1&4.L class emerges as the best-fitting class, it is difficult to rank order the models 
within that class in terms of their RMSDs. As Table 5.4 shows, Model 1&4.L.P.F fits 
the decision times best; however, this model does not produce the smallest RMSDs for 
the decisions, which are produced by Model 1&4.L.PN. 

Let us turn to a couple of other models that may, perhaps, be considered to belong 
to the winners in the cue group. First, as can be seen in Table 5.4 (and Figure 5.C8 
in Supplementary Online Material C), the Model 1&4.H class, which differs from 
the Model 1&4.L class only in the base level activation of the big chunk, produces 
a good fit of the decision times, while not fitting the decisions as well as the 1&4.L 
class. Second, Table 5.4 suggests that also the PN versions of the Model 1&5.2 class 
(i.e., Model 1&5.2.PN, 1&5.2.PN.F) produce a relatively good fit to the cue group’s 
combination of decisions and decision times. However, as a visual inspection of Figure 
5.8 reveals, these models produce an abrupt drop in decisions for the recognized city 
as soon as the decision criterion of D = 2 negative cues is reached. The human data do 
not exhibit such a drop. Much the same can be said with respect to the PN versions of 

10
00

15
00

20
00

25
00

0 1 2 3

3 2 1 0

de
ci

si
on

 ti
m

e 
(m

s)

N positive cues

N negative cues

Human

●

●
●

● ●
●

●

●

●

60
70

80
90

10
0

0 1 2 3

3 2 1 0

re
co

gn
ize

d 
ci

ty
 c

ho
se

n 
(%

)

N positive cues

N negative cues

Human

●

●

●

●

neg cues
pos cues

a) Decisions

mean (SE)

b) Decision Times

median (quartiles)

60
70

80
90

10
0

0 1 2 3

3 2 1 0

re
co

gn
ize

d 
ci

ty
 c

ho
se

n 
(%

)

N positive cues

N negative cues

Model 1&5.2.PN

●

● ●

60
70

80
90

10
0

0 1 2 3

3 2 1 0

re
co

gn
ize

d 
ci

ty
 c

ho
se

n 
(%

)

N positive cues

N negative cues

Model 1&5.2.PN.F

●

● ●

10
00

15
00

20
00

25
00

0 1 2 3

3 2 1 0

de
ci

si
on

 ti
m

e 
(m

s)

N positive cues

N negative cues

Model 1&5.2.PN

●

●
●

● ● ●

●

●

●

10
00

15
00

20
00

25
00

0 1 2 3

3 2 1 0

de
ci

si
on

 ti
m

e 
(m

s)

N positive cues

N negative cues

Model 1&5.2.PN.F

●
●

●

● ● ●

●

●

●

Figure Decisions (A) and decision times (B) for the cue group in Experiment 1. Human data and fits of 
those two models from the Model 1&5.2 class that sometimes decide against the recognized city 
in Experiment 1. Models are ordered from left to right in the same order as in Tables 5.2 - 5.5. 
In each graph, the upper grey x-axis shows the number of negative cues; the corresponding data 
points (decisions in Panel A, decision times in Panel B) are plotted in grey font (triangles). In 
each graph, the lower black x-axis shows the number of positive cues; the corresponding data 
points are plotted in black font (circles).
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Recognition group Cue group
Decisions (%) Decision times (ms) Decisions (%) Decision times (ms)

Model 1 class: Stopping and decision rules noncompensatory—simple model
Model 1 0 279 15.9 b 498
Model 2 class: Stopping rule compensatory, decision rule noncompensatory—simple models
Model 2.PN 0 255 15.9 b 290
Model 2.P 0 307 15.9 b 320
Model 3 class: Stopping rule compensatory, decision rule noncompensatory—simple models
Model 3.PN 0 454 15.9 b 380
Model 3.P 0 531 15.9 b 410
Model 1&3 class: Stopping rule noncompensatory and compensatory, decision rule noncompensatory—race models
Model 1&3.PN 0 101 15.9 b 170
Model 1&3.P 0 135 15.9 b 145
Model 1&3.PN.F 0 134 15.9 b 131
Model 1&3.P.F 0 179 15.9 b 109
Model 4 class: Stopping rule compensatory, decision rule compensatory—simple models
Model 4.H.PN 11.7 a 590 6.8 435
Model 4.H.P 12 a 666 6.6 474
Model 4.L.PN 57.8 a 623 45.1 456
Model 4.L.P 57.1 a 699 44.9 500
Model 1&4 class: Stopping rule noncompensatory and compensatory, decision rule noncompensatory and compensatory—race models
Model 1&4.H.PN 1.6 a 100 14.4 164
Model 1&4.H.P 1.6 a 151 14.5 140
Model 1&4.H.PN.F 0.9 a 138 15.1 124
Model 1&4.H.P.F 0.8 a 180 15.1 88
Model 1&4.L.PN 7.4 a 115 10.9 166
Model 1&4.L.P 7.2 a 150 11.2 145
Model 1&4.L.PN.F 4.2 a 147 13.1 125
Model 1&4.L.P.F 4 a 204 12.9 95
Model 5 class: Stopping rule compensatory, decision rule compensatory—simple models
Model 5.1.PN 60.1 a 193 44.8 331
Model 5.1.P 0 436 15.9 b 409
Model 5.2.PN 56.7 a 284 40.8 295
Model 5.2.P 0 472 15.9 b 373
Model 5.3.PN 44.7 a 453 28.5 380
Model 5.3.P 0 531 15.9 b 410
Model 1&5 class: Stopping rule noncompensatory and compensatory, decision rule noncompensatory and compensatory—race models
Model 1&5.1.PN 22 a 166 7.2 321
Model 1&5.1.P 0 177 15.9 b 251
Model 1&5.1.PN.F 21.8 a 163 6.9 320
Model 1&5.1.P.F 0 208 15.9 b 236
Model 1&5.2.PN 13 a 123 2.9 206
Model 1&5.2.P 0 142 15.9 b 167
Model 1&5.2.PN.F 10.5 a 106 5.6 185
Model 1&5.2.P.F 0 175 15.9 b 131
Model 1&5.3.PN 5.8 a 99 10.2 162
Model 1&5.3.P 0 146 15.9 b 146
Model 1&5.3.PN.F 3.1 a 131 12.6 135
Model 1&5.3.P.F 0 167 15.9 b 104

Note. PN = Positive and negative cues. P = Positive cues. F = Forgetting cues. For decisions, RMSDs were calculated on 
the mean percentage of choices for the recognized city. For models that always decide for the recognized city, RMSDs for 
decisions will–by definition–always be 0 in the recognition group. For decision times, RMSDs were calculated on the median 
and the 1st and 3rd quartile and then averaged. Evaluations of the models’ fit based on RMSDs should be complemented by 
visual inspections of the data produced by the models (see Figures 5.9-5.12 and Supplementary Online Material C: Figures 
5.C19-5.C36). a These models do by definition not fit the decision of the recognition group, because they sometimes decide 
for the unrecognized city whereas participants in the recognition group always decide for the recognized city. b These models 
do by definition not fit the decision of the cue group, because they always decide for the recognized city whereas participants 
in the cue group sometimes decide for the unrecognized city.

Root mean square deviations between the model and the human data in Experiment 2. 5.5 Table
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the Model 1&5.1 class (Figure 5.C13 in Supplementary Online Material C), which 
produce an even steeper drop in the decisions, and which fit the spread of the decision 
times less well than the Model 1&5.2 class.

