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ABSTRACT 
Human perception of sound in real environments is complex fusion of many factors, which are 
investigated by divers research fields. Most approaches to assess and improve sonic 
environments (soundscapes) use a holistic approach. For example, in experimental psychology, 
subjective measurements usually involve the evaluation of a complete soundscape by human 
listeners, mostly through questionnaires. In contrast, psychoacoustic measurements try to 
capture low-level perceptual attributes in quantities, such as loudness. However, these two 
types of soundscape measurements are difficult to link other than with correlational measures. 
We propose a method inspired by cognitive research to improve our understanding of the link 
between acoustic events and human soundscape perception. Human listeners process sound 
as meaningful events. Therefore, we developed a model to identify components in a 
soundscape that are the basis of these meaningful events. First, we select structures from the 
sound signal that are likely to stem from a single source. Subsequently, we use a model of 
human memory to predict the location at which a sound is recorded, and to identify the most 
likely events that constitute the components in the sound given the location. 
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1. INTRODUCTION 
Human perception of sound in real environments is a complex fusion of many factors. 
Therefore, many fields of research are involved in trying to understand these factors, ranging 
from psychoacoustics1 to cognitive psychology2 and sociology3. Most psychoacoustic studies on 
sound quality evaluation focus on measuring one-dimensional attributes of isolated sounds4,1. 
However, several studies have shown that perceptual attributes can only explain part of the full 
perception of soundscapes5,6. The judgment of a soundscape is largely dependent on the 
meaning that a listener gives to the sound7. For example, whether a listener enjoys music 
depends on his or her choice to hear it. At a concert, music will be appreciated even (or 
especially) at a high loudness level, while the tolerance for the music that a neighbor is playing 
at night will be much lower. 
 
Zhang and Kang8 distinguish four categories in which the different factors that influence human 
soundscape perception can be organized, namely sound, space, people, and environment. The 
categories of sound and space comprise the acoustical factors of the source, altered by 
transmission effects, such as background sounds and reverberation. These acoustical factors in 
soundscape perception have been tested in psychoacoustic studies9 and in psychological 
studies. However, acoustical factors cannot be studied in isolation, because the judgment of a 
listener is not based solely on the properties of the sound, but is also affected by factors like the 



listener’s memory and his cultural background. This interplay can be accounted for either by 
controlling the sounds and varying the condition, such as the cultural background10, or by 
correlating psychoacoustic measures to listeners’ judgments11. Other non-acoustical factors that 
affect the listener’s judgment can include social, demographical, and behavioral factors12, and 
environmental factors, such as temperature, wind and sunshine8. 
 
Many of these recent studies on the judgment of soundscapes use holistic measurements, 
because soundscape evaluation is a holistic perception, not a sum of the evaluation of the 
acoustic properties of sound sources. However, the soundscape that listeners evaluate is 
composed of different acoustic events. Depending on the complexity of the acoustic surrounding 
and the state of the listener, some or all of these events will be identified and processed as 
meaningful events2. Consequently, they will affect the complete soundscape evaluation. These 
meaningful events can be seen as a link between the holistic judgment of a soundscape and the 
acoustic events. 
 
To get insight in soundscape perception, we will focus on this link between a soundscape and 
acoustic events. More specifically, we propose a method to automatically identify acoustic 
events based on signal-driven hypotheses, which are guided by knowledge of the environment. 
The short-term history of an acoustic event is used to predict the location where the event is 
recorded. Vice versa, the predicted location is used to form expectancies of events that follow. 
The hypotheses about events approach meaningful events, because they are learned from 
human annotations. Furthermore, we use a model of human memory to manage the 
hypotheses. By using an approximation of short-term memory, we include an important 
cognitive factor in the analysis of a soundscape. Although these event hypotheses are not 
similar, or even close to cognitive representations, they can be used to automatically analyze a 
soundscape in a more meaningful way than through acoustic properties alone. Therefore, this 
method provides a basis for modeling the factors that are important in soundscape perception. 
 
In the following section we will describe the methods that we developed to segment and label 
components in a soundscape. In the third section we present a data set, which is used in an 
experiment to test the combined methods. Finally we will discuss the results of the experiment, 
and give an outlook on future work. 

2. METHODS 
To identify acoustic events in a continuous sound signal, we first select components from the 
sound signal that are likely to stem from a single source (section A). Subsequently, we use a 
model of human memory to select the most likely label for the events that constitute these 
components, based on a prediction of the location (section B). The methods are only briefly 
described here. For a detailed description we refer to Krijnders et al.13 and Niessen et al.14. 

