
Slant Correction using Histograms

Frank de Zeeuw

Bachelor’s Thesis in Artificial Intelligence
Supervised by Axel Brink & Tijn van der Zant

July 12, 2006

Abstract

Slant is one of the characteristics that make handwriting harder to process au-
tomatically than printed text. For this reason slant correction is a standard step in
systems for processing written text. In this article I will present an algorithm for au-
tomatically correcting slant. It works by first segmenting the text into words using
horizontal and vertical projection histograms. Each word is then sheared by the angle
that maximizes the height of peaks in the vertical projection histogram of the word. I
will argue that the presented method is simple and fast, yet produces results similar to
more advanced approaches. The algorithm has been incorporated into a system that
uses an evolutionary algorithm to preprocess images of handwritten text for writer
identification.

1 Introduction

Any piece of handwriting is written at a cer-
tain slant, which is best explained by a pic-
ture like Figure 1. To be precise, slant is
the angle that near-vertical strokes in writ-
ing make with the exact vertical direction,
i.e. the perpendicular to the baseline of the

word. It is not to be confused with the slope
of the text, which is the angle that the base-
line of a word or sentence makes with the hor-
izontal direction. Slope can be removed by
rotating the entire text, while slant is cor-
rected by shearing each word. This means
shifting every line of pixels sideways by an
amount depending on its distance from the

Figure 1: Examples illustrating slope and slant. Above: negative, zero and positive slope.
Below: negative, zero and positive slant.

1



Figure 2: The shear operation.

baseline. Figure 2 illustrates this.
Slant can vary greatly between writers, as
well as within a given piece of writing, or even
within an individual word. In automatic pro-
cessing of handwritten text, it is often useful
to reduce such variation by correcting slant.
For instance, in character recognition, how-
ever it is approached, removing slant will re-
duce variation within classes of characters,
making those classes easier to recognize. It
will also make character segmentation eas-
ier, since characters that are straight up have
more distinct space between them than char-
acters that are at a slant. Another applica-
tion is writer identification, where slant cor-
rection can improve performance by reducing
within-writer variation. Specifically, it can
help to identify a writer that has tried to dis-
guise his writing by writing at an unnatural
slant, which occurs in forensic science appli-
cations. On the other hand, between-writer
variation in slant could be helpful for writer
identification, and slant removal might have
a negative effect on this. However, a slant
correction algorithm can also be used to re-
turn the slant profile of the text separately,
while at the same time preparing the image
for better extraction of other characteristics.
For these reasons, slant correction has
been a standard step in automatic hand-
writing processing, usually following fore-
ground/background separation, slope correc-
tion and segmentation of the text into words.
The algorithm below and its implementation
were developed as part of a preprocessing
system for automatic writer identification.
The system consists of separate functions
for a variety of preprocessing steps, such as
background correction, text region detection,
slope removal and slant correction. Param-

eters and the order in which these functions
are to be applied is then determined by a ge-
netic algorithm, using feedback from a user.
This preprocessing system will be integrated
with an existing method for writer identifi-
cation. Intended applications are automatic
searching in a 19th-century Dutch handwrit-
ing database and forensic writer identifica-
tion.
In the next section I will explain the differ-
ent approaches to slant correction that have
been presented in the literature, and which of
those the algorithm in this paper belongs to.
Section 3 will describe the algorithm. Sec-
tion 4 will show and discuss the result of the
implementation on some examples.

2 Related work

There are several approaches to slant correc-
tion in the literature, which can be roughly
divided into three groups.
The first, also historically the first, tries to
determine the slant angle by detecting near-
vertical strokes and taking the average an-
gle of those as the shear angle. This ap-
proach was begun by the authors of [1] and
several others have followed their lead, us-
ing different ways to select the strokes. For
instance, in the method of [1] two horizon-
tal lines are drawn above and below the core
region and all intersection points of the writ-
ing with these lines are determined. Any
two points that are close to being vertically
aligned are then assumed to be part of the
same near-vertical stroke. From each such
stroke a local slant estimate is taken and a
global estimate is obtained by averaging the
local estimates. Compared to the other ap-
proaches this method is quite fast, but on

