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Introduction

The human auditory system plays an important role in the ambient aware-
ness of people. It warns you against danger when a car comes from behind
and relaxes if hear just birds singing and leaves rustling. The ease with
which humans perform these task is in strong contrast with the problems
of automatic sound recognition systems. However, these automatic sound
recognition systems can play an important role in our future lives through
a range of applications. From improved human-computer interfaces and as-
sisting the deaf, to automatically estimating the sound quality of quiet areas.
Sound source recognition forms the basis of these technologies. For example,
a computer may stop responding to voice commands when it detects you are
using your phone. The watch of a hearing impaired person may warn him
that a car is approaching from behind. And even though the average sound
level in a quiet area may be low, if some highly disturbing sounds occur a
few times per day the “quiet” area may not be so nice at all.

However, current technology is limiting sound recognition to voice-re-
sponse systems and awkward-to-use dictation software. The reason for these
limitations are the basic assumptions that are necessary to ensure that the
technology works at acceptable performance levels. However, when these
systems are moved from highly controlled environments to more realistic
environments these assumptions become constraints. There are four main
constraints. The first is that the current systems assume that the incoming
signal stems from a single source, while in realistic environments any num-
ber of sources can co-occur. As a result playing music in the background
while dictating confuses the recognition system because it assumes that the
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Figure 1.1: On the left a time-frequency representation (see section 2.3) of the utter-
ance “hallo” by the author in clean conditions. On the right the same utterance with
added noise that is as energetic as the speech. The sample on the right is often used
in speech recognizer tests.

music is part of your voice. The second constraint is the assumption that
the system can recognize the incoming signal, while in realistic environments
unknown sound classes are likely to occur. In the case of the music playing
in the background, this would mean that the software tries to recognize the
music as speech. The third constraint is that the acoustic conditions around
the microphone are constant and known. This entails that after the dictation
software is trained the microphone must not be changed or moved relative to
the source. This is why headsets are commonly sold with dictation software.
The last constraint is that noise sources, either in the system itself or outside
the system, like air-conditioning, must have certain “nice” properties which
allow the system to discount them. The right image in figure 1.1 shows an
example of an utterance in “nice” noise, figure 1.2 shows the same utterance
in a more realistic background.

The rest of this chapter is devoted to applications and why current tech-
niques are too limited to solve the problems posed by these applications. The
chapter concludes with the research questions addressed in this thesis.

1.1 Application domains
Sound source recognition has many potential applications. Three main appli-
cations on which the evaluation part of this is thesis is focused are ambient
awareness issues, like aggression detection and noise control, and sound-
scape research.
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Figure 1.2: The same speech as in figure 1.1, but now mixed in a realistic sound signal
recorded on the Amstel Station in Amsterdam.

1.1.1 Ambient awareness
Many city centers are watched via closed circuit video cameras and these
camera feeds can both be used for monitoring as well as forensic research
after a crime. Monitoring camera feeds is a very intensive task and often
a single observer is responsible for many feeds. These factors increase the
risk of missing a relevant event. One of the main motivations for monitoring
is public safety in entertainment districts and the main target is preventing
aggression. As aggression is often preceded by aggressive screams, sound
identification can help to prioritize camera feeds for the operator. These kind
of systems are already installed in some cities and perform acceptable (van
Hengel and Andringa, 2007).

Another example of ambient awareness is the monitoring of noise control
laws. This monitoring is currently purely based on the basis of level mea-
surements. These sound levels, expressed in a single number, like LA,eq, are
easy to measure and to compare with regulations of these levels. However
a level measurement does not tell anything about who or what made the
noise. Recognizing what caused the sound will improve the usefulness of
the monitoring.

Both applications require that (hopefully) rare events are detected, as the
goal is to reduce these events. Detecting these rare events is a challenge as
99.9% of the time the events are to be ignored (van Hengel and Andringa
(2007) reports 2 events (aggressive screams) in 18 days, i.e. 30 seconds in
26000 seconds). In general reducing the number of missed events increases
the number of false alarms as this usually entails more permissive settings.
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1.1.2 Soundscapes
When people are asked to describe a visual landscape their answers are often
a general description of the scene, sometimes with a few (salient) details
mentioned as well. For example one may say, this is a flat country side with
cattle and there is a red car parked at that farm. For the sonic environment
a similar question can be posed and the answers are a similar mix between
general description and the odd sounds. Such a perceived sonic environment
is called a soundscape (Schafer, 1977).

Soundscape research has focussed on describing the way people perceive
the soundscape and how the soundscape influences human behavior. Sound-
scapes can influence people both in a positive (Irvine et al., 2009) way, such
as in parks and churches and a negative way (Truax, 2001, Chapter 6), such
as in cities with traffic and construction work. Models of this influence ex-
ist mainly for the negative case (De Coensel and Botteldooren, 2008), but
these do not include the essential step of sound source recognition. However
sound source recognition is an essential basis for these models (De Coensel
and Botteldooren, 2008; COST Action 0804, 2008, page 17), both to generate
a high-level summary of the soundscape as well as identify the individual
sources.

1.2 Automatic speech recognition as perceptive sys-
tem

To illustrate the constraints mentioned in the introduction, the next example
shows what would happen if our auditory system functioned like current
automatic (speech) recognizer systems. The reasons for the weird behavior
follow after the example:

Suppose you’re standing at a station platform and a rather nice girl (or
boy/woman/man) walks up close to you and starts talking to you, although
you speak the same language she has to start with at least ten standard
sentences before you can actually understand anything else she’ll say to you.
Of course you have to speak the same ten sentences before she can under-
stand you. After these formalities you actually start a conversation, until a
train enters on the other platform. What used to be fairly comprehensive
sentences with few recognition errors, changes into complete jabberwocky
for both. Even when the noise of the train has subsided, you’ll have repeat
your ten sentences in order to understand each other again.

People probably would not be using speech if the above example was taken
from our daily lives. So why does an automatic speech recognizer work so
differently? The girl has to speak at close range from you to minimize the
influence of the acoustics of the train station and even then you need to
adjust your automatic speech recognizer to the acoustic environment and
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her voice specifics. The noise of the approaching train mixes with the speech
and the speech recognizer tries to recognize the combination, which results
in the jabberwocky. In addition the train changes the acoustics of the station
so both of you need to readjust to the new acoustical environment.

So the basic constraints in a modern speech recognizer are, first, the
assumption that the input signal stems from a single source, possibly mixed
with a type of noise that the recognizer is trained to ignore, so that if you
add train noise the recognition results will drop. Second, the assumption
that the acoustical environment is known, hence the ten sentences to learn
the new acoustic environment, and stable, hence the requirement to relearn
the acoustical environment after the train enters.

For the current applications of speech recognizers, such as voice response
systems and dictation software, these limitations are not a constraint, be-
cause the system implicitly or explicitly forces the user to make sure these
limitations are met. However if we want to move from these application to
less constrained environments and from only speech to all possible sound
classes around us, these limitations are show-stoppers.

1.3 Perception
In contrast to the situation described in the previous section the human
auditory system has no problems to function in uncontrolled environments.
Some of the problems mentioned above are not even noticed by human lis-
teners. For example, humans do not hear the acoustics of a room, unless
they are trained to do so or the acoustics are extreme (Nábělek and Robin-
son, 1982). Nor do they have much trouble in situation like a cocktail party,
where many voices are present but conversation is still possible (Bronkhorst,
2000; Cherry, 1953). Insight in how the human auditory system functions
may improve our methods in automatic source recognition.