In short, the cue group’s best-fitting models are members of the Model 1&4.L class. 
This model class implements a race between Model 1’s noncompensatory stopping 
rule and Model 4’s compensatory stopping rule as well as a race between Model 1’s 
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Figure Decisions (A) and decision times (B) for the recognition group in Experiment 2. Human data 
and predictions of the four models from the Model 1&3 class. Models are ordered from the top 
left to the bottom right in the same order as in Tables 5.2 - 5.5. In each graph, the upper grey 
x-axis shows the number of negative cues; the corresponding data points (decisions in Panel A, 
decision times in Panel B) are plotted in grey font (triangles). In each graph, the lower black 
x-axis shows the number of positive cues; the corresponding data points are plotted in black 
font (circles).
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noncompensatory decision rule and Model 4’s compensatory decision rule, assuming 
implicit, intuitive knowledge about the cities’ sizes to be responsible for occasional 
decisions in favor of unrecognized cities.
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Figure Decisions (A) and decision times (B) for the recognition group in Experiment 2. Human data 
and predictions of those four models from the Model 1&5.2 and 1&5.3 classes that always 
decide for the recognized city in Experiment 2. Models are ordered from the top left to the 
bottom right in the same order as in Tables 5.2 - 5.5. In each graph, the upper grey x-axis shows 
the number of negative cues; the corresponding data points (decisions in Panel A, decision 
times in Panel B) are plotted in grey font (triangles). In each graph, the lower black x-axis 
shows the number of positive cues; the corresponding data points are plotted in black font 
(circles).
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Results of the Model Generalization Competition in Experiment 2 

To test how well these results generalize to another data set, we let all 39 models predict 
the human decisions and decision times from Experiment 2. In doing so, we populated 
the models’ declarative memory with each individual participant’s recognition and cue 
knowledge, using participants’ responses in the recognition task and cue-memory task 
of Experiment 2 —just as we did in Experiment 1. And as in Experiment 1, we ran the 
models on the trials of each individual participant in the decision task of Experiment 
2. Following our principle of predictive modeling, we kept all models’ production rules 
as well as the values of all models’ parameters identical to those used in Experiment 
1. Table 5.5 summarizes the results for all models. In what follows, we will mainly 
discuss those models that generalized best (for all other models’ generalizability and a 
complete set of graphs of all models’ predictions see Supplementary Online Material 
C.)

Recognition group

Figures 5.9 and 5.10 show the human decisions and decision times as well as the 
corresponding data produced by the best-generalizing models in the recognition group. 
These are representatives of the Model 1&3 class, as well as those representatives from 
the Model 1&5 class that assume a decision criterion of 2 and 3 positive cues (Models 
1&5.2.P, 1&5.2.P.F, 1&5.3.P, 1&5.3.P.F). As can be seen, all winning models correctly 
predict that decisions do not vary as a function of cues. The models also predict the 
overall pattern and spread of the decision times well. Importantly, as the RMSDs in 
Table 5.5 show, the technically best-generalizing model, Model 1&3.PN, belongs to 
the Model 1&3 class, which also was one of the winning model classes in Experiment 
1, lending, perhaps, further support to the 1&3 class. 

Note that also Model 1&5.1.P—and to a lesser extent Model 1&5.1.P.F—exhibit 
relatively small RMSD in Table 5.5. However, as in Experiment 1, these models fail 
to predict the spread of the human decision times (Figure 5.C31 in Supplementary 
Online Material C). 

In short, for the recognition group, members of the Model 1&3 class are among the 
best models in both experiments. Also the versions of the Model 1&5.2 and 1&5.3 
class that use only positive cues perform well in both experiments. The versions of the 
Model 1&5.3 class that use positive and negative cues fitted Experiment 1’s recognition 
group well (cf. Figure 5.6), but do not predict the recognition group’s decisions in 
Experiment 2. Recall that these two models need to retrieve 3 negative cues to decide 
against the recognized city. As 3 negative cues were not taught in Experiment 1 (cf. 
Table 5.1), the models did not reach their decision criterion, leading them to always 
decide in favor of recognized cities. In Experiment 2, in contrast, 3 negative cues were 
taught. Correspondingly, the models do reach their decision criterion, leading them to 
occasionally decide against the recognized city, this way mismatching the recognition 
group data. However, as we explain next, these models (Model 1&5.3.PN and Model 
1&5.3.PN.F) turn out to generalize well to Experiment 2’s cue group.
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Cue group

Figures 5.11 and 5.12 show the human data and the best-generalizing models in the 
cue group. These are the Model 1&4.L class as well as those representatives of the 
Model 1&5.2 and 1&5.3 classes that use positive and negative cues. 
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Figure Decisions (A) and decision times (B) for the cue group in Experiment 2. Human data and 
predictions from the four models from the Model 1&4.L class. Models are ordered from the 
top left to the bottom right in the same order as in Tables 5.2 - 5.5. In each graph, the upper 
grey x-axis shows the number of negative cues; the corresponding data points (decisions in 
Panel A, decision times in Panel B) are plotted in grey font (triangles). In each graph the lower 
black, x-axis shows the number of positive cues; the corresponding data points are plotted in 
black font (circles). 
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Let us first turn to the decisions of the Model 1&4.L class, which fitted the data best 
in Experiment 1. As in Experiment 1, the human decisions, as well as the decisions of 
the models vary as a function of cues. However, in Experiment 2, the human decisions 
are strongly influenced by three negative cues (i.e., corresponding to zero positive cues). 
Having been adjusted to Experiment 1, in which participants were taught a maximum 

10
00

15
00

20
00

25
00

0 1 2 3

3 2 1 0

de
ci

si
on

 ti
m

e 
(m

s)

N positive cues

N negative cues

Human

●
●

●

●
●

●

●

●

●

60
70

80
90

10
0

0 1 2 3

3 2 1 0

re
co

gn
ize

d 
ci

ty
 c

ho
se

n 
(%

)

N positive cues

N negative cues

Human

●

●
●

●

neg cues
pos cues

a) Decisions

mean (SE)

SE is 0 when 
decisions are at 
100%.

b) Decision Times

median (quartiles)

60
70

80
90

10
0

0 1 2 3

3 2 1 0

re
co

gn
ize

d 
ci

ty
 c

ho
se

n 
(%

)

N positive cues

N negative cues

Model 1&5.3.PN.F

●

● ●

60
70

80
90

10
0

0 1 2 3

3 2 1 0

re
co

gn
ize

d 
ci

ty
 c

ho
se

n 
(%

)

N positive cues

N negative cues

Model 1&5.3.PN

●

● ●

10
00

15
00

20
00

25
00

0 1 2 3

3 2 1 0

de
ci

si
on

 ti
m

e 
(m

s)

N positive cues

N negative cues

Model 1&5.3.PN.F

●
●

●

● ● ●

●

●

●

10
00

15
00

20
00

25
00

0 1 2 3

3 2 1 0

de
ci

si
on

 ti
m

e 
(m

s)

N positive cues

N negative cues

Model 1&5.3.PN

●
●

●

●
● ●

●

●

●

60
70

80
90

10
0

0 1 2 3

3 2 1 0

re
co

gn
ize

d 
ci

ty
 c

ho
se

n 
(%

)

N positive cues

N negative cues

Model 1&5.2.PN.F

●

● ●

60
70

80
90

10
0

0 1 2 3

3 2 1 0

re
co

gn
ize

d 
ci

ty
 c

ho
se

n 
(%

)

N positive cues

N negative cues

Model 1&5.2.PN

●

● ●

10
00

15
00

20
00

25
00

0 1 2 3

3 2 1 0

de
ci

si
on

 ti
m

e 
(m

s)

N positive cues

N negative cues

Model 1&5.2.PN

●

●
●

●
● ●

●

●

●

10
00

15
00

20
00

25
00

0 1 2 3

3 2 1 0

de
ci

si
on

 ti
m

e 
(m

s)

N positive cues

N negative cues

Model 1&5.2.PN.F

●
●

●

● ● ●

● ●

●

Figure Decisions (A) and decision times (B) for the cue group in Experiment 2. Human data and 
predictions from those four models from the Model 1&5.2 and 1&5.3 classes that sometimes 
decide against the recognized city in Experiment 2. Models are ordered from the top left 
to the bottom right in the same order as in Tables 5.2 - 5.5. In each graph, the upper grey 
x-axis shows the number of negative cues; the corresponding data points (decisions in Panel A, 
decision times in Panel B) are plotted in grey font (triangles). In each graph the lower black, 
x-axis shows the number of positive cues; the corresponding data points are plotted in black 
font (circles).
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of two negative cues (Table 5.1), the Model 1&4.L class fits the decisions for zero and 
one negative cue well, but has difficulties to predict the large effect of three negative 
cues in Experiment 2 (Figure 5.11). Much the same can be said with respect to the 
Model 1&4.H class, which, as in Experiment 1, does not predict the decisions as well 
as the 1&4.L class (Table 5.5; Figure 5.C26 in Supplementary Online Material C). 

