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Introduction 

Human listeners can detect and recognize speech with 

relatively little hindrance of background noises [1]. It is well 

known that human listeners apply knowledge to derive a 

coherent interpretation of ambiguous input. But human 

listeners might also benefit from the robustness of formant 

patterns. Formants are part of the perceptual features that are 

hypothesized to be used by humans in speech processing [2, 

3, 4] and correspond to the resonance frequencies of the 

vocal tract. Shape changes of the vocal tract influence the 

formants and lead to their development over time. The 

temporal development of  formants is generally thought to 

characterize vowels. These developing formant patterns, are 

noticeable in the acoustic signal as amplified energy of the 

harmonics of the speech sound and are as such robust to 

noise. 

While perceptual features focus on spectral detail, the 

representations of speech used in Automatic Speech 

Recognition (ASR) focus on describing the spectral 

envelope. For the special case of clean speech such ASR-

features can be used to accurately determine the formant 

positions and formant developments [5]. But efforts that 

focus at formant detection in noise [6, 7, 8] still perform  

well below human performance. One of the reasons for the 

relatively low performances in noise might be that ASR-

features treat signal and noise alike and spread spectral 

shape information over multiple parameters. As a result of 

this, the possibility to suppress noise or separate sources 

after feature estimation is reduced. Advances have been 

made to deal with this problem. First, the effects of noise can 

be separated from the target speech in some special cases. 

For example, in the case of stationary noise it is possible to 

remove a constant noise component in the features with 

cepstral mean substraction. Such methods can lead to 

acceptable recognition results in highly specific conditions 

[9]. Second, methods exist that ignore unreliable features 

and as such bias the information towards representing the 

target speech [10]. Although those, and other, advances have 

been made that improve the signal descriptions in noisy 

conditions, the fundamental problem has not been solved. 

This implies that the remaining noise must be dealt with 

during the pattern recognition phase. Currently this is only 

possible by tuning the ASR-system for specialized 

applications which allow the input to be from rather narrow 

and preferably constant domains. 

The fact that human listeners still outperform ASR systems 

in noise [1, 11] might partly be explained by the different 

characteristics of the extracted features. In contrast to whole 

spectral shape features, perceptual features are robust to 

noise. As a result of this robustness, the same or similar 

feature values will be derived from noisy as well as clean 

conditions. To pursue this idea further we developed a 

formant-detection algorithm using features similar to the 

features hypothesized to be used by humans. 

The aim of this study is twofold. First we determine whether 

the subset of extracted formants includes the reference 

formants, and second we test whether those can be used to 

classify vowels correctly. We test the performance of the 

method neither optimizing the detection nor the 

classification method and using a preliminary experimental 

test. In the method section we explain the algorithm and 

experiment to test our method. We report on formant 

detection and vowel classification performances in the result 

section. We focus our discussion on the performance in 

noise because this is where, even without optimizing the 

algorithm we expect comparative advantages of our method. 

Method 
The features used in our formant-detection algorithm are 

derived from the speech signal in several steps whose results 

are illustrated in Figure 1. First, we compute a cochleogram 

and identify in it high energy regions of suitable shape and 

sufficient size (a). Then we extract possible harmonic 

complexes (HCs), and complement them with less reliable 

signal components (b). In the next step we determine local 

formant positions by establishing the maxima in an 

polynomial interpolation between peaks in the harmonic 

complex(c). Finally we select formants of sufficient duration 

(d). The algorithm is not optimized for usage on specific 

speech sounds or this specific database. 

Figure 1: Cochleogram of the utterance [ubi] in clean speech. Dark 

grey regions depict high energy levels, light grey regions depict 

low energy levels. (a)  energetic signal components (b) selected 

harmonic complexes (c) formant detections (d) selected formants 

We applied our method to the American English Vowels 

dataset (AEV) [12] with added pink noise in decreasing 

signal to noise ratios (SNRs). Pink noise was chosen because 



it masks speech evenly. The dataset consists of 12 vowels 

pronounced in /h-V-d/ context by 48 female, 45 male and 46 

child speakers. All vowels can be correctly classified by 

American English listeners. The AEV dataset is annotated at 

the level of formants at 8 points in time, which makes it a 

suitable ground truth.  

From the detections two performance measures on formant 

detection for the first three annotated formants are 

calculated. First, a detection ratio (rd) is calculated, giving 

the fraction of annotated formants that is consistent with our 

detections, 

{ }

{ }annotated#

annotateddetected# ∩
=dr . 

We consider a detection to be consistent with the annotation 

if it falls within two standard deviations from the mean of 

the reference formant of a class as obtained from the 

annotations. Second, a measure is calculated for the detected 

formants that cannot be related to the annotated formants, 

the spurious peaks (rsp). This measure is the ratio between 

the number of extra detected formants at the annotated 

positions, and the number of annotated points, 

{ } { }

{ }annotated#

annotateddetected#detected# ∩−
=spr . 