The human auditory system seems to group energy belonging to a single
source. For example, if we hear a car, we hear just that. Only when we
make an effort we can separate the sound from the tyres from the sound of
the engine (Gaver, 1993a; Shinn-Cunningham, 2008). If sound from a single
source arrives at the ear in isolation this grouping is trivial, but when other
sources are present the grouping becomes harder, but also more essential,
because if we have grouped the energy there is a pattern of energy to identify
the source instead of separate parts. On the other hand, grouping in the
presence of multiple sources becomes easier if we know which sources are
present. This is a paradox because we need to know the sources present to
group correctly, but we need the groups to recognize the sources correctly.
The paradox is called the signal-in-noise paradox (Andringa, 2002).

Psycho-acousticians have researched how this grouping occurs at early
stages of processing (Bregman, 1990). Although this field is called “auditory
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scene analysis”, it has mainly concerned itself with artificial tones and how
they are grouped in harmonic complexes (or complex tones) or under which
conditions the auditory system perceives tones as a single stream or as two or
more streams when played in succession at different rates and frequencies
(van Noorden, 1975). For example in music the bass-line and melody are
conceptual “streamed” in different perceptual streams, even though they are
played on the same instrument.

However research on how this grouping works in more realistic settings
is a recent development. In these settings grouping is not limited to complex
tones but, for example, extends to the sound of a car as a single percept.
This last grouping is analogous to the formation of objects in the visual
domain and thus is called a auditory object. However, a definition of an
auditory object is difficult (Shinn-Cunningham, 2008), in part because of
what constitutes an object in human perception is strongly dependent on
the state of listener. However Shinn-Cunningham (2008) gives the following
working definition of a auditory object: An auditory object “is an estimate
of sound emanating from a discrete sound source: an ‘auditory object’ is
a perceptual entity that, correctly or not, is perceived as coming from one
physical source.”.

Griffiths and Warren (2004) agree with this definition, but warn that
equating an auditory object to a sound source is arbitrary. It may as well
be a sound event. For example, the utterance “a” may form an object of
the voice, which relates to the source, and an object of the vowel /a/ which
is more related to its role in speech. Which of these classes of objects the
system forms dependents on the task of the system. Note also that auditory
objects can be formed at many levels of abstraction. In this thesis most
formed are close to the signal, such that they can be formed using signal-
driven heuristics.

If we can form hypotheses of auditory objects they can form the basis of
solving the signal-in-noise-paradox by hypothesizing how to group. These
hypotheses can be formed in a signal-driven way, i.e. what we extract from
the signal creates hypotheses. This is the subject of this thesis. The hy-
potheses could also be formed in a knowledge driven way, for example after
a train whistle a departing train is expected. This is the subject of the PhD
thesis by M.E. Niessen (Niessen, 2010). The final system should integrate
both ways of generating hypotheses.

1.4 Research questions
To build to systems mentioned in section 1.1 we need techniques that do
not make the assumptions or constraints mentioned in the beginning of this
chapter. To develop these techniques we need to answer the following re-
search questions:
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1. How to select sonic evidence that is highly likely to stem from a single
source from a sound signal recorded in realistic acoustic circumstances?

2. How can the input signal, instead of the system design, guide the pro-
cessing of the signal, towards an optimal rendering of the information
in the signal??

Answering the first question should alleviate the assumption that there
is only one source present and that we can do this in arbitrary acoustical
circumstances. This is in line with the perceptual formation of auditory
objects.

The answer to the second question frees the system from choices made
during the design of the system. This should alleviate the assumption that
the input can be recognized: if part of the input is detected to be music, the
system should not apply knowledge of speech to recognize that part of the
input.

The next chapter will introduce the signal processing as used throughout
this thesis. The chapter concludes with a further overview of this thesis.
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2

Basic signal processing

2.1 Design criteria
Most applications mentioned in section 1.1 require a system that must work
out-of-the-box, i.e. without the intervention of a specialist. The system
should work in cities, villages, countryside and should be undisturbed by
influences of the weather or other changes in the environment. For most
applications it is not necessary to recognize all sound sources perfectly, but
the general pattern of sound sources should provide a reliable indication of
the sonic environment. These requirements pose demands on the design of
the system:
The system should be able to

· handle concurrent sources (section 2.1.2)

· deal with changing transmission effects (section 2.1.3)

· handle diverse, possible unknown, classes (section 2.1.4)

The next section will discuss what a (environmental) sound source is and
the following sections describe the problems associated with the demands
mentioned above.

2.1.1 Sound sources
Based on the dictionary (New Oxford American Dictionary) definitions of
“sound” and “source” a sound source would be “a place, person, or thing

11



12 Chapter 2. Basic signal processing

from which something comes”, where something is “vibrations that travel
through the air or another medium and can be heard when they reach a
person’s or animal’s ear”. This would entail that a sound source is the place
where the vibrations originate, but this “place” is unclear when considering
the common sense definition that for example a car is a sound source, while
the sound source would technically be the explosions in the engine, the air
flow around the car and the noise from the interaction between the tires and
the road. The sound source is thus, like the auditory objects in section 1.3,
dependent on the detail level the user is interested in.

In some literature a further qualifications like “environmental” (Cowling
and Sitte, 2003; Shafiro and Gygi, 2004), or “everyday” are given to a sound
source. But clear definitions of these qualifications are lacking. It is usually
assumed that environmental sounds exclude speech or music, however these
terms are not clearly defined either. Ballas and Howard (1987) and Van-
derveer (1979) agree on two criteria for environmental sounds: First they
are “produced by real events” and second they convey “meaning by virtue of
the causal events”.

2.1.2 Concurrent sound sources
As sound sources seldom occur in isolation in the real world it is important
to handle concurrent sources. Usually this problem is treated as a sound
source with added noise (Hayes, 1996, Chapter 7):

x(t) = xtarget(t) + n(t) (2.1)
n(t) ∼ N (µ, σ2) (2.2)

This approach assumes that the non-target sources add up to normally dis-
tributed noise, which is only true for certain (noisy) sources or when many
uncorrelated sources are present (central limit theorem). The assumption
can be valid in cases where there is much control over the recording and
the main noise source is known, for example a telephone with close talking
microphone increases the probability of a single source and the noise may
be caused by electrical and thermal sources which can be assumed to be
broadband noise. The more general problem can be stated as (Cardoso and
Martin, 2007):

x(t) =
N�

n=1

anxs,n(t) (2.3)

where N is the number of sound sources, an represents the sound level
decrease due to the distance between the sound source and the receiver and
xs,n(t) is the time signal of an individual source at that source. This problem
is a standard inverse problem and cannot be solved without extra knowledge
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Figure 2.1: The path of the direct sound and the first four reflections in a room.

if the number of microphones (observations of x(t)) is less then the number
of sources (N ), i.e. the system is underdetermined. Hence, most current
approaches use multiple microphones and independent component analysis
(ICA, (Choi et al., 2005)) or beam-forming techniques(Kellerman, 2009) to
extract to separate xn(t). This changes equation 2.3 to

xm(t) =
N�

n=1

an,mxs,n(t) (2.4)

xm = Axs (2.5)

where A = an,m and the matrix formulation is the standard problem state-
ment of ICA. And this problem is solvable when the matrix A is constant (or
slowly changing) and only one of the sound sources xs produces broadband
noise. This entails that the range of application is limited to locations where
the acoustics are (quasi-)constant and the sources are (quasi-)stationary.
This prevents ICA from being applicable in the applications mentioned in
section 1.1.

