
Automatic removal of crossed-out handwritten text
and the effect on writer verification and identification

(The original paper was published in: Proc. of Document Recognition and Retrieval XV,

IS&T/SPIE International Symposium on Electronic Imaging 2008.)

Axel Brink Harro van der Klauw Lambert Schomaker

Dept. of Artificial Intelligence, University of Groningen
P.O. Box 407, 9700 AK Groningen, The Netherlands

ABSTRACT

A method is presented for automatically identifying and removing crossed-out text in off-line handwriting. It
classifies connected components by simply comparing two scalar features with thresholds. The performance is
quantified based on manually labeled connected components of 250 pages of a forensic dataset. 47% of connected
components consisting of crossed-out text can be removed automatically while 99% of the normal text components
are preserved. The influence of automatically removing crossed-out text on writer verification and identification
is also quantified. This influence is not significant.

Keywords: Crossed-out text, off-line, writer verification, writer identification

1. INTRODUCTION

Computers can read constrained handwritten text reasonably well. While it still is a hard problem that has
not yet been completely solved, fairly good recognizers exist.1 These recognizers require that the text has been
written in a strictly defined format. Several collections of such formatted handwritten text have been created in
controlled conditions, for example see2 or.3 These collections are very valuable for training automatic recognizers
and for testing whether automatic recognition works in principle.

In practice, however, no assumptions about the input documents can be made. Therefore, automatic recog-
nition of unrestricted handwritten text is still problematic. For example, when a student takes a page of notes
written during a lecture, puts it in the scanner and instructs the computer to read it, it will probably produce
garbage. One of the main problems is that the computer has no idea where the text is. Usually, everything that
is dark, is seen as text. This can include elements like background print, stains, and physical damage. These
elements hold no information about the handwriting and should be discarded. Since it is hard to define those
elements explicitly, removing them is generally not straightforward.

Another such element is crossed-out text. Crossed-out text is intended not to be read and therefore it seems
wise to identify them as such. Such elements impede automatic handwriting recognition.4 Identifying and
discarding crossed-out text is not only relevant for text recognition, but also for writer verification and writer
identification. It is often assumed that crossed-out text also impedes computation of writer specific features of
the handwriting, because it is irregular.5 It is conceivable that feature extraction methods find many bogus
features in the crossed-out text that may not be present in another text of the same writer, decreasing the
apparent similarity. Therefore, it seems appropriate to attempt to remove crossed-out text prior to automatic
writer verification and identification.

Identifying crossed-out text has not attracted much attention yet. One approach focused on separate char-
acters and distinguished characters from noise including crossed-out characters.6 In a more recent approach,

Further author information: (Send correspondence to Axel Brink)
Axel Brink: E-mail: a.a.brink@ai.rug.nl, Telephone: +31 50 363 7410
Lambert Schomaker: E-mail: schomaker@ai.rug.nl
Harro van der Klauw: E-mail: lvdklauw@ai.rug.nl

Figure 1. Example documents in the NFI dataset, each one cut in two parts.

Markov Random Fields were used to identify crossed-out words in very challenging documents.7 A special prop-
erty of that particular method is that it seems robust against connections between crossed-out words and normal
words. The results look promising, but the performance has not been quantified.

In this paper a method for identifying crossed-out words in offline handwriting is proposed. It works on the
level of connected components and classifies them based on two features of the skeleton: the branching feature
and the size feature. The system is trained and tested on a part of a real forensic dataset, called the NFI dataset.
This dataset was first introduced in.5 It consists of 3500 handwritten samples taken from suspects in criminal
cases; these samples have previously been studied studied manually by the NFI, the Dutch National Forensic
Institute. Apart from the textual content, the handwriting is unconstrained and contains many crossed-out
words. See Figure 1 for an example. This dataset seems to be somewhat similar to the kind of data used in,8

which consists of spontaneous handwriting.

Training and testing was performed in three stages. In the first stage, the classification performance is
assessed on the level of connected components in the first 250 pages of the NFI dataset. In the second and third
stage, this classification is applied to assess the effect on writer verification and identification, respectively, on
2374 pages.