In addition, we investigated how well the detected formants 

that are analogous to the ground truth formants can be used 

to classify the sounds according to vowel quality (class) 

without making any claims regarding the machine learning 

algorithm we used. Hereto the best first tree search algorithm 

from the WEKA toolbox is used [13]. A feature vector is 

constructed, consisting of the frequency values of only the 

subset of detected formants that are analogous to the 

reference formants. Due to missing values, i.e. formants that 

were not detected, we were limited to a small number of 

classification algorithms to choose from. The tree search 

algorithm allows a weighting of different features. This is a 

relevant characteristic because different formants represent a 

different informational value and should be weighted 

accordingly. The best first tree search algorithm used a ten-

fold cross validation method on both the detected formants 

and on the ground truth formants. 

Results 

In Figure 2 the detection rate (rd, solid line) and the 

proportion of spurious peaks (rsp, dotted line) are plotted 

against an increasing SNR. Separate results are plotted for 

female (a), male (b) and child speakers (c). Mean overall 

results are plotted in figure 2 (d). The overall detection 

performance is around 65% for clean conditions and 

decreases to 35% in a SNR of 0dB down to 0% in a SNR of 

-15dB. The proportion correct detections are higher (~75%) 

for female (a) and child (c) speakers than they are for male 

speakers (~50%). Also the proportion of spurious peaks is 

lower (~20%) for both female and child speakers than for 

male speakers (~30%). 

(a) (b) 

(c) (d) 

Figure 2: (a,b,c,d) Proportion of the annotated formants [12] that is 

covered by our subset of detected formants (rd, solid). Proportion  

extra detected formants, spurious peaks, in our subset (rsp, striped). 

(a) women (b) men (c) children (d) pooled results over a,b and c 

In Figure 3 the classification results are plotted against an 

increasing signal to noise ratio. The classification 

performances are slightly higher than the detection 

performances (Figure 2). Based on the formant detections 

(between 50% and 75%), a classification score between 65% 

and 75% is reached in clean conditions. For a SNR of 0dB 

the female as well as child speaker performance is improved 

to 55% correct classification. The classification result based 

on the ground truth formants shows 88% correct 

classifications. 



Figure 3: Percentage correctly classified vowels by means of a best 

first search for the formants as annotated by [12] (dot) and  for the 

subset of detected formants that covers the annotations for SNR      

-10dB up to SNR 30dB for female (solid) child (striped) and male 

speakers (dotted and striped). 

Discussion 

In this article we described and tested a method to 

automatically extract formants based on the notion of 

perceptual features. In contrast to commonly used ASR-

features perceptual features remain similar throughout 

different noise conditions. This characteristic can be 

exploited by our method as long as the features are not 

masked by noise. The robustness of perceptual features 

allows us to develop a single method to extract similar 

feature values through varying acoustical conditions. In pink 

noise we showed that formants consistent with the ground 

truth are extracted into the low SNR range, and can be used 

to classify vowels. 

Three things attract our attention if we have a closer look at 

figure 2. First, in an SNR of 0dB pink noise our method still 

detects 50% of the correct formants for female speaker and 

55% for child speakers but only 25% for male speakers. We 

cannot yet explain this big difference between the results for 

male speakers and child and female speakers, but it is at least 

in part due to imperfections in our algorithm for finding the 

correct harmonic complex rather than a failure of our 

features. Second, a peak exists at low SNRs for all three 

speaker classes in the rsp measure, and  is less pronounced for 

the case of male speakers than it is for the child and female 

speakers. A similar explanation can be given for this 

observation. If the SNR decreases, the number of incorrectly 

extracted harmonic complexes will first increase, resulting in 

an increased amount of incorrect formant detections. Then, if 

SNR decreases further, the number of incorrectly extracted 

HCs will decrease again because no HC is extracted 

anymore. In the case of male speakers there is an increased 

amount of incorrectly extracted HCs from the beginning 

which explains the relatively low peak for this speaker class. 

Third, the performance in clean conditions are relatively low 

compared to other methods [8]. An explanation for this 

might be that the detected harmonic complex does not 

always perfectly coincide with the points at which the 

utterance is annotated. Therefore, the first annotations for all 

three formants are often missed. The rd measure gives  credit 

for all annotated points where we find a formant that is 

annotated. If the detected harmonic complex is time shifted 

and is therefore not properly aligned with the annotations a 

relatively low score for those sound-files is obtained. 

