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1. Introduction

We present the results of an experiment where signal-driven
(bottom-up) recognition is combined with knowledge of the con-
text (top-down knowledge) to improve the performance of envi-
ronmental sound recognition in real-world circumstances. The
real-world sonic environment is often referred to as a soundscape,
that is, an environment of sounds with emphasis on the way it is
perceived and understood by an individual or by a society (Schafer,
1977). Although full soundscape analysis is beyond the scope of
this paper, we aim to build a system that can become the basis
for an automatic soundscape analysis tool by identifying sound
events in real-world environments.

A system that identifies sound events in continuous recordings
has additional requirements compared to a system that classifies
sound samples, of which is known that they have content. In rec-
ognition, a system needs to segment the signal and separate the
sources before it can classify them (Shinn-Cunningham, 2008; Grif-
fiths and Warren, 2004; Roman and Wang, 2006; Barker et al.,
2005).

Furthermore, a system that analyzes soundscapes has to deal
with transmission effects such as concurrent sources and reverber-
ation. Reverberation results in a mixing of the target sound with a
time delayed version of itself. Therefore, it precludes the successful
application of feature vectors that describe the whole spectrum,
such as Mel-frequency cepstral coefficients (MFCC’s) and the con-
tinuous wavelet transform (CWT). MFCC’s have been shown to be
ll rights reserved.
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very successful for single-source, non-reverberant speech recogni-
tion (O’Shaughnessy, 2008). Moreover, MFCC’s and CWT have been
used successfully in environmental sound recognition provided
that the recordings contain a single, clean source (Cowling and Sit-
te, 2003). However, this is an unrealistic approximation for actual
environmental sounds.

Real-world environments pose another problem on techniques
used in speech recognition. Speech recognition relies on a strong
temporal ordering, but for environmental sounds this ordering is
far weaker. Speech recognition techniques exploit this ordering
by applying hidden Markov models to find the best model se-
quence (O’Shaughnessy, 2008). In the case of non-speech sound
recognition, such as music genre determination, it has been shown
that temporal information is not necessary to recognize genre
(Aucouturier et al., 2007). However, music genre determination
does not require the detection of sound events and is therefore
not suitable to describe the sonic environment in detail.

Another method for sound analysis, the bag-of-frames (BOF)
method, has been shown to be able to identify scenes from real-
world recordings (Aucouturier et al., 2007). However, the BOF
method is not designed to represent details about individual
sources in the signal, because it uses long-term statistics of the
complete spectral range. Nevertheless, information derived with
BOF methods may provide contextual information to guide the
classification of sound events.

In contrast to the BOF method and whole spectrum descriptors,
the methods we present in this paper segment the spectrum on the
basis of the local spectro-temporal properties. Segments are likely
to stem from a single source when they are based on local proper-
ties. The robustness and reliability of these segments, called signal
components, are improved with grouping principles from auditory
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scene analysis, such as common onset, common offset and com-
mon frequency development (Bregman, 1990; Ellis, 1999). These
groups are classified as sound events using a naive Bayes classifier.

Systems that perform environmental sound recognition, with
similar preprocessing as proposed in this paper, are applied com-
mercially in real-life situations (van Hengel and Andringa, 2007).
These systems extract one bit of information from their environ-
ment, namely: ‘‘is there verbal aggression, or not?”. The more gen-
eral problem of environmental sound recognition is more complex,
but shares some properties with information retrieval, especially
with associative retrieval (Crestani, 1997). For both applications
it is desirable to retrieve relevant information that is associated
with some information item, such as a user query. In environmen-
tal sound recognition, retrieval corresponds to estimating the pres-
ence of sources and processes from the signal’s history and its
environmental context. Similar to information retrieval, it is not
essential to recognize all sound sources (documents). Instead, it
is important to determine sufficient information about the envi-
ronment to extract relevant parts of the signal, that is, being able
to answer the question that spawned the search. Because of the
similarities between environmental sound recognition and asso-
ciative information retrieval, we use the same measures of success,
such as precision, recall, and the F-measure.