In contrast, consider the decisions of the PN versions of the Model 1&5.2 and 
1&5.3 classes (Model 1&5.2.PN, 1&5.2.PN.F, 1&5.3.PN, 1&5.3.PN.F).). As shown 
in Figure 5.12, these models do predict a large effect of negative cues on the decisions 
once their decision criterion of D negative cues is reached. Models 1&5.2.PN and 
1&5.2.PN.F, which decide against the recognized city as soon as two negative cues 
have been retrieved, predict the pattern in the human decisions best (Table 5.5, Figure 
5.12). 

Figures 5.11 and 5.12 also show the decision times. The models from the 1&4.L 
class as well as the PN versions of the 1&5.2, and 1&5.3 classes are able to approximate 
the human decision time pattern and its spread. However, Models 1&5.2.PN and 
1&5.2.PN.F, which predict the decisions best, do not predict the decision times as 
well as the representatives of the 1&4.L class and the PN versions of the 1&5.3 class 
(Table 5.5), making it difficult to rank order the best model classes in terms of their 
performance. 

Note that, as in Experiment 1, also the PN versions of the Model 1&5.1 class 
produce a drop in the decisions once its decision criterion of D = 1 negative cue is 
reached. However, this drop is steeper than in the human data and the model class fails 
to predict the spread of the decision times (Figure 5.C32 in Supplementary Online 
Material C.)

In short, the winning model classes in Experiment 2’s cue group are essentially 
identical to those that won in Experiment 1’s cue group—with two relevant caveats. 
First, in Experiment 2, besides the Model 1&4.L and 1&4.H classes, and the PN 
versions of the 1&5.2 classes, also the PN versions of the Model 1&5.3 class may 
be considered to belong to the winners. Second, in Experiment 1, the Model 1&4.L 
class fitted the decisions and decision times best. In Experiment 2, it is more difficult 
to establish a rank order of these classes’ ability to predict the human data, as those 
models that predict the decisions best do not predict the decision times best.13

13 The results reported throughout this chapter are based on data that has been collapsed across participants. To explore whether 
the results hold when the data is not collapsed, we ran a second analysis. Using the very same model parameter values as the ones 
reported above, we calculated the RMSD between each participant and each model and then averaged the resulting RMSDs 
across participants. These averaged RMSDs were generally higher than the RMSDs calculated for the collapsed data, which is not 
surprising, as the models’ parameter values were fitted to the collapsed data and not to the individual data. Importantly, overall the 
same model classes that won the model competition on the collapsed data emerged as the winning model classes also in this second, 
exploratory analysis. However, in several (but not all) cases within the winning model classes, the rank order of the models’ goodness 
of fit changed. For instance, in our original analysis of the collapsed data of Experiment 1’s recognition group, Model 1&3.P.F and 
Model 1&5.3.P.F were technically the best models. In the second analysis, Model 1&3.PN and Model 1&5.3.PN were the best 
models. At the same time, in Experiment 2’s recognition group, in both, our original analysis on the collapsed data as well as in the 
second analysis, Model 1&3.PN fitted best. Importantly, the RMSD differences within the different Model classes are small in both 
analyses. This further suggests that the rank order within model classes should be interpreted with caution and supports the point that 
it is model classes, rather than single models that can be identified as winners in our model comparison (see, e.g., the result section on 
the best fitting models in the recognition group of Experiment 1).
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General Discussion
Much research has investigated how people make decisions based on a sense of the 
accessibility of memories, as assumed by the recognition heuristic and related models 
(Bruner, 1957; Jacoby & Dallas, 1981; Pachur et al., 2011; Pohl, 2011; Tversky & 
Kahneman, 1973). At the same time, in the field of accessibility-based decision making 
and beyond, many have criticized the lack of specification of process hypotheses (e.g., 
Dougherty et al., 2008; Dougherty et al., 1999; Gigerenzer, 1996, 1998; Keren & 
Schul, 2009; A. Newell, 1973). Particularly the recognition heuristic has triggered a 
controversy about what processes describe people’s decisions best when they make 
inferences from the accessibility of memories: Do people rely on this noncompensatory 
heuristic, ignoring further knowledge, or do they use compensatory strategies instead? 

 In this chapter, we provided a primer on how the precision of corresponding process 
hypotheses can be increased. Using the ACT-R cognitive architecture, we specified 
process hypotheses about accessibility-based decisions in 39 quantitative process 
models. These models do not only capture decision processes, but also the interplay 
of decision processes with perceptual, memory, intentional, and motor processes. 
Moreover, by implementing a number of decision models that had originally been 
defined at different levels of description into one architectural modeling framework, 
we made these models comparable, providing a basis for detailed, multi-experiment 
model comparisons to be conducted in future research. Finally, we conducted a first 
model comparison ourselves, re-analyzing two previously published data sets. 

Even though the main objective of this model comparison was to illustrate how 
such comparisons can be conducted rather than to conclusively identify the best model, 
in what follows we will first discuss our model comparison’s results. We will close by 
turning to a number of broader methodological issues.

Dissolving Dichotomies by Implementing 
More Than One Process: Race Models 

Both in fitting existing data and in generalizing to new data, representatives of the race 
model classes performed best in our model competition. As such, the winners are models 
that implement recognition-based noncompensatory processes side by side with cue-
based compensatory ones, suggesting that in one part of the trials in the decision task 
noncompensatory processes governed information retrieval and/or decision making, 
while in the other part compensatory processes were dominant. Specifically, our results 
highlight the possibility that even people who always responded with recognized cities 
(i.e., as in the recognition group) most likely retrieved and encoded cues in at least 
some of the trials. People who sometimes responded with unrecognized cities (i.e., as 
in the cue group), in turn, most likely based their decisions on cues in some of the trials 
but ignored these cues and relied on recognition in others. These results dissolve the 
dichotomy between cue-based compensatory and recognition-based noncompensatory 
processes that is often assumed in the literature and that has fuelled debates about 
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the recognition heuristic (e.g., Pohl, 2006, 2011; Richter & Späth, 2006, see above). 
Moreover, these results cast, perhaps, some doubt on a simplifying assumption that is 
central to this debate: By classifying a person exclusively as either a noncompensatory 
or a compensatory decision maker, previous studies had (at least implicitly) assumed 
that a person’s decision processes do not vary across the trials of a decision task (e.g., 
Glöckner & Bröder, 2011; Marewski, Gaissmaier, Schooler et al., 2010).14

We hasten to add that our analyses entailed collapsing the data across participants’ 
responses, which severely limits the possibility to draw conclusions about individual 
persons’ decision processes. We suggest for future research to tackle this question, by 
using more exhaustive human data sets and analyses.

Models Implementing One Decision Process: Simple Models
Models that implement merely one type of decision process, namely noncompensatory 
or compensatory, did not account as well for people’s behavior as the winning race 
models. Let us first turn to the noncompensatory models, and then to the compensatory 
ones. 