2. RECOGNIZING CROSSED-OUT WORDS

2.1 Preprocessing and segmentation
The first 250 pages of the NFI dataset were thresholded using Otsu’s thresholding method.9 From the result, the
black connected components were extracted using 8-connectivity. Two kinds of components were discarded: very

Table 1. Classes of labeled connected components.
normal crossed-out other

train set 43745 403 202
test set 41640 221 326

examples

small components with a width or height smaller than 7 pixels, and very big components with a width or height
bigger than half the page. The small components can be considered to be noise or dots; the big components
were caused by page border effects.

This resulted in a set of 86537 connected components. These were manually labeled into three categories:
“normal”, “crossed-out” and “other”. The category “other” consisted of connected components that are noise or
textual elements that could not be clearly categorized into one of the other categories. This categorization proved
to be not straightforward during the manual labeling process, which indicates that the problem of detection of
crossed-out text may actually be ill-posed. The number of components in each class and examples are shown in
Table 1.

2.2 Branching feature

When handwritten words are crossed-out, one or more strokes are written over existing strokes. The result can
be seen as a high number of strokes with many crossings. The branching feature takes the number of crossings
into account, where each crossing is called a branching point. To find the branching points of the connected
components, they were first thinned using a recent method.10 In the resulting skeleton, the branching points
were identified as the black pixels that have more than two 8-connected black neighbors. This usually results in
more than one branching point per actual crossing, but this is not important for the quality of the feature. The
resulting number of branching points was normalized by dividing by the width of the connected component.

2.3 Size feature

The second feature exploits the fact that crossed-out text is usually a big object, because the crossing strokes
add ink and usually connect individual letters or parts of a word. The size of the object is measured by counting
the number of pixels in the skeleton image. Another approach would be to count the number of pixels in the
original connected component; our tests indicated that that does not make much of a difference.

2.4 Training

The just mentioned features were both normalized by dividing the feature values by the standard deviation
within each page. This ensures that feature values that are not common within a page can be identified as
relevant extreme values. The final result is a set of labeled two-dimensional data. This data was split in two
parts: a train set containing the connected components from page 1–125 and a test set involving page 126–250.
The feature values of the classes “normal” and “crossed-out” in the train set are plotted in Figure 2. The feature

-2

 0

 2

 4

 6

 8

 10

 12

 14

-4 -2 0 2 4 6 8 10 12 14 16 18

B
ra

nc
hi

ng
 fa

ct
or

 d
iv

id
ed

 b
y

w
id

th
, n

or
m

al
iz

ed

Number of skeleton pixels, normalized

Figure 2. Feature values of connected components labeled as normal text (’.’) and crossed-out text (’+’) in page 1–125.
Many pluses are inside the cloud of dots.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

%
 T

ru
e

P
os

iti
ve

s

% False Positives

’0.0’
’0.5’
’1.0’
’1.5’
’2.0’
’2.5’
’3.0’

(a) Full plot

 10

 20

 30

 40

 0 1 2 3 4 5

%
 T

ru
e

P
os

iti
ve

s

% False Positives

’0.0’
’0.5’
’1.0’
’1.5’
’2.0’
’2.5’
’3.0’

(b) Detail that focuses on the region where
FP=1%

Figure 3. Multiple ROCs. Each ROC has a fixed θs; see legend. Along each curve, θb varies. The curves do not reach
the upper right corner because given the selections of θs, θb could not be positioned such that all data points would fall
within the decision boundaries.

values of the class “other” were not plotted, since they are not relevant for determining a decision boundary
between the features of normal words and crossed-out words.

The figure shows that the classes “normal” and “crossed-out” mainly overlap, but not totally. It also shows
that there are many more instances in the “normal” class. The classes can be separated up to a certain degree
by a decision tree, which is a very simple classifier. Several other classifiers have been tried as well, including
k-nearest neighbor, a linear support vector machine11 and a neural network, but since their performance was not
better and a decision tree is simple, the latter was used.