2.1.3 Transmission effects
As sound travels from the source to the microphone it is not only attenuated
and mixed with other sources, the sound also reflects off surfaces leading the
multiple paths from source to microphone 2.1. The indirect paths are longer
and thus a delayed and more attenuated version of the original sound arrives
at the microphone. Apart from being delayed, the frequency content of the
sound changes as surfaces don’t necessarily reflect all frequencies equally
well.

Reverberation is usually modeled as an impulse response. It can be ob-
tained by recording of the sound of a perfect impact or a swept sine (Farina,
2005), or be derived by modeling the room and the object inside it. The sound
arriving at the microphone can be simulated by convolving the source sound
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Figure 2.2: The attenuation of the sound pressure level in a ideal room of 50m3. The
critical distance is the distance where the level of the indirect sound is equal to the
direct sound, in this case 10m.

with the impulse response, thus replacing the simple factor in equation 2.3
with a convolution:

xm(t) = r⊗ xs(t) (2.6)

The impulse (r) is dependent on both the position of the source and the
receiver and on the properties of the room and objects in it. If source and
receiver are close in comparison to the size of the room the direct sound
contributes most energy to the receiver. As source and receiver move away
from each other the relative contribution of the direct sound compared to the
indirect sound (constant) decreases (see figure 2.2). The distance from the
source at which the contribution for the indirect sound equals the contribu-
tion from the direct sound is called the critical distance. Within this ratio
speech is understandable independent of the amount of reverberation, out-
side the intelligibility is a function of the amount of reverberation (Peutz,
1971). Our system will need to work both inside (Chapter 8) and outside
(Chapter 6 and 7) the reverberation radius.

Reverberation complicates the mixing of sources by adding time-delayed,
frequency-dependently attenuated copies each source. The only interval that
the sound is undisturbed by delayed copies is when the direct sound has
arrived but first reflection has not. These intervals are very short for rooms
(3 ms = 1 meter path length difference). Yet this property is exploited by
humans for source localization and source identification. This exploitation
is called the precedence effect (Litovsky et al., 1999). To exploit this effect the
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system needs to detect the unperturbed start of the sound, current systems
are not build, nor suitable, to do that.

Current techniques to deal with reverberation can be split in two cate-
gories (Habets, 2007): reverberation suppression and reverberation cancela-
tion. This last category requires a full estimate of the impulse response and
is therefore unsuitable for changing environments (Haykin, 1994, 2000). Re-
verberation suppression requires less knowledge of the transmission proper-
ties, but needs more information about the sources present as these methods
use knowledge of the source. This knowledge can include the kind of source
(Deller Jr. et al., 1999), e.g. speech for linear prediction coding, or location
for beam-forming techniques (Trees, 2002). Since the sources in an open
environment are unknown, this requirement is a problem.

2.1.4 Unknown sources
When the system is deployed in uncontrolled environment it will encounter
sound sources that it has no knowledge of. It will not be able to classify
these sources, but it would be beneficial if the recordings of these sources
are stored for further analysis. Current systems expect that all encountered
classes were part of their training database. This entails that they assign
a class to every part of the signal they try to classify, regardless of whether
that class actually matches the signal, but it just happened to have a slightly
higher probability then the other classes. The only mechanism those systems
have to ignore unknown sources is to ignore sources that do not exceed a
certain threshold of probability.

2.2 On tones and pulses
To extract evidence that is likely to stem from a single source, we need
a criterium that allows us to do so, solely based on the signal at hand.
Sound production can roughly be divided into three different mechanisms:
resonance, impact and turbulence (Gaver, 1993b). These mechanisms result
in respectively tones, pulses and broadband noise1. The first two are very
localized, tones in frequency and pulses in time. This makes that the chance
for two tones or pulses to mask each other in the time-frequency plane is
small. As such tones and pulses that stem from a single source have a large
chance to be found as a single time-frequency region.

These three mechanisms match the extremes of the Heisenberg inequality

1The term “noise” will be used in this thesis in the meaning of colored or white noise, i.e. noise
resulting from aperiodic processes. Compare to “ruis” in dutch or “Krach” in german (Dubois and
Guastavino, 2008)
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Table 2.1: Limits of the Heisenberg inequality

Tones limσt→0 σtσω = 1
2

Pulse limσω→0 σtσω = 1
2

Broadband limσtσω→∞

(see table 2.1). The Heisenberg inequality states that:

σtσω ≥ 1
2

(2.7)

where σt is the time variation and σω is the frequency variation. This nota-
tion follows Hut et al. (2006), but the inequality was first derived by Gabor
(1946). Gröchenig (2001, Chapter 2) discusses the uncertainty relation ex-
tensively.

The localization of tones and pulses allows for tracking them through
time, resp. frequency. This tracking provides extra certainty and groups
together similar parts of the spectrum.

2.3 Cochleogram
As we are interested in tones and pulses and we want to track them we need
a continuous development of tones and pulses through our time-frequency
representation without noticeable biases for special frequencies or points
in time. Time-frequency representations decompose the audio signal into
two-dimensional matrices where time is one dimension and frequency the
other. The most popular one is the spectrogram based on the short-term
fast Fourier transform (SFFT). However this Fourier transform does have
biases, both in time and frequency, see figure 3.13 . An alternative is to use
a basilar membrane or cochlea model which does not have these biases and
thus makes it easier to track continuous signals through time and frequency.

2.3.1 Basilar membrane
The basilar membrane is the last mechanical part of the human auditory
system. Its movement triggers responses in the haircells on its surface. The
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Figure 2.3: Location of the cochlea (left, purple) and a cross-section of the cochlea
(right) along the gray line. The location of the basilar membrane is highlighted in
red . The membrane vibrates when sound reaches the ear and the haircells on the
membrane translate the amplitude change to nerve signals.

basilar membrane divides the cochlear duct in two halves (figure 2.3). This
cochlear duct is rolled in a snail-like shape end reduces in diameter from
the entrance to the end. This reduction changes the frequency properties of
the basilar membrane and thus different frequencies in the sound stimulate
different haircells.

Many models of this system have been proposed, either with transmission-
line models which model the physics of the cochlea (Duifhuis et al., 1985) or
with filterbank models (Irino and Patterson, 1997) which try to match the
psycho-acoustical data.

The transmission-line model has shown to be more accurate in resolving
sound close to the Heisenberg limit than the gamma-tone filterbank Hut
et al. (2006). So for our purposes the transmission-line model would be
better, however due to the wide-spread use of the gamma-tone filterbank we
use the gamma-tone filterbank through out this thesis. Most experiments
have also been done with the Duifhuis et al. (1985) model and the results
were very similar.