The data set used in this paper is created to test aggression
detection systems. However, the content is fairly rich, since it is re-
corded on a busy train station. Therefore, it includes problems of
real-world environments, such as transmission effects and ambig-
uous sound events. For example, the sound of a train and a subway
are very similar. Based on the sound alone, even human listeners
have problems identifying the event correctly, unless they are pro-
vided with context (Ballas and Howard, 1987). An automatic sys-
tem that identifies sound events in real-world situations can
benefit from contextual information to recognize events, similar
to humans listeners.

To approach this human strategy, we propose a method in-
spired by cognitive research (Quillian, 1968; McClelland and
Rumelhart, 1981). This method constructs a dynamic network that
keeps track of both bottom-up signal information and contextual
knowledge. By using more information than what can be known
from the signal at each point in time, the system is not only more
robust to noise, but it can also distinguish between sound events
that are similar in acoustic structure but different in meaning
(Niessen et al., 2008). The nodes of the dynamic network represent
information about sound events at different levels of complexity.
Whenever new signal-driven information becomes available, the
information in the network is updated. Subsequently, this informa-
tion is used to form expectancies of future sound events.

The paper is divided in five sections. The following section dis-
cusses the data set. Furthermore, we explain the signal-driven pro-
cessing using filter banks, signal components and machine
learning. The third section describes how contextual knowledge
is learned and incorporated in the system. Section 4 discusses
the results of the signal-driven and the combined system, which
uses knowledge of the context on top of the signal-driven informa-
tion. Finally, in the fifth section we explain and discuss the results
and give suggestions for future work.
Table 1
The annotated classes and the number of their occurrences in the data set.

Class #

Singing 82
Speech 521
Train 15
SubwayDoorSignal 14
Subway 40
Kick 26
Scream 290
2. Signal-driven processing

2.1. Data set

The data set (Zajdel et al., 2007) consists of 40 enacted scenes
from 16 different scenarios, which last between 1 and 2 min each.
The total duration of the recordings is 54 min. The scenes were
acted by professional actors (three men, one woman) on a platform
of the station Amsterdam Amstel. The recordings are distorted by
reverberation, because the Amstel station is a glass box. The plat-
form was in normal use by trains on one side and subway trains
on the other side. The actors took turns in playing the scenes. For
example, the ‘pickpocket’ scenario was played out twice with dif-
ferent actors. All scenarios were played out twice or more. The
16 scenarios were based on stories occurring at stations, such as
friends meeting, enthusiastic football supporters and diverse forms
of verbal aggression and vandalism. The scenes were recorded by 8
microphones (16 bits, 44.1 kHz sampling rate), of which one was
used for this study. This microphone was located about 2 m from
the centre of the action and about two meters from the subway
track. Saturation of the microphones was checked not to occur
when goods trains passed. The scenes were also captured by three
calibrated cameras.

The 40 scenes were annotated by the authors for seven classes
(see Table 1), based on audio and video. The start and stop times of
each event were annotated. For subways and trains, and for some
speech, singing and screams, these times were ambiguous, because
it is hard to indicate the exact time these events become loud en-
ough to be detectable. The assignment of classes included subjec-
tive decisions like whether or not a sound is speech or a scream.
These decisions were left to the annotator. Therefore, the annota-
tions are far from perfect.

2.2. Cochleogram

To analyze the sound signal, we convert the time signal to a
time–frequency representation. A gammachirp filter bank (Irino
and Patterson, 1997) performs this conversion:

hgc ¼ atN�1e�2pbBðfc Þtejð2pfc tþc logðtÞÞ ð1Þ

where fc is the center frequency of the channel, N the order of the
gammatone (N ¼ 4) and a ¼ 1, b ¼ 0:71 and c ¼ �3:7. A logarithmic
frequency distribution was used for 100 channels between 67 and
4000 Hz. The bandwidth of each filter (Moore and Glasberg, 1996)
is given by:

BðfcÞ ¼ 24:7þ 0:108f c ð2Þ

The filter output is squared and leaky-integrated with a segment
dependent time-constant (ss ¼ 2=fc). The resulting energy represen-
tation is down-sampled to 200 Hz, resulting in a frame size of 5 ms.
The energy is compressed logarithmically and expressed in decibel
(dB). We call this representation a cochleogram.