The decision tree was implemented by setting thresholds on each of the two normalized feature values: θs

is the threshold on the size feature; θb is the threshold on the branching feature. Values above both of the
thresholds were seen as positive examples, or crossed-out words. By positioning the thresholds, the ratio of true
positives (TP) and true negatives (TN) can be balanced. This can be done using ROC plots which are created
on the train set; see figure 3 and 4.

The optimal balance between TP and TN depends on the application, but at least it is desired that most of

 10

 20

 30

 40

 0 1 2 3 4 5

%
 T

ru
e

P
os

iti
ve

s

% False Positives

’0.0’
’0.5’
’1.0’
’1.5’
’2.0’
’2.5’
’3.0’

Figure 4. Same zoomed figure as Figure 3(b), but now every ROC curve has a fixed θb (see legend); along each ROC θs

varies.

the normal text is not seen as crossed-out and thus remains intact. For illustrative purposes, it is now assumed
that TN should be at least 99%. In other words, the number of false positives (FP) should be less than 1%.
Using plots 3(b) and 4, it can be derived that usable thresholds would be θs = 1; θb = 1.5.

2.5 Results

The thresholds θs = 1 and θb = 1.5 were applied to the test set, which was completely fresh: it had not been
used for training or testing before. The results are: TP = 47.5% and TN = 99.1%. That means that almost half
of the crossed-out words can be automatically removed while preserving 99% of the normal text. Figure 5 shows
what the result would be on the images from Figure 1. Figure 6 shows the results using other thresholds. In these
examples all of the crossed-out words have been successfully removed. It is clear that some of the components
of normal words are removed as well, particularly bigger components, but most components of normal words
remain.

To illustrate how the method scales to very big scratches, a small experiment was also performed on semi-
artificial data: the four pages of which the cutted versions are shown in Figure 1 have been overlaid with pages
containing big scratches. For this test the condition that the crossed-out components should not be bigger than
half the page was relaxed. Figure 7 shows what the result would be on such pages.

3. APPLICATION TO WRITER VERIFICATION

The proposed technique to automatically remove crossed-out words was applied in a writer verification experiment
to determine whether it affects performance. Writer verification means that a decision must be made whether
two documents have been written by the same person. This can be done automatically by first computing writer-
specific feature vectors of the input documents and then applying a threshold on a distance measure between
the feature vectors. In this experiment, the powerful Hinge12 feature was used. This technique captures the
orientation and curvature of the ink trace, encoded in a 528-dimensional feature vector. As a distance measure,
the χ2 measure13 was used. It is defined (after renaming) as:

dχ2(a,b) =
|a|∑
i=1

(ai − bi)2

ai + bi

where i is an index to the elements of feature vectors a and b. Documents with a χ2 distance below a certain
threshold were classified as belonging to the same writer.

The experiment was performed as follows. First, like in,5 all pages of the NFI dataset were split in an upper
part and a lower part. 1127 pages had to be discarded because curved or sloped baselines made a good cut

Figure 5. Images from Figure 1; thresholds θs = 1 and θb = 1.5 applied. All crossed-out components have been removed
at the expense of some normal text.

Table 2. Number of pages and writers in the dataset for verification and identification.
train set test set

original pages (writers) 250 3250
selected pages (writers) 181 (87) 2193 (988)
selected parts (writers) 362 (87) 4386 (988)

impossible. After splitting, 4748 page parts remained, written by 1074 persons. The page parts were converted
to monochrome using Otsu thresholding because this is required by the method to remove crossed-out words.
The page parts were divided into two sets: a train set and a test set. The train set consisted of the parts of pages
1–250; the test set consisted of the parts from the other 3250 pages. See Table 2 for details. To compute the
baseline performance, a verification threshold was learned from the training data by modeling the distances in
the “same writer” and “different writer” classes using Parzen windowing. The threshold was selected such that
the expected ratio of true positives (TP) was equal to the expected ratio of true negatives (TN); the equal-error
rate (EER). This threshold was applied to the test set, yielding the experimental TP and TN.