The gamma-tone or gamma-chirp filterbank (Irino and Patterson, 1997)
is a widely used model for the basilar membrane. Its filter coefficients (hgc)
are defined by (c = 0 for the gamma-tone):

hgc = atN−1e−2πbB(fc)tej(2πfct+c log(t)) (2.8)

where fc is the center frequency of the channel, N the order of the gam-
matone (4) and a = 1, b = 0.71 and c = −3.7. These values are somewhat
different than in Irino and Patterson (1997) in favor of a narrow tonal re-
sponse (at the cost of increased group delay) to make its response closer to
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Figure 2.4: Cochleogram of the author saying “hallo”, the noise is from surroundings

that of the transmission-line model. The frequency range extends from 60
Hz to 4000 Hz. The center frequencies of the filterbank are distributed log-
arithmically. The bandwidth of each filter is given by the ERB scale (Moore
and Glasberg, 1996):

B(fc) = 24.7 + 0.108fc (2.9)

2.3.2 Cochleogram

The basilar membrane models result in a amplitude representation of the
membrane, this gives very detailed information on the signal which may be
useful (Krijnders et al., 2007). However for our purposes a energy represen-
tation is more convenient. To calculate the energy in the amplitude matrix
the filter output is squared and leaky integrated with a channel dependent
time-constant τc = max(5, 2/fc) ms. This leaky-integration method yields,
in combination with the logarithmic frequency axis, a constant-Q-like rep-
resentation . The filterbank output is squared to represent an energy mea-
sure, down-sampled to 200 Hz, and compressed logarithmically to express
the energy in dB. The resulting representation is a spectrogram-like repre-
sentation, termed a cochleogram, with 5 ms frames. For a full mathematical
description see appendix A.

Both the frequency and the energy representation are logarithmic and
comply with Weber’s law, which entails that they are able to represent many
orders of magnitude in a limited dynamic range. Both are central properties
of auditory processing. For historical reasons “channels” are often referred
to as “segments” and we will use both terms.
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2.4 Local target to non-target ratio
In speech recognition research the signal to noise ratio (SNR) is often used
as a measure of how bad a signal is degraded by mixing with other sources
(noise) than the target signal. It is defined as the ratio of the power of the
signal to the power of the noise:

SNR = 10 log
�

Psignal

Pdisturbance

�
(2.10)

This ratio is calculated for a complete speech sample and thus a global mea-
sure. However spectral and temporal content of the signal and the noise are
often different, so the SNR says nothing about the ratio of power at specific
moments in time and frequency. This problem is sometimes alleviated by
using A-weighting (S1.4, 2001, based on Fletcher and Munson, 1933) both
the speech and noise signal and using speech detection (P.56, 1993). This
last method prevents the silences in speech from changing the SNR values.

From speech research started by Fletcher (Fletcher, 1950) and continued
by others (Allen, 1994; Bronkhorst, 2000) it is known that only the local tar-
get to non-target ratio counts in human performance. Cooke (2006) proposed
a model for speech recognition that uses this fact under the term glimpsing
at the target when the LSNR ratio is advantageous to do so.

Moreover, and this is more a naming question, it assumes that signal
and noise are well defined, but if two people talk at the same time both may
be considered signal. For this reason the term target-to-non-target ratio is
more appropriate.

Figures 2.5(e-f) show the LSNR of the signal “hallo” with pink, respec-
tively white, noise added at 0 dB target to non target ratio. Although the
signals in figures 2.5(c-d) don’t include any weighting or speech activity de-
tection, the net effect is a slight overestimation of the SNR compared to
figure 2.5(a).

LSNR(t, f) = 10 log

�
Pt(t, f)�

n �=t Pn(t, f)

�
(2.11)

where Pt is the energy of the target sound and Pn is the power of all indi-
vidual sources.

2.5 Scope of this thesis
Based the design criteria (section 2.1) we formulate the goals of the work
presented in this thesis.
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(a) Signal from figure 2.4 with subway
noise added at zero dB SNR following A-
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(b) Local target to non target ratio of the
signal in figure 2.5(a)
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(c) Signal from figure 2.4 with pink noise
added at zero dB
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(d) Local target to non target ratio of the
signal in figure 2.5(c)
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(e) Signal from figure 2.4 with white noise
added at zero dB
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(f) Local target to non target ratio of the
signal in figure 2.5(e)

Figure 2.5: The left column shows the clean “hallo” from figure 2.4 with several types
of noise added at 0 dB SNR and the right column the local target to non target ratio
of the sounds
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Select regions from a cochleogram that are highly likely to stem from a
single source in realistic acoustical circumstances

Chapter 3 introduces a new method for signal processing. It exploits the
properties of tones and pulses to extract segments in the cochleogram that
are likely to belong to a single source.

Show a possible recognition strategy for these regions

Chapter 4 shows a recognition strategy based on forming groups of regions
found with the methods in chapter 3. Nearest-neighbor algorithms are used
to classify these groups. Initially it is not required to be perfectly correct.
However, the general pattern of sources must provide a good indication of
the actual auditory scene, wherever the system is deployed.

Show integration with knowledge driven context information

As the contents of the datasets is highly ambiguous, the performance of
signal-driven techniques will not be maximally high. To disambiguate some
detected sound event it is coupled with a knowledge-driven network. This
combination is described in chapter 4

Show performance on several different datasets

Before performance on any dataset can be shown, it is necessary to create
a ground truth for the recordings being analyzed. Chapter 5 discusses this
process and its problems for environmental sounds.

Part III of this thesis shows the performance of the recognition system on
diverse datasets and tasks. Chapter 8 extends the grouping with a formant
detection algorithm and results of vowel identification are shown. Chapter 6
shows the application to recordings from a train station with a focus on the
detection of verbal aggression and related classes. Also the integration with
results from video processing is discussed. Finally in chapter 7 the methods
are applied to two datasets and combined with a dynamic network to supply
context information. This addition improves performance. The first dataset
used here is a large dataset of recording from the town of Assen. The number
of classes in this dataset is high (N=54). The second is the dataset from the
Amsterdam Amstel station, also used in chapter 6.
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3

Tone, pulse, and chirp
decomposition

This chapter is based on: Johannes D. Krijnders and Tjeerd C. Andringa.
Tone, pulse, and chirp decomposition for environmental sound analysis. Acta
Acoustica. in preparation.

This chapter introduces two efficient, robust, and informative low-level
signal representations, the tone- and the pulse-fit (TF resp. PF), that are
suitable for environmental sound recognition. These representations are
based on a time-frequency distribution which allows a decomposition of the
signal into tonal and pulse-like subsets. These subsets allow the estimation
of source properties. This decomposition is part of an effort to design an
environmental sound recognition (ESR, see chapter 4) system that can rec-
ognize sound events as diverse as passing cars, singing birds, opening doors,
playing children, the presence of music, the sound of wind and rain, and
passing aircraft. Initially the system is not required to be perfectly correct
on all sound classes. However, the general pattern of recognized sources
must provide a reliable indication of the actual auditory scene, wherever the
system is deployed. This combination of demands poses constraints on the
low level representation, which leads to the representations proposed in this
chapter.

The proposed representations are part of a novel approach to environ-
mental, every-day, or real-world sound recognition that is designed to work

25
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reliably in the same width of acoustic environments as the mammalian audi-
tory system. This approach matches signal-driven evidence with knowledge-
driven expectation (knowledge, (Niessen et al., 2009b), chapter 4). This chap-
ter focuses on estimating evidence about the presence of tones, pulses, and
chirps. This evidence can form the basis of signal representations that are
independent of the acoustical environment. The representations can be used
as constituents of “auditory objects” that represent information about a sin-
gle source or process. A central idea of the representations proposed in this
chapter is to exploit the continuity of the development of patterns in the sig-
nal, that are imposed by the physical source that provides the signal energy
(Andringa, 2002).

Because the final application is in environmental sound recognition, it is
difficult to prove the validity of a low level measure since no ground truth
can be determined on this level from an uncontrolled environmental sound.
However, slightly broadened variants of TF and PF have been shown to form
a suitable bases to define auditory textures of real-world sounds (Andringa,
2008) where TF and TP were referred to as tonality and pulsality). These
textures were applied to a database compiled by Gygi (Gygi et al., 2007),
which contained 100 different non-speech sounds recorded in many differ-
ent (and unknown) situations. The study showed that a TF- and TP-based
method was able to explain much of the perceptual difference between very
different environmental sounds. Therefore, we focus on the technical valida-
tion of the properties of the tone- and the pulse-fit.