Two possible effects of choices we made do not directly 

follow from the results. First, the extracted harmonic 

complexes are often much longer than the annotations and 

this is not credited although visual inspection indicates that 

the extracted formants are still correct. This implies that the 

measure rd might not be optimal. However, because data that 

is annotated on the level of formants is scarce, we cannot 

easily switch to another measure or database. Second, we 

used a tolerance of two standard deviations of the mean 

reference formants, averaged over all vowel qualities. This 

choice is based on the idea that two standard deviations is a 

naturally occurring variability of formants, in which humans 

are still able to classify the vowel input. One of the adverse 

effects  of this choice might be that not all detected formants 

are reported. Expectedly, this effect is more prominent in 

noise than in clean conditions because additive noise might 

result in increasing standard deviations whereas the 

tolerance is calculated on the ground truth formants in clean 

speech. If a useful selection or classification algorithm is 

implemented this problem will be solved because a tolerance 

value is not needed anymore. 

We like to compare our results to two recent studies 

reporting formant detection scores in noise. At present a 

direct quantitative comparison with those methods cannot be 

made due to different performance measures and noise 

conditions.. Therefore we describe in qualitative terms both 

the method and the obtained results in noise. The method 

proposed by [6] uses a prefiltering technique where the 

speech is filtered by a time varying adaptive bandpass filter 

before formant frequency estimation. Effectively the 

application of this method results in the dynamic 

amplification of interesting frequency regions. In 0dB white 

noise the method leads to performance errors close to the 

standard deviation of the formant frequencies over the whole 

utterance. This result can likely be explained by a regression 

towards the filter respons by decreasing SNR. This means 

that by increasing noise levels, the derived formant 

frequency gradually changes towards the filter respons and 

therefore the extracted formant features are not reliable in 

noise. The method proposed by [9] is a three stage formant 

tracking linear prediction model. In the first stage a noise 

reduction is performed. In the second stage a secondary 

hidden markov model (HMM2) is used to track formant 

variation in both time and frequency, and in the final stage a 

Kalman filter is used to give a smoothed trajectory. This 

method results in average estimation errors of respectively 

17%, 12% and 8% for the first, second and third formants in 

a SNR of 0dB train noise. One of the problems of this 

method is that it is not clear how it can be generalized to 

other, less predictable types of noise. The noise reduction 

methods used are specifically suitable for relatively stable 

types of noise and the method relies for a big part on 

denoising of the input signal.  

Besides applying a machine learning algorithm to our results 

we also used the reference formants from the AEV dataset to 



test the classification method. Using the best first tree 

algorithm from the Weka toolbox [13] we find a 

classification performance of 88%. Using the same dataset 

and therefore the same features [7] classified around 96% 

correct using a weighted narrow-band pattern matching 

method. From the clear difference between those 

classification results (96%) and our result (88%) we 

conclude that the machine learning algorithm we used is not 

optimal. Another classification mechanism might therefore 

give better classification results, not only in clean, but 

probably also in noisy conditions. However, we applied a 

classification method in order to determine whether the 

extracted formants can be used to classify vowels in 

changing noise conditions. 

In an SNR of 0dB we find a vowel classification 

performance of 55% (figure 3) for female and child speakers 

based on an overall formant detection rate of 45%. A similar 

classification result in 0dB babble noise is found by [8] on 

the same AEV database. They use HMM2 to evaluate 

probabilities of both frequency and time. Using this method 

55% correct classifications in 0dB babble noise are found for 

female and male speakers. An important characteristic of 

this method is that it uses statistical, database specific 

knowledge (in the form of frequency probabilities) to select 

the correct formants from a set of detected formants. 

Therefore [8] might profit from the relatively stable 

conditions of this database. 

We expect a possible improvement in detection scores by 

incorporating knowledge in a decision mechanism. One of 

the possible improvements is that in the selection stage 

incorporating knowledge might lead to a reduction of the 

amount of spurious peaks by selecting those formants that 

lead to a consistent vowel hypothesis. Another possible 

improvement might be found in the classification stage. 

Provided still some information on vowel quality can be  

estimated, a knowledge guided search can converge to a 

single percept, even if the signal is heavily degraded. 

Encouraging examples for such approaches can be found in 

technical as well as psycholinguistic literature. First, the 

missing features method [10] is a method where unreliable 

features are ignored and subsequently a coherent 

classification is attempted with the remaining features. 

Second, from a psycholinguistic point of view convergence 

onto a single percept can result from a competition between 

different possible percepts. In [2, 3, 4] the effect of such a 

competition is that the input that matches knowledge best 

receives the highest activation and as such results in a single 

percept.  

In this article we showed that our method allows us to 

extract robust features in varying acoustical conditions. Until 

fairly low SNRs the extracted features can still be used to 

correctly classify vowels. We still expect strong performance 

improvement with further improvements on our method. 

Especially through  improvements in the harmonic complex 

detection algorithm, which we expect will strongly reduce 

the number of incorrect formants due to incorrectly or not 

extracted harmonic complexes. Although our results at 

present are preliminary, we think that these initial results 

indicate that perceptual features thought to be important for 

humans in speech processing can also be used to build robust 

vowel detection  systems. 
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