To assess the effect of crossed-out text, the same steps were taken on the same page parts after cleaning by
the crossed-out text removal method. Several values of θs and θb were tried while testing on the train set. The
results are shown in Table 3. The table shows that the values for θs and θb have no big implications on writer
verification, but the best result was used to determine the final values: θs = 2 and θb = 2.

Figure 6. Images from Figure 1; thresholds θs = 2.5 and θb = 2.5 applied. With less strict thresholds, more of the normal
text remains. Crossed-out text is also more likely to remain, but that does not occur in this example.

Table 3. Writer verification results on 362 thresholded half pages extracted from the train set (the first 250 pages) of the
NFI dataset; 87 writers.

θs θb TP TN
1 1 78.1% 81.9%
1 1.5 79.3% 81.5%
1.5 1 78.7% 81.3%
1.5 1.5 79.7% 80.7%
1.5 2 80.4% 80.3%
2 1.5 80.3% 80.5%
2 2 79.0% 82.8%
2.5 2.5 79.8% 81.3%
3 3 80.5% 81.1%

Figure 7. Result of removing big scratched-out elements. Column 1: original overlaid with scratches, column 2: result
with θs = 2.5, θb = 2.5, column 3: result with θs = 1.0, θb = 1.5.

Table 4. Verification results on 4386 thresholded half pages; 988 writers.
TP TN

Baseline 76.6% 84.0%
θs = 2, θb = 2 77.1% 83.6%

Table 5. Identification results on 362 thresholded half pages extracted from the first 250 pages of NFI dataset; 87 writers.
θs θb Top-1 Top-10 Top-100
1 1 85.4% 95.6% 98.9%
1 1.5 87.9% 96.1% 99.2%
1.5 1 86.7% 95.0% 99.2%
1.5 1.5 87.3% 96.1% 99.2%
1.5 2 88.4% 95.0% 99.2%
2 1.5 87.0% 96.1% 99.2%
2 2 88.1% 95.6% 99.2%
2.5 2.5 88.1% 95.0% 98.9%
3 3 87.9% 95.0% 99.2%

3.1 Results

The values θs = 2 and θb = 2 were used to remove crossed-out text in the test set (4386 half pages) of the NFI
dataset. Table 4 shows the result together with the baseline performance. It is clear that automatically removing
crossed-out text using the proposed method has no substantial influence on writer verification performance.

4. APPLICATION TO WRITER IDENTIFICATION

The same kind of experiment was performed to determine the effect of automatically removing crossed-out text
on writer identification. Writer identification means returning a hit list, a sorted list of documents of which the
handwriting is similar to that of a questioned document. In this experiment, similarity was again determined by
the hinge feature and χ2-distance. The pages of the NFI dataset were split in parts, thresholded, and divided
into a train set and a test set as described in section 3. The baseline performance was computed by treating
every document in the test set as a questioned document, then yielding the hit list and finally counting how
often a matching document appeared in the top-1, top-10 or top-100.

This was also done with pages of which crossed-out text was automatically removed using several values of θs

and θb in the train set. The performance using these thresholds on the train set is shown in Table 5. Although
the differences are again very small, the best selection of thresholds could be identified: θs = 1.5 and θb = 2.

4.1 Results

The thresholds θs = 1.5 and θb = 2 were applied to remove crossed-out text in the test set. On the resulting
documents, writer identification was performed. The results are shown in Table 6, together with the baseline per-
formance. The table shows that automatically removing crossed-out text does not improve writer identification
performance.

5. CONCLUSION

In this paper a simple method to identify and remove crossed-out text was presented. It can remove 47% of
crossedout text while 99% of the normal text is preserved. There is no important effect on writer verification
or identification based on the hinge feature.12 This is an indication that the effect of crossed-out text on writer
verification and identification may be overestimated.