Compared to other sound recognition tasks, ESR poses a number of dif-
ferent demands. In many pattern recognition tasks it is not unreasonable
to demand that the input consists of a single source class. For example, in
speech recognition the input can be assumed to be speech in a known lan-
guage that is produced by a cooperative speaker and has minimal, or known
and stable, transmission effects. Therefore it is effective to use features,
like Mel-frequency cepstral coefficients (MFCC’s, which were developed for
speech recognition with Hidden Markov Models(HMM)). However, in the case
of environmental sound recognition there is no such thing as a “cooperative
source”. In fact, the pattern of sources has to be estimated from the signal,
since no restrictions on the signals content, other than that it stems from
a superposition of physical sources, can be assumed safely. Additionally, all
sound sources are influenced by varying, and typically unknown degrees of
transmission effects; especially in the form of reflections that add delayed
copies of the source signal to the input.

Another important difference is that both the input and the output of a
speech recognition system are ordered developments (albeit in very different
domains). This constrains and therefore facilitates decoding and is essential
for the ASR design. In contrast, in ESR the individual sound sources may be
either uncorrelated or subject to complex within-class and between-class cor-
relations. Moreover, different sound sources can be defined on quite different
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temporal scales. The result is a varying superposition of sources instead of a
sequence of events with a temporal ordering that is reliable enough to guide
decoding. Finally, sounds from more distant or more diffuse sources tend to
merge and form a changing diffuse background that might be quite different
from the sources that constitute it. Unlike in automatic speech recognition
(ASR) this background is informative and needs to be described as well.

Humans have little trouble to solve this targets-in-noise problem (for the
specific case of speech generally known as the cocktail-party effect (Cherry,
1953; Cherry and Taylor, 1954; Bronkhorst, 2000)). Computer implementa-
tions on the other hand have problems when speech is mixed with low levels
non-stationary background sounds (Gong, 1995; Lippmann, 1997; O’Shaughnessy,
2008). One of the problems of current sound recognition systems is that the
MFCC or similar features work best in clean conditions. Concurrent sources
influence all coefficients in unpredictable ways. As long as the other sources
can be treated as a small perturbation of the target signal this may work,
but in many cases this cannot be guaranteed. The unpredictability of the
perturbations makes it hard to separate concurrent sources from the target
sound and to properly recognize the target (O’Shaughnessy, 2008).

Human performance seems to benefit from the combination of signal-
driven processing and top-down knowledge (Shinn-Cunningham, 2008). To
mimic such an approach both processes should share common representa-
tions and have the possibility to reason about multiple interpretation hy-
potheses. These hypotheses could relate to the auditory objects that appear
in modern cognitive research (Shinn-Cunningham, 2008) . What an auditory
object is is still unclear (Carlyon et al., 2001; Griffiths and Warren, 2004),
but it should represent information from a single source. The tone-fit and
pulse-fit measures introduced in this chapter help to select time-frequency
regions that are likely to stem from a single source, which is to be contrasted
to approaches were the complete scene is identified as a whole (Aucouturier
et al., 2007; Chu et al., 2009; Eronen et al., 2006). However, these methods
can activate top-down knowledge to disambiguate the sound sources found
with the proposed methods (see also chapter 4).

The chapter continues with a background of computational auditory scene
analysis (CASA) methods. It uses a number of results, more than fifty year
old (Allen, 1994; Cherry, 1953), as basis for a set of demands on the tone- and
the pulse-fit. The methods section describes the auditory model and the TF
and PF algorithms. The experiment section describes the experiments that
demonstrate that the tone- and pulse-fit algorithms satisfy the demands and
show their application to real-world sounds. Finally the chapter discusses
the results, and it touches on a possible application to speed up sparse coding.
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3.1 Background
3.1.1 ASA and Auditory Objects
The main difference between human perception and modern ASR perfor-
mance might be related to a difference in signal representation. As a num-
ber of decades of research on Auditory Scene Analysis (ASA) have shown
(Bregman, 1990), humans are able to track the development of (patterns of)
signal components such as tones and pulses. The important characteristic
of these patterns is that it allows the auditory system to form interpreta-
tion hypotheses that are very likely to stem from a single source (Bregman,
1990). Unlike the name of the research domain suggest, ASA has not often
been aimed directly at real auditory scenes. Instead ASA has shown which
rules govern the grouping of evidence into perceptual streams by focussing
on basic patterns of tones, noises, and clicks. This streaming behavior has
been modeled (Wang and Brown, 2006; Ellis, 1996), and these implementa-
tions have solved some problems in sound source separation and robustness
to noise. However, these implementations typically involve re-synthesizing
audio from a selection, called a mask, and using this as input for a standard
ASR system. This extra step requires a hard (yes/no) decision on what to
include in the re-synthesized sound before the signal is actually recognized
and positively identified as target. This strict early-state selection may be
suboptimal because it is error-prone. A related approach, called missing
data theory (Cooke et al., 2001; Cooke, 2006), accounts for the fact that
some regions of the time-frequency plane might be more important than
other regions and ought to be weighted differently in the decoding process.
Both approaches involve the estimation of a mask of which low-level signal
properties indicate that it is more likely to represent target than non-target.

3.1.2 The local signal-to-noise ratio
As noted by Haykin (Haykin and Chen, 2005), the cocktail-party phenomenon
is, fifty years after Cherry’s seminal work, still an enigma and the “answer to
the cocktail-party phenomenon requires deep understanding of many funda-
mental issues that are deemed to be of theoretical and technical importance.”
The cocktail-party phenomenon can be described as the ability to detect and
recognize target sounds that are mixed with and partially masked by simi-
lar sounds. So even when the target does not stand out in terms of energy
or spectral content, i.e. it is non-salient, it can be detected and recognized.
Natural pattern detection and recognition can also rely on more subtle cues
than saliency. As summarized in (Haykin and Chen, 2005, based on Breg-
man (1990)) human auditory scene analysis relies the estimation of coherent
units of single-source evidence, time-frequency elements or signal compo-
nents, in combination with a number of principles to group these signal
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components. This chapter focusses on the estimation of signal components
that are narrow in the time-frequency plane: tones, pulses, and chirps. We
will term these “narrow signal components”.

Signal component estimation can be coupled to a sixty year old result by
Fletcher (Fletcher (1950), reviewed in (Allen, 1994)) who has determined the
local signal-to-noise ratio (SNR) as a necessary and sufficient indicator of
the reliability of acoustic evidence: time-frequency regions with a negative
local SNR (in dB) did not contribute to recognition performance, but a pos-
itive local SNR improved phoneme recognition. A local SNR exceeding 30
dB did not lead to further improvement. The combination of signal compo-
nent estimation and the notion that all regions with a positive local SNR
should be able to contribute to the probability of a correct recognition result,
forms the basis of this work. In situations where the signal-driven evidence
is reliable it will lead to the activation of interpretation hypotheses for pos-
sible groupings. When the signal-driven evidence is less reliable, grouping
hypotheses based on context, task demands, or prior knowledge can use the
less reliable evidence to decide on the best grouping of signal components.
The resulting pattern of grouped signal components provides information
about the development of the source that produced it.