2.3. Tone-fit and pulse-fit

After converting the time signal to the cochleogram domain,
tones and pulses are extracted from the cochleogram. We apply
channel dependent matched filters that respond to ideal tones
and pulses. The derivation of these filters is depicted in Fig. 1.
For each channel an ideal sinusoid is generated and processed
using the filterbank (Fig. 1a). Subsequently the width of the re-
sponse in frequency at a threshold under the energy maximum is
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Fig. 1. Calculation of TF filters. (a) Cochleogram of ideal tone. (b) Cross-section at t ¼ 0:5s. (c) Detail of (b) with filter parameters.
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calculated (Fig. 1c). This threshold is set to twice the standard devi-
ation of the log energy of white noise in a channel. This standard
deviation is independent of the power spectral density of the noise
in the logarithmic energy domain. The width of the response is the
filter parameter for the tone-fit (TF). For the pulse-fit (PF) the re-
sponse width in time of a pulse is taken. Application (Fig. 2) of
the filters is the complementary process, the energies at the widths
below (before) and above (after) the time–frequency point are
averaged. The difference between the energy at the point for that
channel and the average forms the filter output. The application
of the filters to the cochleogram results in two representations.
They reflect to what extend the direct environment of each point
of the cochleogram resembles a tone or a pulse. These representa-
tions are thresholded to create a binary mask. This threshold is set
to twice the standard deviation of the TF or PF when applied to
white noise. Areas that are too small to be either valid tones or va-
lid pulses are discarded. This pruning, in combination with the
mask threshold, limits the number of spurious areas that are
caused by broadband signals, while allowing tonal or pulse-like
signals. Within the remaining areas the energy maxima of the coc-
hleogram are strung together horizontally to form tonal, or verti-
cally to form pulse-like signal components (see Fig. 3).

2.4. Harmonic complexes

If possible, the tonal signal components are combined into har-
monic complexes (HCS) by selecting more and more tonal signal
components that comply with the properties of a harmonic com-
plex. Harmonic complex formation starts by selecting concurrent
signal components that have a harmonic relation. These hypothe-
ses generate new hypotheses at fundamental frequencies in the
range between 300 and 1200 Hz by shifting harmonic positions
of the signal components. These hypotheses are extended with
more and more signal components. The process ends by selecting
the hypotheses that comply best to a well-formed HC by maximiz-
ing score S:
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Fig. 2. Application of TF filters. (a) Cochleogram of ideal tone in zero dB local SNR w
S ¼ nsc þ bf 0 þ nh �
X

sc

rmssc �
X

sc

Dfsc ð3Þ

where nsc is the number of signal components in the group, bf 0 is
one or zero depending on the existence of a signal component at
the fundamental frequency, nh is the number of sequential harmon-
ics in the group, rmssc are the root mean square values of the differ-
ence of a signal component and the fundamental frequency after
the mean frequency difference is removed, and Dfsc is the mean dif-
ference between the fundamental frequency and the frequency of
the signal component divided by its harmonic number.

For each harmonic complex we calculate nine features, listed in
Table 2. These features will be used in the signal-driven recogni-
tion stage.
2.5. Broadband events

Evidence for broadband events, such as trains, is determined by
an algorithm that searches for slow broadband changes in the sig-
nal. These events have to satisfy a combination of criteria. The
change in signal must last at least 2 s, and 30% of the frequency
channels must be more than 6 dB above the long-term background.
The long-term background is calculated per channel as the energy
value that is exceeded more than 95% of the time. This level of 95%
assumes that each channel is dominated by background noise at
least 5% of the time. The criterion is fairly safe and works well in
practice, assuming that a temporal scope can be chosen appropri-
ately. We chose a temporal scope that was as long as the whole file
(about a minute). The energy must exceed the background by three
standard deviations of white noise in that channel.