A. Sound Processing 
The spectrogram of the sound signal is segmented on the basis of the local spectro-temporal 
properties. Segments are likely to stem from a single source when they are based on local 
properties. For example, local energy maxima that resemble tones and are developing smoothly 
in time are likely to stem from the same source. The robustness and reliability of these 
segments, called signal components, are improved with grouping principles from auditory scene 
analysis, such as common onset, common offset and common frequency development15,16. The 
strategy to combine local signal properties and grouping principles allows to select qualitatively 
different types of groups, namely tones and harmonic complexes, pulses, and broadband 
events. A physical description of these groups is used to classify and label them as sound 
events with a k-nearest neighbor (k-NN) classifier. 



B. Dynamic Network Model 
The segmented groups, described in the previous section, are labeled according to the 
information in the sound signal. However, the sound signal can be distorted or masked by 
transmission effects such as background sounds and reverberation, resulting in a low 
confidence of certain group labels. Furthermore, some acoustic events have a distinct meaning, 
but similar sound structures, such as screaming and laughing. To resolve these confusions, we 
propose a method that incorporates knowledge of (part of) the context, based on the short-term 
history of the events. 
 
This method, which is inspired by cognitive research17,18, constructs a dynamic network that 
keeps track of both signal-driven groups and knowledge of the context. The nodes of the 
dynamic network represent information about sound events at different levels of complexity, and 
the connections between them represent the probability that these pieces of information belong 
together. Each node holds an activation value. A hypothesis (node) is more likely to be correct 
when its activation value is higher than its competitors. Whenever new signal-driven information 
becomes available, the network is updated by adding nodes, which represent new pieces of 
information, and removing nodes whose activation is below a threshold. Subsequently, the 
activation of the new nodes spreads through the network. Furthermore, new nodes are used to 
form expectancies of future sound events. If a signal-driven group matches an expected event, 
it is more likely to be correct.  
 
An example of a network configuration is depicted in figure 1. The nodes at the lowest level 
represent segmented groups, at the middle level they correspond to event hypotheses, and at 
the highest level to hypotheses about locations. Nodes at the different levels are connected with 
some strength, denoted by weight w. These weights can be used to infer probable locations of 
sound events. For example, birds are heard more often in a park than at a road intersection. 
The strength between the node that represents a location and the nodes that represent the 
individual sound events is calculated according to a term-weighting approach used in automatic 
document retrieval19. In this method the importance of a term (word or phrase) in a document is 
determined by multiplying its frequency in the document with the inverse frequency it occurs in 
other documents. Hence, the term is important for a document if it occurs often in that document 
and infrequently in other documents. Analogously, if a sound event E is encountered often at 
location L, and little at other locations, it is an important indicator for location L. Accordingly, the 
strength between the sound event E and the location L is (scaled between 0 and 1): 
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where N is the total number of locations, n is the number of locations at which E occurs, and tf is 
the term frequency, calculated as the fraction of TE,L, the total duration of occurrences of E at L, 
and TE, the total duration of occurrences of E in a training set. 
 
 



 
 

Figure 1: Example of the dynamic network model. 

3. EXPERIMENT 
We present an experiment to demonstrate that the proposed methods can be used to identify 
events in a soundscape given a predicted location. First, we describe the data set that is used in 
the experiment. Next, the setup of the experiment is explained, and in the last part we present 
the results of the experiment. 

A. Data 
The data set was collected under different weather conditions on a number of days in March 
2009 in the town of Assen (65,000 inhabitants, in the north of the Netherlands). The recordings 
were made by six groups of three students as part of a master course on sound recognition. 
Each group made recordings of three minutes at six different locations: a railway station 
platform, a pedestrian crossing with traffic lights, a small park-like square, a pedestrian 
shopping area, the edge of a forest near a cemetery, and a walk between two of the positions. 
Recordings were made using M-Audio Microtrack-II recorders with the supplied stereo 
microphone at 48 kHz and 24 bits stereo. This data, with annotations, will be made available on 
http://daresounds.org. 
 
All the recordings were annotated by two students separately. These two annotations were 
merged, such that equal labels did not overlap, but became one instance. We examined the 
resulting merged annotations, and adjusted them when necessary. However, we did not 
introduce new annotations. (An exception was made for the annotations of one group, which we 
had to complete because they were too meager.) We ensured that the names of events were 
uniform across all the files to prevent the dynamic network model from learning annotators 
rather than locations. The total of 44 audio files, with an average duration of 3,5 minutes, were 
annotated for 54 different classes. However, half of these classes were annotated less than 5 
times, while just a few classes comprised most of the annotations. In table 1 a few examples of 
annotated classes are given, ranked according to their frequency in the complete data set. 
 