In this chapter we focus on the reliability of signal component estima-
tion in terms of the local signal-to-noise-ratio (SNR). We will relate this to
Fletcher’s early findings in phoneme recognition, which is a related but quali-
tatively different task. For ASA the SNR of tones and pulses is not important
as signal property. What is important are the properties of the individual
signal components and especially which fraction of it can be estimated. This
deteriorates as function of decreasing SNR. In favorable situations, narrow
signal components can be found and tracked by stringing spectro-temporal
peaks together. When broadband background sounds become progressively
stronger and start to approach the energy of the narrow signal components,
the influence of the “noise” in the estimated signal components becomes more
and more pronounced. Initially this leads to a slight modulation of the en-
ergy of the narrow signal components. The modulations in energy and peak
position increase further until the modulations become so pronounced that
peak-tracks break up. Even stronger background sounds masks the target
more and more until the target is completely masked and the background is
locally dominant (although it might be possible to find it with more global
measures such as an autocorrelation (Krijnders et al., 2007)). The left panels
of figure 3.2 show the deterioration due to local SNR decrease. The upper
left panel shows a cochleogram of a sinusoid. The lower left panel shows
a sinusoid with a decreasing SNR and a number of signal components as
strings of neighboring peaks. With decreasing SNR ratio the string breaks
up into shorter parts. However, the reliable parts can be used to generate ex-
pectations that justify a reconnection or less reliable parts well beyond the
first break-up. Furthermore, when the context provides a matching pitch
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contour, the system can, ideally, switch from an orienting mode, in which
the signal drives processing, to a checking-mode in which knowledge-driven
hypotheses search for matching evidence. In the orienting mode the sig-
nal must be sufficiently unambiguous to drive processing. In the checking
mode, knowledge and expectations counteract signal ambiguity, which al-
lows the system to function in more (adverse) situations. We suggest that
the interplay between orienting and checking modes of pattern recognition
are an important, and hitherto, neglected ingredient of the cocktail party
phenomenon.

3.1.3 Required properties
This chapter aims to provide a low-level signal representation that can be
combined with knowledge-driven expectations through a well defined rela-
tion between local spectro-temporal patterns and the local SNR as a mea-
sure of (statistical) reliability. In benign conditions the tone-fit and pulse-fit
should facilitate signal-driven interpretation hypothesis activation, while in
more challenging conditions, or when a suitable interpretation hypothesis is
available, it should provide information in a form that can easily be checked
for consistency with the expectation. Therefore the resulting representations
should have the following properties:

1. ability to detect all narrow signal components, tones/pulses/chirps, with
a high local SNR,

2. sensitivity to noise in a predictable and local SNR dependent manner,

3. level independency (i.e. only local SNR dependent),

4. continuity preservation: a smooth (continuous and continuous first
derivative) development through time and frequency should lead to a
single signal component with a similar development,

5. frequency independency,

6. correspondency to a measure of local SNR, and

7. ability to work not only on laboratory grade pulses and tones, but also
on a wide range of minimally pre-specified environmental sounds.

8. 100% detection score on true tones, pulses and chirps.

3.2 Methods
Our methods share a common ground with many existing CASA systems in
that the TF processing is performed with a cochlea model. Matched filters
compute the tone- and pulse-fit.
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Figure 3.1: Distribution of the energy in channel 50 (histogram) and the best fitting
gaussian distribution (line). The red line indicates the 2σn point, only 2.5% of the
energy exceed this value. The absolute value of E is arbitrary.

3.2.1 Time-frequency processing

The TF processing is performed by the gamma-chirp filterbank as described
in 2.3. The filterbank has 100 channels and a maximum frequency of 4000
Hz.

3.2.2 Standard deviation of noise

While tones and pulses lead to an excitation with predictable shape, broad-
band noise gives a cochleogram excitation pattern that does not repeat itself
and that can only be represented with a probability density (pdf) function.
This pdf approximates a Gaussian (Figure 3.1) that can be described well
with a segment dependent mean, representing the average energy, and a
standard deviation σn, where n denotes the channel or segment number.
The standard deviation represents the spread of the noisy fluctuations that
constitute the inevitable fine-structure of aperiodic contributions. We will
use σn to normalize the local signal-to-noise ratio with the local standard
deviation. The local standard deviation is estimated by exciting all seg-
ments with white noise. Given the near Gaussian energy distribution of the
energy fluctuations this entails that about 2.5% of the fluctuations exceed
2 standard deviations above the mean. The scale-invariances of the system
ensure that both the level and the overall shape of the reference noise are
unimportant as long as its average is locally flat.
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3.2.3 Tone and pulse fit
To detect tones and pulses in the cochleogram, we use segment dependent
matched filters that provide a measure of fit with an ideal pulse- or tone-
shape for all cochleogram channels n. These matched filters are derived
from the cochleogram response to ideal tones and pulses. The algorithm for
creating and applying these filters is illustrated in figure 3.2. The filter is
channel dependent, so the filter definition process is repeated with tones se-
lected to peak at each segment according to the place-frequency relation. For
each segment the energy at an adjustable threshold value thnσn under the
peak is determined, typically thn = 2 for all segments. The sine-broadness
consists of two numbers, since the response of the cochlea to a tone is asym-
metric. The differences between the position of the top and the upward and
the downward flank at the threshold value constitute the sine-broadness
sb = sb1 + sb2.

The tone-fit of the segment is the difference between the energy of the
center minus the mean of the energy of one sine-broadness before and af-
ter the center. This difference is normalized by the local noise standard
deviation σn:

TF =
E(n)− 1

2 (E(n− sb1) + E(n + sb2))
thnσn

(3.1)

The TF can only be computed for channels around which a sufficient scope
is available. This entails that the TF has less desirable properties for high
and low frequencies (edge effects). This can be reduced by calculating more
channels that strictly necessary.

The pulse-fit uses the same algorithm, but in the temporal direction in-
stead of the frequency direction. The filters lead to the highest values for
ideal excitations (which show the sharpest possible local response), but react
to non-ideal tones and pulses with lower values as well. In the case of chirps
this entails that both the tone fit and the pulse fit contribute. The steepness
of the chirp determines the relative contribution (see figure 3.4).

3.2.4 Separating noisy fluctuations from “real” signal contri-
butions

The resulting measures corresponds to a segment independent measure for
the local SNR in terms of the local standard deviation of noise. It can be
interpreted directly as a reliability of tonal and pulsal evidence. However,
the fluctuations of noise can be locally similar to tones, pulses, and especially
(down-) chirps. These random look-a-like contributions are unlikely to last
very long and have rarely considerably more energy (although this is statis-
tically possible) than their immediate environment. Therefore, these noisy
fluctuations can be separated from “real” signal contributions by assuming
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Figure 3.2: Computation of the tone-fit (TF). The upper left panel shows an ideal
sinusoid, the lower a noisy sinusoid with a decreasing SNR and the extracted signal
components, including some spurious ones. The upper middle panel shows an ideal
sinusoid response around the peak (in the segment direction). The lower middle
panel shows the cross section around the noisy pulse. The upper right panel shows
the computation of the TF at the peak position. The TF is the energy difference
denoted by the vertical line. The lower right panels shows the TF computation for the
noisy tone. The computation of the pulse-fit is similar, but with frequency replaced
by time.
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that their duration is too short (for tones) or that they do not span enough
segments. To compute this measure a connected components (van der Hei-
jden, 1994) algorithm was applied to all regions with TF or TP values ex-
ceeding the threshold of 2σ. This size threshold was chosen so that 95%
of the connected components in white noise are classified as noise and only
5% of the regions is classified as non-noise. Because the threshold of 2σ
already discards 95%, the resulting area incorrectly assigned to non-noise is
considerably less than 5% of the total area.

