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1
GENERAL INTRODUCTION



A simple game, named “guess the sound”, has been successful on the radio for
several decades. Radio listeners have to guess the source of a short audio fragment,
such as a match box being opened, shuffling playing cards, opening an umbrella,
and so forth. Usually a prize can be won by giving the correct answer. For example,
on a Dutch radio channel the value of the prize that can be won increases as the
number of failures at guessing the audio fragment increases. Furthermore, the
radio channel gives hints that should make guessing the sound easier, such as “you
hold it in your hands” in case of shuffling playing cards. The difficulty of the game
can be demonstrated by an analogy in the visual domain: try to recognize what the
object that is depicted in Figure 1.1 represents. Why can money be won with a task
that people perform effortlessly in their everyday life? The answer is related to the
hints that the radio channel gives out: people use the context in which a sound is
heard to identify it. When they hear sounds (or see objects) in their everyday life,
they use their knowledge of the environmental context to infer which events they
are likely to hear, and to discard interpretations that are unlikely given the context.
Moreover, people do not only hear, they also see, smell, and feel. Therefore, they
are normally not as clueless as the radio listener who tries to guess the sound.

Current automatic sound recognition systems are faced with the same problem
as the radio listener. The system is presented with a short audio fragment, and has
to recognize the source of the sound. The task is usually even more complicated,
because the input cannot be controlled if the audio signal1 is recorded in a real-
world environment. As a consequence, the audio signal can comprise sound pro-
duced by multiple sources. In this thesis we will demonstrate that the task of the
automatic sound recognition system can be alleviated in the same manner as for the
radio listener, namely by giving it knowledge about the context of the sound. To
accomplish this goal we will first explore the problem of recognizing sound events
in a real-world environment by reviewing strategies of both automatic systems and
human listeners. Subsequently, we introduce and test a model that incorporates
context into an automatic sound recognition system.

1 Whenever we introduce a term that is important in this thesis, it is printed in italic. The definitions
of these terms can be found in the glossary (appendix A).
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GENERAL INTRODUCTION

Figure 1.1: A visual analogy of “guess the sound”. The image is a two-dimensional
schematic representation of a visual landscape, like the audio sample is stereo playback
of a sonic environment. Because the context information is removed, it is difficult to guess
what the image represents. Interpretation is easier when hints are given about the context
of the image. For example, this image is viewed from the top, and water is surrounding the
depicted object.

1.1 AUTOMATIC SOUND RECOGNITION

The research domain of automatic sound recognition aims at describing an audio
signal in terms of the sound events or sources that compose a sonic environment. It
has important (future) applications in fields as diverse as monitoring sonic environ-
ments, robotics, security systems, content-based indexing of multimedia files, and
human-machine interfaces. Most sound recognition research is aimed at improv-
ing one of these application domains, such as speech recognition (O’Shaughnessy,
2008) or music genre classification (Aucouturier and Pachet, 2003). The methods in
these application domains have proven successful in problems with a single, known
type of sound, and even in recognizing isolated environmental sounds, such as
footsteps or jangling keys (Cowling and Sitte, 2003). However, these methods have
some attributes that make them less suitable for automatic sound event recognition
in real-world environments.
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CHAPTER 1

To recognize a sound event implies that it is already known to the receiver.
Therefore, a representation of the sound event needs to be stored, so it can be
retrieved when an instance of the sound event is encountered. In automatic sound
recognition systems this representation is typically stored as a set of temporally
ordered features that describe the whole spectrum of each time frame (short time
interval) in the signal—a spectrum is a representation of the energy contribution
for all frequencies in one frame of an audio signal (Figure 1.2). Intervals of an
audio signal or pre-selected samples are classified based on these features. However,
in an audio signal of a real-world environment these intervals or samples do not
necessarily correspond to (part of) a single event, because the amount of sound
events contributing to the audio signal is not controlled. Multiple sound events
can co-occur, at other moments no sound events occur at all. Furthermore, the
audio signal can be masked or distorted by transmission effects such as background
sounds and reverberation. As a consequence, a system that has to recognize sound
events in a real-world environment cannot rely on the assumption that the input
consists of a single, known, and undistorted signal type, as the methods used on
speech and music often can.

A system for real-world sound recognition needs to segregate possible sound
events from a background before it can recognize the events. Segregation of a sound
event means that its constituent components in the time-frequency plane—a rep-
resentation that shows the temporal development of frequency components in an
audio signal (see appendix B)—are selected and grouped. As a result, correctly seg-
regated events can be analyzed as individual elements of a sonic environment. Fig-
ure 1.3 shows a schematic example of selection and grouping in a time-frequency
plane. Even if sound events are segregated and undistorted, different events can
share similar audio patterns (combination of components) while they convey a dis-
tinct meaning, such as screaming and laughing. In other words, the event that pro-
duces the sound can be ambiguous, similar to the fragments in “guess the sound”.
In conclusion, we need two constituents to make an advance in real-world sound
event recognition. First, the segregation of audio patterns from a signal should
provide hypotheses about the sound events producing these patterns. Second, we
need a model that interprets these hypotheses based on contextual knowledge, and
disambiguates sound events if necessary. The second task is the focus of this thesis.
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Figure 1.2: One time frame of 25 milliseconds (a) and the energy spectrum of this frame
(b) from an audio signal of the sound of a siren with rain and thunder in the background.
The siren produces a tonal sound with a frequency around 1.1 kHz, which can be calculated
from the fast zero crossing in the time domain signal, and it can be seen as a peak in the
energy spectrum. Furthermore, a slower wave can be seen in the time domain signal,
which is also visible as a peak around 140 Hz in the spectrum. This frequency component
is caused by the thunder. The rain is a noise-like sound. Hence, its spectrum covers a broad
frequency range. A feature that describes the whole spectrum includes information about
all sound events that are present in the audio signal (the siren, thunder and rain).
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Figure 1.3: The time-frequency plane of a recording at a square in a town (with sound
events like speech, birds, and a plane), computed with a gammachirp filter bank (Irino
and Patterson, 1997). The gray-scale indicates the energy in decibels (dB): darker gray
corresponds to more energy. The frequency axis is logarithmic. The dashed boxes indicate
possible ways to select and group events in the plane based on their local properties. For
example, between approximately 1 and 3 seconds speech can be seen, which can be grouped
because its components are harmonic.

1.2 HUMAN SOUND PERCEPTION

While present-day automatic sound recognition is often designed for specific tasks
or specific environments, human sound perception functions for all sounds and is
robust to many different environmental conditions that influence the audio signal.
People can recognize a driving car, whether they hear it on a road or on gravel, in
the rain or in a tunnel. Even when people have not heard a sound event before,
they are able to hypothesize as to the source of the event. This ability does not
rely only on auditory processing, but includes many cognitive functions as well.
Depending on factors like their goals, expectations, memory, preferences, and cur-
rent situation, people perceive the sound events in their environment differently.
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For example, in a familiar environment people do not have to identify common
sound events, because they are expected, and do not provide any new information
(Grossberg, 1980).

One important factor that allows people to hear in unconstrained environ-
ments is their knowledge of the context, which helps them to form predictions
and guide their perception of the environment (Bar, 2007). Events or objects in
the real-world usually do not occur in isolation, but are related to other events and
can be heard in particular environments (Oliva and Torralba, 2007). Therefore,
the meaning of a sound event pertains to the associations that people have to other
events and environments. Especially when an audio signal is unreliable or can be in-
terpreted in multiple ways, associations help them to recognize an event (cf. Figure
1.11), a phenomenon that is primarily investigated in visual perception (Bar, 2004).
For example, when parts of continuous speech are replaced with noise, people can
still perceive the speech as being continuous. Furthermore, their interpretation of
the distorted part of the speech depends on the meaning of the surrounding speech
(phonemic restoration, Warren, 1970; Samuel, 1996).

1.3 SOUND SOURCES, EVENTS, AND PERCEPTS

In the previous sections we have introduced how automatic systems and people
recognize sound events. However, we have not yet clarified the relation between
a source, an event, and the perception of an event. In contrast to vision, audition
is by default not static; that is, something in the world has to happen or change to
produce sound. Furthermore, a potential sound source has to be involved in some
event to produce sound, and it can often produce multiple types of sound events.
For example, a car can be parked, producing no sound, someone can accelerate it,
producing a sound event that is caused by a process in the engine, or someone can
stop the car, producing a different sound event that is caused by a different process.
Sound event recognition describes the task of recognizing events, which are caused
by a physical action involving a source.

Human perception of sound events is explained by several theories. The eco-
logical approach to sound perception adopts the term ‘everyday listening’ to re-
fer to listening to sound events in everyday life (as opposed to ‘musical listening’,

1 A mexican in a canoe.
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Gaver, 1993). Its focus is on the invariant (constant in different situations) percep-
tion of the physics of an event. For example, a large group of studies has focused on
the ability of people to hear some physical property in the sound produced by an
object, such as the perception of object size (Carello et al., 1998; Kunkler-Peck and
Turvey, 2000), or the ability to distinguish between bouncing or breaking objects
(Warren and Verbrugge, 1984). However, ecological psychology is less concerned
with the functional process of recognition involving the role of memory in percep-
tion. Because this aspect is essential for modeling real-world sound event recogni-
tion, our focus is more toward the information processing approach developed in
cognitive psychology than on ecological psychology.

The information processing approach analyzes cognition and perception by ab-
stract stages in the processing of a task (Anderson, 2005). Cognitive psychology is
not concerned with the function of the brain. Hence, these abstract stages do not
necessarily correspond to the processing stages in the brain. Theories about cogni-
tion are usually investigated with an experimental paradigm to confirm (or falsify)
the hypothesized stages. This experimental approach was first empirically tested
by Sternberg (1966) in a memory decision task. In a similar way, auditory percep-
tion can be analyzed as a succession of conceptual processing stages, from sensory
transduction, via auditory grouping and categorization, to recognition (McAdams,
1993). A schematic overview of human perception of a sound event is depicted in
Figure 1.4. When people perceive an object or event in the world, they match the
grouped percept to a prototype or exemplar of a category (Rosch, 1975; Dubois,
2000)—categories are not represented in memory by membership conditions, but
rather by the attributes of a prototype (Reed, 1972; Smith and Minda, 2000) or
exemplar (Medin and Schaffer, 1978; Nosofsky and Zaki, 2002).1 Furthermore,
this prototype triggers associations in memory, which provide predictions about
properties of the environment, for example, what may be perceived next.

1 For example, when one tries to think of list of properties shared by all chairs, it will be quite
impossible to come up with even one. For every property an exception can be found that would still
be conceived of as a chair. Yet, when people see an object, they have no difficulties in determining
whether or not it is a chair.
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Figure 1.4: A schematic overview of human perception of a sound event. The perceived
event is matched to a prototype or exemplar of an auditory event category, which triggers
associations in memory. These associations provide predictions about properties of the
environment (Bar, 2007).

1.4 OVERVIEW

The thesis is divided in two parts. In the first part we give fundamental background
on recognizing sound events. Furthermore, we introduce a method that is based on
a model of human memory to improve sound event recognition with knowledge of
the context. In the second part we demonstrate the improved performance of two
applications that integrate signal-driven methods with the context model proposed
in the first part.

Real-world environments pose additional demands on sound event recognition
over controlled conditions, such as an input of isolated sounds. Chapter 2 dis-
cusses how these demands can be managed by an automatic system for sound event
recognition. In chapter 3 we review the research on human perception of sound
events, with a focus on studies in cognitive science. Furthermore, we present an ex-
periment to demonstrate how context can facilitate sound event recognition. This
facilitatory effect is known in visual perception, but hardly investigated in auditory
perception. Finally, in chapter 4, we introduce a model that incorporates context
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into an automatic sound event recognition system, based on the findings in the
previous two chapters.

Although sound recognition in real-world environments has been used to dis-
tinguish between different types of sonic environments, such as parks and roads
(Aucouturier et al., 2007), automatic recognition of the sound events that consti-
tute a sonic environment is a new area of research with important applications that
require a different approach. In chapter 5 we present two experiments that show
the possibility to automatically recognize sound events in an unconstrained envi-
ronment with the combination of techniques for sound event segregation (Krijn-
ders, 2010) and the context model. Moreover, the context model is not limited to
audio input, but can be applied to input signals from other modalities as well, as is
demonstrated in chapter 6. In this chapter we apply the context model to improve
robot localization by disambiguating visual observations of a mobile robot.
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2
CHALLENGES OF SOUND RECOGNITION IN

THE REAL WORLD

The content of section 2.4 has been published as Niessen, M. E., Krijnders, J. D., Boers, J., &
Andringa, T. C. (2007). Assessing the reverberation level in speech. In Proceedings of the 19th
International Congress on Acoustics.

Systems that operate in a real-world environment have to process ambiguous and noisy
input. Current techniques for sound recognition are mostly designed for specific appli-
cations, such as automatic speech recognition. Therefore, they can rely on assumptions
about the audio signal, such as the signal being undistorted and of a known type. How-
ever, these assumptions cannot usually be met in a real-world environment. Therefore,
real-world sound event recognition requires methods to segregate individual sound events
from a globally sounding environment. Furthermore, a system that operates in an uncon-
trolled environment needs to handle transmission effects. To be able to function reliably,
the system should be able to adapt to a variety of situations. However, it is not necessary
to solve the problems of real-world environments only with signal-driven methods.



CHAPTER 2

2.1 INTRODUCTION

Systems that operate in a real-world environment are confronted with additional
challenges compared to systems that operate in a simulated or controlled environ-
ment. They have to process an abundance of information, of which not everything
is necessarily relevant (Van Hengel and Andringa, 2007). Moreover, sensory infor-
mation is likely to be ambiguous or noisy. In section 2.2 we evaluate whether clas-
sification methods used in automatic sound recognition are suitable to recognize
sound events in real-world environments. In section 2.3 we discuss the problem
of separating sound events from the background in order to recognize them. The
recognition of sound events in real-world environments is further complicated by
transmission effects, such as reverberation and concurrent sources. Possible ap-
proaches to deal with transmission effects are discussed in section 2.4. Finally, in
section 2.5, we conclude with the implications of these challenges for robust real-
world sound event recognition.

2.2 STATE OF THE ART IN AUTOMATIC SOUND RECOGNITION

Automatic sound recognition has important (future) applications in fields as di-
verse as environmental noise monitoring, robotics, security systems, content-based
indexing of multimedia files, and human-machine interfaces. Most sound recog-
nition research is aimed at improving one of these application domains, such as
speech recognition or music genre classification. Typically, the techniques used in
these applications classify a sound sample as one class of a closed set of learned
classes, of which the descriptors match the descriptors of the sample best. Because
these techniques are applied to a known type of sound, they can apply specialized
features to describe the sound (Davis and Mermelstein, 1980). For example, within
music genre classification (Tzanetakis and Cook, 2002; Aucouturier and Pachet,
2003) and speech recognition (O’Shaughnessy, 2008), spectral-based features such
as Mel frequency cepstral coefficients (MFCCs) capture important information of
harmonic sounds, but are not very robust to noise (O’Shaughnessy, 2008). In addi-
tion, methods for automatic speech recognition rely on a temporal ordering of the
signal, which is exploited by searching for the most probable sequence of hidden
Markov models (HMMs, Juang and Rabiner, 1991).

12
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Cowling and Sitte (2003) tested a selection of feature extraction techniques
and classification methods for speech and music signals on isolated environmen-
tal sounds. All methods perform better on speech sounds than on environmental
sound events, because environmental sounds exhibit more diverse acoustic proper-
ties than speech. However, the best results (70% classification rate for eight classes)
suggest that some classification techniques can be effectively applied to the recogni-
tion of isolated environmental sounds. Similar to applications in speech and music,
the input is controlled so that the methods can classify it. In other words, the input
has content that belongs to a single class that is a member of a limited set of known
classes, although the type of sound is different from and more diverse than speech
and music. In contrast, Defréville et al. (2006) applied multiple features to classify
samples from continuous real-world recordings. Their results varied from 72% to
99% classification rate per class for six classes.

Another method for sound analysis, the bag-of-frames (BOF) method, has been
shown to be able to identify auditory scenes from real-world recordings, such as
the street where a recording has been made (Aucouturier et al., 2007). However,
the BOF method is not designed to represent details about individual events in the
signal, because it uses long-term statistics of the complete spectral range. Neverthe-
less, information derived with BOF methods may provide contextual information
to guide the recognition of sound events. For example, the estimated location of a
recording, such as a street or a park, can be useful to infer probable sound events
that may occur.

Although the combination of whole-spectrum feature extraction and classifica-
tion has proven useful in problems with a single known signal type, and even in
environmental sound recognition, these methods have some attributes that make
them less suitable for automatic sound event recognition in real-world environ-
ments. Sound classification methods either classify pre-selected samples with one
type of sound, or segment a signal into different intervals based on its acoustic
properties. However, these intervals do not necessarily correspond to events. A
system for real-world sound event recognition needs to segregate the individual
events from the background before it can classify the events. Sound events in a
real-world environment often co-occur, at other moments no (interesting or recog-
nizable) events may take place. In other words, we do not want to know of certain
intervals what type of sound they are, but which events are present at what time
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in a continuous audio signal. In variable real-world environments, a method for
sound event recognition cannot assume known and uniform input, as the methods
used on speech and music can.

2.3 SOUND EVENT SEGREGATION

To be able to recognize individual sound events in a globally sounding environ-
ment (see Figure 1.3), the audio components that constitute an event need to be
separated and grouped from the background. We refer to the joint process of sep-
arating components and grouping them as segregation. Practical applications of
sound recognition, such as automatic speech recognition, have advanced research
in sound segregation methods. Strategies for segregation include spatial separa-
tion of audio input from microphone arrays (beamforming, Brandstein and Ward,
2001), and independent component analysis (ICA, Jutten and Herault, 1991). Al-
though these methods are successful in the applications they are designed for, they
rely on assumptions that cannot be met in all situations. For example, beamform-
ing approaches are challenged by moving targets and by multiple targets close to
each other. ICA assumes that the sound events in a mixture are statistically in-
dependent. Consequently, these methods are not suitable as a general approach
to sound event segregation. To address the issues of application-driven methods,
a field of research has emerged that is inspired by human perceptual mechanisms,
called computational auditory scene analysis (CASA, Wang and Brown, 2006).

The common aim of CASA studies is to infer properties of individual sound
sources from an auditory scene based on either a mono or a stereo recording.
CASA research is primarily aimed at analyzing speech and music sounds.1 There-
fore, the target sound is defined by the problem, namely segregating speech or
music sounds, either from each other or from background sounds. However, two
important aspects of human auditory scene analysis (ASA) are underrated by these
approaches. First, human ASA is not limited to segregating harmonic sounds. In
real-world environments people are confronted with many other sound classes as
well, such as machine, traffic, and nature sounds. Second, whether a sound is tar-

1 The topic query “computational auditory scene analysis” gives 222 results in ISI Web of Knowledge
and about 1850 in Google Scholar. Excluding the results that also contain one or more of the terms
“speech”, “music”, “voice”, “harmonic”, and “pitch” leaves only 38 and 86 results respectively.
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get or background sound does not depend on the audio signal. Instead, it depends
on factors such as the goal and expectancy of the listener (or application): “... all
sound sources are potential signals and noises. Whether or not a sound from a
particular source is signal (wanted) or noise (unwanted) depends on non-auditory
events” (Yost, 1991, p. 16). As a result, a method for general purpose sound event
segregation cannot define in advance what the target sound is, and what the back-
ground noise. Instead, it should provide hypotheses of what can be inferred from
the audio signal based on physical knowledge.

2.4 TRANSMISSION EFFECTS

In addition to segregating hypotheses about sound events in the audio signal, a sys-
tem that analyzes sound in a real-world environment has to deal with transmission
effects such as concurrent sources and reverberation. Reverberation leads to a mix-
ing of the target sound with a time delayed version of itself. Therefore, both the
effects of concurrent sources and reverberation are similar to the problem of sound
event segregation, discussed in the previous section. However, the effects of rever-
beration can be reduced with knowledge of the source and the sonic environment,
which facilitates sound event segregation.

The reduction of effects of reverberation have mostly been studied for speech
sounds, since the performance of automatic speech recognition (ASR) systems is
affected severely by distortions in the signal (Figure 2.1 shows an example of a re-
verberant speech signal compared to the clean signal). Classifiers in ASR systems,
such as hidden Markov models (HMMs), use features that describe the whole spec-
trum (see section 2.2). When a signal is distorted by a delayed version of itself,
irregular frequency dependency patterns of constructive and destructive interfer-
ence cause rapid energy fluctuations in the frequency content. Hence, the signal
descriptors of a reverberant audio signal will deviate from the descriptors in clean
training conditions.

One solution to deal with reverberant environments is to reduce the mismatch
between the training conditions and the operating conditions. For example, if
HMMs are trained on reverberant speech, ASR will perform better in similar rever-
berant operating conditions than if the HMMs are trained on clean speech (Matas-
soni et al., 2000). However, the effects of room acoustics vary greatly for different
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Figure 2.1: The time-frequency plane (computed with a gammachirp filter bank) of a clean
speech signal on the left, and of the same speech in a reverberant environment (reverbera-
tion time is 320 milliseconds) on the right. The gray-scale indicates the energy in decibels
(dB): darker gray corresponds to more energy. The frequency axis is logarithmic. When
harmonic components are stationary, reflections may result in an increased energy of the
component, and a longer duration. Reflections of variable components cause irregular
distortions in the signal.

environments. Different parameters, such as the size of the room, the material on
the floor and walls, and the temperature, influence the acoustic characteristics (Kut-
truff, 1979). Therefore, this type of ASR system requires training data that match
the characteristics of the operating environment. Couvreur and Couvreur (2004)
propose a method where acoustic models are trained on speech under different,
simulated reverberant conditions. During operation of the ASR system the model
that matches the operating conditions best is selected. They show an improved per-
formance on simulated reverberated speech compared to an ASR system trained on
clean speech. However, the improvement on realistic data is not as high as on the
data with simulated reverberation, because of the discrepancy between real rever-
berant and simulated reverberant speech.

