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Introduction
Auditory scenes in a natural environment consist typically of 
multiple  sound  sources.  From  this  the  human  auditory 
system can segregate and identify individual audible sources 
with ease even if the received signals are distorted due to 
noise  and  transmission  effects  [1].  Systems  for 
computational  auditory  scene  analysis  (CASA)  try  to 
achieve human performance by decomposing a sound into 
coherent  units  and  then  grouping  these  to  represent  the 
individual  sound sources  in  the scene  [2-4].  Some CASA 
systems  aim  to  estimate  masks  that  enclose  all  regions 
dominated by a single sound source in the time-frequency 
(TF)  plane  [2].  This  task  becomes  increasingly  difficult 
when high levels of noise are present.

The aim underlying our approach to CASA is to estimate the 
physical properties of the source which give rise to its signal 
components.  We  define  a  signal  component  (SC)  as  a 
connected  trajectory in  the TF plane with a  positive local 
signal-to-noise ratio (SNR). Ideally,  if the sound stemming 
from a source is represented in the TF plane,  the source’s 
characteristics carried by the sound are reflected as a pattern 
of signal components [5]. Hence, by correctly tracking and 
grouping  the signal components, it is possible to retrieve the 
physical properties that shaped the source signal. 

In this paper, we present two methods of estimating signal 
components.  The  first  method  uses  both  the  energy  and 
phase  information  derived  from  the  time-frequency 
representation of the signal. The second method uses solely 
the energy of the signal. We compare the effectiveness of the 
two methods in the extraction of target sound signals from 
noisy backgrounds.  Our results show the importance of the 
often neglected phase information in TF analysis.

Methods
The  most  common  pre-processing  step  in  CASA  is  the 
transformation of sound signals represented by a time-series 
into their  TF representation.  Such  a representation  can be 
obtained  using  such  transformation  techniques  as 
filterbanks[6] and short-time Fourier transform (STFT) [7]. 
As expected from the uncertainty relation between time and 
frequency  these  transformations  cause  a  smearing  of  the 
energy  in  the  TF  plane.  This  introduces  difficulties  in 
tracking the evolution of  frequency and energy and limits 
the  possibilities  to  extract  the  physics  of  the  sound 
production event.  In the STFT transformation, optimizing 
the window parameter allows fine tuning of the resolution in 
either frequency or time, however this reduces the general 
applicability.  To get  around the energy smearing problem, 
we use the phase information, which is less sensitive to the 

choice of the window parameters [8]. In addition it allows 
for the retrieval of instantaneous frequency (IF) and group-
delay corrected  time (GDCT) representation which can be 
used to remap the energy into narrower bands [9-10].  In the 
IF and GDCT representations the dominant TF bins will be 
close to the frequencies and time frames of the sound source 
with a reduced sensitivity to sound transmission effects. The 
local  dominance  of  a  signal  component  at  a  TF  bin  is 
determined by measuring the spread of the IF or GDCT over 
neighboring bins around the bins frequency [11] and time, 
respectively,  with  a  small  spread  indicating  strong 
dominance. We exploit this phenomenon for the extraction 
of the signal components.

Signal component estimation using energy and 
phase information (SCEP)
To make use of phase properties in the extraction of signal 
components,  it  is  necessary  to  calculate  the  phase  as 
accurately as possible from the signal. To do this, we use the 
phase calculation method described by Auger et. al [12]. We 
apply two STFTs to the time series signal. The first STFT 
uses  a  Gaussian  function  w(t) as  a  windowing  function 
giving the time-frequency representation X(t,f) where t and f 
refer  to  discrete  time  and  frequency  indices,  respectively. 
The second STFT uses the time-derivative dw(t)/dt of w(t) as 
a  windowing  function  giving  the  time-frequency 
representation  X’(t,f).  Based  on  the  complex  amplitudes 
X(t,f) and  X’(t,f),  the  instantaneous  frequency  (fins)  and 
group-delay corrected time (tgdc) can be calculated as follows
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where σ is the standard deviation of the Gaussian window 
used  in  the  STFT.  The  calculated  fins corresponds  to  the 
actual  frequency  content  of  the  sound  source  which 
dominates  a  few frequency bins  in  the TF plane.  The  tgdc 

corresponds to the actual  temporal  positions of pulses and 
fast  chirping signals in the TF plane.  The dominance of a 
source signal components can be determined by measuring 
the spread of the  fins over certain  frequency range and the 
spread of tgdc over a certain temporal duration. We calculated 
the spectral and temporal degrees of dominance (DoD) as 
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Equation (3) defining the spectral degree of dominance was 
originally used by Nakatani et. al to estimate the pitch in a 
speech [11]. We extended their formulation to the temporal 
aspects of the signal leading to our definition of the temporal 
degree of dominance in equation (4). Equations (3) and (4) 
yield  high  values  if  the  spread  of  fins and  tgdc are  small 
indicating  the  presence  of  a  dominant  source.  Signal 
components  are  extracted  by  applying  a  threshold  of  one 
standard deviation above the mean of all DoD points in the 
TF plane on the DoD matrices and subsequently identifying 
connected regions with high DoD values. 