2



the downside, it relies heavily on heuristics,
hence is not very robust.
The second approach evaluates a measure
function of the image on a range of shear an-
gles and selects the angle with highest value
of the measure. The measure is most often
computed from the vertical histogram, based
on the idea that deslanted writing will have a
more intense histogram, i.e. with higher and
more pronounced peaks than slanted writ-
ing. In [3], for instance, Kavallieratou et al.
treat the histogram as a time signal, calcu-
late its Wigner-Ville distribution (known to
have several nice properties and often used in
pattern recognition), and take the intensity
of that distribution as the measure. Another
interesting example is [2], where entropy is
used as a measure of slantedness. These ap-
proaches use less heuristics and seem to give
better and more robust results, although it
is hard to evaluate or compare them. They
do come with a computational price tag, be-
cause the shear transform, the histogram and
the measure function have to be computed
for a lot of angles.
The third approach distinguishes itself from
the first two by correcting the slant nonuni-
formly. The techniques above shear a word
(or bigger units) uniformly, i.e. by a sin-
gle angle, hence can never fully cope with
variant-slanted words, which are quite com-
mon in ordinary handwriting. In [5] and
[4] a method is described to slant words
nonuniformly using dynamic programming
techniques. To apply different shear angles
at different points within a word, one has to
split the word up into intervals and shear
each of those individually. To determine
what intervals to take, and by what angle
to shear over each interval, a criterion is op-
timized that evaluates the sequences of in-
tervals and angles simultaneously. Such a
method has a lot of potential, since it can
cope with variant-slanted words. The re-
sults are indeed promising, although there
are more robustness issues, as the algorithm
has greater freedom to make errors within a
word. Also the theoretical background and
mathematical techniques are somewhat more
demanding.

I have chosen to use the second, histogram-
based, approach for my project, but aiming
for a simpler and faster measure function, for
the following reasons. First of all, the use
of histograms is convenient because they can
also be used for line and word segmentation,
which are essential for slant correction but
were not yet implemented in the system my
deslant module was to be part of. They could
even have been used for slope removal, but
a module for that was already present. Nev-
ertheless it seemed convenient to approach
these problems with similar techniques.
The second reason for taking the second ap-
proach is that I thought it might be worth-
while trying to improve it by using a simpler
measure function. I feel that in [3], Kaval-
lieratou et al. (who were my main source
for this approach) do not provide much jus-
tification for using the Wigner-Ville distri-
bution, other than that it is popular in other
applications. In fact, I’m not sure if using
a distribution is necessary at all. Although
higher, more distinct peaks, which character-
ize deslanted words, are more likely in a dis-
tribution of high intensity, they are not quite
the same thing. It is not obvious that char-
acters without vertical strokes also provide
a more intense distribution of the histogram
when deslanted.
Because of these doubts I propose to base the
measure function solely on the properties of
the highest peaks. An added advantage is
that working with those peaks is just simple
string manipulation, and is therefore likely to
be computationally more efficient. We will
return to these considerations in the section
4.

3



3 The Algorithm

We will describe how a given text image is
split up into lines, how the lines are divided
into words, and how the slant of those words
is corrected.

3.1 Line segmentation

As segmentation is not implemented sepa-
rately in the system this algorithm will be
part of, I implemented it as part of the slant
correction process. This is especially justi-
fied since I chose to do both segmentation
and slant correction by using histogram tech-
niques.
For line segmentation, the image is first con-
verted to a grayscale image, which is then in-
verted, to make dark pixels have high values
and light pixels low values. Then the hori-
zontal projection histogram is computed, as
in Figure 3, returning a list of numbers. An
element of the list is the sum of all pixel val-
ues in the corresponding line of pixels in the
image. In this list, a line of writing should oc-
cur as a peak, while inter-line spacing should
give a valley. Then the boundaries between
lines can be found by the following simple list
manipulations.
First the peaks in the list are determined as
intervals with high values, i.e. with values
above a certain percentage, say 10%, of the
maximum value in the list. This percent-