Noncompensatory models

The strictly noncompensatory Model 1, which neither retrieves nor uses cues for 
decisions, did not accurately predict participants’ decision times, even for participants 
who always chose the recognized city (Supplementary Online Material C, Figures 
5.C1, 5.C19). As such, our results cast doubts on recognition heuristic implementations 
that assume noncompensatory recognition-based stopping and decision rules. Much 
the same can be said with respect to those recognition heuristic implementations 
that retrieve cues but do not use them for decisions: Also the Model 2 and 3 classes, 
which implement corresponding cue-based compensatory stopping and recognition-
based noncompensatory decision rules, did not account well for people’s behavior 
(Supplementary Online Material C, Figures 5.C1, 5.C19). However, the relative 
success of the 1&3 race Model class lends support to a combination of both recognition 
heuristic implementations: As the Model 1&3 class includes Model 1 and Model 3 as 
components, our results suggest that a combination of these two recognition heuristic 
implementations may reflect people’s decision processes in the comparisons of cities 
(Gigerenzer & Goldstein, 2011).

We would like to add two points. First, while representatives of the Model 1&3 
class are both among Experiment 1’s best fitting and among Experiment 2’s best 
generalizing models, also those representatives of the 1&5 Model class that rely 
on positive cues in addition to recognition were able to account for behavior well. 
This result leads us to stress that it may be similarly plausible for noncompensatory, 
recognition-based stopping and decision rules to govern a part of the comparisons of 
14 The approach to classify a person either exclusively as a compensatory decision maker or as a noncompensatory one is also common 
in studies on people’s use of other heuristics, such as take-the-best (Bröder, 2003; Bröder & Gaissmaier, 2007; Bröder & Schiffer, 
2003, 2006).
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two cities (i.e., Model 1), while compensatory, cue-based processes govern the other 
part (i.e., Model 5). On the other hand, the Model 1&3 class provides, arguably, a 
more parsimonious explanation for the human data than the Model 1&5 class.

Second, we implemented just one strictly noncompensatory variant of the recognition 
heuristic: Model 1, which has both a recognition-based noncompensatory stopping 
and decision rule. It is to be expected that pitting this single strictly noncompensatory 
model against a total of 38 other models may have biased the outcome of the model 
comparison against strictly noncompensatory models.

Compensatory models

We implemented two types of strictly compensatory models. In assuming that 
subsymbolic pathways and spreading activation give rise to implicit, intuitive knowledge 
that governs compensatory decision processes, the Model 4 class implements a central 
feature of Glöckner and Betsch’s (2008) parallel constraint satisfaction model. The 
parallel constraint satisfaction model has been argued to account for behavior better 
than the recognition heuristic—at times without the model having been applied to 
data (e.g., Hilbig & Pohl, 2009; Hochman et al., 2010); see Glöckner and Bröder 
(2011) for a test that does apply the model to data. 

The Model 5 class assumes symbolic pathways to be responsible for compensatory 
processes, and as such, decisions to be based on explicit, deliberate knowledge. Also 
models from this class have been discussed as antipodes to the recognition heuristic, 
almost always with such models not being applied to data (e.g., Hilbig & Pohl, 2009; 
B. R. Newell & Shanks, 2004; Oeusoonthornwattana & Shanks, 2010; Pohl, 2006; 
Richter & Späth, 2006), or with the models having been applied to data, but without 
using the models to quantitatively predict decision times (Marewski et al., 2009; 
Pachur & Biele, 2007).

Whereas both Model 4 and Model 5 classes were able to account for some aspect 
of the human data in the cue group, neither turned out to be sufficient (Supplementary 
Online Material C; Figures 5.C6, 5.C12, 5.C24, 5.C30). Instead, the race models of 
the Model 1& 4 class, that is, combinations of the implicit, intuitive processes assumed 
by Model 4 and the noncompensatory, recognition-based processes of Model 1 were 
able to fit participants’ data best in Experiment 1. In Experiment 2, race models of the 
1&4 class were also among the best-generalizing models; however, here representatives 
of the Model 1&5 class rivaled their performance. In short, with respect to strictly 
compensatory models, the current data suggest that the simple Model 4 and 5 classes 
are insufficient.

Methodological Considerations 
Model specification

At the close of this chapter, we would like to stress five points. First, most of the 
hypotheses about accessibility-based decisions tested here had only been formulated 
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verbally in the literature. As a result, the outcomes of our model comparison also 
depend on our choices of how to implement such verbal hypotheses into detailed 
computational models in ACT-R. That is, we cannot rule out the possibility that 
different implementations will lead to different results in model competitions. It is 
important to realize, however, that this specification problem (Lewandowsky, 1993), 
namely, how to translate an underspecified hypothesis into a detailed model, is not a 
problem specific to research on accessibility-based decisions, but can also emerge when 
using cognitive architectures to implement hypotheses about cognitive processes in 
other areas of research, including when implementing classic decision strategies such 
as elimination-by-aspects (Tversky, 1972). Here we dealt with this problem by following 
the principles of competitive and nested modeling, leading us to implement a large 
number of variants of the accessibility-based strategies discussed in the literature.

Architecture

Second, the lack of specification that many decision strategies exhibit is also 
problematic for another reason: Often it is not clear what drives a strategy’s ability to 
account for process data. Is it an unspecified assumption, for example about memory, 
perceptual, or motor processes? Or is it the decision strategy itself that carries the 
burden of explanation? As A. Newell (1990) puts it, a theory that deals with only one 
component of behavior (e.g., decision making) while ignoring the rest (e.g., memory) 

“flirts with trouble from the start” (p. 17). In our view, models of decision making 
should therefore be specified at an architectural level, spelling out not only decision 
processes, but also how these processes interweave with other cognitive processes.

Modeling principles

Third, we deem the two experimental data sets and analyses reported here to be 
insufficient to conclusively identify the best process model. For instance, as discussed 
above, some of our 39 models’ ability to account for the experimental data was similar. 
However, we would like to point out that we were able to obtain a more differentiated 
picture of the models’ performance than one might have expected, given how large 
the number of tested models was. We attribute those relatively clear-cut results of our 
model competition to the five methodological principles we embraced. For instance, 
had we just fitted median decision times and not additionally let the models fit and 
predict the decision times’ 1st and 3rd quartiles, then it would have been more difficult 
to judge which models account for decision times best, because different models may 
be able to produce similar median times, but different spreads for the underlying 
decision time distributions. Similarly, had we not constrained the models by estimating 
recognition and retrieval parameters from separate recognition and cue retrieval tasks 
and then keeping all parameters constant across all models, it might have been more 
difficult to tell whether a failure of a model to account for decision times should be 
attributed to the model’s assumptions about recognition and retrieval processes or to 
the model’s assumptions about decision processes.
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Strategy selection

Fourth, we would like to point out that comparative tests of process models of 
decision strategies such as the ones we conducted above are incomplete if they are not 
informed by theories of strategy selection. Such theories predict in what situations 
and tasks a given decision strategy will be relied upon and in what situations and tasks 
a strategy will not come into play (Busemeyer & Myung, 1992; Lovett & Anderson, 
1996; Marewski & Schooler, 2011; Rieskamp & Otto, 2006). Without such a theory, 
rejecting a model of decision making simply because it does not predict behavior well 
in a certain situation or task is problematic. There are at least two potential reasons 
why a decision strategy does not predict behavior. One is (a) that the strategy per 
se is generally not a good model of behavior. An alternative reason is (b) that the 
decision strategy is not relied upon, because people (or the corresponding selection 
mechanisms) choose not to use it in a particular situation. For instance, in the cue group 
of Experiment 1, Models of the 1&4.L class fitted decisions and decision times best, 
lending support to an implicit use of cue knowledge. In Experiment 2, results were 
different. Whereas also in this experiment, Models of the 1&4.L class predicted the 
human decisions well for zero and one negative cues, models assuming more deliberate, 
explicit decision processes (i.e., Models of the 1&5.2 class) turned out to be the better 
predictors for decisions when three negative cues were known about the recognized city. 
The fact that the Model 1&4.L’s class relative success did not completely generalize 
from Experiment 1 to Experiment 2 could not only be interpreted as (a) challenging 
the validity of this model class, but also as (b) the difference in the design of the 
two experiments (Table 5.1) having resulted in a change in the decision strategies 
participants employed. A model of strategy selection that predicts when a given 
decision strategy will be used (and when not) could help to establish which of these 
two interpretations is likely to represent the better one.