Table 1: Examples of annotated classes and their occurrences. 
 

Class Total number 
of occurrences 

Sum of duration 
of occurrences 

Bird 
Bike 

Rooster 
Horn 

Shopping bag 

238 
30 
16 
8 
1 

17 min 
2 min 20 sec 

43 sec 
11 sec 
7 sec 

 



B. Setup 
The annotations of sound recordings were used to train both the k-NN classifier, for the labeling 
of the signal-driven groups, and the knowledge of the dynamic network. For the k-NN classifier, 
all 44 audio files were processed with the signal-driven method described in section 2A. The 
segmented groups with the highest score that overlapped with an annotation were given that 
annotation as a label. Groups that did not overlap in time with an annotation were labeled as 
noise. All other groups were discarded. From these processed files, 44 file pairs were 
generated. Each file pair consisted of a file used for training, for which the labeled groups from 
43 files were used, and a test file, which contained all the groups from the one file that was left 
out, resulting in a leave-one-out set. Additionally, the annotations of the training file of each file 
pair were used to train the weights in the dynamic network model (see section 2B). 
 
In the test phase, the groups in the test file are used as input for the dynamic network (see 
figure 1). Subsequently, the possible classes that the group can represent are initiated as event 
hypotheses in the network. The weight between the group and the event hypotheses is the 
probability of each class given by the k-NN classifier. If the event cannot be classified and is 
labeled as noise, the weight is set to the prior probability that the event occurs. Based on these 
events, the network forms a hypothesis of the location, which in turn initiates expectancies of 
certain sound events that might follow. The results of this combined approach are the mostly 
likely events that explain the segmented groups, given the identified sound events and their 
predicted location. 
 
The most likely events according to the k-NN classifier and the combined model are compared 
to the annotations through the F-measure. The F-measure is used in information retrieval to test 
the effectiveness of the performance of a system20, for example a search engine. The F-
measure is computed as the harmonic mean between the recall, which represents whether 
relevant results are retrieved, and the precision, which represents whether irrelevant results are 
not retrieved. Applied to the results of automatic sound identification, precision is a measure for 
the fraction of time the identifications are correct, and recall is a measure for the fraction of 
identifications that are made out of the amount that should have made.  

C. Results 
The success of the dynamic network model as it is applied in this study is dependent on 
whether the location prediction is correct. The location predictions of the test files are listed in 
table 2. The number of test files at each location is in parentheses behind the location name. 
The location predictions of the 7 test files of recordings during walking are not included, 
because they cannot be assigned to a single location. The top 1 indicates how many location 
predictions are correct on average for a specific location (the spread in standard deviations is 
given in parentheses). The model has an activation or confidence value for all the location 
hypotheses. Therefore, if the best prediction is not correct, the second best might be. The top 2 
and 3 specify whether the correct location is among the second or third best predictions. 
 

Table 2: Results (average and spread) of location predictions.  
 

Location Top 1 Top 2 Top 3 

City center (7) 
Graveyard (7) 
Museum (8) 

Traffic lights (7) 
Train station (8) 

0.01 (0.02) 
0.01 (0.01) 
0.24 (0.17) 
0.06 (0.06) 
0.75 (0.18) 

0.02 (0.02) 
0.01 (0.02) 
0.77 (0.29) 
0.20 (0.20) 
0.92 (0.08) 

0.03 (0.05) 
0.17 (0.14) 
0.89 (0.17) 
0.67 (0.32) 
0.94 (0.06) 

 



Only two locations can be predicted well, the train station and the museum, because some of 
the sounds the model can identify are very specific for one of these two locations, such as train 
sounds for the train station. In contrast, many of the other sounds the model can identify well, 
such as cars and speech, are generic, and can be heard at any of the locations. Therefore, the 
location prediction is not reliable in many test files. 
 
The location prediction is based on the classified segmented groups, and used to select the 
most likely label for the group. Of all 54 annotated classes, 12 classes are identified (segmented 
and labeled) by the combined model (the segmentation algorithm, the k-NN classifier, and the 
dynamic network). These 12 classes are the classes that are mostly annotated. Hence, the k-
NN classifier and the dynamic network model can learn them better than classes that occur 
infrequently. Table 3 shows the F-measure, precision and recall of the identifications made by 
the k-NN classifier (K) and by the dynamic network model (D) for the 12 classes. The number of 
test files (out of the total of 44) in which at least one instance of a class was found by either one 
of the models, is given in parentheses behind the class name. The F-measures that are 0 for 
both models are not included in the mean values in the table. The bottom row indicates the 
measures weighted for the number of test files. On average, the dynamic network model 
improves the F-measure, mostly through an increased recall, which means that more correct 
instances of annotations are found than with the k-NN classifier.  
  