Additional higher levels of processing should deal with the remaining
spurious contributions. Conversely, some of the target information near the
local SNR threshold is incorrectly discarded. However, this part of the target
was not very reliable in the first place. Furthermore, these regions can also
be re-evaluated by higher levels of processing. Since the reliable evidence
is never influenced by this procedure, the net effect of this procedure is a
strong bias towards more reliable signal-driven evidence.

3.3 Experiments
To demonstrate some of properties of the tone- and pulse-fit we provide the
results of a number of experiments. All experiments where performed with
the cochleogram calculation described above. The cochleogram has a maxi-
mum frequency of 4000 Hz. The first section compares the use of thresholded
TF values to optimally thresholded energy levels. The TF values and the opti-
mal threshold are shown to be completely energy level independent, while the
energy threshold is strongly dependent on energy. The section 3.3.2 shows
how the TF and PF values change for chirps with different chirp speeds. As
the chirp speed increases the TF value reduces and the PF value increases,
thus making it possible the estimate the chirp speed based on the combina-
tion of both measures. The third section shows that the TF values have a
well defined correlation with the local target-to-noise ratio. The fourth sec-
tion shows how the fraction of a pure tone that can be detected changes with
increasing noise levels. The fifth section show the accuracy of the tone-fit
and pulse-fit. The accuracy for the tone-fit is better than than 0.8% for most
frequencies, while the pulse-fit is accurate with 2 ms, with a frame-size of
5 ms. The sixth section shows that two tones can be separated based on
tone-fit if they differ at least 3% in frequency. The seventh and final section
shows the behavior of the tone-fit and pulse-fit on isolated recordings of ev-
eryday sounds from the Gygi database Gygi et al. (2007). The recordings in
the dataset are labeled as being harmonic, pulse-like or continuous sounds
and the tone-fit is shown to explain most of the energy in the harmonic class
and little in the two other, whereas the pulse-fit explains most of the energy
in the pulse-like class and little in the other two.
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3.3.1 A comparison with energy threshold
Standard methods to estimate a target in noise rely heavily of the estimation
of a noise level. This noise level has to be estimated from low-level signal
properties (typically energy or harmonicity) before the signal is recognized
and can be known what is target and and what “noise”. The noise level
is typically adapted dynamically with a time constant and some form of
temporal averaging (Martin, 2001; Rangachari and Loizou, 2006). While this
works for many cases, the noise level estimation may not be optimal or even
quite wrong because it is based on an incorrect decision on what is target
and what is “noise”. We show that the tone-fit measure is able to perform
the target/noise estimation task without the need to estimate a noise-level.
We only assume a narrow signal component as target. In the upper panel
of figure 3.3 we show that the optimal energy threshold is a function of
the signal level. To calculate the optimal threshold we have defined three
masks, a ground truth (MGT ), a energy threshold mask (MEdB), and a tone-
fit threshold mask (MTF ):

MGT = Pn < Ps (3.2)
MEdB = PEdB < thEdB (3.3)
MTF = TF < thTF (3.4)

We optimize on f-measure, the harmonic mean of precision and recall (see
section 4.3.1, equations 4.5, 4.6, Baeza-Yates and Ribeiro-Neto, 1999). This
entails that we punish both the exclusion of target as well as the inclusion
of noise in MEdB and MTF , MGT is used as ground truth. The target is
a tone in noise with a local SNR level of 15 dB. The overall signal level is
gradually increased 20 dB which entails that the energy threshold thEdB has
to increase as well. For 10 points in time we calculate the optimal thresholds.
The middle panel of figure 3.3 shows that the optimal energy threshold scales
linearly with the signal level, while the threshold for the tone-fit is constant
at about 1.5 standard deviations. The shape of the f-measure (4.7) in the
upper panel of figure 3.3 entails that even errors as small as a few dB in
the energy-based noise model lead to prominent differences in the regions to
be included in the mask. The maximum value of the f-measure is smaller
for the tone-fit than for the energy because the tone-fit only selects the most
energetic part around the center of the tone, while ignoring the rest of the
shape, which is redundant.

3.3.2 Tone-fit and pulse-fit for chirps
Tones, defined by a single frequency at all points in time, and pulses, where
all frequencies contribute at a single point in time, are extremes. Impacts,
chirps and frequency modulated signals are very common in environmental
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Figure 3.3: The estimation of optimal thresholds for target mask forming using a
noise level estimate (upper panel) and the tone-fit (middle panel). When a signal
consisting of a tone in noise is amplified gradually, the average noise level increases
as well and the noise threshold should be adapted to prevent the inclusion of noise
in the mask. The upper panel shows the f-measure for 10 signal levels as function
of the choice of the threshold. The peaks of the f-measure follow the amplification.
Off-peak values may lead to a considerable lower f-measure. The middle and lower
panel demonstrates that the optimal choice of the tone-fit is independent of signal
level. The lower panel summarizes the results.
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Figure 3.4: Obtained values for the tone-fit and pulse-fit measures as function of
chirp steepness in octave per second. The horizontal dotted line indicates twice the
standard deviation of the tone-fit for white noise. The transition from the flat tone
via a chirp to a pulse has a trade-off in the values of the tone- and pulse-fit, just
above twice the standard deviation of the tone-fit for white noise

sounds, such as speech, birds, cars, planes, ...) and show a non-constant in-
stantaneous frequency (Ballas (1993), “signal”, “discrete impacts”, ecological
frequency = 58%). Chirps can span the whole range between flat, essen-
tially a tone, and extremely steep, essentially a pulse. It is desirable to have
a well designed trade-off between the tone-fit and the pulse-fit when pro-
gressing from one extreme to the other. Figure 3.4 shows how the tone- and
the pulse-fit contributions in the segment corresponding to fc = 600Hz) for
sweeps with increasing steepness. The chirp speed is expressed as octaves
per second. Equality occurs around 5 octaves per second for the current
settings of the time-frequency analysis.
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Figure 3.5: The tone-fit as function of local signal-to-noise ratio for different frequen-
cies. The horizontal dotted line indicates twice the standard deviation of the tone-fit
for white noise. This result entails that we can calculate the local signal-to-noise
ratio, under the assumption that our signal is tonal, purely based on local signal
properties.

3.3.3 Correlation with local signal-to-noise ratio

As stated in section 3.1.2 it is desirable to have a measure that correlates
with the local SNR. In this experiment we change the noise level from -30
to 40 dB local SNR relative to a constant tone. The local SNR is calculated
as the difference between the maximum energy of the tone and the mean
energy of the noise in the best channel for the tone. Figure 3.5 shows the
tone-fit values at the energy maximum. The deviations from one at high
SNR for lower frequencies are due to numerical effects. The tone-fit cor-
relates monotonically with the local SNR over a range of -5 dB to 25 dB
which, perceptually, corresponds with range from an hardly audible tone to
a dominant tone with minimal noise.
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3.3.4 Tone sensitivity
As an indication of how well tones are detected and selected as function of
local SNR we measured the fraction of the recovered tone duration after
thresholding the tone-fit values at a range of local SNR’s, expressed in σn.
Apart from the duration-fraction we also measured the connectivity in terms
of whether or not the start and end of the tone were in included in the con-
nected component. The measures were determined for all segments between
80 and 3000 Hertz (to prevent edge effects). Figure 3.6 shows the mean
and standard deviations for these two measures. The measures are by and
large segment independent, with the connectivity breaking up at 4σn and the
duration-fraction starting to decay at 2σn. This entails that a threshold of
2σn is suitable for a detection strategy with knowledge-driven reconnection
and a threshold of 4σn for a purely signal-driven analysis without knowledge-
driven reconnection. This illustrates the point made in section 3.1.2 about
the importance of knowledge-driven checking.