Table 6. Identification results on 4386 thresholded half pages; 988 writers.
Top-1 Top-10 Top-100

Baseline 76.5% 88.1% 95.0%
θs = 1.5, θb = 2 75.5% 87.7% 94.8%

6. DISCUSSION

Although our result suggests that removing moderate crossed-out text may not be worth the effort, there are
options to make make this statement more firm. It is conceivable that the Hinge feature that was used for
the writer verification and identification experiment, is just quite robust for crossed-out text. Therefore, other
features should be tried for this too, for example the Fraglets feature (also called fCO3).14 It is also possible
that the automatic method to remove crossed-out words does improve verification or identification performance,
but at the same time reduces performance because also some good text is removed. Therefore the next step
should be to improve the method to detect crossed-out words. 3 One way to improve the method could be to
use textural features such as Hinge on the level of connected components. Alternate thinning methods could be
tried for the branching feature because artefacts in the skeleton have a big influence on the performance. The
method could also be adapted to work with grayscale images, which would make the method more versatile. That
would slightly improve writer verification and identification performance, since the hinge feature was designed for
grayscale and performs a bit worse on black and white images. The best values for θs and θb could be determined
in a more thorough way by using steepest descent or genetic algorithms. Furthermore, other classifiers can be
tried, and line segmentation should be applied to disconnect connected components that are big because they
consist of intersecting text from multiple text lines.

A final question that remains unanswered for now is how much text can be crossed-out without disturbing
automatic verification or identification. It is hard to imagine that everything could be crossed-out for free, so we
wonder how far one can go.

REFERENCES
1. R. Plamondon, S. Srihari, E. Polytech, and Q. Montreal, “Online and off-line handwriting recognition: a

comprehensive survey,” Pattern Analysis and Machine Intelligence, IEEE Transactions on 22(1), pp. 63–84,
2000.

2. U. Marti and H. Bunke, “A full english sentence database for off-line handwriting recognition,” in Proc. of
the 5th ICDAR, pp. 705–708, 1999.

3. L. Schomaker and L. Vuurpijl, “Forensic writer identification: A benchmark data set and a comparison of
two systems,” tech. rep., NICI, Nijmegen, 2000.

4. E. Lecolinet, L. Likforman-Sulem, L. Robert, F. Role, and J. Lebrave, “An integrated reading and editing
environment for scholarly research on literary works and their handwritten sources,” Proceedings of the third
ACM conference on Digital libraries , pp. 144–151, 1998.

5. A. Brink, L. Schomaker, and M. Bulacu, “Towards explainable writer verification and identification using
vantage writers,” in ICDAR, pp. 824–828, 2007.

6. J. Arlandis, J. C. Perez-Cortes, and J. Cano, “Rejection strategies and confidence measures for a k-nn
classifier in an ocr task,” in ICPR, 2002.

7. S. Nicolas, T. Paquet, and L. Heutte, “Markov random field models to extract the layout of complex
handwritten documents,” in Proc. of the 10th IWFHR, 2006.

8. A. H. Toselli, A. Juan, and E. Vidal, “Spontaneous handwriting recognition and classification,” in ICPR,
pp. 433–436, 2004.

9. N. Otsu, “A threshold selection method from gray-level histograms,” IEEE trans. on Systems, Man and
Cybernetics 9(1), pp. 62–66, 1979.

10. L. Huang, G. Wan, and C. Liu, “An improved parallel thinning algorithm,” in ICDAR ’03: Proceedings
of the Seventh International Conference on Document Analysis and Recognition, p. 780, IEEE Computer
Society, (Washington, DC, USA), 2003.

11. T. Joachims, “Making large-scale svm learning practical,” in Advances in Kernel Methods - Support Vector
Learning, B. Schölkopf, C. Burges, and A. Smola, eds., MIT-Press, 1999.

12. M. Bulacu and L. Schomaker, “Text-independent writer identification and verification using textural and
allographic features,” IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI) 29(4), pp. 701–
717, 2007.

13. L. Schomaker and M. Bulacu, “Automatic writer identification using connected-component contours and
edge-based features of uppercase western script,” IEEE Trans. Pattern Anal. Mach. Intell. 26(6), pp. 787–
798, 2004.

14. L. Schomaker, M. Bulacu, and K. Franke, “Automatic writer identification using fragmented connected-
component contours,” in 9th IWFHR, F. Kimura and H. Fujisawa, eds., pp. 185–190, (Tokyo, Japan),
October 2004.