Table 3: F-measure, precision, and recall of k-NN classifier (K) and dynamic network model (D). 
 

Sound class F-measure (K / D) Precision (K / D) Recall (K / D) 

Bird (6) 
Braking train (3) 

Bus (8) 
Car (27) 

Footsteps (12) 
Passing train (2) 

Pressure cleaning (1) 
Speech (15) 

Starting train (2) 
Truck (3) 

Truck stationary (1) 
Wind (24) 

0.02 / 0.17 
0.20 / 0.09 
0.10 / 0.23 
0.45 / 0.36 
0.02 / 0.17 
0.73 / 0.73 

0 / 0.08 
0.03 / 0.18 
0.22 / 0.13 
0.05 / 0.25 

0.09 / 0 
0.10 / 0.19 

0.34 / 0.65 
0.15 / 0.12 
0.22 / 0.19 
0.62 / 0.53 
0.49 / 0.71 
0.62 / 0.62 

0 / 1 
0.52 / 0.33 

1 / 0.50 
0.63 / 0.88 

1 / 0 
0.48 / 0.34 

0.01 / 0.12 
0.32 / 0.14 
0.09 / 0.41 
0.43 / 0.35 
0.01 / 0.14 

1 / 1 
0 / 0.04 

0.02 / 0.16 
0.12 / 0.08 
0.02 / 0.15 

0.05 / 0 
0.08 / 0.25 

Weighted average 0.18 / 0.24 (+33%) 0.50 / 0.46 (-8%) 0.17 / 0.26 (+53%) 

4. CONCLUSIONS 
In the previous section we have demonstrated that a model that combines both signal-driven 
algorithms and knowledge in the form of the predicted location, improves the identification of 
sound events in a real-world environment. The overall results might not seem impressive, but 
this is (partly) explained by the performance measure. The F-measure is based on the overlap 
of the annotations and the labeled groups. Therefore, it is dependent on both the annotations 
and the detection algorithm. Annotating sound is a complex process. The annotators did not 
only use information in the sound, but also knowledge of the environment, because they were 
present during the recordings. We cannot determine to what extend the annotations are based 
on the sound or on their knowledge. Some annotated sound events can even hardly be 
identified by a human listener that has to rely on the audio signal alone. 
 
In contrast, the detection algorithm only relies on the sound signal. This signal is uncontrolled 
and thus very challenging for the algorithm that segments relevant parts. Furthermore, the 



recordings contain a wide variety of sounds events, most of which occur only a few times in all 
the recordings. To be able to learn the patterns of a sound event, the k-NN classifier (or any 
other classifier) needs more examples than were available of most classes in the data set in this 
study. 
 
These observations demonstrate that modeling the context is essential to achieve robust event 
identification in real-world environments. Indeed we have shown that context, in the form of 
location, substantially improves event identification, even though it is so far only based on 
acoustic information. Since the dynamic network model relies on the segmented groups, it 
cannot identify events that are not segmented. Additionally, the location is not predictive for 
many generic classes, such as speech and cars. However, the generic classes occur most 
often, and are best classified by the k-NN classifier. In other words, the sparse events are the 
events that are good predictors of a location, while these are the hardest events to learn, 
because they are sparse. Fortunately, the dynamic network model is not limited to process 
acoustic information. In another study we show that the dynamic network model can also be 
used to improve visual robot localization21. Because the model can receive input from different 
modalities, it can combine multiple modalities and factors in a single system that returns a single 
analysis. We plan to integrate information from multiple sources of knowledge so that the 
context is modeled more profoundly. 
 
In summary, the combined model provides a new way to analyze soundscapes by identifying its 
components. Because these components are also based on knowledge of the context of the 
acoustic events, they are a first approximation of meaningful events. However, to improve the 
identification of these components in the complexity of real soundscapes, we require a 
combined development of segmentation algorithms and models that can include non-acoustical 
factors. Furthermore, we will study human perception in parallel, so we can validate the model 
for soundscape analysis. Vice versa, the development of a system to analyze a soundscape 
automatically might increase our understanding of human soundscape perception. 
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