Another approach to resolve the discrepancy between the training data and re-
verberant data is to recover the clean speech from the reverberant signal, instead of

16



CHALLENGES IN THE REAL WORLD

adjusting the training data to the operating conditions. An inverse filter is applied
to the reverberant signal to remove the distortion caused by reflections, based on
the estimated impulse responses of the environment. However, inverse filtering
relies on known and stable acoustic characteristics of the environment. As a con-
sequence, methods based on inverse filtering are not robust to changes in the en-
vironment, such as the position of the source or the microphone (Radlovic et al.,
2000).

Other methods have been designed that are more robust to reverberation in
an unknown, but stable, environment. For example, cepstral mean subtraction
(Kinoshita et al., 2009) can handle early reflections in ASR. Additionally, late re-
flections can be suppressed through spectral subtraction (Wu and Wang, 2006; Ki-
noshita et al., 2009). When the environmental conditions are sufficiently stable,
these methods improve the results of ASR.

To test whether it is possible to assess the reverberation level of a monaural
audio signal in an unknown and possibly variable environment, we developed a
method to classify the reverberation level of speech signals. Reverberation causes
an increase in the variation of the energy and frequency of harmonics in speech.
Hence, features that capture this variation can be useful to estimate the reverbera-
tion level of a signal without a priori knowledge of the environment. We designed
and measured such features on speech samples with different levels of reverbera-
tion. Clean speech was artificially reverberated to be able to test a controlled set of
conditions.

2.4.1 Methods
A common measure for the level of reverberation is the reverberation time T60.
The reverberation time is defined as the time for the sound energy level to decay 60
dB after the excitation has ended. We computed nine different levels of reverber-
ation using the Eyring-Norris equation (Eyring, 1930; Norris and Andree, 1929;
Kuttruff, 1979):

T60 =
0.161V

4mV − S ln(1− ā)
, (2.1)

where V is the room volume in cubic meters, m is a vector with air absorption
coefficients for the frequency bands, S is the total surface area, and ā is the mean
wall absorption coefficient. We assumed a fixed room size of 10 by 12 by 3.5 meters
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and a constant temperature and humidity of 20 ◦C and 60% respectively. Hence,
the mean wall absorption coefficient was the only variable parameter. Values were
assigned to this parameter such that we had a collection of nine reverberation lev-
els ranging from no reverberation to a reverberation time of approximately 1.6
seconds.

The reverberation level can also be expressed by the reverberation radius or dis-
tance (Kuttruff, 1979). The reverberation radius is the distance from the speaker
or microphone to the sound source for which the energy contribution of the di-
rect sound and the reflected energy are equal. A more reverberant environment
coincides with a smaller reverberation radius. Naturally, the reverberation radius
is strongly correlated with the reverberation time. We also computed the reverber-
ation radius, so the sound samples could be labeled as either clean or reverberant.
We regarded clean speech as speech measured inside the reverberation radius and
reverberant speech as speech outside the reverberation radius.

The parameter values used in the Eyring-Norris equation were used as input to
the shoebox model, which simulates an impulse response in a rectangular room, a
shoebox. The shoebox model is an implementation of the image source method of
Allen and Berkley (1979). The speaker and the listener or microphone are mod-
eled as two points in space. Apart from the direct sound, specular reflections are
computed using mirrored image sources. An impulse response is obtained for ev-
ery image source. The final impulse response describing the room is computed by
combining all individual impulse responses, which are received at different delay
times. This impulse response is convolved with the speech signal, resulting in re-
verberant speech. The speech is processed with a gammachirp filter bank (Irino
and Patterson, 1997), which results in a logarithmic time-frequency representation
(a cochleogram, see appendix B). Figure 2.1 depicts a cochleogram of a clean speech
sample on the left, and a cochleogram of a reverberant speech sample on the right.

We expected that the effect of reverberation on speech can be measured directly
in the audio signal. Since we want to test whether we can measure reverberation in
an uncontrolled environment, the features used for the classification must have no
parameters that require knowledge of the room characteristics. One prominent ef-
fect of reverberation on speech is the attenuated salience, that is, the attenuated sta-
bility in both the frequency and the energy, of the harmonics (Darwin and Hukin,
2000). Therefore, voiced speech was located based on the selection of harmonic
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Table 2.1: Features that indicate the reverberation level on a harmonic track (h). Eh (t )
is the energy development and fh (t ) is the frequency development of a harmonic track in
time. MA is the moving average of an energy or frequency track and P is its polynomial.
See appendix C for the calculation of the features.

Energy variation Harmonic energy salience Harmonic frequency salience

peak rate (PR) (2.2a) ∆Eh ( f ) (2.2c) Var fh/MA (2.2f)
Var Eh (2.2b) Var∆ fh (2.2d) Var fh/P (2.2g)

Mean∆ fh (2.2e)

complexes—a superposition of co-occurring harmonics—in the cochleogram, us-
ing the algorithm presented in Krijnders et al. (2007). Subsequently, the fluctuation
in energy and frequency of the first five harmonics of the harmonic complex was
measured. These harmonics can be better resolved from the cochleogram because
of the logarithmic frequency scale, and are hence more reliable.

We measured the energy and frequency fluctuation through seven features,
which are summarized in Table 2.1. The energy variation was measured through
the peak rate of the harmonic track (2.2a) and the energy variation of the harmonic
compared to its smoothed version (2.2b). Both values are expected to increase at
higher reverberation levels. In addition, the energy contributions of echoes cause
less distinct harmonics. This effect was captured by calculating the energy slope
of the harmonics (2.2c), and the variation (2.2d) and mean (2.2e) of the width of
the harmonic compared to an ideal sinusoid. In other words, the energy slope
is less steep in reverberant speech, and the harmonic covers a broader frequency
range. Reverberation effects can be found in the time-frequency space as well.
The short-time development of the harmonic is distorted by echoes, causing a less
smooth harmonic track. Therefore, the track variation was measured compared
to its smoothed version (2.2f), and to an approximation of a clean harmonic track
(2.2g). The calculation of all seven features is worked out in appendix C.

2.4.2 Experiment

Part of the Aurora database (Hirsch and Pearce, 2000) was used to validate the six
features. Artificial reverberation was added to 685 randomly selected clean sound
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samples with a mean duration of 1.5 seconds, spoken by 214 different speakers,
both male and female. The reverberation was computed at nine levels, equivalent
to reverberation times distributed roughly linearly between 0 and 1600 millisec-
onds. As we expected, most of the 685 sound samples showed a significant corre-
lation of at least one feature with the reverberation time. Only 6% did not show
a relation for any of the features. However, the predictive strength of the features
for individual sound samples is no direct indication for the general classification
of the speech samples as either clean or reverberant. To test classification, global
thresholds need to be determined in a training set and used to classify a test set.

Since the 685 speech samples were reverberated at nine levels, a total of 6165
samples could be used for classification. After the dismissal of samples in which
we could not measure one or more features1, 5189 samples were left. All samples
within the reverberation radius (T60 = 0.22 seconds), the two lowest levels, were
labeled as clean, and all samples outside the reverberation radius, the other seven
levels, were labeled as reverberant. The data was split in a part for training (33%)
and a part for testing (66%). In addition, continuous read speech of six speakers
was recorded using a close-talking microphone. This data was split into samples of
similar length to the Aurora database, and resampled to an equal sample frequency.
The speech samples were artificially reverberated in the same way as the other data.
Again, part of the data that was unfit was removed, and 2377 samples with a mean
duration of 2 seconds were left. These samples served as an extra test set, which
can show the robustness of the features. Finally, both data sets were also labeled
with a different threshold for the reverberation time (T60 = 0.7 seconds) to test the
performance on a more balanced design.

Numerous methods exist to test the classification accuracy of features. We used
a support vector machine (SVM), since it is known to be less prone to problems of
overfitting than some other methods (Duda et al., 2001). In training, an optimal
separating hyperplane, or threshold boundary, is determined. The support vectors
are the speech samples that are closest to the hyperplane, and hence are most diffi-
cult to classify. The mapping of the data to a higher-dimensional space is dependent
on the type of kernel, that is, the mapping function, which can be defined by the

1 In these samples the harmonic complexes were not sufficiently salient to be segregated by the algo-
rithm.
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user, or selected from one of the standards. For our data we use a standard linear
kernel. The number of support vectors is an indication of the complexity of the
classification. During the testing phase, the speech samples are mapped onto these
support vectors. Since the test samples are labeled as well, the classification can be
compared to the labels, resulting in a performance measure.

2.4.3 Results

The speech samples from the Aurora database were split randomly into a train-
ing set of 1744 samples and a test set of 3445 samples. The seven features (one of
which,∆Eh ( f ), has two values) were computed on the first five harmonics, result-
ing in 40-dimensional data. The skewedness of the first data set—22% of the speech
samples was clean and 78% was reverberant, because the reverberation radius cor-
responds to a relatively low reverberation time of just over 200 milliseconds—is
accounted for by using prior probabilities to weight the class error contributions.
The SVM was trained on the training samples, resulting in a classifier with 363
support vectors. The rest of the speech samples of the Aurora database was tested
on the trained classifier. The performance, or accuracy, of the classifier was 92%.
The additional speech samples of our own recordings were also tested on the clas-
sifier, with a performance of 87%, only a few percent less. The same procedure
was applied to the second, balanced, data set, resulting in an accuracy of 80% on
the Aurora samples, and 70% on the recorded speech samples. The results are sum-
marized in Table 2.2. Figure 2.2 gives the detailed results of one of the results (the
Aurora data with a labeling threshold of T60 = 0.7 seconds). The classification of
the samples is skewed toward the more reverberant samples, because the features
do not develop linearly with the reverberation time. In a separate experiment we
tested the predictive strength of the features, and found that they overestimate the
reverberation time below approximately T60 = 0.8 seconds, while the differences
between higher reverberation times cannot be predicted (see appendix C). This ef-
fect is explained by the difference in the effect of reverberation on the audio signal,
which is greater for smaller reverberation levels.

Different classification methods could be chosen for this problem, or different
settings for the SVM. For example, if the size of the training set is increased, the
performance on the other Aurora speech samples increases, but the performance
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Table 2.2: Results of the SVM classifier on two data sets (Aurora and continuous speech)
with two designs (unbalanced for the reverberation radius Rreverb and balanced).

T60 threshold Accuracy Aurora data Accuracy recorded data

0.22 sec. (Rreverb) 92% 87%
0.7 sec. 80% 70%

on the extra test set decreases. We are not interested in optimizing the classifier
on a particular data set, but in the separability of any reverberant speech using
the features. Hence, the classification with an SVM using a linear kernel gives an
indicative performance result.

2.4.4 Discussion

Although many methods to assess or resolve the effects of reverberation are suc-
cessful in improving ASR, they generally cannot be used for different applications.
Since these methods are designed for ASR, they utilize the common assumptions
of ASR that cannot necessarily be met in an uncontrolled environment. First,
methods that adjust the training conditions to reverberant conditions or apply in-
verse filtering cannot deal with variable or unknown conditions. For example, the
model of Couvreur and Couvreur (2004) is not tested on speech signals that are af-
fected by transmission effects other than reverberation, such as background noise
or concurrent sources. Second, blind dereverberation methods based on spectral
subtraction and blind reverberation classification methods like those presented in
this section rely on the presence of speech to estimate the reverberation compo-
nents (Wu and Wang, 2006; Kinoshita et al., 2009). However, if a system must
recognize sound events in a continuous audio signal, no assumptions about the
presence of a specific sound event can be made. Therefore, dereverberation meth-
ods should be extended to include estimation of reverberation for impact sounds
and broadband sounds, not only for tonal sounds.

In general, if researchers want to improve sound event recognition in unknown
conditions, they should focus on developing robust techniques for online blind
dereverberation of mono-signal input with unrestricted content. More specifically,
the common experimental paradigm for resolving distortions should extend to
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Figure 2.2: Detailed results of the SVM classifier on the Aurora data set with a labeling
threshold of T60 = 0.7 seconds (indicated by the dashed line). The overall accuracy on this
data is 80%. The lines indicate the percentage of sound samples that were classified as either
below the threshold (T60 < 0.7) or above the threshold (T60 > 0.7) for each reverberation
level.

conditions outside of ASR. Methods to assess or resolve the effects of reverbera-
tion should be tested in real-world environments, that is, with continuous audio
recordings in unknown and possibly variable conditions. When the experimen-
tal paradigm is shifted toward these challenging conditions, the development of
techniques for audio quality improvement needs to focus on robustness instead of
perfection in limited domains.

2.5 CONCLUSION

In this chapter we have explained that automatic sound recognition in real-world
environments requires sound event segregation that works in variable environ-
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ments, that is, environments with different sorts and levels of transmission effects
and varying co-occurring sounds. Furthermore, we have discussed that current
techniques for automatic sound recognition are mostly designed for specific appli-
cations, such as speech recognition, and not for general purpose sound event recog-
nition in unconstrained environments. In other words, the semantics of the sound
are given by the application. Therefore, they can rely on signal-driven methods
(based on the acoustic properties of the signal) to deal with transmission effects
within a single domain. However, in real-world environments the semantics or
context of sound events are not stable or even known. Instead of assuming a spe-
cific context, we argue that the context can be learned, and used to manage unreli-
able signal information. In fact, robust general purpose sound event recognition is
infeasible with signal processing techniques only, because they can at most provide
hypotheses of components that are likely to constitute a single sound event. Select-
ing and identifying the target sound event is only possible by means of non-acoustic
factors, such as the goal of a system.

Moreover, even if researchers can assume or have accomplished perfect sound
event segregation and classification for real-world sounds in a similar way as in
speech and music processing, the meaning of the classified event is not yet known.
When people listen in every-day life, they give meaning to the events that they
hear. This meaning is not only based on acoustic properties or class membership.
People use their memory, experience, and expectancy to give meaning to their
(sonic) environment. Hence, these factors influence what is heard (segregated). In
the next chapter we discuss the formation of the human percept of a sound event,
and the role of context in this process.
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CONTEXT IN HUMAN AUDITORY COGNITION

The content of section 3.3 has been published as part of Niessen, M. E., Van Maanen, L., &
Andringa, T. C. (2008). Disambiguating sound through context. International Journal on
Semantic Computing 2(3), 327–341. Proceedings of the 2nd IEEE International Conference on
Semantic Computing, 88–95.

In the first part of this chapter we give background on the perception of sound events,
which is often referred to as auditory object formation, in analogy with visual object for-
mation. However, instead of auditory object we use the term auditory event, because
it captures the dynamics of sound. Auditory events can be described by a set of prop-
erties that are related to either constancy or separability of the auditory event. Different
approaches have been taken to study auditory events and to explain their properties. How-
ever, researchers should be aware of the exact process they are studying. Mostly, the stimuli
used in perception studies are artificial and simple, so that the perceptual process of stream-
ing and segregation can be studied in a controlled setting. Although the earlier stages in
the auditory process are important in auditory event formation, they do not constitute the
complete phenomenon. Cognitive processes, such as attention and memory, play a domi-
nant role as well. In the second part of the chapter we present an experiment to show the
effect of context in sound event recognition. The results of this experiment indicate that
context can facilitate sound event recognition. We do not attempt to explain the cognitive
processes that underly the influence of context on auditory event formation. Instead, we
aim to demonstrate the importance of other factors beyond basic acoustic properties of the
sound in auditory event formation.
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3.1 INTRODUCTION

In the previous chapter we have discussed the challenges of an automatic sound
recognition system in real-world environments. State of the art systems mostly re-
strict the search space, either of the input or of the operating environment, to func-
tion reliably. In contrast, people have no difficulties in recognizing sound events
in many different and noisy situations. For example, they can have a conversation
surrounded by other people talking, a phenomenon called the cocktail party ef-
fect (Cherry, 1953; Bronkhorst, 2000). This ability relies on the bidirectionality of
human perception. People use their experience, attention, and knowledge of the
world to give meaning to a sound (Box 3.1) as well as signal-driven (bottom-up)
strategies. Because our aim is to automatically recognize sound events, we discuss
how humans form the percept of a sound event (the auditory event) in section 3.2,
based on a survey of studies about auditory event formation.

One important factor that allows people to hear in an unconstrained environ-
ment is their knowledge of the context, which helps them to form predictions and
guide their perception of the environment (Bar, 2007). Events in the real world
generally do not occur in isolation, but co-occur with other events and particular
environments (Oliva and Torralba, 2007). Therefore, the meaning or the semantics
of a sound event is influenced by the associations that people have to other events
and environments. In the following, whenever we talk about context, we refer to
it as the learned associations of an event to environments and co-occurring events
(Box 3.2, page 35). In section 3.3 we present an experiment to test how context
facilitates sound recognition. Finally, in section 3.4, we substantiate how an un-
derstanding of human sound event recognition can help in automatic sound event
recognition.

3.2 AUDITORY EVENTS

When people are asked to describe a sonic environment they will describe the dif-
ferent sound events in terms of the sources that caused the events (Ballas, 1993;
Vanderveer, 1979). They will normally not describe the acoustic properties of the
sound events. For instance, a passing car will be referred to as a car, not as a noisy
harmonic complex in combination with a burst of noise. The evaluation of sound
events in terms of the sources or processes that produced them is often named
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Box 3.1: Meaning

For systems one cannot talk about the meaning of something in the same manner as
we can for people, which is demonstrated by Searle’s famous Chinese room argument
(Searle, 1980). Briefly, his argument consists of imagining a person doing the Turing
test (Turing, 1950) in Chinese. The person receives input symbols, performs manip-
ulations based on their shape and some provided rules, and returns output symbols.
Suppose these output symbols are indistinguishable from what a real Chinese speaker
would reply. Does the person understand Chinese? Obviously not, because he can-
not read Chinese, and does not interpret the symbols. The symbol grounding problem
(Harnad, 1990) defines this as the problem that the meaning of a symbol is not intrin-
sic to the symbol, but is given its meaning by a person. In other words, an algorithm
that manipulates symbols systematically to generate an output based on their properties
does not give meaning to the symbols. Therefore, one cannot directly compare the out-
put of a sound recognition system to the interpretation of humans. However, efforts
have been made to substantiate a semantic interpretation or representation independent
from a human mind (Fodor and Pylyshyn, 1988; Newell, 1982). A system can detect
instances that correspond to some event or object in an input signal, categorize and
identify them based on their properties, and act according to a learned semantic inter-
pretation. For example, a system can learn semantically related concepts based on their
statistical relationship in training data (latent semantic analysis, Landauer and Dumais,
1997). Furthermore, past experiences can lead an automatic agent to act according to a
maximized utility (Kaelbling et al., 1996) or affect (Schermerhorn and Scheutz, 2009).
In conclusion, the meaning of a sound event is not inherent to the event, but given by
a human listener. Although a system cannot give meaning to a sound event, models or
algorithms can be designed to use similar strategies as humans and reply in a consistent
way, comparable to humans.
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everyday listening (Gaver, 1993). Everyday listening relies on the ability of the
human perceptual system to segregate parts of an auditory stream into different
elements that might represent individual events. Yost (1991) distinguishes fusion
and segregation as the two components that constitute the potential of event recog-
nition. Fusion refers to the grouping of sound components of an event into a single
representation, the auditory image. Segregation, or auditory streaming, refers to
the separation of different auditory images from each other. Finally, the auditory
images are classified as particular sound sources. This way of relating to the pro-
cess of event recognition can be connected with the way Shinn-Cunningham (2008)
refers to it as (bottom-up) auditory object formation. However, she also stresses the
importance of top-down attention on object formation, while Yost (1991) consid-
ers auditory image formation as a unidirectional process.

The term auditory object is usually preferred over auditory image, because an
image is associated with the visual representation of a sound, for example a time-
frequency representation (Shamma, 2001). Furthermore, the term object carries a
sense of wholeness. However, it can bias ones interpretation toward a static thing
instead of an event, because it stems from visual research.1 Furthermore, there has
been some debate about how an auditory object is defined (Griffiths and Warren,
2004). For example, in cognitive neurophysiological experiments auditory objects
are mostly equated with artificial units, like (combinations of) tones (Atienza et al.,
2003; Dyson and Alain, 2004; Winkler et al., 2006). In the field of environmental
sound event recognition these artificial stimuli are of less interest, because they do
not occur in real-world environments. Instead, the concept we choose for the hu-
man percept of a sound event should relate to the dynamic events that occur in the
everyday environment of a listener. Therefore, we refer to it as an auditory event.
Similarly, we use auditory episode instead of auditory scene to refer to the men-
tal representation of a sonic environment. Figure 3.1 shows a schematic overview
of the relation between some important concepts we use throughout the chapter:
sound source, physical action, sound event, sonic environment, auditory episode,
and auditory event.

1 Dictionary entries for “object” are variations of “a material thing that can be seen and touched”.
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sound source

physical action
(driving)

auditory event
sound event

Figure 3.1: Example to demonstrate the relation between some important concepts. A
possible sound source, such as a car, that is involved in a physical action, such as driving,
results in a sound event. If this sound event is perceived by a human listener, his cogni-
tive representation of this event is called an auditory event. We refer to a collection of
different sound events as a sonic environment, and a cognitive representation of the sonic
environment is an auditory episode.

3.2.1 United approach to auditory events

Different areas of research use different methodologies to study a phenomenon,
such as auditory event formation. However, researchers should be aware that the
meaning of a concept is different when it is described in different domains, and
is studied with different methodologies. A risk of degradation of the concept of
a studied phenomenon arises if it is not defined, especially when a concept that
originates from one field is transfered to another field. For example, since the
methodological progress in neuroscience, many studies have been conducted that
map psychological attributes to areas in the brain. Regularly, in these studies brain
areas are said to see, feel, and so forth. However, it does not make sense to ascribe
a psychological predicate about a person (a whole) to his brain (a part) (the mere-
ological fallacy, Bennett and Hacker, 2001). Although auditory event formation is
not a psychological predicate, it is a perceptual predicate, which describes a trait of
a person as a whole.