Generalizability across experimental paradigms

Fifth, we would also like to stress that different experimental paradigms can require 
specifying different cognitive processes in the same decision model. Pachur et al.’s 
(2008) Experiment 1 and 2, which we re-analyzed here for the purpose of illustrating 
our 39 ACT-R models, entailed teaching participants cue knowledge about the cities 
(e.g., whether a city has an airport). It is not clear to what extent the results of our 
model comparison will generalize to experiments where participants have acquired 
their cue knowledge naturally, that is, is outside of the laboratory. For instance, in 
teaching the cue knowledge in Pachur et al.’s experiments, all to-be-learned cues 
were presented with equal frequency, making it likely that all cues exhibit similar base 
level activation in memory and have similar probabilities and speeds of retrieval. In 
experiments where knowledge is acquired naturally, the activation of different pieces 
of information will vary as a function of the environment, which can result in different 
probabilities and speed of retrieval for different pieces of information (see Marewski 
& Schooler, 2011, for corresponding ACT-R modeling efforts). In such experiments, 
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different decision strategies may emerge as the winners than those we identified in 
our model comparisons. We encourage future research to tackle this question, because 
experimental paradigms involving naturally acquired information may be considered 
an ideal test-bed for the recognition heuristic (Gigerenzer & Goldstein, 2011; Pachur 
et al., 2008).

Conclusion: 
Beyond Qualitative Hypotheses and Simplifying Dichotomies

“Psychology […] attempts to conceptualize what it is doing […] How do we do that? 
Mostly […] by the construction of oppositions—usually binary ones. We worry about 
nature versus nurture, about central versus parallel, and so on.” These lines written 
by Allen Newell in  1973 (p. 287) still reflect much research in the decision sciences 
today that centers on dichotomies such as compensatory versus noncompensatory 
processes. Also much of contemporary research on accessibility-based decisions and 
on the recognition heuristic suffers from this state of affairs (Tomlinson, Marewski, 
& Dougherty, 2011). By developing models of accessibility-based decisions within 
an architecture, we have taken a small step toward replacing such dichotomies and 
the qualitative processes hypotheses associated with them, with detailed, quantitative 
models (see also, Anderson, 2007; Dougherty et al., 1999; Marewski & Schooler, 2011; 
Nellen, 2003; A. Newell, 1990; Schooler & Hertwig, 2005).

To conclude, we would like to highlight that often there may exist many different 
models, all of which are equally capable of reproducing and explaining data—a 
dilemma that is also known as the identification problem (Anderson, 1976). As a result 
it appears unreasonable to ask which of many process models is more “truthful”; 
rather, one needs to ask which model is better than another given a set of criteria, 
for example, the models’ degree of specification or its generalizability to new tasks. 
As Box (1979) puts it - and we agree - “All models are wrong, but some are useful” 
(p. 202). Importantly, however, while many functionally equivalent models may exist, 
there are infinite numbers of underspecified models for which nobody will ever be able 
to decide whether one is better than another, given a set of criteria. Thus, even though 
all models may be wrong, often there is no better alternative than making them as 
precise as possible.
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Summary & Conclusion
Newell (1973) closed his 20 questions paper with the words: “Maybe all is well, […], 
and when we arrive in 1992 […] we will have homed in to the essential structure of 
the mind.” (p. 306). Have we, now in 2011, reached this goal? Undeniably, progress has 
been made since the 70s. The use of computational models has increased the precision 
of theoretical predictions and cognitive architectures like ACT-R provide a promising 
tool towards understanding “the essential structure of the mind”. Yet, underspecified 
verbal models and simplifying dichotomies still enjoy great popularity. 

Currently, a vast amount of research centers on the debate of whether reasoning 
and decision making is based on implicit, automatic, and high-capacity, or on explicit, 
deliberate, and low-capacity processes (e.g., Dijksterhuis, Bos, Nordgren, & Van 
Baaren, 2006). Another popular dichotomy can be found in the decision sciences, 
where there is an ongoing discussion whether decisions can better be described by 
simple non-compensatory heuristics or by more complex compensatory strategies 
(see e.g., the special issues by Marewski, Pohl, et al., 2010; Marewski, et al., 2011a, 
2011b). While tests of binary oppositions can certainly lead to interesting insights, 
they are, as Newell warned, not always useful. Often, the apparently opposing aspects 
even represent “two sides of the same coin”. The real challenge for understanding 
cognition lies, therefore, not so much in testing opposing aspects against each other, 
but in understanding their respective contribution and interaction. To do so, we need 
to understand the underlying cognitive processes. In this thesis I have shown how the 
precision provided by computational models can help us to meet this challenge. 

Memory Activation in Diagnostic Reasoning
The starting point of this dissertation was the idea that automatic memory processes 
can facilitate diagnostic reasoning by providing the reasoner with an adaptive subset 
of potential hypotheses from memory. The work presented in Chapters 2, 3, and 4 
not only supports this idea, but also identifies and tests potential underlying memory 
mechanisms. 

In Chapters 2 and 3 we tested whether and how observed symptoms can activate 
associated explanations from memory. Using the cognitive architecture ACT-R 
(Chapter 2) and connectionist constraint satisfaction models based on ECHO 
(Chapter 3), we implemented several computational models. The models shared the 
assumption that observed information can activate associated knowledge, but they 
differed with respect to how the sequentially made observations affected memory 
activation over time. The results of the models were compared to human data from two 
behavioral experiments in which we used a probe reaction task to track the availability 
of different explanations during a sequential diagnostic reasoning task. The basic 
results were consistent over both approaches: Comparing the probe reaction data to 
the models’ results suggested that the availability of explanations in memory indeed 
varied as a function of the observed symptoms over time. Furthermore, the probe 



130 Chapter 6  Summary & Conclusion

reaction data was best fit by models in which the influence of observed information 
did not vary as a function of the number of observations (Chapter 2) and remained 
stable over time (Chapters 2 and 3). 

Both modeling approaches increased the precision compared to mere verbal theories 
and supported our assumptions about memory activation. However, the approaches 
differed in the scope of their interpretability. The connectionist models showed how 
observed data could activate associated knowledge in a network. But how is such a 
network constructed and which aspects of memory does it reflect? Using ACT-R, and 
thereby adhering to the constraints set by the underlying memory theory, allowed for 
interpreting our results more functionally, in terms of general memory mechanisms. 
We concluded that observed symptoms that are currently in the focus of attention 
regulate the availability of associated explanations in long-term memory by spreading 
activation to these explanations. This component of memory activation reflects the 
usefulness of explanations in the current context.

In Chapter 4, we investigated how the influence of the current context interacts with 
a second factor that has been proposed to influence an item’s availability in memory: its 
past usefulness (e.g., Anderson, 2007; Thomas, et al., 2008). We conducted a behavioral 
experiment in which both factors, past and present usefulness, were independently 
manipulated by a secondary task. Results of this experiment were compared to the 
predictions of an ACT-R model that was constructed based on our findings in Chapter 
2. Participants’ performance showed effects of both manipulations, as predicted by the 
model, suggesting that the past and the present usefulness determine the availability of 
diagnostic hypotheses in memory.

Why is it important to understand memory processes underlying diagnostic 
reasoning in so much detail? As, for example, discussed by Dougherty et al. (2010), 
many theories assume that “whatever takes place in the memory system is irrelevant to 
understanding judgment and decision-making behavior” (p. 337). Our results illustrate 
why such a simplifying assumption is short-sighted. By using a precise account of 
memory activation, which was based on general findings about memory mechanisms, 
we could show how taking into account the contribution of memory processes can lead 
to a better understanding of hypothesis generation. Such an understanding is not only 
interesting from a theoretical perspective, but it can, potentially, help to improve real-
world decision making. 