age was determined by some testing on ex-
amples, but the precise value actually does
not matter that much, because of the fol-
lowing refinement procedure. We compute
the average of the list of peaks, which pro-
vides a temporary estimate of the height of
a line. Based on this estimate, peaks that
are too narrow to be a line are thrown out,
and peaks that are too wide are refined into
smaller peaks, using a higher threshold per-
centage. This process is repeated until no
more changes occur. Here the thresholds for
’narrow’ and ’wide’ are taken to be half resp.
twice the average height of a line. Finally,
the lines are spread out so that they all meet
and cover the entire height of the image, and
extra peaks are introduced to cover any open
space at the top or bottom of the image.
In this way we create a partition of the im-
age, which is used to split up the original
image (from before the grayscale was taken)
into lines by cropping the strip correspond-
ing to each peak. The resulting lines are
then returned in a list of images, so that each
can be manipulated separately (in particular,
segmented into words and deslanted). After-
wards the pieces are glued back together by a
separate function, into an image of the same
size as the original image.
Figure 3 illustrates the procedure. The black
lines are just visualization; in fact they are
the lines where the cuts between lines are
made.

Figure 3: Line segmentation.

4



3.2 Word segmentation

Next we segmenting each of the lines we ob-
tain into words in a very similar way (al-
though not similar enough to use the same
code). The main differences are that the
vertical histogram is used, and that while
lines are all of similar height, words have
strongly varying length. On the other hand,
the length of inter-word spaces are more uni-
form. Therefore, after taking the vertical his-
togram as in Figure 4, we extract valleys as

intervals with relatively small histogram val-
ues. We then remove the valleys that are too
narrow, say less than a fourth of the height of
the line. We do not need to refine wide val-
leys, since large spaces can occur. Then we
take the complements of the valleys, result-
ing in a list of intervals, each of which should
consist of one or more words. These intervals
we spread out to cover the whole line again,
and a similar cropping and glueing procedure
as for line segmentation is used.
Figure 4 visualizes the procedure.

Figure 4: Word segmentation.

Figure 5: A fully segmented text.

5



3.3 Deslant

Our slant correction method uses the vertical
projection histogram. The idea is that the
histogram of a word that is written straight
up will have larger and more distinct peaks.
Therefore, we could look at the histogram of
the word at different shear angles and take
the one with the highest peaks.
We do this for angles between −45 and 45
degrees, which is the most common range of
slant angles in normal writing. For each an-
gle, we compute the vertical histogram, as
is depicted for a few angles in Figure 6, and
apply a measure function that measures the
height of the peaks. The angle with highest
measure will win and will be used as shear
angle. To save time, we first go through the
range with big steps, of say 5 degrees. For
each of those angles we determine the ones

with highest measure, and we search around
each of those with smaller steps. This gives
something of a tradeoff between speed and
robustness, as bigger steps risk missing the
best angle. This did not seem to result in
any problems so we did not investigate it any
further.
The measure function looks for the peaks
in the histogram (with the same function as
used in the segmentation), selects the high-
est n peaks, and returns the average height
of those. If less than n peaks occur, it re-
turns the average of those available.
The number n is passed to the algorithm as
a parameter. From experimenting a little we
found out that for n less than 3, the results
varied with n, and were not always good. For
higher values the results are better, and usu-
ally the same for different n. Therefore we
set the default value to 5.

Figure 6: Several steps in the deslant algorithm.

6



Figure 7: How to deslant a variant-slanted word?