To avoid the mereological fallacy, researchers that model or describe auditory
or brain processes should be aware that they do not describe or explain the au-
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ditory event as it is perceived by a person. Instead, they study and describe the
processes that are involved in auditory event formation at different abstraction lev-
els. Dennett (1991) discusses how folk-psychology and the patterns it predicts—
Dennett (1987) defines a pattern as some part of behavior that is predictable assum-
ing intentionality—relate to the physical level. By means of Conway’s Game of
Life Dennett step by step illustrates how at different levels of description there are
different sets of patterns by which one can make predictions. At lower levels it is
costly and hence difficult to make predictions, but the predictions are correct. As
the level of description gets more abstract, it becomes easier to make predictions,
but there is also more noise, so more mistakes. “Predicting that someone will duck
if you throw a brick at him is easy from the folk-psychological stance; it is and will
always be intractable if you have to trace the photons from brick to eyeball, the
neurotransmitters from optic nerve to motor nerve, and so forth” (Dennett, 1991,
p. 42). Analogously, auditory event formation can be studied at different levels of
description.

The different description levels of auditory event formation range from the
physical description of a sound event to cognitive models that explain the role
of attention. Griffiths and Warren (2004) propose a similar approach, in which
complementary models produce testable hypotheses that explain auditory event
analysis. They focus their framework on auditory pathways and regions in the
cortex studied within psychophysics and neuroscience. The studies within these
fields model small parts of the process of auditory event formation. Therefore,
they can be said to describe it at lower description levels, at which the predictions
are difficult to make, but precise. However, perceiving an auditory event is an
experience of a person. Therefore, methodologies from fields such as cognitive
psychology can enhance the understanding of auditory event formation as well, at
higher description levels.

3.2.2 Constituents of auditory events

Auditory event formation can be studied at many different description levels, be-
cause it is influenced by many physical, perceptual, and cognitive factors. To un-
derstand the whole process, we should structure and define the concept of an au-
ditory event and its constituents. Bregman (1990) makes a distinction between
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primitive auditory scene analysis (ASA) and schema-based ASA to structure hear-
ing. Primitive ASA refers to the signal-driven analysis of properties of the sound,
such as grouping and segregation, while schema-based ASA accounts for the cogni-
tive schemas that influence the perception of the grouped and segregated auditory
event. However, the boundary between these two types ASA is arbitrary, or even
superfluous, because the effect of cognitive factors can influence the primitive pro-
cesses, and vice versa. For example, several studies in neuroscience have shown that
attention can influence auditory streaming (Cusack, 2005; Carlyon, 2004). Fur-
thermore, brain imaging studies have demonstrated that auditory cortical areas are
active during primitive processes, which imply a tight coupling between primitive
and cognitive processes (Gutschalk et al., 2005). Because the two types of scene
analysis are intertwined, we adopt a different framework to analyze the process of
auditory event formation.

While some research areas limit the concept of an auditory event to perceptual
grouping principles (for example Jones et al., 1998), our concept encompasses all
the stages of processing, from the perceptual analysis of the sound, to the cognitive
processing. Griffiths and Warren (2004) give four principles of event analysis that
guide our interpretation of auditory event formation, summarized in Table 3.1.
First, an event has a relation to sensory information, so an auditory event is based
on hearing something in the world. Second, the event is separated from the rest
of the sensory information. In other words, an auditory event is segregated from
other auditory information. Third, the perception of the event is invariant over
different experiences. Hence, the distinguishing features of an auditory event can
be generalized over different conditions, like reverberation or background sounds.
Fourth, an event is not necessarily bound to one sense. For example, a car is not
perceived as a different event when it is either seen or heard.

To comply with the first principle we should further clarify what an auditory
event is (Figure 3.1). Hearing something in the world implies that the representa-
tion, the auditory event, is based on a process that is produced by a physical source
(Gaver, 1993). Whether the auditory event refers to the source or to the process
depends on how it is categorized or described (Dubois, 2000; Griffiths and War-
ren, 2004; Guastavino, 2007). Information related to the source, such as a car, is
specified by the properties of the source. On the other hand, information related
to the process, such as accelerating, is specified by the patterns of change. Depend-
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Table 3.1: Auditory event (Griffiths and Warren, 2004)

Properties of an auditory event:

1. Based on information from sound events
2. Separated from information about the rest of the sonic environment
3. Generalized over different experiences
4. Generalized over different senses

ing on the goal of a person the auditory event can refer to either the source or the
process or a combination of both. Furthermore, the type of source or process also
influences what type of information the person focusses on. In an experiment on
free environmental sound naming Marcell et al. (2000) found that listeners name a
sound by the source object or action when the agent is human (“bowling”, “har-
monica”), while animal sounds were consistently referred to by the agent (“cat”).

The second principle (separability) has a long history in perceptual research,
and many different viewpoints. Van Valkenburg and Kubovy (2004) differentiate
three approaches: auditory events, auditory streams, and figure-ground segrega-
tion. The first approach focusses on the distinction between sounds and events
(Rosenblum, 2004; Blauert, 2001). Events in the world structure the sound. There-
fore, people do not hear properties of the sound, such as pitch, but events, such
as driving cars or singing birds (Gaver, 1993). The second approach is based on
the Gestalt principles of visual perception (Köhler, 1967), and described for sound
by Bregman (1990). Elements in the audio signal are combined by the percep-
tual system into streams, based on principles such as proximity and continuity (an
example is shown in Figure 3.2). The third approach is an analogy of the result
of figure-ground segregation in vision (Figure 3.3). Perceptual units of attention,
corresponding to objects, are separated from the background (Carrell and Opie,
1992; Scholl, 2001). The formation of these objects is guided by perceptual orga-
nizations, or gestalts, of the audio signal, which are the presumed objects. People
attend to one (or several) of these objects, while the ground remains undifferenti-
ated (Kubovy and Van Valkenburg, 2001).

The third (and fourth) principle (constancy) refers to the ability of human lis-
teners to retrieve abstract information about a sound event that is independent of
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Figure 3.2: In this tone sequence a person can hear either one stream with the alternating
tones ABA ABA (a) or two tone streams A A and B B with different rithms (b), depending
on the proximity in frequency of the two tones (Van Noorden, 1975).

the modality. The invariant perception of physical properties of sound events is the
focus of the ecological approach to perception (Gibson, 1966). Many studies in the
field of ecological hearing have been aimed at showing the perception of a specific
physical property of objects in different situations (Warren and Verbrugge, 1984;
Carello et al., 1998; Kunkler-Peck and Turvey, 2000). Their key point is that the
(physical) information about a process or object is present in the signal it transmits.
A different (although not incompatible) approach is the information processing ap-
proach from cognitive psychology, which analyzes cognition and perception by ab-
stract stages in the processing of a task (Anderson, 2005). Auditory perception can
be analyzed as a succession of conceptual processing stages, from sensory transduc-
tion, via auditory grouping and categorization, to recognition (McAdams, 1993).
According to this approach, which is more functional than the ecological approach,
the constant perception of events over different experiences can be explained by
theories about memory. People structure the world in categories (Rosch, 1975;
Dubois, 2000), and memorize a prototype (Reed, 1972; Smith and Minda, 2000)
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Figure 3.3: Human perception separates objects (figures) from their background (ground),
based on their interpretation, which is supported by properties of the objects, such as
borders and depth. In Rubin’s vase (or face) the image can be perceived as either two faces
or as a vase. Because the figures share their borders, they cannot be the figure at the same
time.

or exemplars (Medin and Schaffer, 1978; Nosofsky and Zaki, 2002) of a category.1

Whenever they perceive a new instance of an event or object they try to match it
to a prototype or exemplar in memory (Figure 1.4).

As we indicated in the introduction of this chapter, we favor the term event
over object, because it captures the dynamics of sound events. The term auditory
event is chosen by the ecological approach to indicate direct perception of physical
actions (Fowler, 1996), but our concept is broader. An auditory event is a repre-
sentation of a sound event in memory. Therefore, it is not necessarily initiated by
a physical action. In other words, an auditory event can be a prototype instead of
an exemplar of a sound event.

1 Prototype models and exemplar models are two major theories of category representation. Proto-
type models assume a category is represented by an abstract prototype, while in exemplar models
categories are represented by (good) exemplars of that category.
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Box 3.2: Context

The dictionary entry (Merriam-Webster) for context is “interrelated conditions in
which something exists or occurs”. The term is often used in perception and mem-
ory literature to refer to non-target information, for example a visual scene surrounding
some target object in an identification experiment. Because the term context is so widely
used, we will give a short survey of its application in different research domains. In this
setting we can clarify our use. In memory research context is usually equated with the
associations that are triggered by perceiving something in the world (Bar, 2007; Oliva
and Torralba, 2007). These associations are learned through experience. They can refer
to events, objects or environments, that is, they are not bound to one sense or one type
of thing. In contrast, in visual perception research, context refers to the visual scene
in which a target object is presented (Palmer, 1975; Hollingworth, 1998). If the target
object semantically fits the scene, the context is called consistent or appropriate. If the
target object does not fit the scene, the context is inconsistent or inappropriate. In ex-
periments in which the effect of an (in-) consistent visual scene on object recognition is
tested, both the object and the visual scene are usually drawings. In speech perception
context is the linguistic information (Ganong, 1980). For example, if a speech sound
is impoverished, the sentence of which it is part helps to recognize the speech sound.
In auditory perception research aimed at sounds other than speech, context is used less
consistently. One important reason is that a sonic environment, which is dynamic, is
more difficult to represent than a visual scene, which can be represented statically. For
example, Ballas and Mullins (1991) presented context as a sequence of sound events,
while Gygi and Shafiro (2006) mixed the target sound event with recorded sonic envi-
ronments. All applications of context in visual and auditory perception experiments
have in common that a (schematic) representation of a surrounding is presented to par-
ticipants in the same modality as the target. Therefore, the context as it is presented
in experiments is more limited than in a real-world environment. We define context as
the learned associations of an event to other events and environments (as it is defined
in research about human memory). However, in an experimental setting we may be
restricted to certain aspects of context. In this case we will indicate which aspects of
context we are using.
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3.3 HUMAN SOUND EVENT RECOGNITION

Since we want to model the role of context (Box 3.2) in sound recognition, we are
also interested in its role in human sound recognition, which has received little sci-
entific attention (Gygi and Shafiro, 2007).1 Therefore, we present the results of an
experiment that has been designed to determine whether context facilitates the in-
terpretation of an ambiguous sound event. It is known that sound events are more
difficult to recognize when they may stem from multiple types of sources (Ballas
and Howard, 1987). Context is essential to disambiguate these sound events, as is
shown in an example of the same study. In this example, participants interpreted
a sound event differently when it was combined with another sound event and
different instructions. A follow-up study did not find this facilitatory effect, but
did find a suppressive effect of an incongruent context (Ballas and Mullins, 1991).
Similar results, that is, both a facilitatory effect of context (Palmer, 1975), but also
the lack of it (Hollingworth, 1998) have been found in visual object recognition,
although the general consensus is that the context does help to recognize objects
(Bar, 2004). These results show that context is a complex factor. Moreover, context
can be perceived in many different ways, such as in sound and image, but also in
time of day and place of occurrence.

The experiment described in this section is designed to show one particular
effect, namely the facilitatory effect, that context can have on the interpretation
of an ambiguous sound event. The results of the experiment will be important for
automatic sound recognition in two ways. First, if context is shown to be beneficial
for human recognition of ambiguous sounds, it can also be useful in an automatic
system that needs to recognize ambiguous events. Second, applications of real-
world sound event recognition, especially those that need to interact with a user,
can benefit from having a representation of the environment that is comparable to
a human listener.

To test the facilitatory effect of context in human sound event recognition we
presented homonymous sound events to participants. Homonymous sound events
are defined by having two (or more) possible interpretations, like one word can
refer to multiple concepts. When these sound events are presented in isolation,

1 Vision has been and is the focus of perception research. For example, if one searches for articles
with “vision”, Google Scholar returns about twice as many results as for the query “hearing”.
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the probability that they are identified as any of their possible interpretations is
equal. In contrast, when homonymous sound events are preceded by a sound event
that predisposes the listener to one of the two interpretations, we expect a biased
response toward that interpretation. For example, the sound of a purring cat can be
ambiguous without any context information, because some engines make a similar
sound. However, if a person is first presented with a context sound event, such as
honking, it is more likely that he will recognize the sound event as an engine than
as a purring cat. Hence, in this experiment context is defined as the sound event
that creates a sequence of events, instead of an isolated sound event. In other words,
the context sound event can trigger associations for the participant that influence
the recognition of the target sound event.

3.3.1 Method

To create homonymous sound events we used pairs of similar sounds from high-
quality commercial sound effects recordings (Hollywood Edge and Sound FX The
General), which were used previously to study the similarity of sound events (Gygi
et al., 2007). Sound pairs that were found maximally similar in this study were com-
bined to form chimaeric sounds. Chimaeric sounds are composed of the fine time
structure of one sound and the temporal envelope of another sound (Smith et al.,
2002). The signal properties of the sound events varied greatly because of the di-
versity of the environmental sounds in the database. Hence, the chimaeric sounds
did not always result in homonymous sound events. For 12 selected homonymous
pairs, listed in the left part of Table 3.2, we chose the combination of fine structure
and envelope that sounded most natural to the experimenter. Most of the envelopes
of sounds A were used for the chimaeric sounds, while most of the fine structures
of sounds B were used. The homonymous sound events had a mean duration of
2.8 seconds. The sounds that provided context for the homonymous sound events,
listed in the right part of Table 3.2, were obtained from additional commercial
recordings (Auvidis and Dureco). All sounds were sampled at 44.1 kHz. The total
of 52 sound event sequences (two context conditions for the homonymous sound
events, and 28 filler sequences, see next paragraph) had a mean duration of 7.7 sec-
onds. The context sound events preceded the target homonymous sound events
such that the sequence sounded most natural. However, the context sound event
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Table 3.2: List of similar sound pairs used to form homonymous sound events (left) and
the context sound event that facilitated them (right).

Sound event Context

A B A B

Pouring water Rain Refrigerator door Thunder
Thunder Passing airplane Rain Airport PA
Whistle Singing bird Football cheering Forest
Footstep Drum Closing door Guitar
Toilet flush Pouring water Urinating Refrigerator door
Meowing cat Crying baby Barking dog Music box
Coughing Barking dog Talking Meowing cat
Basketball Closing door Cheering crowd Footsteps
Ticking clock Pingpong ball Chiming clock Applause
Water bubbles Horse running Teakettle whistle Horse neighing
Bowling Thunder People talking Rain
Zipper Car starting Raining on tent Car door closing

always ended before the end of the target sound event. For example, when the con-
text sound event was rain, it continued through the start of the sound of thunder,
but when the context sound event was the closing of a refrigerator door, it ended
before the sound of the pouring water started.

In total 42 participants with a mean age of 24 took part in the experiment.
Six participants reported a slight hearing loss, but showed no decrease in their
performance on the filler sounds compared to the normal hearing participants.

The experiment comprised three conditions, one in which the context sound
event facilitated the interpretation of sound event A, one in which the context
event facilitated the interpretation of event B, and a control condition in which the
target sound events were heard in isolation. The three conditions were presented
between the participants. The homonymous target sound events were alternated
with 28 filler sound events taken from the same database. They were included to
assess the performance of the participants, and to make the participants unaware
of which sound events were the targets. The total of 40 sound events was presented
in random order, but no targets were present in the first 6 exposures to familiarize
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the participants with the task. The recognition task was a binary choice task. For
the target sound events the participants could choose between the descriptions of
the two original sound events, and for the filler sound events they could choose
between the actual cause and some other related source description. Furthermore,
the participants had to indicate on a four-point scale how confident they were of
their answer. The control group of 11 participants heard the sound events in iso-
lation. The second group of 15 participants first heard a sound semantically con-
sistent with context A followed by the target chimaeric sound. Finally, the third
group of 16 participants first heard a sound semantically consistent with context
B followed by the chimaeric sound. The 28 filler sequences, the filler sound events
preceded by a semantically consistent sound event, were the same for the last two
groups. The control group heard the filler sound events without a context event.
The experiment was conducted online during January 2008.

3.3.2 Results

The score of all participants in every group on the filler sound events was 100%,
and they gave a mean confidence rating of 2.8 on a four-point scale ranging from
0 to 3. A two-way analysis of variance (ANOVA) was used to test the difference
in the response between the participants within the homonymous sound events.
The effect of context A on the mean recognition score compared to the mean score
in isolation was significant: F1(1,11) = 8.09, with p < 0.017. However, there was
no effect of context B on the mean recognition score compared to the mean score
in isolation (F1(1,11) < 1). The results are summarized in panel (a) of Figure 3.4.
The black bars depict the average score on option A for all participants within a
group summarized for all homonymous sound events, where option A is the event
description that is in agreement with context A. The complement, 100% minus
score A, is the average score on option B (the gray bars).

The difference between the confidence ratings in correct responses, that is, re-
sponses for which the answer was in agreement with the context sound event, com-
pared to the confidence ratings in incorrect responses was significant in the group
that heard context A: t (101) = 3.34, with p < 0.002. The confidence rating was
higher when the answer was in agreement with the context. The mean confidence
ratings of consistent and inconsistent recognitions are depicted in Figure 3.4 (b).
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This effect was absent in the group that heard context B (t (159)< 1).
Not all chimaeric sounds appeared to be as homonymous as assumed. In par-

ticular three sound events received one interpretation exclusively in the isolated
condition. When these three sounds were excluded from the ANOVA, the differ-
ence in the mean score of context A compared to the mean score in isolation had
a greater F : F1(1,8) = 13.28, with p < 0.007. In conclusion, for the homonymous
sound events we found a significant effect of one context on recognition.

3.3.3 Discussion
Although there is a significant effect of one context on the mean scores, this effect
is completely absent in the other context. The explanation for the absence of the
effect lies in the design of the experiment. The homonymous sound events were
formed by combining the envelope of one sound and the fine structure of another
sound. Most descriptions of context A predisposed the participants to the interpre-
tation of the envelope of the homonymous sound, while the interpretation related
to the fine structure was most prominent in context B. Hence, the envelope is a
stronger cue for recognition than the fine structure for this experimental design.
This effect is known in speech perception (Shannon et al., 1995; Smith et al., 2002),
and depends on the number of frequency bands used to create the chimaeric sound.
If the number of frequency bands we used (eight) were used for the recognition of
chimaeric speech sounds, the fine structure would give relatively little information
compared to the envelope. Hence, our results suggest this effect can be generalized
to environmental sounds. As a consequence, the effect of context is canceled by
the preference for the envelope in context B. This conclusion is consistent with a
significant prevalence for the interpretation that coincided with the envelope of the
homonymous sound event (64%) compared to the fine structure (36%) when the
sounds were presented in isolation (χ 2(1) = 9.82, p < 0.002). Overall, the experi-
ment demonstrates that the context in which a sound event is heard constraints its
perception.
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Figure 3.4: Panel (a) shows the mean scores on the option consistent with both context
A and B in each of the three groups, with the standard error. The sum of both scores in
each group add up to 100%. The mean confidence ratings of consistent and inconsistent
recognitions (on a scale of 0 to 3) in both contexts, with the standard error, are displayed
in panel (b).
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3.4 CONCLUSION

In the first part of this chapter we gave an overview of the knowledge about human
perception of sound events, which is acquired through studies in multiple research
areas, such as psychoacoustics and neuroscience. Although the presented overview
is not exhaustive, it can provide a basis for automatic sound event recognition.
First, a model for automatic sound event recognition can be guided by the prop-
erties of human perception (see section 3.2.2 and Table 3.1). These properties can
be summarized by two attributes, separability and constancy, which inspire our
design of a model for automatic sound event recognition. A system that should
be robust to a changing environment benefits from a representation of the input
that is constant. In other words, sound events need to be separated from the back-
ground, and they should be stored (remembered) as invariant representations in
our model.

Second, different abstraction levels in a model for automatic sound event recog-
nition correspond to different levels of precision in the analysis of sound events,
depending on the goal or mode of a system. A high level of precision is diffi-
cult to obtain, but may be possible in a known and controlled environment, for
example in automatic speech recognition systems that work with a close-talking
microphone. In these applications, statistical models based on Bayes theorem can
calculate probabilities of sequences of phonemes, and transcribe spoken words and
sentences with high accuracy. However, in a real-world environment with many
unknown and variable events, it is difficult (if not impossible) to determine exact
probabilities. Hence, statistical decision models are unsuitable for these situations
(Box 3.3). Analogous to human perception, the problem of recognizing sound
events gets easier when it is described at a higher abstraction level, although the
precision will be lower. Therefore, we choose to design our model such that it re-
lies on more rough estimations instead of exact probabilities. As a consequence, it
should be more robust to unknown and variable conditions.

In the second part of this chapter we investigated the effect of context (in
the form of a sound event preceding a target sound event) on the recognition of
homonymous sound events by people. We confirmed the consensus in vision re-
search that context can facilitate the recognition of an object or event. This result
is valid within this experimental setup, but has to be further explored in different
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Box 3.3: Decision processes

Decision processes in speech recognition systems are made based on conditional depen-
dencies between models of phonemes (or other speech elements), taking a statistical
language model into account. Typically, these systems work with feature vectors that
describe the spectrum of the audio signal 100 times per second (see Figure 1.2). The re-
sulting high-dimensional feature vectors are used in a probability multiplication process,
in which the probability of a long pronunciation of a word, for example “heeeeeeelp”,
will be lower than for a normal pronunciation (“help”). As a consequence, alternative
interpretations of an erroneous sequence of words of normal duration can be favored
over the actual utterance. In contrast, people would note only a duration difference
between the two utterances.

experimental designs. For example, in some other design a mismatching context
can facilitate recognition, because it makes a target stand out (Gygi and Shafiro,
2006). However, automatic sound event recognition can benefit from the facilita-
tory effect of context when the audio signal is ambiguous. Hence, this effect can be
modeled to improved automatic sound event recognition, provided that the con-
textual information obeys the form in which it is shown to enhance recognition in
human perception.
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4
MODELING CONTEXT OF SOUND EVENTS

The content of this chapter has been published as part of Niessen, M. E., Van Maanen, L., &
Andringa, T. C. (2008). Disambiguating sound through context. International Journal on
Semantic Computing 2(3), 327–341. Proceedings of the 2nd IEEE International Conference on
Semantic Computing, 88–95.