The events that comply to the aforementioned criteria are de-
scribed with a feature vector of 20 features. The first 15 features
are three properties calculated in five frequency bands. Every fre-
quency band contains 20 channels. The five remaining features
are the first five cepstral coefficients that describe the spectral
envelope. The three properties for the five bands are only com-
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Fig. 3. The background shows the cochleogram of a few screams and a departing subway train. The black lines indicate signal components, the thick black lines are grouped
together to form harmonic complexes, and the white lines indicate their fundamental frequencies. Spurious contributions, due to pattern in noise are inevitable, but they can
be discarded if they do not contribute to patterns at higher levels of aggregation.

Table 2
The features extracted from each harmonic complex. Features 1, 2, 3 and 9 are picked
by the authors to indicate the strength of the harmonic complex. The other features
are selected from van Hengel and Andringa (2007), Zajdel et al. (2007) to discriminate
speech, scream, singing and subwayDoorSignal.

1 Length in seconds
2 Score from Eq. (3)
3 Number of signal components
4 Mean energy under the signal components
5 Std deviation of energy under the signal
6 Spectral tilt of the signal components
7 Mean fundamental frequency
8 Standard deviation of fundamental frequency
9 Feature 2 divided by feature 1
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puted for the 10% most energetic time-frames per event. The first
property is the correlation between points in time separated by
half a second. This correlation is typically high for slowly changing
events and low for fast changing events, such as speech. The sec-
ond property is the distance between the frequency band and the
average energy, in terms of standard deviations of white noise. This
property is level-independent and reflects the energy distribution
over the bands. The distribution can be different between subway
trains and normal trains. The third property is the average fore-
ground-to-background ratio for each band, which reflects the total
energy per band compared to the background. This property might
differentiate between nearby and far-away events.
3. Dynamic network model

The signal-driven processing provides hypotheses based on
information in the signal. However, real-world sound recordings,
such as in the data set used in this study (see Section 2.1), are dis-
torted by transmission effects similar to broadband noise. Further-
more, some sound events can produce similar acoustic signals, but
have a different meaning. For example, although speech and
screams result in a similar acoustic pattern, they differ in meaning,
and require a different response. Distortions due to transmission
effects and ambiguous sounds might lead to erroneous hypotheses,
because the signal provides too little information to allow a correct
inference. Knowledge about the environment and the context of a
sound event can be used to improve the classification through pre-
dictions. Specifically, past sound events can lead to expectancies of
the sound events that will follow. If a signal-driven hypothesis
matches an expectancy, it is more likely to be correct. In this sec-
tion we present a model that creates expectancies of sound events
and evaluates the signal-driven hypotheses based on these expec-
tancies. The description of the way the model operates is given in
more detail in Niessen et al. (2008).

3.1. Knowledge network

The knowledge about the environment is learned in a super-
vised training phase and stored in a static network, referred to as
the knowledge network. This knowledge network is similar to
semantic networks used in information retrieval (e.g. Crestani,
1997; Van Maanen et al., in press). Information retrieval is con-
cerned with retrieving relevant information associated with some
information item, such as a user query. Therefore, semantic rela-
tions, like similarity, between pieces of information are stored in
a semantic network. Nodes in this network represent information
items, and the connections between the nodes represent the rela-
tions between these pieces of information. In automatic sound rec-
ognition, a node could represent a speech event, or a whistle
followed by a train arrival. Furthermore, the relation between
events are represented by the strength of their connection.

Annotations of sound recordings (see Section 2.1) are used in
the supervised training phase to learn relations between sound
events. When two sound events occur within a certain interval,
they are combined in a separate node. The relation between the



harmonic complex

speech

whistle

train leaving

train

noise blob

subway

indefinite hypothesis

best hypothesis

Fig. 4. An example of a network with two signal-driven hypotheses about
structures in the signal. Both hypotheses are connected to two hypotheses of
sound events that can explain the structure. Two of these hypotheses are part of an
event sequence, increasing the support for the sound events that are part of the
sequence.