Signal component estimation using energy 
peaks (SCE)
To  show  the  importance  of  phase  in  signal  component 
estimation, we present  an alternative method of extracting 
the signal  components  in  the TF plane  that  only uses  the 
energy information. This method is a simplified version of 
the  commonly  used  sinusoidal  modelling  in  speech  and 
music  analysis  [7].  To  extract  the  signal  components,  a 
spectrogram is obtained by applying an STFT to the time 
series signal. Energy peaks in the spectrogram are obtained 
by  a  peak  tracking  algorithm  applied  in  frequency  and 
temporal  direction  independently.  The  peaks  are  linked 
together to form signal components if the distance between 
peaks satisfy a certain criterion.

Sound Resynthesis
To  determine  how  well  the  extracted  signal  components 
represent the original sound signal, we transform it back to a 
time  series  representation.  This  allows  us  to  listen  and 
compare the resynthesized sound to the original sound. The 
resynthesis  uses  the signal  components  location in the TF 
plane as a mask. This mask followed by an inverse Fourier 
transform is applied to the complex amplitudes X(t,f). The 
sound  is  then  resynthesized  using  an  overlap-and-add 
technique [13].  

Experiment
We  determine  the  efficacy  of  both  signal  component 
extraction methods by testing it in a denoising experiment. 
We measure how much of the target signal can be retrieved 
by both signal component extraction processes . In order to 
test the applicability of the signal  component extraction to 
all  possible  types  of  sounds,  we  used  100  different 
recordings of environmental sound sources as targets. These 
recordings  were  used  in  Gygi’s  studies  on  environmental 
sound [14]. Based on Gygi’s categorization, the 100 sound 
samples  were  divided  into  3  groups  namely  tonal  sounds 

(harmonic category),  impact sounds and continuous sounds 
[14].  All target sound are mixed with 14 different levels of 
pink noise with signal-to-noise ratio (SNR) ranging from 25 
dB to -10 dB. Signal components were extracted using both 
SCEP and SCE. Results of the initial tests showed that signal 
components extracted from pure noise (generated pink and 
white noise) are often short in duration (for tonal behavior) 
or span only a few frequencies (for pulse-like behavior). We 
used this characteristic to remove noise by discarding signal 
components  shorter  than  a  specified  threshold.   The 
remaining signal  components were labeled as target  sound 
and  used  as  mask  for  the  resynthesis.  The  resynthesized 
sounds were then compared to the original target sounds to 
evaluate  the  amount  of  target  sounds  retrieved  from  the 
noise  mixture.  The  performance  of  extracting  the  target 
signal from the noisy mixture is computed using 
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where  xt is  the  time-series  of  target  signal  and  xr is  the 
resynthesized  signal  based  on  the  extracted  signal 
components.  The  performance,  has  a  value  between  0 
(uncorrelated signals) and 1 (perfectly matched signals).

Results
To illustrate the signal extraction algorithm, we concatenated 
two  sound  files  from  sound  sources  that  exhibit  very 
different spectro-temporal behaviors. A spectrogram of this 
concatenated  sound  sample  is  shown  in  Figure  1a.  The 
spectrogram  shows  the  tonal  structure  of  a  mooing  cow 
sound and the pulse-like structure of a footsteps sound. Pink 
noise is also added to the concatenated sounds with 25 dB 
SNR. The pink noise can be seen as an energy gradient in 
the spectrogram, i.e., darker shades (high energy) in the low 
frequency part and lighter shades (low energy) in the high 
frequency  part.  The  signal  components  extracted  using 
energy and phase (SCEP) are shown in Figure 1b. The signal 
components of the cow sounds are the horizontal trajectories 
seen  in  the  TF  plane.  It  can  also  be  observed  that  these 
trajectories make up a harmonic structure which is common 
property  of  most  animal  vocalizations.  The  vertical 
structures are the signal components of the footsteps sound. 
The  signatures of footstep sounds can be identified as two 
subsequent pulses due to the dynamics of  the impact of the 
toes and heels of the foot and a periodic repetition of these 
vertical  structure.  Figure  1c  shows the  signal  components 
extracted  using  the  energy  peaks  (SCE).  Both  SCEP  and 
SCE capture the structures of the cow mooing sound and the 
footsteps sound. But after SCE still some signal components 
of  the  pink  noise  are  present.  This  indicates  that  SCEP 
removes noise signal components more efficiently than SCE, 
while still effectively capturing the signal components of the 
relevant sound sources. 