A central problem in automatic sound recognition is the mapping between signal-driven
audio patterns and the semantic interpretation of a sonic environment. We propose a
context model to perform this mapping. Acoustics research is predominantly devoted to
mimic early stage human perceptual abilities such as audio pattern selection and grouping,
which are translated into successful signal processing techniques. In contrast, not many
studies are aimed at modeling knowledge and context in sound recognition, although this
information is necessary to recognize a sound event in addition to segregating its compo-
nents from a scene. Based on the investigation of the role of context in human sound event
recognition in the previous chapter, we show that the use of knowledge in a context model
can improve automatic sound event recognition by reducing the search space of the signal-
driven audio patterns. Furthermore, context information dissolves ambiguities that arise
from multiple interpretations of one sound event.



CHAPTER 4

4.1 INTRODUCTION

In acoustics much research is devoted to modeling the ability of the human au-
ditory system to segregate different events in a sonic environment based on the
audio signal alone, called primitive auditory scene analysis (ASA, Bregman, 1990).
Perceptual grouping based on features such as continuity of components in the au-
dio signal and proximity in time or frequency are translated into successful models
of primitive ASA (Cooke and Ellis, 2001; Godsmark and Brown, 1999; Grossberg
et al., 2004; Nix and Hohmann, 2007; Wang and Brown, 2006). However, primitive
ASA alone will not suffice to automatically recognize sound events. We also need
to model the contribution of knowledge and context to interpret the audio signal
and make predictions at a higher description level (see chapter 3). Although this
need has been recognized some time ago (Ellis, 1996, 1999), it has so far not resulted
in models of sound event recognition that combine signal-driven (bottom-up) and
context-based (top-down) methods.

In recent years there has been some research on modeling what is called context
awareness in sound recognition. One group of studies focusses on estimating the
context of an audio interval with varying classification techniques (Eronen et al.,
2006; Chu et al., 2009; Aucouturier et al., 2007). In these studies the context is rep-
resented by a class of sounds that can be heard in some type of environment, such as
cars at a street, or people talking in a restaurant. Depending on the number of con-
text classes that are learned, the recognition rates of these methods vary between
58% (24 classes, Eronen et al., 2006) and 84% (14 classes, Chu et al., 2009). Al-
though these results are promising, the methods that are used have some attributes
that make them less suitable for automatic sound event recognition.

First, no sound event segregation (see section 2.3) is applied, so the features
that are used to classify an audio interval are assumed to represent information
that is specific for a class. Therefore, the context class to which an audio interval
belongs gives primarily information about its acoustic properties. Consequently,
these methods implicitly assume that similar sound types occur in similar situa-
tions. Although this assumption is valid for some tasks in a restricted domain, like
music genre determination, it cannot be guaranteed for sound events in real-world
environments. The context (as defined in section 3.1) of an event in a real-world
situation is not only the acoustic class it may be categorized into, but the envi-
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ronment in which it can be heard as well. For example, speech can be heard in
restaurant, together with music and clinking of glasses, but also in a park, together
with birds and wind.

Second, tasks in multimedia applications (or a comparable setup in environ-
mental sound classification, as in Chu et al., 2009) generally entail that a small
audio interval, in the studies above typically not longer than a few seconds, is clas-
sified as a sample of one context out of a data set with a limited set of distinct
contexts, which are stored as a collection of audio files. The estimation of a sta-
tionary context is easier when the intervals are longer, because the reliability of
the audio features increases with time, assuming the audio signal does not change
qualitatively. In contrast, in a real-world environment it cannot be assumed that
the sonic composition within a context—where context refers not to the type of
sound, but to the associations between events and environments (see Box 3.2 on
page 35)—does not change over time. Furthermore, in continuous monitoring of
a sonic environment there is no prior segmentation of interesting sound intervals.
Therefore, the information in the sound used to define the context is not necessar-
ily relevant, as it is assumed to be in the audio files in multimedia applications. To
be able to determine the environmental context of a sound event, the sound event
needs to be segregated and recognized, and co-occurring events that are semanti-
cally related to the same context can help to estimate the most likely context.

A second group of studies on context awareness addresses some the above issues
by retrieving semantic relatedness of sound intervals rather than the similarity of
their acoustic properties (Lu and Hanjalic, 2008, 2009; Cai et al., 2006, 2008). For
example, in Cai et al. (2006, 2008) the intervals are clustered based on the similarity
of their audio features. Subsequently, the semantic relatedness of these intervals
to each context (different tracks from shows on television, such as series or tennis
games) is calculated based on their co-occurrences. However, the audio intervals
that are selected give no information about the semantics of the interval itself, only
about the context it belongs to. Since we want to recognize events in a real-world
sonic environment, we are not interested in the context per se, but in its usage to
improve recognition.

Furthermore, sound event recognition is different from segmentation, where
an audio signal is divided into different intervals based on features, such as the zero
crossing rate in the time domain and the spectral centroid, that represent prop-

47



CHAPTER 4

erties of the signal (Tzanetakis and Cook, 1999). Figure 4.1 displays a schematic
overview of the segmentation process. The segmented intervals do not necessarily
correspond to events. Sound events in a real-world environment are often heard si-
multaneously, or no (interesting) events are heard at all. In other words, we do not
want to know the acoustic class of each interval, but which events are present in a
continuous stream of audio. Context can help to limit the search space of possible
sound events.

While context-based recognition has received little attention in automatic sound
recognition—with the notable exception of speech, where grammatical and lexical
rules are considered for automatic recognition (Barker et al., 2005; Scharenborg,
2007)—it has a long history in other research areas such as information retrieval
(Cohen and Kjeldsen, 1987; Crestani, 1997; Van Maanen, 2007; Van Maanen et al.,
2010) and handwriting recognition (Côté et al., 1998; McClelland and Rumelhart,
1981). Models of context-based recognition assume that certain regularities exist in
the contexts in which an event may occur and structure their knowledge base in
such a way that these regularities are accounted for. Often this takes the form of a
spreading activation semantic network (Quillian, 1968; Collins and Loftus, 1975),
in which the nodes represent the states the network can be in, and the vertices
represent the prior probabilities that these states are encountered subsequently or
together. In these models, context is incorporated by keeping nodes active over a
longer period of time, thereby influencing the probabilities that certain nodes will
be activated. Spreading activation networks have mostly been exploited in static
and well-constrained domains. Our aim is to demonstrate that spreading activa-
tion can also be applied in a dynamic domain such as sound event recognition.

4.2 CONTEXT MODEL

Based on existing models of spreading activation and the findings of the context fa-
cilitation experiment in section 3.3 we introduce a model for context-based recog-
nition that can be used with dynamic real-world audio input. This model allows
automatic recognition of events in a complex and changing sonic environment.
In complex real-world environments a sound event may have different interpreta-
tions, depending on the situation in which it occurs. Therefore, the model needs
knowledge about the context to interpret the audio features, similar to humans.
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Figure 4.1: Schematic overview of a segmentation process. Acoustic features, such as the
zero crossing rate and the spectral centroid, are extracted from the audio signal. Based
on the feature values for the different time frames, the audio signal can be segmented into
different intervals that have corresponding feature values, indicated by gray scales in the
bottom panel.
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Figure 4.2: Schematic overview of a network initiated by a pattern segregated from an au-
dio signal. The pattern is connected to event hypotheses that are possible interpretations
of the pattern. The learned associations to contexts can help to infer the most likely inter-
pretation for a certain pattern. All possible connections are depicted as lines. The strength
of these connections is indicated with a symbol w.

The model dynamically builds a network that generates semantic hypotheses of
sound events based on signal-driven audio patterns and knowledge of the events.
Moreover, context information is used to compute the support for competing hy-
potheses, and consequently a most likely hypothesis for all segregated patterns can
be assessed. Figure 4.2 shows a schematic representation of a network.

With our model we want to qualitatively improve automatic sound event recog-
nition. Our approach starts with signal-driven techniques for the selection and
grouping of audio components (the methods for segregation are explained in sec-
tion 5.2.1). Every segregated pattern represents a possible sound event. The ability
of people to use their knowledge of the context to disambiguate sounds, which we
demonstrated in the experiment in chapter 3, should also be present in the model.
Therefore, a context model evaluates the signal-driven input with knowledge of
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Table 4.1: Algorithm for updating the dynamic network configuration at times when new
signal-driven information is presented to the network.

For all patterns (grouped components) at time t :

1. Segregate the audio signal into patterns P (t ) = {pt ,i}
2. For each pt ,i ∈ P (t ) add possible event hypotheses {et , j } ∈ E(t ) and connect them

with strength wi , j

3. For each new event et , j ∈ E(t ) add appropriate contexts ck not yet present in the
set of active contexts C

4. Connect each new event et , j with the appropriate context ck with strength w j ,k

5. Spread signal-driven activation
6. Spread context-based activation
7. Evaluate activation values

the event and its context (Andringa and Niessen, 2006). We will illustrate the be-
havior of the model through an example of a sound event that was also used in
the experiment, the mix of a bouncing basketball and a closing door, which can
be identified as both in the absence of context information. In the following sec-
tions we will describe how the model dissolves this ambiguity through the use of
context knowledge in a dynamic network. The algorithm for the construction and
updating of the dynamic network is summarized in Table 4.1.

4.2.1 Dynamics of context model

Because we want to combine a signal-driven (bottom-up) and context-based (top-
down) approach to sound recognition, the model maps hypotheses of the sound
event based onto segregated audio patterns to expectations that are formed by
knowledge of the relations between the events and the context. This mapping
process will lead to a best hypothesis about the event that causes the sound in this
context, at every description level in the network (apart from the lowest, which
are the segregated audio patterns). All hypotheses hold a confidence value reflect-
ing their support from relations to other events and the context in which the hy-
pothesized event is occurring. In case of conflicting interpretations for one event,
the hypothesis with the highest support will win. For example, in Figure 4.3 the
reverberant impact sound could be either a closing door or a basketball bouncing,
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Figure 4.3: Network configuration for the identification of a reverberant impact sound
preceded by the sound of cheering. The best hypotheses at the highest two levels (the
gray nodes) correspond to the best interpretation for the signal-driven evidence at that
description level.

based on the audio pattern alone. However, knowledge about the context actuated
by a previous sound event (cheering) will increase the support for the hypothesis
that the second sound event is a basketball bouncing. Furthermore, the confidence
value of the first hypothesis (cheering) is increased, because the context of a sports
game, and hence the cheering, is more likely considering the new input. In the fol-
lowing paragraphs we will describe the process of how the network is dynamically
built, and how the confidence of all hypotheses is established through spreading
activation.

The network is updated if and only if new signal-driven information is pre-
sented, and spreads its activation when the network is stable, that is, when the
available knowledge about the signal-driven information is processed. The hierar-
chy in the network is captured by the interdependent relations of all the hypothe-
ses. The lowest description level in the network corresponds to the physics of the
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signal, and the highest level to a (provisional) interpretation of the environment.
The intermediate levels represent hypotheses of increasing generality. The number
of levels depends on the complexity of the domain, but usually three levels will
suffice: one for the segregated patterns, one for the event hypotheses that are in-
ferred from the patterns, and one for the context of the environment, which can
raise particular expectations about future events (Figure 4.2).

4.2.2 Algorithm of context model

In the first step (see Table 4.1), audio patterns that are likely to be caused by sound
events are segregated from the time-frequency plane of the sound. Figure 4.4 shows
the time-frequency plane of a sports game scene with annotated audio patterns.1

Every hypothesis of a sound event corresponds to a specific pattern of audio com-
ponents. For example, the cheering is a noisy collection of distorted harmonic
complexes. Each segregated event comes with a base-level activation based on the
confidence given by the segregation algorithms. For example, a confidence value
may reflect how well a pattern, such as a harmonic complex, fits a particular mask,
such as a calculated harmonic complex. For illustrative purposes we set the base-
level activations of all patterns to 1 in the example.

A segregated pattern of audio components may have multiple interpretations.
Hence, all proposed interpretations of a pattern will be initialized as sound event
hypotheses (step 2 in Table 4.1). These event hypotheses are connected to the
patterns that initiated them, with some strength, denoted by weight w. Subse-
quently, knowledge about the hypothesized events will initiate hypotheses about
the context in which an event can occur, for example about an event sequence or
an environmental setting2 (step 3), and connected to the event hypotheses (step 4).
In Figure 4.3, the cheering could point to a pop concert or a sports game. These
higher level context hypotheses create expectations about sound events that will
follow, like a basketball in a sports game. If the expected event is matched with
signal-driven evidence, it will receive extra support when its hypothesis is created.

1 In the application of the model we use grouped audio components that are automatically extracted
from the audio signal instead of annations (see chapter 5).

2 The knowledge about the context is learned in a training phase. The method used for training is
discussed for each application, that is, section 5.2.2 and 6.2.2.
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Figure 4.4: The cochleogram of the sound of cheering followed by a chimaeric basket-
ball/door sound. The gray bars indicate annotations of harmonic complexes and the black
bar the annotation of a reverberant pulse.

When the knowledge is processed and the network is stable, the activation of the
audio pattern spreads through the network (step 5 and 6).

The connections in the dynamic network are symmetrical, and only between
hypotheses at different levels. For instance, the event hypotheses are connected to
the segregated patterns that initiated them, and to hypotheses of their possible con-
texts, but not to each other (Figure 4.2). Connections between hypotheses at the
same level would be redundant, since they can reinforce each other through shared
parent hypotheses. Furthermore, the hierarchy of the network is now captured
by the connections. Therefore, it is not necessary to store a global representation
of the complete network. Instead, each hypothesis contains information of its rel-
ative position in the network, that is, it stores its direct connections. The only
information that is globally available is which hypotheses are active.
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4.3 ACTIVATION SPREADING

When the network configuration is stable after updating, the activation first spreads
upward to the highest level in the network (signal-driven activation spreading, step
5), and then downward to other connected events in the past, if they exist (context-
based spreading, step 6). The spreading can only go up once and down once
through every path that denotes a past event, after which it terminates. The ac-
tivation of the individual hypotheses is a time-dependent weighted sum that decays
exponentially with time. The rate of decay is determined by a time constant τ. The
activation of each hypothesis is limited to a maximum value. As a consequence, hy-
potheses that are highly active over a longer period of time are not repeatedly rein-
forced by new input, because the effect of the input decreases when the activation
of a hypothesis reaches its maximum. Because the connection strength between
the hypotheses are learned on training data (section 5.2.2 and 6.2.2), the activation
represents a pseudo-probability (confidence) that the hypothesis is true.

The computation of the spreading activation is similar to the method used in
the model of letter perception by McClelland and Rumelhart (1981). However,
we only incorporate excitatory and no inhibitory connections. Furthermore, the
decay function applied in our model is a continuous function of time instead of a
constant value that is applied at discrete time steps.

The input activation ni (t ) of the individual hypotheses is the weighted sum of
all connected hypotheses, either from the level below, for signal-driven activation
spreading (step 5), or from the level above, in case of context-based spreading (step
6):

ni (t ) =
∑

j

w j i Aj (t ), (4.1)

where j is a hypothesis connected to i , Aj (t ) is its activation, and w j i is the con-
nection strength between hypotheses j and i , retrieved from the stored knowledge.

When an audio pattern holds a low confidence value, the activation spreading
from the higher levels to the event hypotheses is more important than the activa-
tion spreading upward from the pattern, and vice versa. In other words, the lower
the saliency of the signal, the more influential the context is. As a consequence, the
dynamic network is more robust to unreliable input than models that rely only on
signal-driven techniques.
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4.3.1 Activation evaluation
After the activation has spread through the network, the activation of each hy-
pothesis is evaluated (step 7). The activation evaluation is an accumulation of cur-
rent input and the previous activation corrected with a decay. The decay ensures
that items in short-term memory are forgotten without reinforcement (new signal-
driven evidence) in contrast to information in long-term memory (Quillian, 1968).
The activations of all hypotheses decay exponentially with time toward a default
situation. Therefore, the decay function is dependent on the a priori activation of
a hypothesis:

fi (∆t ) = e−
∆t
τ (1− Ãi )+ Ãi , (4.2)

where Ãi is the default activation of hypothesis i , which is non-zero for a closed set
of contexts. For example, when the context is represented by one of N locations,
the default activation can be determined from their incidences in the training data.
In such a situation, the sum of the default activations of all context hypotheses is 1.
For all other hypotheses Ãi = 0. Furthermore, τ is a time constant controlling the
rate of decay, and ∆t is the elapsed time since hypothesis i is evaluated last. As a
result, hypotheses deactivate when they do not receive input activation from other
hypotheses. When the activation value decreases below a minimum value (θA), the
hypothesis is no longer evaluated, and removed from the dynamic network. A new
hypothesis will be initiated when new evidence is found for the same type of event.

The activation value of the hypotheses is normalized to the maximum input
activation, so that it is scaled between 0 and 1:

Ai (t ) = fi (∆t )Ai (t −∆t )+ ni (t )(M − fi (∆t )Ai (t −∆t )), (4.3)

where M = 1 is the maximum activation level, and Ai (t −∆t ) is the activation of
hypothesis i when the network was last updated, multiplied with a decay fi (∆t ),
computed according to equation 4.2. Furthermore, ni (t ) is the input activation
as calculated in equation 4.1. It should be noted that the activation of the audio
patterns will always decay, because they do not get any more input activation
(ni (t ) = 0) after being initiated. In contrast, event and context hypotheses can
get reinforced by new evidence from subsequent audio patterns, and thus can stay
active for a longer period of time. The result of the activation evaluation of a hy-
pothesis is treated as the pseudo-probability that the hypothesis is true.
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Going back to the example of Figure 4.3, the activation of the sports game
hypothesis is summed over the two time steps when new signal-driven information
is presented to the network. The value of the time constant τ is arbitrarily set to
100 to demonstrate its effect in the calculation of the activation value. However,
in different application domains the value of τ can be estimated based on training
data. At the first moment, the activation of the sports game hypothesis consists
of the input it gets from the cheering hypothesis, which starts at time t = 1.7 (the
subscript letters are in parentheses in Figure 4.3):

As(1.7) = ns(1.7) = wcsAc(1.7) = 0.5 ∗ 1= 0.5 (4.4)

A few seconds later, at time t = 7.7, the input is delivered by the basketball hy-
pothesis:

As(7.7) = e−
7.7−1.7

100 As(1.7)+wbsAb(7.7)(1− e−
7.7−1.7

100 As(1.7))

= 0.94 ∗ 0.5+ 0.8 ∗ 0.7 ∗ (1− 0.94 ∗ 0.5) = 0.77 (4.5)

The activation of the cheering hypothesis is not included in equation 4.5, because at
every update only the active connected hypotheses can deliver input to the sports
game hypothesis. As a consequence of the two-way spreading, the cheering hy-
pothesis will receive an increased support from the basketball bouncing, through
the sports game hypothesis. In the first step the hypothesis receives activation from
the signal-driven evidence:

Ac(1.7) = nc(1.7) = whcAh(1) = 1 ∗ 1= 1 (4.6)

In the second step the sports game hypothesis contributes to the activation of the
cheering hypothesis:

Ac(7.7) = e−
7.7−1.7

100 Ac(1.7)+wscAs(7.7)(1− e−
7.7−1.7

100 Ac(1.7))

= 0.94 ∗ 1+ 0.5 ∗ 0.77 ∗ (1− 0.94 ∗ 1) = 0.96 (4.7)

The activation values of all the higher level hypotheses are shown in Figure 4.5.
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Figure 4.5: Activation of all higher-level hypotheses in the example of Figure 4.3. At
the two moments when signal-driven patterns are presented to the network, the activation
values of the hypotheses that are connected to these patterns increase.

4.4 CONCLUSION

The network described in the example is rather simple, while in a real-world en-
vironment there will be many more events, mostly of unreliable sound quality.
The complexity of a real-world environment will be captured by knowledge about
the relations between the real-world events. Furthermore, the expansion of the
network must be controlled. This is partly achieved by keeping track of which
hypotheses are active, and which hypotheses are of finished or discarded events.
These last two classes are excluded from the search space of connected hypotheses
when new information is presented to the network. As a consequence, the search
space at any time is limited to the hypotheses that are active at that time. An ad-
vantage of a complex environment is its supply of information. People use much
more contextual information in the recognition of sound events, such as time of
day, environmental setting and ecological frequency (Ballas, 1993). This informa-
tion can also be included in our model in the form of nodes in the network that
help support or discard hypotheses.

In the next part we will show applications of the model in real-world situations,
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where the input patterns of the model are supplied by automatic audio signal seg-
regation algorithms. Furthermore, we will show how the knowledge of the model
is acquired in the training phase of an application. Although the model is being de-
veloped for audio input, its general implementation allows for other signal-driven
input, such as image descriptions, as long as they represent a single event or object
(chapter 6). If different types of descriptions can serve as input to the model, they
may be combined in one model for use in multimedia applications.
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5
AUTOMATIC SOUND EVENT RECOGNITION IN

THE REAL WORLD

The content of this chapter (except section 5.3) has been published as Niessen, M. E., Krijnders,
J. D., & Andringa, T. C. (2009). Understanding a soundscape through its components. In
Proceedings of Euronoise.

The content of section 5.3 has been published as part of Krijnders, J. D., Niessen, M. E., & An-
dringa, T. C. (2010). Sound event recognition through expectancy-based evaluation of signal-
driven hypotheses. Pattern Recognition Letters 31(12), 1552–1559.

Human evaluation of sound in real environments is a complex interaction of many factors,
which are investigated by a range of research fields. Most approaches to assess and improve
the evaluation of sonic environments (soundscapes) use a holistic approach. For example,
in environmental psychology, subjective measurements usually involve the judgment of a
complete soundscape by people, mostly through questionnaires. In contrast, psychoacous-
tic measurements try to mimic perceptual attributes by measurements such as loudness.
However, these two types of soundscape measurements are aimed at qualitatively differ-
ent phenomena, which are difficult to link other than with correlational measures. We
propose a method grounded in cognitive research to improve our understanding of the
link between sound events and human soundscape evaluation. People process sound as
meaningful events. Therefore, we developed a model to recognize sound events in a sonic
environment that are the basis of these meaningful events.