4 Results

First of all, we should emphasize that it is
hard to evaluate the results of a slant cor-
rection algorithm, because the slantedness of
a word is not defined exactly. To see this,
consider Figure 7. The problem is that slant
can vary within a word, so that there is no
objective standard of deslantedness (at least
for uniform slant correction; for non-uniform
approaches, see section 2).
Therefore we cannot evaluate the algorithm
by counting how often it is right and how
often wrong. One could let a person judge
the quality of the deslanted words in a text,
but that would be very time-consuming. Be-
sides, the purpose of the algorithm is not to
make the writing more readable for humans;
we have no problem reading slanted text, and
the shear transformation will often make the
writing look less natural.
Instead, the purpose of slant correction is to
make text more suitable for digital process-
ing by a certain system. Therefore, the best
way to evaluate an algorithm would be to
measure the change in performance of the
system it is incorporated into. For instance,
[3] report a 9% improvement and a reduction
of training time of their character recognition
system when their slant correction algorithm
was added. Of course, it remains hard to
compare different algorithms when they have
been designed for and evaluated in different
systems.
In our case, the system that the algorithm is
part of is still under construction at the time
of writing, so that it was not yet possible to
evaluate the algorithm in this way. Conse-
quently, in this article we will have to limit
ourselves to considering the algorithm’s per-
formance on some examples, observing where
it works and where it fails, and trying to ex-

plain why.
Figure 8 shows the result of this deslant al-
gorithm on a printed text that has been ar-
tificially slanted. Clearly, the result is quite
satisfying. Figures 9 and 10 show the algo-
rithm working nicely on clear handwritten
text. Figure 11 is a bit harder, and illus-
trates some of the issues involved.
First of all, in the center of Figure 11 we
see some isolated artifacts that should not
be there. This occurs because the line seg-
mentation cuts off descenders, so that after
shearing those will be separated from the
characters they belong to. This could be
prevented by using a better segmentation al-
gorithm, namely one that can segment the
lines of text using more flexible curves than
straight lines. That would make it possible
to leave descenders intact. In fact, this would
improve the performance of this slant correc-
tion algorithm, because the descenders will
give clear peaks in the histogram. However,
we decided to leave this for the time being,
as it is not essential to our project.
Also, just below and to the right of the center
of Figure 11 we see something going wrong:
the word ’dus’ is slanted much too far to the
right. This could be caused by the stains
on the background, or perhaps by varying
thickness of the ink. It is not a big prob-
lem, since in the preprocessing system that
the algorithm is part of, such stains should
be removed, and the image should have been
thresholded so that all writing is equally
thick.
Furthermore, a potential solution to miss-
lanted words like this would be to keep track
of the surrounding slant angles, so that if an
estimated slant angle varies strongly from the
neighboring ones, as happens here with ’dus’,
the algorithm could adjust it. It could do this
by looking for a well-scoring angle that more

7



resembles the surrounding angles, or perhaps
by just leaving it as in the original; at least
then it has not been made worse.
In conclusion, our algorithm works reason-
ably well, although as said we cannot re-
ally compare its performance to other ap-

proaches. However, it is simple and fast:
compared to [3], our measure function is eas-
ier to understand and implement, and be-
cause it only uses elementary list operations,
it performs quite fast.

Figure 8: Deslanting an artificially slanted text.

Figure 9: A part of a text before and after deslanting.

8



Figure 10: Another text fragment before and after deslanting.

Figure 11: Some issues with deslanting.

References

[1] R.M. Bozinovic and S.N. Srihari, Off-line Cursive Script Word Recognition, IEEE Trans.
on PAMI, vol. 11, no. 1, pp. 68–83, 1989.

[2] M. Côté, E. Lecolinet, M. Cheriet, and C. Suen, Automatic reading of cursive scripts
using a reading model and perceptual concepts, International Journal on Document
Analysis and Recognition, vol. 1, no. 1, pp. 3-17, 1998.

[3] E. Kavallieratou, N. Fakotakis, and G. Kokkinakis. Slant estimation algorithm for OCR
system. Pattern Recognition, vol. 34, no. 12, pp. 2515–2522, 2001.

[4] E. Taira, S. Uchida, and Hiroaki Sakoe, Nonuniform slant correction for handwritten
word recognition, IEICE Transactions on Information & Systems, vol. E87-D, no. 5,
pp.1247–1253, 2004.

9



[5] S. Uchida, E. Taira, and H. Sakoe, Nonuniform slant correction using dynamic program-
ming, Proceedings of 6th International Conference on Document Analysis and Recogni-
tion (ICDAR 2001, Seattle, USA), vol. 1, pp. 434–438, 2001.

10