Consider, for example, the medical setting, where a doctor’s ability to generate 
correct diagnoses can be of vital importance for a patient. The medical literature 
describes various pitfalls that frequently occur in this setting (for an overview see 
e.g., Klein, 2005). An understanding of the underlying cognitive mechanisms can 
help to develop training programs that might reduce such pitfalls. Take, for example, 
the representativeness heuristic (Tversky & Kahneman, 1974), where diagnosticians 
strongly rely on information available in the current context (e.g., a patient’s symptoms) 
but seem to ignore information about the base-rate likelihood of the potential diagnoses. 
Our results suggest that this effect might be due to insufficient personal experience 
with the diagnoses’ base rates. If real-world base rates are not represented in memory 
in terms of experienced frequencies, the past-experience component of memory 
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activation cannot correctly reflect the real-world base rate information. Consequently, 
memory activation can be dominated by the current-context component, resulting 
in behavior as described by the representativeness heuristic. Teaching base-rates in 
terms of natural frequencies rather than as abstract percentages (see e.g., Sedlmeier 
& Gigerenzer, 2001, for how that could be done) might help to reduce this pitfall, 
because it would allow for memory activation to adaptively provide the diagnosis that 
is most likely not only based on the current context but also based on past experience.

Decision Making Based on Information from Memory
Whereas in Chapters 2 to 4 we investigated how memory activation affects 
the availability of information in memory as a function of the past and present 
environment, in Chapter 5 we investigated how reasoners make decisions by exploiting 
the availability of memory contents. This investigation is directly related to the 
second dichotomy mentioned above: the question whether decisions can better be 
described by simple non-compensatory heuristics or by more complex compensatory 
decision making strategies. A non-compensatory heuristic has, for example, been 
proposed in terms of the recognition heuristic (Goldstein & Gigerenzer, 2002). This 
heuristic states that if only one of two alternatives is recognized, the reasoner will rely 
on recognition to infer the recognized alternative to have higher values on a given 
criterion, without using additional knowledge about the alternatives. In contrast to 
such a non-compensatory heuristic, compensatory decision models assume that people 
use additional knowledge about the alternatives (Glöckner & Betsch, 2008; Lee & 
Cummins, 2004). For example, when deciding which of two cities, one recognized 
and one not, is larger, the reasoner would decide for the recognized city according to 
the recognition heuristic. According to compensatory models of decision making, the 
reasoner would take into account additional knowledge about the cities’ cues (e.g., 
does it have an airport?) and might, consequently, conclude that the recognized city is 
smaller.

As we discussed in Chapter 5, the comparison of these apparently opposing decision 
strategies has been proven difficult, because the strategies are described at varying 
levels of detail and are often underspecified relative to the empirical data against which 
they can be tested. ACT-R allowed us to tackle these issues by implementing several 
apparently opposing strategies within one modeling framework. This implementation 
required a high degree of precision and took into account the interplay of the decision 
strategies themself with, for example, perceptual, memory, and motor processes. 
Comparing the models to behavioral data from Pachur et al. (2008) showed that 
models that incorporated a combination of supposedly opposing strategies fit the data 
best. For example, even participants that always decided for the recognized alternative 
seemed to occasionally retrieve additional knowledge from memory.

The results of Chapter 5 illustrate again how cognitive architectures like ACT-R 
can be used to dissolve simplifying dichotomies and increase our understanding of 
detailed cognitive processes. Furthermore, the results highlight the importance of 
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taking into account the interaction of (deliberate) decision strategies with other aspects 
of cognition, like the availability of information in memory. For instance, in Pachur et 
al.’s experiments, all knowledge about the alternatives was taught in a very controlled 
setup, making it, for example, likely that the different cues about an alternative were 
equally available in memory. In a more natural setting, the availability of different 
pieces of information in memory will vary as a function of the environment, which can 
result in different outcomes for the same decision strategy, and might even cause the 
use of different decision strategies.

Conclusion 
In this thesis I have shown how the precision provided by computational cognitive 
models can be used to better understand the cognitive processes underlying complex 
cognition. Our results illustrate why it is often not useful to construct and test binary 
oppositions, as it is done in many areas of research. We showed why apparently opposing 
aspects of cognition, like automatic and deliberate reasoning, or non-compensatory 
and compensatory decision making, should better be understood as complementary 
components. For me, the discovery of the respective contribution and interaction of 
these components represents the real challenge in understanding the human mind, 
and I hope that the work presented in this thesis represents a step towards solving this 
challenge. Have we, now in 2011, “homed in to the essential structure of the mind”? 
While undoubtedly progress has been made, I want to close with a quote from John 
Anderson: “we are still only a little ways into understanding the answer” (Anderson, 
2007, p. 239). 
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Samenvatting
Stel je voor dat een vriend na een zonnige dag op het strand klaagt over hoofdpijn, een 
pijnlijke rode huid en jeuk. Hoe kun je uitvinden wat er met hem aan de hand is? Ga je 
een medisch naslagwerk raadplegen om een mogelijke diagnose voor zijn symptomen 
te vinden? Ga je over de fysieke processen in zijn lichaam nadenken die de oorzaak van 
de symptomen zouden kunnen zijn? Of ga je eerst de verschillende mogelijke oorzaken 
bedenken en deze tegen elkaar afwegen? Waarschijnlijk doe je niets van dit alles, maar 
verschijnt de diagnose ‘verbrand’ automatisch in je hoofd. Hoe is dit mogelijk?

Terwijl in het verleden veel onderzoek is gedaan naar bewuste denkprocessen 
en strategieën die mensen gebruiken om complexe problemen op te lossen, is er 
tegenwoordig veel interesse in onderzoek naar automatische denkprocessen. Zo 
publiceerden Dijksterhuis en collega’s (2006) een artikel in het bekende tijdschrift 
Science, waarin ze lieten zien dat onbewust denken tot betere beslissingen kan leiden 
dan bewust nadenken. Maar, hoe werkt ‘onbewust denken’? Welk mechanisme in ons 
brein maakt het mogelijk dat we aan ‘verbrand’ denken zodra we de bijbehorende 
symptomen zien? En hoe werkt de interactie tussen zulke automatische processen 
en bewuste denkprocessen? Een mogelijk antwoord op deze vragen vinden we in het 
functioneren van het menselijke geheugen: “the memory system […] makes most 
available those memories most likely to be needed” (Anderson, 2007, p. 109).

Het beginpunt van mijn promotieonderzoek was het idee dat automatische 
geheugenprocessen een belangrijk aspect van complexe cognitie vormen. Om precies 
te zijn was ik geïnteresseerd in de rol van automatische geheugenprocessen tijdens 
het stellen van diagnoses. Bij het stellen van een diagnose wordt er vanuit observaties 
geredeneerd naar mogelijk oorzaken. Een onderdeel hiervan is het genereren van 
hypotheses over wat deze mogelijke oorzaken zouden kunnen zijn. Het stellen van 
diagnoses is een belangrijk onderdeel van veel taken, zoals medische diagnoses, 
software debugging, wetenschappelijk onderzoek en sociale interacties. Toen ik aan dit 
proefschrift begon was mijn hypothese dat automatische geheugenprocessen diagnoses 
beschikbaar stellen die geassocieerd zijn met de huidige context. Deze informatie 
kan dan vervolgens gebruikt worden in bewuste redeneerprocessen. Hoewel dit idee 
op zich niet nieuw is, bestonden er nauwelijks precieze theorieën en experimenteel 
bewijs voor. Thomas en collega’s stelden het zo in Psychological Review: “despite 
hypothesis generation’s importance in understanding judgment, little empirical and 
even less theoretical work has been devoted to understanding the processes underlying 
hypothesis generation.” (Thomas, et al., 2008, p. 174). 