CHAPTER 5

5.1 INTRODUCTION

Human evaluation of sound in real environments is a complex interaction of many
factors. Therefore, many fields of research are involved in trying to understand
these factors, ranging from psychoacoustics (Fastl, 1997) to cognitive psychology
(Guastavino, 2007) and sociology (Schulte-Fortkamp and Fiebig, 2006). Most psy-
choacoustic studies on sound quality evaluation focus on measuring attributes such
as loudness and sharpness of isolated sounds (Blauert and Jekosch, 1997; Fastl,
1997). However, several studies have shown that these perceptual attributes can
only explain part people’s evaluation of soundscapes (Ballas, 1993; Maris et al.,
2007). The judgment of a soundscape largely depends on the meaning that a per-
son gives to the sound (Dubois et al., 2004). For example, whether a person enjoys
music depends on his or her choice to hear it. At a concert, music will be appreci-
ated even (or especially) at a high loudness level, while the tolerance for the music
that a neighbor is playing at night will be much lower.

Zhang and Kang (2007) distinguish four categories in which the different fac-
tors that influence soundscape evaluation can be organized, namely sound, space,
people, and environment. The categories of sound and space comprise the acoustic
factors of the sound events in the environment, modified by transmission effects,
such as background sounds and reverberation (see chapter 2). These acoustic factors
in soundscape evaluation have been tested through psychoacoustic measurements
(Genuit and Fiebig, 2006) and questionnaires (Raimbault et al., 2003), amongst oth-
ers. However, acoustic factors cannot be studied in isolation, because the judgment
of people is not based solely on the properties of the sound, but is also affected by
the meaning they give to the environment and to the sound events in the envi-
ronment. This meaning depends on factors like their memory and cultural back-
ground. The interplay between acoustic and non-acoustic factors can be examined
either by controlling the sounds and varying the condition, such as the cultural
background (Hansen and Weber, 2009), or by correlating psychoacoustic measures
to people’s judgments (Raimbault et al., 2003). Other non-acoustic factors that af-
fect people’s judgments can include social, demographical, and behavioral factors
(Yu and Kang, 2008), and environmental factors, such as temperature, wind and
sunshine (Zhang and Kang, 2007).

Many of these recent studies on the judgment of soundscapes use measure-
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Figure 5.1: Schematic overview of the link between sound events and a soundscape. Phys-
ical actions result in sound events, which are interpreted by a listener based on his expecta-
tion, goals, and so forth. We refer to a sonic environment as the collection of sound events,
and to a soundscape as the collection of meaningful auditory events. (The image is not
meant to be exhaustive. For example, the effect of visual information is not included.)

ments that describe the sonic environment as a whole, and not the individual
sound events. However, people judge a sonic environment not (only) based on
the acoustic properties of the sonic environment. Rather, they evaluate the sound-
scape by the meaning they give to the environment and the sound events (Guas-
tavino, 2007). For example, Guastavino (2006) showed that an important indicator
for the judgment of an urban soundscape is the presence or absence of human ac-
tivity. Whether there is human activity can be determined by sound events that
result from the presence of people, such as speech. Therefore, meaningful events
that indicate either a pleasant or an unpleasant situation can function as a link be-
tween the holistic judgment of a soundscape and the sound events that constitute
the sonic environment (Figure 5.1).

Because sound events are indicators for soundscape evaluation, we propose a
method to automatically recognize sound events based on signal-driven hypothe-
ses, which are guided by knowledge of the environment. The recent history of a
sound event is used to estimate the context (Box 3.2, page 35) where the event is
recorded. Subsequently, the predicted context is used to form expectancies of fu-
ture events. The hypotheses about events are approximations of meaningful events,
because they are learned from human annotations. Furthermore, we use a model
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of human memory to represent the hypotheses, through which we include an im-
portant cognitive factor in the analysis of a soundscape. Although these event
hypotheses are not similar, or even close to human cognitive representations, they
can be used to automatically analyze a soundscape based on knowledge other than
acoustics. Therefore, this method provides a basis for modeling the factors that are
important in soundscape evaluation.

In the next section we will describe the methods that we developed to segre-
gate and interpret sound events. In the third and fourth section we present two
experiments with two different data sets to test the integrated methods on their
comparison to human annotations. Finally we will discuss the results of the exper-
iments, and provide an outlook on future work.

5.2 METHODS

To recognize sound events in a continuous audio signal, we first segregate patterns
from the audio signal that are likely to constitute a single event. Subsequently,
we use a model of human memory to select the most likely interpretation for the
events that these patterns represent, based on an estimation of the context.

5.2.1 Audio processing

The cochleogram of the audio signal is segmented on the basis of the local spectro-
temporal properties. Segments are likely to be produces by a single event when
they are based on local properties. For example, local energy maxima that resem-
ble tones and are developing smoothly in time are likely to be produced by the
same event. The robustness and reliability of these segments, called signal compo-
nents, are improved with grouping principles from auditory scene analysis, such as
common onset, common offset and common frequency development (Bregman,
1990; Ellis, 1999). Figure 5.2 shows an example of a cochleogram of a speech sig-
nal, of which the harmonic components are selected and grouped. The strategy to
combine local signal properties and grouping principles allows one to select qual-
itatively different types of audio patterns, namely tones and harmonic complexes,
pulses, and broadband events (see appendix B and Krijnders, 2010). A description
of these patterns based on their signal properties is used to classify and label them
as sound events with a machine learning algorithm.
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Figure 5.2: Cochleogram of a speech signal with segregated signal components (black
lines). The white lines are the components that have been grouped into a harmonic com-
plex, of which the fundamental frequency is depicted by the dashed black line. The vertical
black line indicates the onset of the speech.

5.2.2 Context model

The segregated patterns, described in the previous section, are classified with a
standard machine learning technique. However, the audio signal can be distorted
or masked by transmission effects such as background sounds and reverberation,
resulting in a low confidence of certain pattern labels. Furthermore, some sound
events can have multiple interpretations while they share similar audio patterns,
such as screaming and laughing. To find the most likely interpretation, we intro-
duce a method that incorporates knowledge of the context.

This method, which is inspired by research in cognitive psychology (Quillian,
1968; McClelland and Rumelhart, 1981), constructs a dynamic network that keeps
track of both signal-driven patterns and knowledge of the context (see chapter 4).
The nodes of the dynamic network represent information about sound events at
different description levels, and the vertices between them represent the probabil-
ity that these pieces of information belong together. Each node holds an activation
value. A hypothesis (node) is more likely to represent a relevant interpretation
when its activation value is higher than its competitors. Whenever new signal-
driven information becomes available, the network is updated by adding nodes,
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which each represent new pieces of information, and removing nodes whose acti-
vation decreased below a threshold. Subsequently, the activation of the new nodes
spreads through the network. Furthermore, new nodes are used to form expectan-
cies of future sound events. If a signal-driven pattern matches an expected event, it
is more likely to be an adequate interpretation.

Knowledge network

An example of a network configuration is depicted in Figure 4.3. The nodes at
the lowest level represent segregated audio patterns, at the middle level they cor-
respond to sound event hypotheses, and at the highest level to hypotheses about
recording locations or sequences of co-occurring sound events. Nodes at the differ-
ent levels are connected with some strength, denoted by weight w. These weights
are learned in the training phase and stored in a knowledge network. In the opera-
tion phase the weights are used to infer a probable context of sound events. In the
experiments presented in this chapter the context can either refer to a sequence of
events (section 5.3) or a recording location (section 5.4).

The strength between the node that represents a recording location or a se-
quence and the nodes that represent the sound events is calculated according to a
term-weighting approach used in automatic document retrieval (Salton and Buck-
ley, 1988). In this method the importance of a term (word or phrase) in a document
is determined by multiplying its frequency in the document (term frequency) with
its general frequency in other documents (inverse document frequency). Hence,
the term is important for a document if it occurs often in that document and infre-
quently in other documents. Analogously, if a sound event e is encountered often
at recording location l , and little at other locations, it is an important indicator for
location l . Accordingly, the strength between the sound event e and the recording
location l is:

wl ,e = we ,l = ef ·
log10 N − log10 n

log10 N
(5.1)

where N is the total number of recording locations, n is the number of locations
at which e occurs, and the term (that is, event) frequency is given by:

tf=
Te ,l

Te
, (5.2)
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where Te ,l is the total duration of occurrences of e in l , and Te is the total duration
of occurrences of e in a training set.

The term frequency of events is calculated with the duration of events instead
of their frequency, which is common in automatic document retrieval, because du-
ration is more robust to variations in annotations of different human annotators
and of different files (see the data descriptions in section 5.3 and 5.4). For exam-
ple, some annotators choose to annotate every single bird, while others annotate
a complete file as containing bird sounds. Therefore, the difference in the number
of annotations can be considerable compared to the difference in the duration that
is annotated. In other words, what constitutes one instance of an event is more
difficult to judge than whether the event is present.

Furthermore, the inverse document frequency (IDF, the second part of equa-
tion 5.1) is normalized, such that a sound event that occurs at one location (or is
part of one sequence) has an IDF of 1, while a sound event that is recorded at all lo-
cations has an IDF of 0, regardless of the frequency it is recorded at those locations
(the term frequency). In other words, a sound event that can be heard everywhere
does not provide any information about the location of a recording.

Equation 5.1 can also used to determine the weights between sound events and
sound sequences, instead of recording locations. If a sound event A is encountered
often in combination with some sound event B , and infrequently with other sound
events, it is important in the event sequence s : A−B .1 In this case, l in equation 5.1
can be replaced with s , which represents the event sequence instead of the location,
so we ,l is substituted with we ,s . Additionally, N is the total number of sequences,
and n is the number of sequences in which event A of sequence s occurs.

Whether the knowledge network is trained on recording locations or sequences
of events can be decided based on the data set. In a data set with recordings at
different types of locations, the location can be predictive of the sound event, while
this information would be useless in a data set collected at a single location. In such
a data set it is more sensible to use location independent information to predict
sound events, for example, which sound events co-occur, or at what time they
occur.

1 Two events are considered to comprise a sequence when they co-occur within a certain time frame.
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Activation evaluation of event sequences

The spreading of the activation through the network, and the evaluation of the
resulting activation values of the hypotheses in the network is determined accord-
ing to the algorithms that are explained in section 4.3.1. However, the activation
evaluation of the event sequences with a fixed order is extended compared to the
other hypotheses. Most sequences represent events that can occur in any order.
For example, sound events produced by people, such as singing and speech, will
generally be heard together, but not in a fixed order. Like all other hypotheses, the
expected activation of an event that is part of a non-fixed event sequence is calcu-
lated by multiplying the activation value of the event sequence with the connection
strength between the sequence and the type of event. Since the activation value de-
cays with time, the expected value is smaller when the other event of the sequence
occurred longer ago.

However, for some sequences the order can be very indicative. For instance, in
the data set of the first experiment (section 5.3) there are trains departing, which are
normally preceded by a whistle of the conductor. Hence, if a whistle is identified,
a strong expectancy of a departing train should arise. To capture the regularity
of ordered sequences, we determine whether the sound events that constitute a
sequence have a strong bias to a specific order. For these ordered sequences, the first
sound event primes the network for the second sound event after a time interval
learned from examples in the training data. The mean time difference between the
events is used in a function to calculate the expected activation value of the second
event in the sequence:

Âi (t ) = w j i Aj (t −∆t )e
−(∆t−T )2

2σ2 , (5.3)

where w j i is the connection strength between event sequence j and expected sound
event i , Aj (t −∆t ) is the previous activation value of event sequence j , ∆t is the

time interval since j started, and average time interval T and standard deviation
σ describe the time distribution of the event sequence, as it is learned during the
training phase.

Instead of applying a decay to the primed sound event hypothesis (equation
4.3), its activation is determined by weighting the signal-driven evidence with the
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expected activation value:

Ai (t ) = Âi (t )+K
�

ni (t )

max n(t )
− Âi (t )

�

, (5.4)

where Âi (t ) is the expected activation according to equation 5.3, ni (t ) is the input
activation of i as calculated in equation 4.1, n(t ) is a list with the input activations
of all active sound event hypotheses, and K is the gain factor. The gain factor is de-
pendent on the complexity of the audio signal. If the segregated patterns are very
salient, its value should be high. However, sound recorded in real-world environ-
ments, as in the presented experiments, are relatively noisy. Therefore, the gain
factor in the first experiment is set to 0.5, which entails that the model responds
relatively slowly to new evidence from the signal, and is guided equally much by
expectancies.

5.3 EXPERIMENT 1
The purpose of this experiment is to demonstrate that the proposed methods can
be used to improve the recognition of sound events in a rich outdoor environment,
using knowledge of co-occurring events. The data set used in this experiment has
been created to develop and test aggression detection systems (Zajdel et al., 2007),
and is recorded on a busy train station. Therefore, it includes problems of real-
world environments, such as unknown transmission effects and ambiguous sound
events. For example, the sound of a train and a subway train are very similar.
Based on the audio signal alone, humans have problems recognizing such events as
well. In the next section we describe the data set that is used in the experiment.
Subsequently, the setup of the experiment is explained, and in the last part we
present the results.

5.3.1 Data
The data set consists of 40 enacted scenes from 16 different scenarios, which last
between one and two minutes each (Zajdel et al., 2007). The total duration of the
recordings is 54 minutes. The scenes were acted by professional actors (three men
and one woman) on a platform of the station Amsterdam Amstel. The platform
was in normal use by trains on one side and subway trains on the other side. The
actors took turns in playing the scenes, such that all scenarios were played out
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twice or more with different actors. The 16 scenarios were based on events that
are likely to happen at stations, like friends meeting, shouting football supporters,
and diverse forms of verbal aggression and vandalism. The scenes were recorded
with 8 microphones (16 bits, 44.1 kHz sampling rate), of which one was used for
this experiment. This microphone was located about two meters from the center
of the action and about two meters from the subway track. The scenes were also
captured by three cameras.

The 40 scenes were annotated by the two experimenters who were present at
the recordings, based on audio and video, for 13 sound events (Table 5.1). The
start and stop times of trains and subway trains, and of some speech, singing and
screams, were only indicative, because it was hard to denote the exact times when
these events became loud enough to be detectable. Furthermore, to assign a sin-
gle word to a sound event is often not straightforward. For example, to be able
interpret a sound event as either speech or a scream, even given a clear scenario,
depends on knowledge of the expressing person and the situation, and one word
is usually not sufficient to describe an event. However, we chose to annotate the
sound events with one word only. As a result, the performance benchmark for the
system is one-dimensional but contentious. In section 5.5 we discuss the consider-
ations for annotation procedures and performance benchmarks further.

5.3.2 Setup

The annotations of sound recordings were used to train both a naive Bayes classi-
fier from the Weka toolbox (Witten and Frank, 2005) for the classification of the
signal-driven patterns, and the knowledge of the context model. For the naive
Bayes classifier, all 40 audio files (each containing one scene) were processed with
the signal-driven method described in section 5.2.1. The segregated harmonic com-
plexes with the highest score given by the harmonic complex grouping algorithm—
this score is based on the correspondence of the segregated harmonic complex with
an ideal harmonic complex, see appendix B—that overlapped with an annotation,
were given that annotation as a label. Harmonic complexes without temporal over-
lap with an annotation were labeled as indefinite. All other harmonic complexes
were discarded. Furthermore, pulses and broadband noises that overlapped with
an annotation were labeled. From these processed audio files, 40 file pairs were

70



SOUND EVENTS IN THE REAL WORLD

Table 5.1: Sound events annotated in the audio data recorded at the Amsterdam Amstel
station, their occurrences, duration, and duration as part of the total duration of the data
set.

Sound event label Total occurrences Total duration Part of total

Speech 521 6 min 10 sec 16%
Scream 290 3 min 33 sec 10%
Singing 82 2 min 32 sec 7%
Subway 40 5 min 22 sec 18%
Kick 26 9 sec 0.4%
Train 15 3 min 20 sec 9%
Subway door signal 14 18 sec 1%
Laughing 12 13 sec 1%
Train whistle 3 5 sec 0.2%
Subway horn 3 3 sec 0.1%
Announcement signal 2 4 sec 0.2%
Birds 2 3 sec 0.1%
Train door signal 1 3 sec 0.1%

generated that contained the feature vectors describing segregated patterns. Each
file pair consisted of a file used for training, for which the feature vectors of the seg-
regated patterns from 39 files were used, and a test file, which contained the feature
vectors of the segregated patterns from the one file that was left out, resulting in a
leave-one-out set.

Additionally, the annotations of the training file of each file pair were used to
train the weights in the dynamic network (section 5.2.2). On average 18 different
types of sequences were encountered in the training set. These sequences are com-
posed of the 13 sound events listed in Table 5.1. An average of 89 examples of each
sequence was used to train the weights in the knowledge network. The spread of
the number of examples per sequence was very large, ranging from 2 to 730.

In the test phase, the patterns in the test file are classified with the naive Bayes
classifier and used as input for the dynamic network (τ = 100 in equation 4.2, acti-
vation threshold θA= 0.2, and K = 0.5 in equation 5.4). Subsequently, the possible
sound events that the pattern can represent are initiated as hypotheses in the net-
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work. The weight between the pattern and the event hypotheses is the probability
of each event label given by the naive Bayes classifier. If the event cannot be clas-
sified and is labeled as indefinite, the weight is set to the default activation of the
event. Based on these events, the network forms a hypothesis of a sound sequence,
which in turn initiates expectancies of certain sound events that might follow. The
results of this integrated approach are the mostly likely events that explain the seg-
regated patterns, given the recognized sound events and their recent history.

The most likely events according to the naive Bayes classifier and the integrated
model are compared to the human annotations through the F -measure. The F -
measure is used in information retrieval to test the effectiveness of the performance
of a system (Van Rijsbergen, 1979), for example a search engine. The F -measure is
computed as the harmonic mean between the recall, which represents whether rel-
evant results are retrieved, and the precision, which represents whether irrelevant
results are not retrieved.1 Applied to the results of automatic sound recognition in
our experimental setup, precision is a measure for the fraction of time the recog-
nitions are correct, and recall is a measure for the fraction of recognitions that are
made out of the amount that should have made compared to the annotations.

precision=
T P

T P + F P

recall=
T P

T P + F N

F = 2 ·
precision · recall

precision+ recall
(5.5)

where T P is the true positive rate, F P is the false positive rate, and F N is the false
negative rate.

5.3.3 Results
The event sequence prediction is based on the classified segregated patterns, and
used to select the most likely interpretation for the pattern. Of all 13 types of an-
notated sound events, 7 are recognized (segregated and labeled) by the Bayes clas-
sifier and the integrated model (the segregation algorithm, the Bayes classifier, and

1 The harmonic mean tends strongly toward the least of the two values. Hence, it penalizes a focus
on only one of the two measures.
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Table 5.2: F -measure, precision, and recall of random classification (R), a Bayes classifier
(C), and the integrated model (I) per sound event type.

F -measure Precision Recall

Sound event label R C I R C I R C I

Singing 0.07 0.28 0.48 0.07 0.26 0.36 0.07 0.31 0.72
Speech 0.16 0.18 0.38 0.16 0.50 0.44 0.15 0.11 0.33
Train 0.09 0.40 0.43 0.09 0.32 0.35 0.09 0.54 0.55
Subway door signal 0.01 0.28 0.26 0.01 0.25 0.21 0.01 0.33 0.33
Subway 0.17 0.52 0.57 0.18 0.54 0.62 0.17 0.49 0.53
Kick 0 0.28 0.24 0 0.26 0.65 0 0.30 0.14
Scream 0.09 0.36 0.44 0.10 0.36 0.36 0.09 0.36 0.56

the context model). These 7 types of sound events were most frequently annotated
(see Table 5.1). Hence, the Bayes classifier and the context model can learn them
more reliably than events that occur infrequently. Table 5.2 shows the F -measure,
precision and recall of the recognitions made by the Bayes classifier (C) and by
the integrated model (I) for the 7 sound event types. These measures can be com-
pared to a random classification (R), which is based on the amount of time that the
sound events are annotated, that is, the a priori probability that the sound events
are encountered. Figure 5.3 displays the overall results of both models.

On average, the context model improves the F -measure compared to the signal-
driven classification, mostly through an increased recall of the sound events that
have more harmonic content (singing, screams and speech), because these types
of events are more likely to be of the same type as their surrounding events. For
example, the network may change a speech classification to a scream when sur-
rounded by screams. If this change is correct, both the recall of the scream event
and the precision of the speech event increase. However, the increase in precision
of harmonic sound events is moderated by some erroneous changes in other sound
events. As a result, the overall precision does not increase as much as the recall.
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Figure 5.3: Overall results of the Bayes classifier and the context model integrated with
the Bayes classifier on the data set recorded at the Amsterdam Amstel train station. The
dashed lines show the overall performance of random classification, which is based on the
average amount of time that the sound events are annotated.

5.4 EXPERIMENT 2

This experiment demonstrates that the proposed methods can be used to recognize
sound events in a sonic environment given a predicted location. Furthermore, both
the environment and the recorded events are uncontrolled in the data set of this
experiment. As a consequence, the diversity of the recorded events is enhanced
compared to the first experiment. In the next section we describe the data set that
is used in the experiment. Subsequently, the setup of the experiment is explained,
and in the last part we present the results.

5.4.1 Data

The data was collected under different weather conditions on a number of days in
March 2009 in the town of Assen (65,000 inhabitants, in the north of the Nether-
lands). The recordings were made by six groups of three students as part of a
master course on sound recognition. Each group made three minute recordings at
six different locations: a railway station platform, a pedestrian crossing with traffic
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Table 5.3: Examples of sound events annotated in the data set recorded in Assen, their
occurrences, duration, and duration as part of the total duration of the data set.