1556 J.D. Krijnders et al. / Pattern Recognition Letters 31 (2010) 1552–1559
node that represents the sequence of the events and the nodes that
represent the individual sound events is calculated according to a
term-weighting approach used in automatic document retrieval
(Salton and Buckley, 1988). In this method the importance of a
term (word or phrase) in a document is determined by multiplying
its frequency in the document with the inverse frequency it occurs
in other documents. Hence, the term is important for a document if
it occurs often in that document and infrequently in other docu-
ments. Analogously, if a sound event A is encountered often in
combination with some sound event B, and little with other sound
events, it is important in the event sequence S : A� B. Accordingly,
the strength between the sound event A and the event sequence S
is:

wA;S ¼ tf � log
N
n

� �
ð4Þ

where N is the total number of sequences, n is the number of se-
quences in which A occurs, and the term frequency is given by:

tf ¼ fA;Sffiffiffiffi
fA

p ð5Þ

where fA;S is the number of occurrences of A in S, and fA is the total
number of occurrences of A in the training set.

Most sequences represent events that can occur in any order.
For example, sound events produced by people, such as singing
and speech, will generally be heard together, but not in a fixed or-
der. However, for some sequences the order can be very indicative.
For instance, in the data set there are trains departing, which are
always preceded by a whistle of the conductor. Hence, if a whistle
is heard, a strong expectancy of a train departing should arise. To
capture the expectancies of fixed sequences, we determine
whether the sound events that constitute a sequence have a strong
bias to a specific order. For these fixed sequences the mean time
difference between the events is used in a function to calculate
the expected value of the second event in the sequence. In other
words, the first sound event of a fixed sequence primes the net-
work for the second sound event after a learned time interval. In
the next subsection, we will show how this expected value is com-
puted for both ordered and non-ordered sequences.

3.2. Dynamic network of hypotheses

Once the knowledge network is fully trained, it is used in the
operation phase to evaluate signal-driven hypotheses of sound
events. Each signal-driven hypothesis is initiated as a node in the
dynamic network. The dynamic network has three levels of repre-
sentation. The hypotheses at the first level represent detected
structures in the signal, as described in Section 2. The second level
consists of hypotheses of possible sound events that explain the
structures. Finally, the third level contains hypotheses of se-
quences of events, as described in the previous subsection. Fig. 4
shows an example of a network with two signal-driven hypotheses
about structures in the signal, their connections to possible sound
events that caused them, and a sequence of which they might be
part.

When a new signal-driven hypothesis is added to the dynamic
network, the configuration of the network is updated. First, the
hypothesis that represents a structure in the signal is connected
to hypotheses of sound events that can explain the structure. The
strength of this connection is determined through naive Bayes
classification of the structures, as will be described in Section 4.1.
Next, the connections of these sound events to possible event se-
quences are retrieved from the knowledge network and added to
the dynamic network. The connections in the network are only be-
tween hypotheses at different levels, as can be seen in Fig. 4. As a
consequence, the dynamics and hierarchy of the network are cap-
tured by the hypotheses and their connections.

3.3. Activation

The activation value of a hypothesis is a weighted sum of its in-
put activation from connected hypotheses. The activation of a sig-
nal-driven hypothesis is spread through the network after the
configuration is updated. As a result, every hypothesis in the net-
work holds a confidence value after spreading the activation. A
description of the details of the spreading activation algorithm
can be found in Niessen et al. (2008). The activation values of all
hypotheses in the network decrease with time when they get no
reinforcement from signal-driven evidence.

The activation values of event sequences are used to compute
the expected activation of events that are not active yet, and are
part of the sequence. For example, in a non-fixed event sequence
such as singing and speech, of which speech is already identified,
the expected activation of a singing event is calculated by multi-
plying the activation value of the event sequence with the connec-
tion strength between the sequence and the type of event (see
Formula (4)). Since the activation value decays with time, the ex-
pected value is smaller when the other event of the sequence oc-
curred longer ago.

For fixed event sequences, the expected value will furthermore
be dependent on the time when the event is expected:

ÂiðtÞ ¼ wijAjðt � DtÞe
�ðDt�TÞ2

2r2 ; ð6Þ

where wij is the connection strength between expected sound event
i and event sequence j, Ajðt � DtÞ is the previous activation value of
event sequence j, Dt is the time span since j started, and average
time span T and standard deviation r describe the time distribution
of the event sequence, as it is learned during the supervised training
phase.