Gedragsexperimenten
Om het idee te testen dat informatie uit de omgeving geassocieerde informatie in 
ons geheugen activeert, hebben we eerst enkele gedragsexperimenten uitgevoerd. In 
deze experimenten hebben we de mate van associatie tussen medische symptomen 
en diagnoses in het geheugen gemanipuleerd. Om te kijken of deze manipulatie een 
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effect had, hebben we een zogenaamde ‘probe reaction task’ gebruikt. Dit ging als 
volgt: tijdens het presenteren van symptomen lieten we zo nu en dan een mogelijke 
diagnose zien. Als het inderdaad het geval is dat diagnoses in het geheugen geactiveerd 
worden door de symptomen, dan zouden proefpersonen sneller moeten reageren 
op bijvoorbeeld ‘verbrand’ (met symptomen zoals ‘rode huid’ en ‘hoofdpijn’) dan op 
‘zwanger’, of ‘huis’. Om een mogelijke invloed van bestaande kennis uit te sluiten 
hebben we in deze experimenten alleen gebruik gemaakt van kunstmatige medische 
kennis. Deze kennis bestond uit symptomen die veroorzaakt werden door mogelijke 
(ook zelfbedachte) chemicaliën. Deze chemicaliën werden beschreven door letters 
(bijvoorbeeld ‘B’ of ‘W’), en deze letters gebruikten we dus ook in de probe reaction 
task (zie Figuur 7.1 voor een voorbeeld van de taak). Dit zorgde ervoor dat we geen 
verstorende effecten van bijvoorbeeld woordlengte of leessnelheid kregen.

In het algemeen ondersteunden de resultaten van deze experimenten onze 
theorie. Op diagnoses die overeenkwamen met alle tot nog toe getoonde symptomen 
werd bijvoorbeeld het snelste gereageerd, wat suggereert dat deze diagnoses beter 
beschikbaar waren in het geheugen dan diagnoses die niet overeenstemden met 
de symptomen. Ook werden reactietijden korter als er meer symptomen met een 
diagnose overeenkwamen. Dit suggereert dat de getoonde symptomen inderdaad de 
beschikbaarheid van hypothesen in het geheugen beïnvloeden. Bij een nadere inspectie 
van onze resultaten bleek echter dat er nog veel vragen onbeantwoord bleven. Het zou 
bijvoorbeeld zo kunnen zijn dat de reactietijdverschillen niet veroorzaakt werden door 
geheugenactivatie, maar alleen een bijproduct waren van bewuste redeneerprocessen. 
En, stel dat geheugenactivatie de resultaten veroorzaakte, hoe werkt dit dan precies?

Computationele Cognitieve Modellen
Het gebrek aan theoretische nauwkeurigheid die we bij de interpretatie van onze 
resultaten tegenkwamen is typerend voor verbale theorieën. Een mogelijke oplossing 
voor dit probleem is het gebruik van computationele cognitieve modellen. Dit soort 
modellen zijn computersimulaties van de processen die volgens een theorie gedrag 
veroorzaken (bijvoorbeeld van de geheugenprocessen die de activatie van hypothesen 
in het geheugen veroorzaken). Door de resultaten van een simulatie te vergelijken met 
gedragsdata van proefpersonen kunnen theorieën veel nauwkeuriger getest worden dan 
door alleen naar verbale voorspellingen te kijken. Wij hebben gebruik gemaakt van twee 
verschillende soorten cognitieve modellen: een connectionistisch model (ECHO) en 
een cognitieve architectuur (ACT-R). Ik zal het idee achter deze modellen hieronder 
kort uitleggen, voordat ik een samenvatting van de modelresultaten geef.

Een connectionistisch model is een netwerk van knopen, die door exciterende of 
inhiberende connecties met elkaar zijn verbonden. Onder andere Paul Thagard (2000) 
stelde voor dat dit soort netwerksimulaties gebruikt kunnen worden om integratie 
van informatie (bijvoorbeeld tijdens het stellen van diagnoses) te modelleren. 
In zijn computersimulatie ECHO representeert elke knoop in het netwerk één 
concept (bijvoorbeeld een geobserveerd symptoom of een mogelijke diagnose) en de 
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verbindingen tussen de knopen representeren de relaties tussen deze concepten. Als 
het netwerk wordt geïnitieerd, activeren of inhiberen de concepten elkaar. Uiteindelijk 
krijgt het concept dat het meest met alle andere concepten overeenkomt de meeste 
activatie. Als dit model toegepast wordt op het stellen van diagnoses kan het voorspellen 
hoe sterk een bepaalde diagnose door geobserveerde symptomen word geactiveerd.

Een andere manier van modellieren is het gebruik van cognitieve architecturen. 
Een cognitieve architectuur is eigenlijk een verzameling van theorieën en modellen die 
verschillende aspecten van cognitie weerspiegelen. Het doel is om beter te begrijpen 
hoe het brein het mogelijk maakt dat wij kunnen nadenken (Anderson, 2007). De 
onderzoeker kan gebruik maken van deze verzamelde kennis (bijvoorbeeld over 
hoe het menselijke geheugensysteem werkt) om zijn eigen specifieke vraag nader 
te onderzoeken (bijvoorbeeld, hoe beïnvloeden observaties de beschikbaarheid van 
diagnoses in het geheugen). In dit proefschrift heb ik gebruik gemaakt van de cognitieve 
architectuur die tegenwoordig het meest gebruikt wordt: ACT-R (Anderson, et al., 
2004). ACT-R is bijzonder geschikt voor mijn onderzoek omdat het niet alleen een 
gedetailleerde theorie over het menselijke geheugen heeft, maar ook over de interactie 
tussen automatische geheugenprocessen en bewuste denkprocessen. 

+headache

+

+

cough

vomiting

+

itching

T +

Enter your 
diagnosis:

2sec
1sec

2sec
1sec

2sec
1sec

???
1sec

2sec
1sec

???

Figuur Voorbeeld van een experiment met de ‘probe reaction task’ (zie Experiment 1 in 
Hoofdstuk 2). Tijdens het vertonen van symptomen wordt een probe gepresenteerd 
(T). De proefpersoon moet zo snel mogelijk aangeven of de probe een chemisch 
element is of niet. Probes variëren in de mate van associatie met de symptomen (T 
in dit voorbeeld is een diagnose die met alle getoonde symptomen overeen komt). De 
tijd die voor de reactie op de probe nodig is geeft aan hoe goed die diagnose in het 
geheugen beschikbaar is.

7.1
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Geheugenactivatie en het Genereren van Hypothesen
In Hoofdstuk 2 en 3 hebben we onderzocht of en hoe informatie uit de omgeving 
geassocieerde informatie in ons geheugen activeert. Met behulp van ACT-R 
(Hoofdstuk 2) en ECHO (Hoofdstuk 3) hebben we verschillende cognitieve modellen 
geïmplementeerd. Alle modellen delen de aanname dat geobserveerde informatie 
geassocieerde informatie in ons geheugen activeert. De modellen verschillen echter 
in hoe deze activatie precies verloopt gedurende de tijd. De vergelijking van de 
modelresultaten met de gedragsdata van proefpersonen uit de hierboven uitgelegde 
‘probe reaction task’ liet zien dat de beschikbaarheid van diagnoses in het geheugen 
inderdaad varieert als een functie van de geobserveerde informatie. Verder toonden de 
resultaten aan hoe observaties gedurende de tijd worden geïntegreerd. 

Beide manieren van modelleren vergrootten de precisie vergeleken met verbale 
theorieën en ondersteunden onze aannamen over de rol van geheugenactivatie. De 
modellen verschillen echter in de mate waarin de resultaten geïnterpreteerd kunnen 
worden. De connectionistische modellen laten zien hoe geobserveerde symptomen 
geassocieerde diagnoses in een netwerk kunnen activeren. Maar welke aspecten van 
het geheugen worden door het netwerk gereflecteerd? ACT-R maakt het mogelijk 
om de resultaten binnen een gedetailleerde geheugentheorie te interpreteren. Het 
blijkt dat informatie waaraan we aandacht besteden (in dit geval observaties in 
ons werkgeheugen) automatisch geassocieerde informatie (zoals diagnoses) in het 
langetermijngeheugen activeren. Op deze manier beïnvloedt de huidige context de 
beschikbaarheid van hypothesen in het geheugen.