Sound event label Total occurrences Total duration Part of total

Bird 238 17 min 6 sec 11%
Bike 30 2 min 22 sec 2%
Rooster 16 43 sec 0.5%
Horn 8 11 sec 0.1%
Shopping bag 1 7 sec <0.1%

lights, a small park-like square, a pedestrian shopping area, the edge of a forest near
a cemetery, and a walk between two of the positions. Recordings were made using
M-Audio Microtrack-II recorders with the supplied stereo microphone at 48 kHz
and 24 bits stereo.

All the recordings were annotated by two students separately. The average
agreement between the two annotators of one group was determined with the F -
measure (equation 5.5): F = 0.46 with a standard deviation of 0.25. These two
annotations were merged, such that equal labels did not overlap, but became one
instance (a union in set theory). We examined the resulting merged annotations,
and adjusted them when necessary. However, we did not introduce new annota-
tions.1 We ensured that the names of events were uniform across all the files to
prevent the context model from learning annotators rather than locations. The
total of 44 audio files, with an average duration of 3.5 minutes, were annotated
for 54 different sound events. However, half of these sound events were annotated
less than 5 times, while just a few events comprised most of the annotations. A
few examples of annotated events are given in Table 5.3, ranked according to their
frequency in the complete data set.

5.4.2 Setup

The experiment was designed in the same manner as the first experiment (section
5.3.2). We used a nearest-neighbor classifier instead of the naive Bayes classifier

1 An exception was made for the annotations of one group, which we had to complete because they
were sloppy or omitted.
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to label the segregated patterns. For the nearest-neighbor classifier, all 44 audio
files were processed with the signal-driven method described in section 5.2.1. The
segregated harmonic complexes with the highest score given by the harmonic com-
plex grouping algorithm—this score is based on the correspondence of the segre-
gated harmonic complex with an ideal harmonic complex—that overlapped with
an annotation were given that annotation as a label. Harmonic complexes without
temporal overlap with an annotation were labeled as indefinite. All other har-
monic complexes were discarded. Furthermore, pulses and broadband noises that
overlapped with an annotation were labeled. From these processed audio files, 44
descriptive file pairs were generated that contained the feature vectors describing
segregated patterns. Each file pair consisted of a file used for training, for which
the feature vectors of the segregated patterns from 43 files were used, and a test file,
which contained the feature vectors of the segregated patterns from the one file
that was left out, resulting in a leave-one-out set.

Additionally, the annotations of the training file of each file pair were used
to train the weights in the context model (section 5.2.2). The information used
to train the weights between the locations and the sound events is summarized
in Table 5.4. Furthermore, it shows a few examples of the connection strength
between the locations and some sound events. On average 21 sound events were
encountered at each recording location in the training set. Furthermore, an average
duration of 80 seconds per sound event at a location was used to train the weights
in the knowledge network. The spread of duration per sound event was very large,
as can be seen in Table 5.3.

In the test phase, the segregated patterns in the test file, which are classified by
the nearest-neighbor classifier, are used as input for the dynamic network (τ = 100
in equation 4.2 and the activation threshold θA = 0.2). Subsequently, the possible
sound events that the pattern can represent according to the learned knowledge are
initiated as hypotheses in the network. The weights between the pattern and the
event hypotheses are the probabilities of each event given by the nearest-neighbor
classifier. If the event cannot be classified and is labeled as indefinite, the weight
is set to the default activation of the event. Based on these event hypotheses, the
network forms a hypothesis of the location, which in turn initiates expectancies of
certain sound events that might follow. The results of this integrated approach are
the mostly likely sound events that explain the segregated patterns, given the recog-
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Table 5.4: Locations. N is the average number of sound events annotated at a location,
T is the average of the total duration per annotated sound event at a location in seconds,
and sT is the average spread of the event durations at a location. The two weights wl ,train

and wl ,bus are examples of learned connection strengths between locations (l ) and sound
events.

Location N T (s) sT wl ,train wl ,bus

City center 23 64 152 0 0
Graveyard 15 100 157 0 0
Museum 24 68 93 0 0.02
Traffic lights 17 87 181 0 0.15
Train station 26 79 111 1 0.02
Walking 21 81 170 0 0.04

nized sound events and their predicted location. The most likely events according
to both the nearest-neighbor classifier and the integrated model are compared to
the annotations through the F -measure (equation 5.5).

5.4.3 Results
The success of the context model as it is applied in this study is dependent on
whether the recording location prediction is correct. The results of the location
predictions of the test files are listed in Table 5.5. The number of test files at each
location is in parentheses behind the location name. The location predictions of
the 7 test files of recordings during walking are not included, because they can-
not be assigned to a single location. The top 1 indicates the amount of time the
location predictions are correct on average for a specific location. The model has
an activation or confidence value for all the location hypotheses. Therefore, if the
best prediction is not correct, the second best might be. The top 2 and 3 specify
whether the correct location is among the second or third best predictions.

Only two locations can be predicted well, the train station and the museum,
because the some sound events that are specific for those locations, such as train
sounds for the train station, are segregated and correctly classified. In contrast,
many of the other sounds that can be segregated and classified by the nearest-
neighbor algorithm, such as cars and speech, are generic, and can be heard at any of
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Table 5.5: Results of location predictions: the average amount of time that the location
prediction was correct per location. The number of files recorded at each location is shown
in parentheses.

Location Top 1 Top 2 Top 3

City center (7) 1% 2% 2%
Graveyard (7) 1% 1% 15%
Museum (8) 6% 87% 93%
Traffic lights (7) 2% 8% 59%
Train station (8) 90% 98% 98%

the locations. Therefore, the location prediction is not reliable in many test files.
The location prediction is based on the classified segregated patterns, and used

to select the most likely label for the pattern. Of all 54 annotated sound events,
11 events are recognized (segregated and labeled) by the nearest-neighbor classifier
and the integrated model (the segregation algorithm, the nearest-neighbor classi-
fier, and the context model). These 11 sound events are most frequently annotated.
Hence, the nearest-neighbor classifier and the context model can learn them more
reliably than sound events that occur infrequently. Table 5.6 shows the F -measure,
precision and recall of the identifications made by the nearest-neighbor classifier
(C) and by the integrated model (I) for the 11 sound events. These measures can
be compared to a random classification (R), which is based on the amount of time
that the sound events are annotated, that is, the a priori probability that the sound
events are encountered. Therefore, the results of the random classification are rel-
atively high on sound events that are annotated often and long, such as speech and
footsteps.

On average the context model slightly improves the F -measure compared to the
signal-driven classification, mostly through an increased recall, which means that
more correct instances of annotations are found than with the nearest-neighbor
classifier (Figure 5.4). For both models the performance on this data set is lower
than the performance on the data set recorded at the Amsterdam Amstel train sta-
tion, because this data set is more divers, and recorded in less controlled conditions.
Furthermore, the first data set is annotated by two people, compared to 14 in this
data set, resulting in more diverse annotations.
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Table 5.6: F -measure, precision, and recall of random classification (R), a nearest-neighbor
classifier (C), and the integrated model (I) per sound event.

F -measure Precision Recall

Sound event label R C I R C I R C I

Bird 0.109 0.005 0.053 0.112 0.093 0.198 0.106 0.003 0.031
Braking train 0.018 0.193 0.194 0.019 0.274 0.188 0.018 0.149 0.201
Bus 0.026 0.053 0.055 0.026 0.201 0.029 0.026 0.031 0.423
Car 0.195 0.499 0.408 0.203 0.594 0.427 0.184 0.431 0.391
Footsteps 0.173 0.008 0.104 0.181 0.091 0.358 0.166 0.004 0.061
Passing train 0.005 0.570 0.612 0.005 0.416 0.463 0.005 0.906 0.906
Rain drops 0.044 0 0.052 0.045 0 0.135 0.044 0 0.033
Speech 0.127 0.023 0.111 0.131 0.223 0.124 0.123 0.012 0.100
Starting train 0.019 0.022 0 0.019 0.018 0 0.019 0.028 0
Truck 0.057 0.021 0.013 0.057 0.045 0.010 0.056 0.014 0.017
Wind 0.129 0.071 0.138 0.134 0.134 0.135 0.125 0.048 0.141

5.5 CONCLUSION

In the previous sections we have demonstrated that a model that combines both
signal-driven algorithms and contextual knowledge in the form of predicted record-
ing locations or event sequences, improves the recognition of sound events in a
real-world environment compared to an exclusively signal-driven method. Espe-
cially the events that have similar audio patterns, and hence rely more on context
for their interpretation, for example screams, speech and singing in the first ex-
periment, are recognized better in the integrated approach. Sound events that are
already recognized well by the signal-driven algorithm, such as trains and cars, gain
little improvement from the context model. Finally, sound events that occur infre-
quently, and hence have few training examples, and events that are not yet captured
well by the audio features vectors, show a small performance reduction.

The overall results (especially of the second experiment) may not seem impres-
sive, but this is partly explained by the performance measure. The F -measure is
based on the temporal overlap of the annotations and the labeled patterns. There-
fore, it is dependent on both the annotations and the segregation algorithm. An-
notating sound is a complex process, which is demonstrated by the low inter-
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Figure 5.4: Overall results of the nearest-neighbor (NN) classifier and the context model
integrated with the nearest-neighbor classifier on the data set recorded at different locations
in Assen. The lower dashed lines show the overall performance of random classification,
which is based on the average amount of time that the sound events are annotated.

annotator agreement (F = 0.46). The annotators did not only use information
in the sound, but also knowledge of the environment, because they were present
during the recordings. We cannot determine to what extend the annotations are
based on the sound or on their knowledge. Some annotated sound events can even
hardly be recognized by a human who has to rely on the audio signal alone.

In contrast, the segregation algorithm relies solely on the audio signal. This
signal is uncontrolled and thus very challenging for the algorithm that needs to
segregates relevant parts. For example, people annotate sound events that occur
in a sequence, such as footsteps and birds, continuously even though they are in-
terrupted.1 In contrast, the segregation algorithm has to segregate every single
occurrence before it can be recognized. As a consequence, the precision of both
models on these types of sound events can never be high. Furthermore, especially
the recordings in the second experiment contain a wide variety of sounds events,

1 The random classification outperforms the models on a few of these sound events, because it is
based on a priori probability of occurrence determined from the annotations.
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most of which occur only a few times in all the recordings.1 To be able to learn
the patterns of a sound event, a machine learning algorithm (like Bayes or nearest-
neighbor) needs more examples than were available of most sound events in the
data set in these experiments.

These observations demonstrate that modeling context information is essential
to achieve robust event recognition in real-world environments. Indeed we have
shown that context, in the form of recent history of sound events, improves sound
event recognition, even though it is so far only based on knowledge derived from
the human annotations of the audio signal. Additionally, the recording location
is not predictive for many generic sound events, such as speech and cars2, which
occur most often, and are classified best by the nearest-neighbor classifier. In other
words, the infrequent events are the events that are good predictors of a location,
while these are the hardest events to learn, because they are infrequent. However,
the context model is not limited to process acoustic information. In the next chap-
ter we show that the context model can also be used to process ambiguous visual
information. Because the model can receive input from different modalities, it can
combine multiple modalities and factors in a single system that returns a single
analysis. We plan to integrate information from multiple sources of knowledge so
that the context is modeled more profoundly.

In summary, the integrated model provides a new strategy to analyze sonic en-
vironments by recognizing sound events. Because these sound events are also based
on knowledge of the context, they are a first approximation of meaningful auditory
events. However, to improve the recognition of these events in the complexity of
real environments, we require a combined development of segregation algorithms
and models that can include non-acoustic factors. Furthermore, we will study hu-
man perception in parallel, so we can validate the model for soundscape analysis.
Conversely, the development of a system to analyze a soundscape automatically
might increase our understanding of human soundscape evaluation.

1 The average amount of time that each sound event is annotated is 2%. Excluding the few sound
events that occur most often (birds, cars, footsteps, speech, and wind), this amount is less than 1%.

2 In the knowledge network of the second experiment, the weights between speech and cars and all
locations were 0.
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6
AUTOMATIC ANALYSIS OF AMBIGUOUS

VISUAL INFORMATION

The content of this chapter has been published as Niessen, M. E., Kootstra, G., De Jong, S., &
Andringa, T. C. (2009). Expectancy-based robot navigation through context evaluation. In
Proceedings of the 2009 Interenational Conference on Artificial Intelligence (pp. 371–377).

Artificial agents that operate in a real-world environment have to process an abundance of
information, which may be ambiguous or noisy. We present a method grounded in cog-
nitive research that keeps track of sensory information, and interprets it with knowledge
of the context. We test this model on visual information from the real-world environment
of a mobile robot in order to improve its self-localization. We use a topological map to
represent the environment, which is an abstract representation of distinct places and the
connections between them. Expectancies of the place of the robot on the map are com-
bined with evidence from observations to reach the best prediction of the next place of the
robot. These expectancies make a place prediction more robust to ambiguous and noisy
observations. Results of the model operating on data gathered by a mobile robot confirm
that context evaluation improves localization compared to a signal-driven model.
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6.1 INTRODUCTION

Artificial agents that operate in a real-world environment are confronted with ad-
ditional challenges compared to agents that operate in a controlled or simulated
environment. They have to process an abundance of information, of which not
everything is necessarily relevant for their goal. Moreover, sensory information
may be ambiguous or noisy. To make sense of its environment, an agent needs to
identify and structure the sensory information it gathers. We developed a method
grounded in cognitive research that keeps track of sensory information, and inter-
prets it with knowledge of the context (chapter 4).

Applications of cognitive research, such as handwriting recognition (Côté et al.,
1998) and information retrieval (Crestani, 1997; Van Maanen et al., 2010), often
employ a spreading activation semantic network to recognize a particular item or
retrieve specific information. Spreading activation networks are based on a model
of human memory (Quillian, 1968). They are realized as connected nodes that
represent pieces of information or concepts, and the vertices represent the prior
probabilities that the nodes are encountered together. Spreading activation net-
works are typically static, because the data in these application domains can be
accessed completely and simultaneously. In contrast, for agents operating in a dy-
namic environment the available information continuously changes.

To deal with continuous data, we apply a context model that manages a dy-
namic network. This dynamic network is similar to a spreading activation net-
work, but instead of being static, it is updated when new data are encountered. The
model continuously updates its current state, based on sensory input and knowl-
edge of the context. The context model has been applied to recognize sound events
(see chapter 5), but is designed to manage any type of sensory input. We will show
in this chapter that it can also be applied to visual information from the real-world
environment of a mobile robot.

A basic task for an autonomous mobile robot is to build a map of its envi-
ronment for self-localization. For this reason, simultaneous localization and map-
ping (SLAM) has received considerable attention in the last decade. Most SLAM
approaches use range or vision sensors to construct a detailed metric map of the
environment (Thrun et al., 2005). These maps contain the Cartesian coordinates
of many structural features present in the environment. Other approaches build

84



AMBIGUOUS VISUAL INFORMATION

topological maps of the environment (Vasudevan et al., 2007). Instead of repre-
senting the environment in detail, it is represented more abstractly in topological
maps, as distinct places and the connections between them. The advantage of such
an abstract representation is that it is less susceptible to noise, and ambiguous ob-
servations and situations. Moreover, it results in a computationally less demanding
system.

In topological mapping, a rough estimate of the location of the robot can help
to form an expectancy of the path of the robot. This expectancy can be com-
bined with evidence from observations to form a hypothesis of the place of the
robot. Furthermore, an expectancy of the place of the robot can resolve ambigu-
ous observations. In this way, the place in a topological map where an observation
is made can be considered as the topological context of that observation. When
the robot is moving and making observations, an evaluation of the context can
improve its localization. The evaluation of the context entails that the recent his-
tory of visited places is used to predict the place that follows. Furthermore, using
knowledge of the topological context makes localization more robust to noise in
the observations.

In the next section we describe the design of the model, and how it processes
observations made by a mobile robot. In section 6.4 we present the results of two
experiments that are described in section 6.3. The first experiment demonstrates
that the model is more robust to noise when the topological context is used. The
second experiment shows that predictions in real data with many ambiguous ob-
servations and noise are also better with context evaluation than without. We end
with a discussion on the performance of the model and give an outlook on future
work.

6.2 METHODS

The model we present processes visual input of a moving robot. These visual obser-
vations, which are explained in section 6.2.1, provide evidence about the place of
the robot. However, ambiguous or noisy observations can lead to erroneous place
predictions. To improve these predictions, contextual information about the envi-
ronment is learned in a supervised training phase and stored in a static knowledge
network. In the operation phase this knowledge is used in a dynamic network,
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which computes expectancies of the place of the robot.

The knowledge about the environment, in the form of nodes in the knowl-
edge network and the strength (weight w) of the connections between them, is
computed in the training phase. We refer to this knowledge as long-term mem-
ory, since it reflects stable knowledge. Therefore, it is stored as a static network,
which is constructed from learning relations in the training data. This knowledge
network is similar to semantic networks used in information retrieval. In section
6.2.2 we describe in more detail how the knowledge network is created.

In contrast to the knowledge network, the dynamic network reflects short-
term memory. Information represented by nodes in this network is added and
forgotten more quickly, since the nodes pertain only to the current state of the
robot. Nodes in the dynamic network are called hypotheses, because they rep-
resent possible explanations for input data. The dynamic network has three levels
that all represent a different type of information: hypotheses of observations, land-
marks, and places in the environment. Figure 6.1 shows an example of a dynamic
network at one moment, namely when observation 2 has been made. The network
configuration represents the knowledge of the environment at that moment. This
knowledge consists of two observations, their connections to landmarks hypothe-
ses, and the connections of the landmarks to hypotheses of places in the environ-
ment. In section 6.2.3 we explain the construction of the dynamic network, and
how topological context is used to compute expectancies of the place of the robot.

6.2.1 Observations

The robot (a Pioneer 2 DX mobile) uses a video camera to navigate in its envi-
ronment. Visual interest points are detected in the camera images, which serve as
landmarks to represent the environment. The interest points are detected and de-
scribed using the scale-invariant feature transform (SIFT, Lowe, 2004). The SIFT
algorithm detects points that stand out from their surroundings. These points are
described using histograms of gradients. A drawback of SIFT is that it results in a
large number of interest points, many of which are not re-detected in subsequent
images. Therefore, we use a visual buffer to test the stability of the interest points
over a number of successive images (Kootstra et al., 2009). Only interest points
that are stable enough are used as landmark observations. The descriptor of an
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Figure 6.1: Example network configuration at one instant, of two observations that are
matched to three landmarks, each in turn connected to a place.

observation is then compared to that of previously observed landmarks. Based on
the descriptor distances, the observation is matched with one or more landmarks
or labeled as a new landmark.

The data set used in one of the two experiments (section 6.3.2) was collected
by the robot while it drove a closed loop of eight by ten meters in an office-like
environment. The data was logged by the robot while driving four laps. The map
of the loop was manually divided into nine places, as depicted in Figure 6.2. Half of
the data set, that is, the observations made in the first two laps, is used to determine
which landmarks are observed in which place. The other half is used to test the
model. Because of the variability of the images in different laps, the robot might
have observed landmarks in the last two laps that are not present in the training
data.
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Figure 6.2: Environment where the robot drove four laps. The size of the loop is 8 by 10
meters, divided into nine places. The gray area consists of objects the robot cannot drive
through.

6.2.2 Knowledge network

Three classes of information are stored in a knowledge network: the descriptors of
the landmarks, the relations between the landmarks and the places in the environ-
ment, and the transitions between the places. This knowledge network represents
the context, which is slowly changing or invariant. Therefore, it is referred to as
the long-term memory of the model.

The connection strengths between landmarks and places in the training data
are calculated according to a term-weighting approach used in automatic document
retrieval (Salton and Buckley, 1988). In this method the importance of a term
(word or phrase) in a document is determined by multiplying its frequency in the
document (term frequency) with its general frequency in other documents (inverse
document frequency). Hence, the term is important for a document if it occurs
often in that document and infrequently in other documents. Since the connection
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strength (weight w) between a landmark and a place should reflect the specificity of
the landmark to that place, we adopt the term-weighting approach. The landmarks
can be treated as terms, and the places as documents. Accordingly, the weight of
the connection between landmark l and place r is:

wr,l = wl ,r = tf ·
log10 N − log10 n

log10 N
(6.1)

where N is the total number of places, n is the number of places in which landmark
l is observed, and the normalized term frequency is given by:

tf=
fl ,r
Æ

fl

, (6.2)

where fl ,r is the observation frequency of l in r , and fl is the total observation
frequency of l .

The connections between observations and landmarks are not stored in the
knowledge network, because all observations are unique. Therefore, the weights
of these connections are computed at the moment when an observation is made,
both in the training and the operation phase.1 The connection strength between an
observation and a landmark should represent the likelihood of a correct matching
between their descriptors. If these descriptors are far apart, the observation and
landmark are less likely to have been matched correctly. Therefore, the weight of
a connection between an observation and a landmark is inversely related to the
distance between their descriptors:

wl ,o = wo,l = 1−
d

θd
, (6.3)

where d is the distance between the descriptor of observation o and landmark
l , and θd is the maximum distance at which an observation is still matched to a
known landmark.

The transition probability that the robot moves from one place to another is
calculated by normalizing the number of times the robot moves from one place

1 Observed information is not necessarily always unique. In other domains or applications areas
it could be useful to store observations in the knowledge network. However, in the presented
application it would be useless to do so.
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to another in the training data (the first two laps). As can be seen in Figure 6.2,
the robot can move within place i or move from place i to place i ± 1. Since the
robot is driving the loop in one direction, the transition probabilities to all places
other than i and i+1 are generally zero. However, there are a few exceptions when
no observations are made in a place in one of the laps, and thus the probability to
move to i+2 is greater than zero. The complete matrix of probabilities serves as the
topological context that helps to compute an expectancy about the next location
of the robot.

To summarize, the knowledge network consists of the matrix with the a priori
transition probabilities between all places. Furthermore, it stores the labels of all
landmarks that are observed in the training data, along with their connections to
the places in which they are observed.