The  performance  of  SCEP  and  SCE  were  evaluated 
separately  on   the  3  categories.  Figure  2a  depicts  the 
performances of the SCEP (circles) and the SCE (squares) 
with respect to SNR using tonal sounds as targets. 
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Figure  1.  (  a  )  A  spectrogram  of  the  concatenated  cow 
mooing  sound  and   footsteps  sound.  Dark  shades 
corresponds to high energies. ( b ). The signal components 
extracted  using  SCEP.  (  c  ).  The  signal  components 
extracted using SCE.

SCE  has  higher  mean  performance  at  higher  SNR,  but 
decreases faster compared with the SCEP performance. Even 
at  -10  dB  SNR  the  SCEP  performance  is  high  (mean 
performance  is  well  above  0.5).  Figure  2b  depicts  the 
performances when impact sounds were used as targets. Still 
the  SCE outperforms  SCEP  at  higher  SNR,  but  again  its 
performance decreases faster as SNR decreases. 
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Figure 2. ( a ). Target sound extraction performances of the 
SCEP and SCE  with tonal sounds as target sounds. ( b ). 
Target sound extraction performances of the SCEP and SCE 
with  impact  sounds  as  target  sounds.  (  c  ).  Target  sound 
extraction  performance  of  the  SCEP  and  SCE  with 
continuous sounds as target sounds . SCEP are represented 
by blue lines with squares and SCE  are represented by red 
lines with circles.

 At -8dB SNR SCEP performance is above 0.5. Figure 2c 
shows the SCEP and SCE performances for the continuous 
sound  class.   These  sounds  exhibit  a  spectro-temporal 
behavior similar to noise. The performances of both SCEP 
and  SCE are  comparable  at  lower  SNR values,  however, 



SCE has better performance as compared to SCEP at higher 
SNR.  Out  of  the  three  classes  of  target  sounds,  SCEP 
achieves the best performance on tonal sound category and 
least performance on the continuous sound category.  SCE, 
on the other hand, has almost the same performance rating 
for all the 3 classes. At high SNR values SCE always has a 
higher performance as compared to SCEP. 

Discussion
We presented  a  method  for  extracting  signal  components 
from sound sources. This method is based on the energy and 
phase information calculated from a time-frequency analysis 
of  the  signal.  For  comparison  an  alternative  signal 
component  extraction  solely  based  on  the  energy  is  also 
presented.  Both  methods  were  tested  in  a  denoising 
experiment  which  measures  the  amount  of  target  signal 
retrieved  from  a  noisy  mixture.  Initial  tests  on  clean 
artificially generated sound shows that both methods work 
equally well. 

When  the  sound  samples  are  mixed  with  noise  a  slight 
performance difference is  observed. As depicted in Figure 
1b and Figure 1c, SCE retains more of the noise as compared 
to SCEP. These unfiltered noise signal components cause a 
higher performance of SCE (a bias) over  SCEP at high SNR 
since the majority of sound signal  used in the experiment 
already contain a fair amount of noise prior to the addition of 
pink noise. SCEP effectively removes signal components of 
both  the  intrinsic  noise  and  pink  noise.  Therefore  SCEP 
based resynthesized  sounds lacks  the presence  of  intrinsic 
noise and thus give lower performance than SCE when both 
are compared to the original  target sound.  We also tested 
both methods on clean speech sound samples and found that 
both perform equally well at high SNR indicating that the 
bias is indeed caused by the presence of intrinsic noise.

With  increasing  noise  level  a  decrease  in  performance  is 
observed.  In  SCEP  this  decrease  is  mainly  due  to  the 
interference  between the  noise signal  components  and the 
target  signal  components.  The  interference  degrades  the 
coherence  of  the  target’s  signal  components  which 
introduces  discontinuities  in  the  trajectories.  These 
discontinuities fragment the signal component. The resulting 
signal  component fragments will eventually be filtered out 
together with the noise signal components. This problem is 
more  severe  for  sounds  in  the  continuous  class  which 
already exhibit a noise-like behavior and are therefore more 
sensitive to interference effects.  This explains the reduced 
performance of SCEP on continuous sounds.

In conclusion, a method of extracting signal components that 
uses  both  the  energy  and  the  phase  information  from the 
signal  is   more  reliable  compared  to  a  method  that  uses 
energy  alone,  especially  in  a  fairly  noisy  condition.  The 
method work well on signals that have a tonal or a pulse-like 
structure. This method constitutes a promising preprocessing 
step for extracting the physics of sound producing events..  
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