Geheugentheorieën tonen aan dat de beschikbaarheid van informatie in ons 
geheugen niet alleen afhankelijk is van de huidige context, maar ook van onze ervaring 
met deze informatie (b.v. Anderson, 2007; Thomas, et al., 2008). Hoe vaker je de 
informatie al uit je geheugen hebt gehaald, en hoe recenter dat was, des te sterker is de 
informatie in je geheugen aanwezig, en des te makkelijker kan deze geactiveerd worden. 
In Hoofdstuk 4 hebben we onderzocht of ook bij het genereren van hypothesen beide 
factoren, ervaring en context, een rol spelen. In een gedragsexperiment moesten 
proefpersonen diagnoses voor medische symptomen stellen. Tijdens het genereren 
van deze diagnoses, moest een tweede taak worden uitgevoerd, met behulp waarvan 
we beide factoren onafhankelijk van elkaar konden manipuleren. Gedragsdata in de 
verschillende condities hebben we vergeleken met de voorspellingen van een ACT-R 
model. Zoals het model voorspeld had, werd de prestatie op de diagnosetaak beïnvloed 
door zowel ervaring als context. Deze resultaten ondersteunen dus het idee dat zowel 
ervaring als de huidige context de beschikbaarheid van diagnoses in het geheugen 
beïnvloeden en laten zien hoe geheugenmechanismes deze invloed veroorzaken.

Je kunt je afvragen waarom het zo belangrijk is om geheugenmechanismes zo goed 
te begrijpen. Zoals Dougherty et al. (2010) bijvoorbeeld beschrijft, veronderstellen 
theorieën vaak dat “whatever takes place in the memory system is irrelevant to 
understanding judgment and decision-making behavior” (p. 337). Onze resultaten 
laten zien waarom deze aanname kortzichtig is. Geheugenprocessen beïnvloeden 
welke informatie we ons, afhankelijk van onze ervaring en de huidige context, 
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kunnen herinneren. Daarmee beïnvloeden ze ook welke informatie we voor bewuste 
denkprocessen beschikbaar hebben. Door beter te begrijpen hoe geheugenprocessen de 
beschikbaarheid van informatie reguleren kunnen we het stellen van diagnoses beter 
begrijpen. Dit is niet alleen interessant vanuit een theoretisch perspectief, maar het kan 
wellicht ook helpen om het nemen van beslissingen in de praktijk te verbeteren. 

Denk bijvoorbeeld aan de medische diagnose, waar correcte beslissingen van 
levensbelang voor de patiënt kunnen zijn. De medische literatuur beschrijft een 
aantal typische fouten bij het stellen van diagnoses (zie b.v. Klein, 2005). Als we 
de cognitieve mechanismen tijdens het diagnosticeren beter begrijpen, kunnen we 
meer over de oorzaken van deze fouten leren. Deze kennis kan gebruikt worden 
om trainingsprogramma’s te ontwikkelen die helpen de fouten te voorkomen. Een 
typische fout is bijvoorbeeld de ‘representativeness heuristic’, waarbij een diagnose te 
sterk wordt beïnvloed door de huidige context, zoals de symptomen van een patiënt), 
en er te weinig rekening wordt gehouden met hoe vaak een diagnose in het algemeen 
voorkomt. Onze resultaten doen vermoeden dat deze fout wordt veroorzaakt door 
te weinig persoonlijke ervaring met een diagnose. Als de persoonlijke ervaring van 
een arts een incorrecte afspiegeling is van hoe vaak een diagnose in de werkelijkheid 
voorkomt, dan kan de geheugenactivatie dit aspect niet gebruiken en wordt de huidige 
context belangrijker. Deze fout kan wellicht voorkomen worden door het aantal 
optredens van een diagnose niet alleen in de vorm van abstracte getallen te trainen, 
maar ook in de vorm van natuurlijke frequenties.

Beschikbaarheid van Informatie en 
het Nemen van Beslissingen

In de Hoofdstukken 2, 3 en 4 hebben we geheugenprocessen onderzocht die de 
beschikbaarheid van informatie beïnvloeden. In Hoofdstuk 5 zijn we een stap verder 
gegaan en hebben we gekeken hoe de beschikbaarheid van informatie samenhangt 
met het nemen van beslissingen. Op dit moment is er veel discussie of het nemen van 
beslissingen beter kan worden begrepen in termen van eenvoudige heuristieken of als 
een complexer proces waarbij verschillende feiten tegen elkaar worden afgewogen. 

Een bekende heuristiek is de ‘recognition heuristic’ (Goldstein & Gigerenzer, 2002). 
Deze heuristiek kan bijvoorbeeld gebruikt worden om de vraag te beantwoorden welke 
van twee alternatieven (twee steden zoals ‘Leipzig’ en ‘Chemnitz’) hogere waarden 
op een bepaald criterium (inwoners) heeft. De heuristiek veronderstelt dat als we één 
van de alternatieven herkennen (Leipzig) en de andere niet (Chemnitz), we voor het 
bekende alternatief kiezen zonder er verder over na te denken. Daartegenover staan 
theorieën die veronderstellen dat bij een beslissing meer informatie wordt gebruikt. Zo 
zou je kunnen bedenken dat, voor zover jij weet, Leipzig geen internationaal vliegveld 
en geen bekende voetbalploeg heeft. Omdat deze feiten tegen het idee ingaan dat 
Leipzig een grote stad is zou je misschien voor Chemnitz kiezen, terwijl je helemaal 
niets over Chemnitz weet.
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Zoals een groot aantal publicaties laat zien is de vergelijking van deze schijnbaar 
tegengestelde strategieën vaak moeilijk. Dit komt omdat strategieën in de literatuur 
op een verschillende niveau beschreven worden en vaak alleen verbale voorspellingen 
maken. In Hoofdstuk 5 beschrijven we hoe ACT-R helpt deze problemen aan te 
pakken. Het gebruik van een cognitieve architectuur maakt het namelijk mogelijk 
om verschillende strategieën binnen één theoretisch kader te implementeren. 
Deze implementatie leidt niet alleen tot precieze voorspellingen, maar houdt ook 
rekening met de interactie tussen de strategieën en andere aspecten van cognitie, 
zoals geheugenprocessen. De vergelijking van de voorspellingen met gedragsdata van 
twee gepubliceerde experimenten (Pachur, et al., 2008) liet zien dat combinaties van 
schijnbaar tegengestelde strategieën het gedrag het beste voorspellen: Bijvoorbeeld, 
zelfs proefpersonen die uiteindelijk altijd voor de bekende alternatieven kozen, bleken 
gedeeltelijk informatie over deze alternatieven uit het geheugen te halen.

Conclusie
Al in de jaren 70 waarschuwde Allen Newell ervoor dat verbale theorieën en het 
vergelijken van steeds twee alternatieve aannamen niet voldoende is om ons begrip 
van cognitie te vergroten (A. Newell, 1973). Desondanks zijn verbale theorieën en 
binaire aannamen nog steeds heel populair binnen de wetenschap. In dit proefschrift 
heb ik laten zien hoe de precisie van cognitieve modellen gebruikt kan worden om 
cognitieve processen beter te begrijpen. Onze resultaten maken duidelijk dat schijnbaar 
tegenstrijdige aspecten van cognitie, zoals automatische en bewuste denkprocessen, 
of het gebruik van eenvoudige heuristieken en complexere strategieën bij het nemen 
van beslissingen, vaak complementair zijn. We hebben bijvoorbeeld aangetoond dat 
automatische activeringsprocessen de beschikbaarheid van informatie in het geheugen 
reguleren en daarmee beïnvloeden welke informatie door bewuste denkprocessen 
gebruikt kan worden. Het beter begrijpen van dit soort interacties is één van de grote 
uitdagingen in het begrijpen van menselijke cognitie. Ik hoop dat dit proefschrift een 
goede stap in deze richting is.
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