6.2.3 Dynamic network of hypotheses

Once the knowledge network is fully trained after the learning phase, it is used
in the operation phase, together with evidence from observations, to predict the
place of the robot. The algorithm for the construction and updating of a dynamic
network is summarized in Table 6.1 (see chapter 4 for a detailed description). Ev-
ery level in the network consists of hypotheses of a single type of representation
(see Figure 6.1). The landmark observations are the lowest level of the dynamic
network. As described in section 6.2.1, observations are matched to one or more
previously observed landmarks, or labeled as a new landmark, which are at the
middle level. The highest level in the network holds hypotheses of places in the
environment.

Each node in the network represents a hypothesis of one of the three different
types of representation. When an observation is made, a hypothesis is added to
the dynamic network (step 1). Next, its matched landmarks (that are stored in the
knowledge network1) are initiated as hypotheses, and they are connected to the
observation hypothesis (step 2). Subsequently, these landmark hypotheses retrieve
their place connections from the knowledge network. These places are also initi-
ated as hypotheses (step 3) and connected to the landmark hypotheses that initiated

1 The current version of the model only processes known landmarks in the operation phase. The
possibility to add new landmarks will be discussed in section 6.5.
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Table 6.1: Algorithm for updating the dynamic network configuration at times when
observations are made by the robot.

For all observations at time t :

1. Add observations O(t ) = {ot ,i} to the network
2. For each ot ,i ∈ O(t ) add matched landmark hypotheses {lt , j } ∈ L(t ) and connect

them with strength wi , j

3. For each new landmark lt , j ∈ L(t ) add appropriate places rk not yet present in the
set of active places R

4. Connect each new landmark lt , j with the appropriate place rk with strength w j ,k

5. Spread signal-driven activation
6. Spread context-based activation
7. Evaluate activation values

them (step 4). Every time new observations are made, the network is updated and
the dynamics change.

Activation spreading

After the connections in the network are updated, the activation of the observation
hypothesis spreads through the network (see section 4.3). The input activation first
spreads upward to the place hypotheses at the highest level in the network, and is
called signal-driven spreading (step 5). Subsequently, the activations of the place hy-
potheses spread downward to other connected hypotheses, for example landmarks
in the same place that are observed previously. We call this context-based spreading
(step 6). As a consequence of context-based spreading, a landmark hypothesis of
a particular observation can be reinforced by later observations. For example, in
Figure 6.1 the first observation is matched to landmarks 1 and 2, where landmark 1
lies in place A and landmark 2 in place B. Another landmark observation made in
place B will increase the support for the hypothesis that the first observation was
of landmark 2, and not of landmark 1.

Activation evaluation

After the activation has spread through the network, the activation value of each
hypothesis is evaluated (step 7). The activation evaluation is different for different
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types of hypotheses. The activations of the hypotheses that are not at the highest
level in the network are normalized (equation 4.3). However, the place hypotheses
have an expected activation value, like sound events in fixed sequences (section
5.2.2), because the order in which the robot drives through the environment is not
random. Therefore, the activations of the place hypotheses at the highest level are
a weighting of evidence from the input and an expected value.

The expected activation of place hypotheses represents the expectancy to be at
a place given the context. It is calculated using the information about the place
transitions in the environment (Figure 6.2). The expected activation of place i is
the sum of all possible options to drive to place i :

Âi (t ) =
∑

j

f j (∆t )Aj (t −∆t )P ( j → i)P ( j ) for i , j ∈ R, (6.4)

where Aj (t −∆t ) is the previous activation of place hypothesis j , multiplied with
a decay f j (∆t ), P ( j → i) is the transition probability from place j to place i ,
including j = i , the probability to stay in the same place. Finally, P ( j ) is the a
priori probability to be in place j , and R is the subset of hypotheses that represent
places.

The a priori transition probabilities from equation 6.4 are retrieved from the
knowledge network. The probabilities are adjusted in the dynamic network of
hypotheses, because the probability that the robot leaves a place increases as it is
longer in that place. More specifically, the probability of staying in the same place
decreases as a function of the age Ti (how long it is active) of the place hypothesis:
P (i → i)(Ti ) = P (i → i)Ti . The probabilities to move to other places are increased
proportionally to their a priori connection strength. For example, suppose the ini-
tial transition probability between place A and place B is 0.2, and the probability of
staying in place A is 0.8. After the robot has observed landmarks in place A at four
subsequent times, P (A→ A) = 0.84 = 0.4 and P (A→ B) = 0.6. When the robot
returns to the same place, the probabilities are re-initialized to the probabilities in
the knowledge network.

The expected activation is combined with evidence from the current input to
compute the activation evaluation of the place hypotheses:

Ai (t ) = Âi (t )+K
�

ni (t )

max n(t )
− Âi (t )

�

if i ∈ R, (6.5)
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where Âi (t ) is the expected activation according to equation 6.4, ni (t ) is the input
activation of i as calculated in equation 4.1, n(t ) is a list with the input activations
of all active place hypotheses, and K is the gain factor. The gain factor is dependent
on the noise in the observations. If the observations are very reliable, its value
should be high. However, the current data set is relatively noisy. Therefore, the
gain factor is set to 0.25, which entails that the model responds relatively slowly to
new observations, and is guided more by expectancies.

The final activation values of all active place hypotheses are compared, and the
one with the highest activation is the current best hypothesis of the place of the
robot. Hence, the sequence of best hypotheses at each update gives the estimation
of the model of the path of the robot.

6.3 EXPERIMENTS

To illustrate the benefit of context evaluation in robot localization, we show the
place predictions of two models. In the first model the predictions are based on in-
stant observations alone, which implies that only information from the knowledge
network is used. Accordingly, context-based spreading is not applied, because the
signal-driven model does not remember previous predictions. In other words, hy-
potheses of the place of the robot are deactivated after the signal-driven activation
spreading. In the second model, the context-based model, the place prediction is
based on a combination of instant observations and expectancies, which are com-
puted through context evaluation, as discussed in section 6.2.3 (τ = 67 in equation
4.2, activation threshold θA= 0.05, and K = 0.25 in equation 6.5).

We discuss the results of both models running on two types of data. In the sec-
tion 6.3.1 we present an experiment with simulated data, which can be controlled
in their complexity. The simulated data are a simplification of the real data de-
scribed in section 6.2.1. The experiment with the real data is discussed in section
6.3.2.

6.3.1 Simulated data

We generated a data set to measure the performance of the model on data with
different levels of noise. The noise simulates observations that are so similar that
they are matched to the same landmark, although the observations are made at
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distinct places. These types of ambiguous observations occur often in the real data
due to reoccurring objects and structures in office-like environments. At every
time step one observation is simulated, which is matched to one landmark. The
distance between the descriptor of the observation and the landmark is set to the
same value for all observations. In the first lap all 240 landmarks are observed and
connected uniformly to one of eight places. No noise was applied in the training
part of the data, the first two laps, so there are no ambiguous landmarks in the a
priori knowledge network. In the test data we applied a varying amount of noise
on the landmarks. When no noise is applied to the data, the test set is identical to
the training set. As the amount of noise increases, the place at which a landmark is
observed becomes more random, until it is completely random at a noise level of
100%.

6.3.2 Real data

In the real data, as described in section 6.2.1, 225 unique landmarks are observed in
the first two laps (the training data). In the operation phase, 107 of these landmarks
are re-observed and used as input to the dynamic network. In the operation phase
114 new landmarks are detected, which are not processed by the current version of
the model. Of the landmarks in the knowledge network 24% is ambiguous, that
is, these landmarks are observed in more than one region in the training phase.
The real data are quite challenging, because they contain noisy and erroneous ob-
servations, hold many ambiguous landmarks, and landmarks that are unequally
distributed in the environment.

6.4 RESULTS

The results of the model on the simulated data are shown in Figure 6.3. Since the
model keeps track of all hypotheses, there is a list of hypotheses with a decreasing
activation value, not only a single winner. Hence, it is possible that the true place
is not the best hypothesis, but the second best. Therefore, the performance of the
model can be evaluated not only by comparing the true place to the best place hy-
pothesis, but also to the top two or top three. Figure 6.3 depicts the best result (top
one) for the context-based model and the signal-driven model, and the top two and
three of the context-based model. The results of the signal-driven model are iden-
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Figure 6.3: Results of the model tested on data with a varying amount of noise. The single
best result of the context-based model and the signal-driven model are shown, and the top
two and top three of the context-based model.

tical for the top one, the top two, and the top three, because the simulated data set
contains only one observation per time step, resulting in one possible hypothesis.

As expected, the signal-driven model performs at chance level. When an in-
correct observation is made, the place prediction is also false. The context-based
model performs better than the signal-driven model, especially for low amounts
of noise (< 50%).1 In the experiment on the real data, of which the results are
depicted in Figure 6.4, the context-based model also out-performs the signal-driven
model. The difference between the score of the best hypothesis of both models is
not very large, but consistent in multiple tests. However, the high scores on the

1 High levels of noise are not included in the figure, because the results are less meaningful if the
noise is more prominent than the observations.
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Figure 6.4: Results of the signal-driven and the context-based model on data collected by
a moving robot.

top two and three are promising for future improvement.

It should be noted that the predictions of both models are based solely on visual
observations, and odometric information is ignored. Therefore, the results of the
two models can be compared by their performance on visual information, and we
can show the advantage of the context-based model. If one would aim at a best
possible robot localization, odometric information should be included.

6.5 CONCLUSION

We presented a model that dynamically manages a spreading activation network.
This network represents the environment of an agent based on sensory informa-
tion and knowledge of the environment. To test the applicability of the model in
a real-world environment, we tested it on visual observations gathered by a mo-
bile robot, with the goal to improve its localization. Learned knowledge about the
environment of the robot is used to compute expectancies of its location. These
expectancies are combined with instant observations to form a prediction of its lo-
cation. Including expectancy in the prediction enhances the stability of the model,
since it prevents unexpected landmarks from disrupting the place prediction.
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The information about the environment is learned in a supervised training
phase, and stored in a knowledge network, the long-term memory of the model.
The short-term memory is represented by a dynamic network. Hypotheses in the
dynamic network are more transient, because they represent the current state of
the robot. The network and the deduced location prediction are updated when
the robot gathers new evidence about its environment. The results of the exper-
iments confirm that context evaluation improves the performance compared to
signal-driven evaluation on both the simulated and the real data.

Although the context-based model outperforms the signal-driven model, the
difference on the top one in the experiment on the real data is not very large. This
can be explained by the fact that more than half of the landmarks that the robot
encounters during the operation phase are new. Hence, the information on which
the model can base its prediction is limited. Therefore, it will be useful to integrate
an algorithm in the model that includes new landmarks in the knowledge network
during the operation phase. For example, the growing-when-required (GWR) net-
work of Marsland et al. (2002) adds new nodes to a network based on the (mis-)
match between the data and the network. Such an algorithm would make it possi-
ble to learn new information during the operation phase. Furthermore, incremen-
tal learning can be used to update existing connections based on new observations.

Another possible improvement can be made in the determination of expectan-
cies. In the current version of the model we only update the network when ob-
servations are made. This can pose problems to the model, especially when the
data is not equally distributed over the environment, causing some places to be
poorly represented by landmarks. Based on temporal and odometric information,
expectancies of the path of the robot can be made even without observations.

In conclusion, the presented model can improve robot localization through
context evaluation. It is computationally efficient and needs little memory stor-
age. Therefore, it can be easily scaled to larger environments. Moreover, the model
is general, because the sensory information in the model is not limited to visual ob-
servations. Hence, it can be used for state estimation in other domains (see chapter
5), or even combine information from different modalities to make predictions.
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CHAPTER 7

7.1 CHALLENGES

Environmental sound event recognition is a young research area compared to sound
recognition aimed at a specific type of sound, in particular speech. As a conse-
quence, methods to deal with the complexities of real-world environments are still
being developed, and not yet as accomplished as methods used in single-type sound
recognition. The methods that have proven to be successful in single-type sound
recognition have been exported to the field of environmental sound event recog-
nition. However, the two problems are qualitatively different. More specifically,
the context in single-type sound recognition is provided by the problem definition,
and the type of sound to be recognized is a priori defined. For example, contex-
tual information in the form of grammar rules can be applied in automatic speech
recognition to improve recognition of ambiguous signal information. Moreover,
methods to deal with a distorted signal caused by transmission effects can rely on
the presence of speech. In contrast, both the context and the type of sound in
environmental sound event recognition are variable.

To advance in environmental sound event recognition the variability of the
sound events and the environment needs to be accounted for. The methods used
in single-type sound recognition rely on stable and known acoustic properties of
the audio signal. Therefore, they are not flexible enough to meet the requirements
of real-world environments. Instead, we need methods from the field of computa-
tional auditory scene analysis that segregate components that are likely to consti-
tute a single event. These segregated components provide hypotheses about sound
events that have to be interpreted with knowledge of the environment. The se-
mantics of diverse environments and sound events have to be learned, so that a
system for environmental sound event recognition can work in variable environ-
mental contexts. For example, although knowledge about the context in the form
of a statistical language model is used in automatic speech recognition, it relies on
the temporal structure of the input signal. Therefore, it cannot generalize to other
domains with a different structure. In contrast, the context model presented in
this thesis is more flexible, because it can learn different types of structure in the
environment.

Our method to integrate the semantics of the sound events and the environ-
mental context in automatic sound event recognition is based on a model of human
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memory. The learned knowledge that is stored in a network represents long-term
memory, because it is assumed to be stable. The semantics (in the form of lin-
guistic labels) in the model are learned from human annotations. Therefore, the
representation of the sonic environment is independent of audio descriptors. As a
consequence, the model can be applied to other types of information as well, such
as visual information or positioning information. This generic representation of
the environment is more robust to changing conditions, such as transmission ef-
fects, than a representation that is based on the acoustics of the sound events. An
acoustic representation relies on the quality of the signal processing techniques to
select information in the signal that is specific for the sound event. However, this is
difficult in a real-world environment where events can be (partly) masked by other
sound events and distorted by transmission effects. Moreover, some sound events
share similar audio patterns, but convey a distinct meaning.

The presented model demonstrates that even a basic semantic description of
the environment can help to improve sound event recognition. The implementa-
tion of the model is not conclusive. Some design choices can be revised, such as
including inhibitory connections in the network to represent counter associations.
However, the overall design choice for a flexible model instead of a model with
conditional dependencies, such as hidden Markov models, is important. Models
based on conditional dependencies assume an exhaustive knowledge of the prob-
lem domain. As a consequence, missing knowledge, for example because of an
unreliable signal, has a major impact on the output decision. For example, if one
event in a learned sequence of events is not observed, the complete sequence will
have a low probability (Box 3.3). In contrast, the integrated approach presented
in this thesis provides a best hypothesis at any point in time when information
is segregated from the signal. Furthermore, this best hypothesis is the result of a
balance between signal-driven information and an expectancy based on knowledge
of the context. Therefore, salient signal information can override a falsely inferred
expectancy.1

1 However, parts of the Bayes formalism, such as learning a priori relations between events and
environments, can be useful.
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7.2 IMPLICATIONS

To further improve our method for environmental sound event recognition several
issues have to be addressed, which are all related to selective attention. First, the
signal-driven methods and the context model are not yet interactive. The context
model interprets the results of the signal-driven method, but does not influence
the search space of the signal analysis. In future versions the context model should
influence the priority of the signal analysis. In other words, the segregation al-
gorithms should attend to parts of the signal that are likely to provide relevant
information given the context, and ignore irrelevant parts. For example, a contin-
uous low frequency component caused by traffic noise is informative when it is
unlikely in a certain context, like a natural park, while in an urban environment
this component can often be ignored because it is normal for this context. How-
ever, context-based attention is not the only determinant for the signal analysis.
If some patterns in the audio signal are salient, for example due to an increase in
loudness, they should be processed regardless of the priority given by the context
model.

A second improvement can be made in the evaluation method for sound event
recognition systems. A system for counting cars at a road should recognize every
passing car, while other information can be ignored. In contrast, if a system should
evaluate a sonic environment in a similar way as (a group of) people, a different set
of events is interesting or irrelevant. For example, most people walking by a busy
road do not pay attention to every car driving by, while they may focus on other
more interesting sounds.1 The performance of a system for sound event recogni-
tion cannot be determined without a benchmark, which depends on the goal of
the system. However, we do not want to limit our system to specific applications.
As a consequence, the context model should be flexible enough to work in a va-
riety of different applications. For every application the learning process and the
benchmark are different. As a result, the context model attends to different parts of
environment in different applications. The quality of the model can be determined
by its performance in different domains, with different benchmarks.

Finally, the current implementation of the context model as a spreading acti-

1 Which sound events are interesting depends on factors such as the goal or activity of a person, his
memory, interpretation, and expectancy.
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vation network can lead to computational issues in a diverse application domain,
because of the large amount of different types of sound events that have to be man-
aged in the network. However, even infinite capacity does not guarantee a system
that can deal with a real-world environment. People effortlessly recognize and re-
member thousands of different types of sound events. Nevertheless, they do not
process every piece of information they encounter, nor do they need to. By fo-
cussing their attention to parts of the environment, they make a selection of what
is relevant. The fundamental difficulty of automatic systems in matching the ef-
fective strategies of people to process relevant information and act meaningfully
upon it is called the frame problem (Dennett, 1990): “A walking encyclopedia will
walk over a cliff, for all its knowledge of cliffs and the effect of gravity, unless it is
designed in such a fashion that it can find the right bits of knowledge at the right
times, so it can plan its engagements with the real world.”

Even though the context model cannot learn all world knowledge and experi-
ence that people have, its focus can be narrowed by a goal, and it can learn which
information is relevant given the goal and a particular context. In fact, instead of a
focus on abundant learning, we want to apply knowledge about human cognition
in the context model. People do not require tens or hundreds of examples to be
able to recognize a sound event. They structure the world into categories, and new
instances of an object or event are matched to prototypes (or exemplars) in mem-
ory. These prototypes are more than an average of the features of all members of a
category. In cognitive psychology much research is aimed at understanding human
categorization. We will try to translate the findings of this research into the context
model. For example, if we understand how categorization is effected by a different
context, or by the expectancy of a person, we can adjust the level of analysis of the
model in a similar manner.

In summary, modeling information about the context is essential in automatic
sound event recognition that should work in variable real-world environments.
In this thesis we have substantiated the fundamental grounds for an integrated
approach to sound event recognition, which combines robust signal-driven algo-
rithms with a context model. Furthermore, we have demonstrated a first effort of
an implementation of this integrated approach, which improves the performance
results compared to an approach that is based on standard machine learning algo-
rithms. A semantic analysis of a sonic environment that is obtained with a model
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of human memory will have important applications in diverse fields. For example,
instead of monitoring sound in an urban environment only with loudness mea-
sures, as is currently done, a semantic analysis of the sonic environment provides a
richer account of human evaluation of the environment.
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audio component
Single element in the audio signal, which is (possibly together with other
components) the result of a sound event. (p. 14)

audio pattern
Configuration of grouped audio components that constitute a single sound
event. (p. 4)

audio signal
Signal transmitted by a physical action recorded or heard at the location of a
receiver. (p. 2)

auditory episode
Cognitive representation of a sonic environment. (p. 28)

auditory event
Cognitive representation of a sound event. (p. 28)

context
The learned associations of an event to environments and/or co-occurring
events. (p. 26)

context-based
When an algorithm or model processes knowledge of the context (cf. top-
down). (p. 46)

physical action
Action or process of a source that results in a sound event. (p. 28)
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segregate
Select and group components in the audio signal that are likely to constitute
a single sound event. (p. 4)

semantic
When an interpretation or representation is based on the experienced prop-
erties of something and its relation to other things. It is similar to the mean-
ing that can be attributed by people. However, it can be given by systems as
well, whereas meaning can only be attributed by people. (p. 26)

signal-driven
When an algorithm or model processes the (audio) signal (cf. bottom-up).
(p. 8)

sound
Sound that is not attributed to a specific event. (p. 2)

sound event
Sound that is the result of a single physical action. (p. 7)

sound source
Source involved in the physical action that produces a sound event. (p. 7)
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The audio processing used in this thesis, which is developed and described by Krijn-
ders (2010), is shortly summarized in this appendix, based on the description in
Krijnders et al. (2010). The first step consists of the conversion of the audio signal
in a time-frequency representation, the cochleogram. In the cochleogram, tones
and pulses are selected based on their local properties, which can be connected in
time or frequency to form signal components. Tonal signal components can be
combined into harmonic complexes when they comply with certain properties.
Finally, broadband events are defined and extracted as a time delimited energy in-
crease compared to the background noise.

B.1 COCHLEOGRAM

The audio time signal is processed using a gammachirp filter bank (Irino and Pat-
terson, 1997). The response of each gammatone filter gt is calculated as

gt (t ) = at N−1 exp(−2πbB( fc )t )exp( j (2π fc t + c log10 t )) (B.1)

where fc is the center frequency of the channel, N the order of the gammatone
(N = 4) and constants a = 1, b = 0.71, and c =−3.7. A logarithmic frequency dis-
tribution is used for 100 channels between 67 and 4000 Hertz (Hz). The bandwidth
of each filter is given by (Moore and Glasberg, 1996):

B( fc ) = 24.7+ 0.108 fc . (B.2)

The filter output is squared and leaky-integrated with a segment-dependent time
constant (τs = 2/ fc ). The resulting energy representation is down-sampled to 200
Hz, resulting in a frame size of 5 milliseconds. The energy is compressed logarith-
mically and expressed in decibel (dB). We call this representation a cochleogram
(see for example Figure 2.1).
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Figure B.1: Cochleogram of an ideal tone (a), the energy of the tone at 0.5 seconds (b)
with filter parameters (c).

B.2 TONE FIT AND PULSE FIT

To extract tones and pulses from the cochleogram, we apply channel dependent
matched filters that respond to ideal tones and pulses. For each channel an ideal
tone is generated and processed using the filter bank. In Figure B.1, panel (a) shows
the time-frequency representation of the tone, and panel (b) the energy of the tone
in one time frame. The width of the response in frequency at a threshold below the
energy maximum is calculated, depicted in panel (c). This threshold is set to twice
the standard deviation of the logarithmic energy of white noise in the channel
(2σn). This standard deviation is independent of the power spectral density of the
noise in the logarithmic energy domain. The width of the response is the filter
parameter for the tone fit (TF). For the pulse fit (PF) the response width in time of
a pulse is taken.