4. Experiments

To test the system we apply it to the data set of 40 realistic
recordings (see Section 2.1). In the first experiment only the sig-
nal-driven classification is used. In the second experiment these re-
sults are used in the expectancy-based dynamic network.

4.1. Experimental setup

All 40 audio files were processed with the methods explained in
Section 2 to extract harmonic complexes and their features (see
Table 2). The harmonic complex with the highest score and overlap
was selected for each annotation and labeled according to the
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annotation. Harmonic complexes that do not overlap in time with an
annotation were labeled as noise. Harmonic complexes that do over-
lap with an annotation, but do not have the highest score, are dis-
carded. From these files, 40 pair files were generated, of which 40
files were used for training, all with the instances from one scene left
out, and 40 files were used for testing, with instances from the scene
that was left out, thus creating a leave-one-scene-out set.

Because of the strong link with information retrieval (see Sec-
tion 3.1) we use performance measures from that field, such as
precision and recall, to quantify the performance of our system.
Precision is a measure for the fraction of time our detections were
correct, and recall is a measure for the fraction of detections we
should have made are actually made. The F-measure is the har-
monic mean of these two, giving a single performance measure.
The formula’s are given as:

precision ¼ TP
TP þ FP

ð7Þ

recall ¼ TP
TP þ FN

ð8Þ

F ¼ 2
precision � recall

precisionþ recall
ð9Þ

where TP is the true positive rate, FP is the false positive rate, and FN
is the false negative rate.

For the first experiment a naive Bayes classifier from the Weka
toolbox (Witten and Frank, 2005) was trained on the leave-one-
scene-out training file and tested on the corresponding testing file.
The labeling and classification of the noise regions was performed
in the same way as the harmonic complex classification. The re-
sults of both classifications were taken together to create a single
result set.

In the second experiment the supervised training of the knowl-
edge network (see Section 3.1) was performed on the same data as
the classifier, that is, the annotations of the leave-one-scene-out
training file. Hence, the test set was not used for training. On aver-
age 18 different types of sequences were encountered in the train-
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lines represent the annotations, the middle, gray, lines the signal-driven detections, and
ing set. These sequences are composed of the seven classes listed in
Table 1. An average of 89 examples of each sequence was used to
train the weights in the knowledge network. The spread of the
number of examples per sequence is very large, ranging from 2
to 730. For the testing, the results of the classifier were input for
the dynamic network of hypotheses (see Section 3.2).
4.2. Signal-driven results

The white bars of Fig. 6 show the F-measure, the precision, and
the recall of the signal-driven classification. The overall F-measure
is 0.37, the overall precision is 0.39, and the overall recall 0.34. The
results of one of the scenes are shown in the lower panel of Fig. 5.

Part of the errors arise from alignment errors of the annotations.
For example, all detections of the subway trains are longer than the
annotations. This problem is hard to solve, because the annotators
did not agree when on the moment when a train is first and last
detectable. Therefore, the detection cannot agree with both anno-
tators. A partial solution would be to introduce ‘‘don’t care” regions
around annotations where the algorithm is not punished for incor-
rect detections.

The major groups of confusion are between trains and subway
trains, and between speech, singing, and screams. These confusions
may partially be caused by confusion in the annotations. The dis-
tinction between a train and a subway train is hard to make based
on audio recordings, even for a human annotator. The boundaries
between the classes speech, singing and scream are fairly arbitrary,
which causes confusion in the annotations.

The F-measure on the kick class is small because it is neither a
harmonic nor a broadband sound. The features we have used were
not suited for describing these pulse-like sounds.