When the filters are applied in a cochleogram, the energies at the widths below
(sb1) and above (sb2) a time-frequency point are averaged. The difference between
the energy at the point for that channel and the average forms the filter output
(Figure B.2). The application of the filters to the cochleogram results in two repre-
sentations that reflect to what extend the direct environment of each point of the
cochleogram resembles a tone or a pulse. These representations are thresholded
to create a binary mask. This threshold is set to twice the standard deviation of
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Figure B.2: TF filter applied to a tone in 0 dB local SNR white noise.

the TF or PF when applied to white noise. Areas that are too small to be either
valid tones or valid pulses are discarded. This pruning, in combination with the
mask threshold, limits the number of spurious areas that are caused by broadband
signals, while allowing tonal or pulse-like signals. Within the remaining areas the
energy maxima of the cochleogram are strung together horizontally to form tonal,
or vertically to form pulse-like signal components (see Figure 5.2).

If possible, the tonal signal components are combined into harmonic com-
plexes (HCs). Harmonic complex formation starts by selecting concurrent sig-
nal components that have a harmonic relation. These hypotheses generate new
hypotheses at fundamental frequencies in the range between 300 and 1200 Hz by
shifting harmonic positions of the signal component. These hypotheses are ex-
tended with more and more signal components. The process ends by selecting the
hypotheses that comply best to a well-formed HC by maximizing score S:

S = ns c + b f 0+ nh −
∑

s c
rmss c −

∑

s c
∆ fs c (B.3)

where ns c is the number of signal components in the group, b f 0 is a boolean for
the existence of a signal component at the fundamental frequency, nh is the num-
ber of sequential harmonics in the group, rmss c are the root mean square values
of the difference of a signal component and the fundamental frequency after the
mean frequency difference is removed, and ∆ fs c is the mean difference between
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the fundamental frequency and the frequency of the signal component divided by
its harmonic number.

For each harmonic complex we calculate nine features: The duration, score
S (equation B.3), the ratio of these two, and the number of signal components
indicate the strength of a harmonic complex. The mean energy and standard devi-
ation under the signal components, the spectral tilt of the signal components, and
the mean and standard deviation of the fundamental frequency are copied from
Van Hengel and Andringa (2007) and Zajdel et al. (2007) to discriminate between
similar harmonic sounds, such as speech and laughing.

B.3 BROADBAND EVENTS

Broadband events are defined as slow broadband changes in the signal that have
to satisfy the following criteria: The change in signal must last at least 2 seconds,
and 30% of the frequency channels must be more than 6 dB above the long-term
background. The long-term background is calculated per channel as the energy
value that is exceeded more than 95% of a time interval. This level of 95% assumes
that each channel is dominated by background noise at least 5% of the time interval
with a temporal scope depending on the data set—the experiments described in
chapter 5 use the length of the recordings, typically between one and three minutes.
The energy must exceed the background by three standard deviations of white
noise in that channel.

The broadband events are described with a feature vector of 20 features. The
first 15 features are three properties calculated in five frequency bands. Every fre-
quency band contains 20 channels. The 5 remaining features are the first five cep-
stral coefficients that describe the spectral envelope. The three properties for the
five bands are only computed for the 10% most energetic time frames per event.
The first property is the correlation between points in time separated by half a
second. This correlation is typically high for slowly changing events and low for
fast changing events. The second property is the distance between the frequency
band and the average energy, in terms of standard deviations of white noise. This
property is level independent and reflects the energy distribution over the bands.
The third property is the average foreground-to-background ratio for each band,
which reflects the total energy per band compared to the background.
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APPENDIX C: REVERBERATION FEATURES

The seven features that indicate the reverberation level measure one of three types
of fluctuation: variation in the energy of the harmonic tracks, variation in the
salience of the harmonic tracks, and variation in the frequency of the harmonic
tracks. The calculation of the features is described in the following sections. We ap-
ply the following notation: h is the harmonic track, extracted from a cochleogram
(see appendix B), Eh (t ) is energy development of the harmonic track in decibels
(dB), and fh (t ) is the frequency development of the harmonic track in Hertz (Hz).

C.1 ENERGY VARIATION

Peak rate (PR) The number of peaks (energy maxima) of at least 1 dB in the en-
ergy of the harmonic track, Eh , normalized for the length of the track.

Var Eh Variation difference between the energy of the harmonic track and its
moving average (normalized for the length of the track), calculated as

Var Eh =
∑

t

�

�

�dt Eh (t )
�

�

�−
∑

t

�

�

�dt E h (t )
�

�

� ,

where dt Eh (t ) is the differential of the harmonic track energy Eh (t ), and
E h (t ) is its moving average:

E h (t ) =
1

k

t+k−1
∑

i=t

Eh (i), for t = 1 : n− k + 1,

where Eh has a total length of n frames (1 frame is 5 milliseconds), and the
applied window size is k = 7 frames.

C.2 HARMONIC ENERGY SALIENCE

∆Eh(f ) The energy slope is calculated as the mean difference in energy between a
harmonic track and a reference track Eref at a higher frequency and at a lower
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frequency side of the harmonic track:

∆Eh ( f ) = Eh − Eref,

where Eref is determined by the difference between the fundamental fre-
quency f0 and a track at k = 1.2 or 0.8 of f0 (the fundamental frequency
is determined through the harmonic complex, see appendix B):

Eref( f , t ) = E( fh (t )± |k f0(t )− f0(t )| , t ), for t = 1 : n,

where n is the length of the harmonic track and the fundamental frequency.

Var ∆fh Variation difference between the frequency width of the harmonic track
and an ideal sinusoid (normalized for the length of the track), calculated as

Var∆ fh =
∑

t

�

�

�dt ∆ fs (t )
�

�

�−
∑

t

�

�

�dt ∆ fh (t )
�

�

�,

where dt∆ fs (t ) is the differential of the width of an ideal sinusoid at the same
frequency as the harmonic track at a particular time, and∆ fh (t ) is the width
in frequency channels of the harmonic track at time t , determined by the
tone fit (TF), a frequency-dependent filter based on the ideal tone response
of the cochlea model:

∆ fh (t ) =
θTF−TF(sdown+ 1, t )

TF(sdown+ 1, t )−TF(sdown, t )
−

θTF−TF(sup− 1, t )

TF(sup, t )−TF(sup− 1, t )
,

where θTF = 1.3 is the threshold of the tone fit, TF(sdown, t ) is the response
of the TF filter at time t in channel sdown, the channel at the high frequency
end of the harmonic region1, and sup is the channel at the low frequency end
of the harmonic region. This harmonic region is determined through a tone
mask, a binary mask created by thresholding the TF filter response of the
cochleogram at twice the standard deviation of the TF filter when applied to
white noise (see appendix B).

1 The channel numbers start at the high frequency side of the cochleogram and end at the low fre-
quency side.
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Mean ∆fh Mean difference between the frequency width of the harmonic track
and an ideal sinusoid, calculated as

Mean∆ fh = (∆ fs −∆ fh ),

where∆ fs (t ) and∆ fh (t ) are calculated as above.

C.3 HARMONIC FREQUENCY SALIENCE

Var fh/MA Variation difference between the frequency of the harmonic track and
its moving average (normalized for the length of the track), calculated as

Var fh =
∑

t

�

�

�dt fh (t )
�

�

�−
∑

t

�

�

�dt f h (t )
�

�

� ,

where dt fh (t ) is the differential of the harmonic track frequency fh (t ), and
f h (t ) is its the moving average:

f h (t ) =
1

k

t+k−1
∑

i=t

fh (i), for t = 1 : n− k + 1,

where fh has a total length of n frames (1 frame is 5 milliseconds), and the
applied window size is k = 7 frames.

Var fh/P Variation difference between the frequency of the harmonic track and
its polynomial approximation (normalized for the length of the track), cal-
culated as

Var fh =
∑

t

�

�

�dt fh (t )
�

�

�−
∑

t

�

�

�dt P ( fh (t ))
�

�

�,

where dt fh (t ) is the differential of the harmonic track frequency fh (t ), and
P ( fh (t )) is its piecewise cubic Hermite interpolating polynomial (Fritsch and
Carlson, 1980), calculated with five equally spaced time-frequency points on
the track, that is, the start, the end, and three points in between.1

1 This function is provided as pchip in Matlab ( c© 1984-2004 The MathWorks, Inc.).
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C.4 PREDICTIVE STRENGTH OF FEATURES

A two-layer feed-forward backpropagation neural network (NN) was trained with
the features on the data set described in section 2.4.2, of which 2595 samples were
used for training, and 1297 samples for validating and testing, the results of which
are depicted in the following figure:
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SUMMARY

The research domain of automatic sound event recognition aims to describe an
audio signal in terms of the sound events that compose a sonic environment. The
ability to recognize events in a real-world environment requires a listener or system
to separate the sound events from each other and the background. Furthermore,
these separated events need to be recognized. To recognize a sound event implies
that some representation of the event is already known to the receiver, and can be
identified when it is encountered again. The ability of sound event recognition de-
pends not only on the audio pattern specific to the event, but also on the semantics
of the event. For example, a sound of a purring cat may seem unique, but without
any other information than represented by the audio signal, it can sound like an
engine as well. In this thesis we show that the task of recognizing a sound event
can be alleviated with the semantics of the event, which is inferred from a model
of the context in which the event occurs.

A possible strategy to provide an automatic sound recognition system with the
semantics of a sound event, is to develop it for a specific application, and hence a
specific type of context. For example, automatic speech recognition systems expect
a speech signal as input, which is ensured by a user. Therefore, particular assump-
tions about the audio signal can be made, and context information in the form of
grammar rules can be applied to recognize a word sequence (section 2.2). However,
if a system for automatic sound event recognition is not designed for a specific ap-
plication, and should work in variable and uncontrolled real-world environments,
no assumptions about the environmental conditions can be made. Therefore, ad-
ditional analysis of the audio signal is required. First, the sound events to be recog-
nized have to be separated from the background, because the input signal consists
of more than one type of sound (section 2.3). Second, the operating environment
cannot be controlled, hence the system has to deal with transmission effects, such
as reverberation (section 2.4).
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In addition to handling the challenges of real-world environments with signal-
driven methods, the semantics of the event and its environment are essential to
recognize sound events in an unreliable or ambiguous audio signal. People have
no difficulty in recognizing sound events in many different and noisy situations.
Hence, we developed a model for automatic sound event recognition that is in-
spired by the strategies of human listeners as investigated by (psycho-) acoustics
and cognitive psychology. The human percept of a sound event, referred to as an
auditory event (section 3.2), has properties that a representation of a sound event in
an automatic system can benefit from as well. People can generalize auditory events
over different experiences, environments, and senses. Therefore, our model should
store invariant representations of sound events, so that it is robust to variable en-
vironmental conditions, similar to human perception. Moreover, people benefit
from information about the environmental context to recognize sound events (sec-
tion 3.3). This facilitatory effect of contextual knowledge is an important design
objective of our model.

Some other studies have been aimed at modeling context awareness in acoustics
(section 4.1). However, in these studies the goal has been to estimate the context in
itself, rather than to use context for the improvement of sound event recognition.
In other research domains, such as information retrieval and handwriting recogni-
tion, context has been used to improve recognition or retrieval of objects. Often
methods in these research domains use spreading activation networks, which are
based on a model of human memory (Collins and Loftus, 1975). In this thesis we
show that spreading activation networks can also be applied to estimate the most
likely interpretation of an audio pattern. We introduce a context model in which
the semantics of the events and the context are represented as nodes in the net-
work (section 4.2). The activation of the nodes spreads through the network to
determine the confidence of possible interpretations of an audio pattern (section
4.3).

The advantage of modeling context in automatic sound event recognition is
demonstrated by applying an integrated system to audio recorded in real-world en-
vironments. This integrated system is a combination of a signal-driven analysis
of the audio signal, which provides hypotheses of sound events, and the context
model, which interprets these hypotheses. Knowledge about the environmental
context is learned in a training phase. This knowledge is represented as a network
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of nodes, in which the nodes represent the semantics of the sound events and the
different contexts. Furthermore, the connections between the nodes carry weights
that indicate the probabilities that these sound events and contexts are encountered
subsequently or concurrently. The values of the weights between nodes are learned
from annotated training data (section 5.2). The type of context that is learned de-
pends on the application domain and the data set. In a stable environment, infor-
mation of co-occurring events can help to form expectancies of future events. For
example, at a train station the beeping of a closing door is likely to be followed
by a departing train. Alternatively, if the data set is recorded at qualitatively dif-
ferent types of locations, the estimated location can help to predict the types of
sound events that may be heard. For example, birds are more commonly heard in
parks than near busy roads. We explored the benefit of both types of context on
sound event recognition in two experiments (section 5.3 and 5.4). The results of
these experiments show that the evaluation of contextual knowledge improves the
recognition of sound events compared to an exclusively signal-driven method.

Contextual knowledge is not restricted to knowledge that can be derived from
the audio signal and annotations of the audio signal. Other types of knowledge can
be beneficial for sound event recognition as well. Knowledge inferred from differ-
ent types of input, such as sound, image, and location, can reinforce each other to
obtain an increased awareness of events in the environment. Ideally, these different
informational resources can be combined in a single system. Because the nodes
in the context model are not described by modality specific knowledge, they can
be used for other types of information. We tested the applicability of the context
model on the recognition of ambiguous visual information, in the domain of robot
localization. Visual information received by a robot is often ambiguous (similar to
acoustic information), because similar observations, such as (parts of) chairs or
windows, can be made at distinct places in an environment. Learned knowledge
about the environment, and the robot’s hypothesized position in the environment,
can help to disambiguate these observations. As a result, the position prediction
improves compared to a signal-driven approach (chapter 6).
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Het onderzoeksgebied automatische geluidsherkenning richt zich op het beschrij-
ven van een geluidssignaal in termen van de bronnen die het opgenomen geluid
veroorzaken. Het vermogen om de bron van een geluid te herkennen vereist
dat een luisteraar of systeem verschillende geluiden van elkaar en van de achter-
grond kan scheiden. Bovendien moeten deze gescheiden geluiden herkend wor-
den. Het herkennen van een geluid veronderstelt dat een representatie van het
geluid al bekend is bij de luisteraar en geïdentificeerd kan worden wanneer deze
opnieuw wordt waargenomen. Het herkennen van een geluid hangt niet alleen
af van de kenmerken van het specifieke geluidspatroon, maar ook van de beteke-
nis van de gebeurtenis die het geluid veroorzaakt. Het geluid van een spinnende
kat bijvoorbeeld, mag wellicht uniek lijken, maar zonder enige informatie anders
dan wat afgeleid kan worden uit het geluidssignaal, kan het evengoed als een motor
klinken. In dit proefschrift laten we zien dat geluidsherkenning vereenvoudigd kan
worden door gebruik te maken van de betekenis van de gebeurtenis die het geluid
veroorzaakt. Deze betekenis wordt afgeleid middels een model dat de context van
de geluidsomgeving representeert.

Een mogelijke manier om een automatische geluidsherkenner te voorzien van
de betekenis van een geluid, is door het te ontwikkelen voor een specifieke ap-
plicatie, en derhalve voor een specifieke context. Automatische spraakherkenning
verwacht bijvoorbeeld een spraaksignaal als invoer, wat door een gebruiker wordt
gegarandeerd. Hierdoor kunnen bepaalde aannames over het geluidssignaal ge-
maakt worden, en contextinformatie in de vorm van grammaticaregels kan toe-
gepast worden om een woordenreeks te herkennen (sectie 2.2). Als een system
voor automatische geluidsherkenning echter niet ontworpen is voor een specifieke
applicatie en moet werken in wisselende en ongecontroleerde omgevingen, kun-
nen er geen aannames worden gemaakt over de omgevingscondities. Daarom is
aanvullende analyse van het geluidssignaal nodig. Ten eerste moeten de individuele
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geluiden van elkaar en van de achtergrond worden gescheiden, omdat het invoer-
signaal bestaat uit meer dan een type geluid (sectie 2.3). Ten tweede kan de toe-
passingsomgeving niet gecontroleerd worden, waardoor het systeem moet omgaan
met transmissieverschijnselen zoals galm (sectie 2.4).

In aanvulling op de signaalgedreven methoden om de uitdaging van ongecon-
troleerde omgevingen te beheersen, zijn de betekenis van de gebeurtenis en de
geluidsomgeving essentieel om geluiden te herkennen in onbetrouwbare of am-
bigue geluidssignalen. Mensen hebben geen probleem om geluiden te herken-
nen in veel verschillende types omgevingen en in zeer rumoerige omgevingen.
Daarom hebben we een model ontwikkeld voor automatische geluidsherkenning
dat ingegeven is door de strategieën die mensen gebruiken, onderzocht door psy-
choakoestiek en cognitieve psychologie. Menselijke waarneming van een geluid,
aangeduid als een auditieve gebeurtenis (sectie 3.2), heeft eigenschappen die ook
gunstig kunnen zijn voor een geluidsrepresentatie in een automatisch systeem.
Mensen kunnen auditieve gebeurtenissen generaliseren over verschillende omge-
vingen, ervaringen, en zintuigen. Op een vergelijkbare manier kan ons model
invariante representaties van geluiden opslaan, zodat het robuust is voor wisse-
lende omgevingsinvloeden, net als in menselijke perceptie. Mensen halen boven-
dien voordeel uit de omgevingscontext om geluiden te herkennen (sectie 3.3). Dit
faciliterende effect van contextinformatie is een belangrijke doelstelling voor de
ontwikkeling van ons model.

Verscheidene andere studies in de akoestiek zijn gericht op het modeleren van
contextbesef (sectie 4.1). In deze studies was het doel echter om de context zelf te
bepalen, in plaats van de context te gebruiken om geluidsherkenning te verbeteren.
In andere onderzoeksgebieden, zoals information retrieval en handschriftherken-
ning, is context wel gebruikt om herkenning of retrieval van objecten te bevor-
deren. Methoden in deze onderzoeksgebieden maken vaak gebruik van spreading
activation netwerken, die gebaseerd zijn op een model van het menselijk geheugen
(Collins and Loftus, 1975). In dit proefschrift laten we zien dat spreading acti-
vation netwerken ook toegepast kunnen worden om de meest waarschijnlijke in-
terpretatie van een geluidspatroon te bepalen. We introduceren een contextmodel
waarin de betekenissen van de gebeurtenissen en de context gerepresenteerd zijn als
knopen in het netwerk (sectie 4.2). De activatie van de knopen verspreidt zich door
het netwerk om de zekerheid van mogelijke interpretaties van een geluidspatroon
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te bepalen (sectie 4.3).
Het voordeel van het modeleren van context in automatische geluidsherken-

ning wordt gedemonstreerd door een geïntegreerd systeem toe te passen op geluid
dat is opgenomen in ongecontroleerde omgevingen. Dit geïntegreerde systeem
is een combinatie van een signaalgedreven analyse van het geluidssignaal, die hy-
potheses levert over de gebeurtenissen die de geluiden veroorzaken, en het con-
textmodel, dat deze hypotheses interpreteert. Kennis over de omgevingscontext
wordt geleerd in een trainfase. Deze kennis wordt gerepresenteerd als een netwerk
van knopen, waarin de knopen de betekenis van de geluiden en de verschillende
contexten representeren. De verbindingen tussen de knopen dragen gewichten
die de waarschijnlijkheden van het simultaan of opeenvolgend voorkomen van
de geluiden en contexten representeren. De waarden van de gewichten tussen de
knopen worden geleerd uit geannoteerde traindata (sectie 5.2). Het type context
dat wordt geleerd is afhankelijk van het toepassingsgebied en van de dataset. In een
stabiele omgeving kan informatie over gebeurtenissen die gezamelijk voorkomen
helpen om verwachtingen van toekomstige gebeurtenissen te vormen. Op een sta-
tion wordt het fluiten van sluitende deuren bijvoorbeeld gewoonlijk gevolgd door
een vertrekkende trein. Een andere mogelijkheid is dat wanneer de traindata zijn
opgenomen in kwalitatief verschillende omgevingen, de ingeschatte omgeving kan
helpen om te voorspellen welk type geluiden er gehoord kunnen worden. Vogels
worden vaker gehoord in parken dan bij drukke straten bijvoorbeeld. We hebben
het voordeel van beide typen context voor geluidsherkenning verkend in twee ex-
perimenten (sectie 5.3 en 5.4). De resultaten van deze experimenten laten zien dat
de evaluatie van contextinformatie geluidsherkenning verbetert ten opzichte van
een signaalgedreven methode.

Contextinformatie is niet beperkt tot informatie die afgeleid kan worden uit
het geluidssignaal en annotaties van het geluidssignaal. Andere informatiebron-
nen kunnen ook gunstig zijn voor geluidsherkenning. Informatie afgeleid uit ver-
schillende types invoer, zoals geluid, beeld en locatie, kunnen elkaar versterken
om een groter besef van de gebeurtenissen in de omgeving te verkrijgen. Idealiter
kunnen deze verschillende informatiebronnen gecombineerd worden in één sys-
teem. Omdat de knopen in het contextmodel niet beschreven worden door infor-
matie die specifiek is voor een modaliteit, kunnen ze ook gebruikt worden voor
andere soorten informatie. We hebben de toepasbaarheid van het contextmodel
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op ambigue visuele informatie getest in het onderzoeksdomein van robotlocali-
satie. De visuele informatie die een robot ontvangt is vaak ambigu (vergelijkbaar
met akoestische informatie), omdat overeenkomstige observaties, zoals (delen van)
stoelen of ramen, gemaakt kunnen worden op meerdere plekken in een omgeving.
Geleerde informatie over de omgeving en de geschatte positie van de robot in die
omgeving kan helpen om deze observaties ondubbelzinnig te maken. Hierdoor
verbetert de voorspelling over de positie vergeleken met een signaalgedreven me-
thode (hoofdstuk 6).
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