The systems calculations run at about real-time on a modern PC
(2 GHz dual-core). However, the current Matlab code is not opti-
mized. Based on similar systems optimized for speed (van Hengel
and Andringa, 2007) we estimate that the performance could be
around four times real-time on the same machine.
50 60 70 80 90 100
time [s]

corresponds to more energy. In the first 40 s there is some speech and singing. At
ssing by. Around t = 55 s four clear screams occur, followed by a few more muffled
anel shows the annotations and detections for the different classes. The lower, black,

the upper, light-gray, lines the final, expectancy-based results.
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Fig. 6. The results of the signal-driven classification (white bars) and of the expectancy-based results (black bars).
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4.3. Expectancy-based results

The black bars of Fig. 6 show the performance measures for the
classification including the dynamic network. The overall F-mea-
sure improves to 0.45 (20%), the overall precision to 0.42 (8%)
and the overall recall to 0.49 (44%). The main improvement is in
the recall of the classes that have more harmonic content (singing,
screams and speech), because events of these classes are more
likely to be of the same class as their neighbors. As a consequence,
the network may change a speech classification to a scream when
surrounded by screams. If this change is correct, both the recall of
the scream class and the precision of the speech class increase.
However, the increase in precision is moderated by other errone-
ous changes. As a result, the overall precision does not increase
substantially. Due to the ambiguous nature of some of the classes
and the acoustic environment a high F-measure is not achieved. So
we conclude that the inclusion of the dynamic network leads to a
result more consistent with manual annotation.
5. Discussion

In the previous section we have demonstrated that the combi-
nation of signal-driven algorithms and a dynamic network of
hypotheses results in a recognition improvement for most sound
event classes compared to an exclusively signal-driven method.
Especially the classes that have similar signal structures, and hence
rely more on context for their interpretation (screams, speech and
singing), are better identified in the combined approach. Classes
that are already identified well by the signal-driven algorithm
(subway and train) gain little improvement from the dynamic net-
work. Finally, both classes that occur infrequently, and hence have
little training examples, and classes that are not yet captured well
by the signal features, show a small performance reduction.

We have shown that the use of a dynamic network model im-
proves the overall performance of environmental sound recogni-
tion. However, apart from sound event recognition, this model
provides more divers ways to analyze a soundscape. More specifi-
cally, through hierarchical relations in the network, recognition of
sound events can lead to abstract descriptions of the soundscape.
This introduces the possibility to describe complex activities in
the neighborhood of the microphone with complex and efficient
linguistic descriptions (Guastavino, 2007).
Furthermore, the input information that is presented to the net-
work is not limited to a specific modality. Niessen et al. (2009)
show that the dynamic network model can also be used to improve
visual robot localization. Because the model can receive input from
different modalities, it can combine multiple modalities in a single
system. For example, if input from one modality, such as images, is
insufficient, input from other modalities, such as audio or GPS, can
help to generate predictions. In future work we plan to integrate
information from multiple sources of knowledge to reach more
reliable event recognition with richer descriptions.

One of the major problems in the development of environmen-
tal sound recognition systems that operate in real-life situations is
the lack of large, diverse, and annotated data sets that can be used
for training and testing. This is one of the reasons that we tested on
a data set that represented only a single location and a limited
amount of events. The main problem of constructing more realistic
data sets is the large number of different events that can occur out-
doors and the associated time it takes to annotate a representative
set. The development of an annotation tool for soundscape re-
search is helpful in this respect.

Another problem in environmental sound recognition is perfor-
mance evaluation. We have used the measures precision and recall
to quantify the performance, since these measures are common in
the related task of information retrieval. We calculated these mea-
sures in terms of the temporal overlap of annotations and classifi-
cations. However, if we were to apply these measures in line with
the field they were originally developed for, we should only check
whether or not an annotated event was detected. We have chosen
for overlap instead of presence, because the combination of the
short annotations of speech events in combination with small tem-
poral alignment errors made the attribution difficult. Allowing
some flexibility in matching system detections with hand annota-
tions may alleviate this problem. This however requires a more for-
mal justification, before it can be applied.

The current system shows that it is possible to build a recogni-
tion system that captures many of the events of a realistic and min-
imally constrained sonic environment. The background was
completely uncontrolled while the foreground consisted of actors
who improvised a range of both social and aggressive activities.
We have shown that it is beneficial to use the history of identified
sound events to form a context in which the current sonic evidence
is weighted. This is done by forming a dynamic network that mim-
ics short-term memory dynamics. The interplay of knowledge-
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driven and signal-driven processing is characteristic for human
perception. Since human perception is effectual in a wide range
of acoustic environments, we consider this interplay a promising
approach for robust automatic sound recognition.
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