3.3.5 Spectral and temporal accuracy
This experiment shows the accuracy of frequency estimation for tones based
on the TF. The frequency of a tone is changed from 80 to 4000 Hertz in steps
of 20 Hertz. The estimated frequency corresponds to the point where TF =
1 on the rising slope (in frequency direction). The results (figure 3.7) show
that the error is better than 0.8% for most of the frequency range. Again
edge effects spoil performance for low and high frequencies. These results
are sufficient for grouping of harmonics when the grouping algorithm allows
for small deviations from perfect harmonic relations (Krijnders et al., 2010).

The accuracy of the PF (figure 3.8) is measured by generating pulses at
random points in time and comparing the moments where the PF = 1 on the
rising slope of the PF. The PF estimates the time with an accuracy of about
2 milliseconds for frequencies above 700 Hz and the maximum error is 12
milliseconds at 50 Hz. Because pulses include multiple frequencies the error
in estimation of a complete pulse will be approximately 2 milliseconds. Note
that these values are smaller then the frame-size of 5 ms.

3.3.6 Proximate and crossing tones
When two tones are close in frequency, two cases can be distinguished. The
first occurs if the frequency difference is sufficiently large, so that the two
tones result in two peaks, with an ever shallower valley in between as the
frequency difference reduces. The second occurs when the tones are so close
that the result is a single component with amplitude modulation due to
constructive and destructive interference. The relative frequency separation
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Figure 3.7: Absolute value of the relative frequency estimation error. For a large part
of the frequency range the relative frequency can be estimated within 0.8%.
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Figure 3.9: The relative frequency separation (df/f ) that is just detectable with TF for
proximate partials. For smaller separations the the information about the separation
of the two tones resides in the energy modulation.

where the two peaks merge into a single component is plotted in figure 3.9.
The TF values will follow the combined peak, because the TF values are
amplitude independent. The amplitude modulation can be extracted from
the energy development under the tone track. With the current settings of
the TF-analysis, the minimal relative frequency separation is about 3% for
most of the frequency range.

3.3.7 Proximate pulses
As with tones, when two pulses are close in time two cases can be distin-
guished. The first occurs when two pulses are sufficiently separated to form
two peaks. The second occurs when the time difference between two pulses
is so small that they merge into a single component that shows frequency
modulation. The time difference for which the first case changes to the sec-
ond is frequency dependent (figure 3.10). For high frequencies the resolution
in the two peaks case is limited by the subsampling of the cochleogram and
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δtsep > 1.5dtfr. For lower frequencies the two peaks case is limited by the
group delay of the filterbank.

3.3.8 Recorded sound sources

To demonstrate the effectiveness of the TF and PF measures on actual
recordings of sound sources we used the database compiled by Gygi (Gygi
et al., 2007). This database contains a wide range of sound sources, fol-
lowing Shafiro and Gygi (2004) to obtain a balanced sample of environmen-
tal sounds. The database was used to establish perceptual distances be-
tween these sounds. After multi-dimensional scaling (MDS) analysis Gygi
concluded that the first two MDS-dimensions separated three classes of
sounds: harmonic sounds (characterized by prominent tonal components),
impact sounds (characterized by prominent pulsal contributions), and what
he called “continuous sounds”. The continuous sounds category contains pre-
dominantly noisy components but also some patterns of tones, pulses, and
chirps. This let to the expectation that high TF-values are likely to be a good
indicator of the harmonic sounds class and the high PF-values a good indica-
tor of the pulsal sound class. For the continuous sound class the expectation
was that high values of the PF and TF were not expected.

Table 3.1 shows that the fraction of the energy within the top 30dB of
the cochleogram energy can be accounted for by the regions with TF or PF
exceeding 1. Harmonic sounds are predominantly present in the TF, while
impact sounds are predominant in the PF. Continuous sounds are not well
represented in either representation. This confirms the expectation.

Figures 3.11 and 3.12 show how the mask found in clean situations de-
grades with a decreasing global SNR. The SNR was decreased by adding
pink noise to the clean data files at different global SNRs. The rate of decay
of the tone-fit based mask should be the lowest for sounds classified as har-
monic, as the tonal components are likely to be the most energetic in these
sounds. For impact sound the original mask should decay faster as the dom-
inant components are not tone-like in these sounds. For continuous sounds
the rate of decay should be between those of harmonic and impact sounds.
For the pulse-fit measure the impact sounds should decay at the lowest rate
as the SNR decreases, because in these sounds the pulse-like components
are the most energetic. The rate of decay for harmonic sounds, on the other
hand should be the highest. Again for the continuous sounds the rate of de-
cay should be between the two other classes. Figures 3.11 and 3.12 do indeed
show this, for the target class we find a mask with an f-measure around 0.5
at zero dB global SNR.
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Figure 3.10: The time separation that is just detectable with PF for proximate pulses.
For smaller separations the the information about the separation of the two pulses
resides in the frequency modulation. The jacked lines in the low frequency (high seg-
ment numbers) are due to the frequency modulation when the peaks do not separate.

Table 3.1: The percentage of top 30 dB energy explained (mean ± standard deviation).

Measure Harmonic Impact Continuous
TF 34.5± 12.8 8.0± 8.3 10.2± 7.5
PF 7.1± 8.5 29.2± 12.4 10.5± 10.3
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Figure 3.12: The PF decays gradually as the global SNR decreases. For continuous
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cochleogram is made with 100 channels and a maximum frequency of 4000 Hz. The
spectrogram is made using a SFFT with a hanning window of 1024 samples (23.2
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3.4 Discussion
The experiments have shown that it is possible to compute, detect, and de-
scribe narrow signal components conform the demands listed in 3.1.3. The al-
gorithm relies on the predictability of the shape of pulse- and tone-responses.
A highly predictable shape is not possible with regular FFT-based methods,
in which signal content identical to one of the basis functions can be repre-
sented by a single basis frequency, while signal content between two basis
function will be represented by a range of basis frequencies (a phenomenon
called spectral leakage). Consequently, a sine sweep appears to change in
spectral broadness, depending on whether or not the frequency is close to
a basis frequency, see figure 3.13. Suitable windowing mitigates this effect,
but it will not prevent it. We used a cochleogram derived on the basis of a
gamma-chirp filterbank of overlapping filters. The gamma-chirp filterbank
is not the only possible representation. Other sufficiently smooth banks of
overlapping filter will work as well, such as a time domain cochlea model
(Duifhuis et al., 1985). The key demand is that a smooth development at
the source must be represented as a smooth spectro-temporal development
in the signal representation.

The computational complexity of the tone- and pulse-fit is low and scales
linearly with the number of channels. In the current real-time system, the
computational bottleneck is the computation of the filterbank. In normal
operational conditions the tone- and pulse-fit add only 1% - 2% percent to
the processing power required to estimate the cochleogram. The parameters
that define the shape and the noise statistics must be estimated offline. The
offline computation of the standard deviation of white noise requires 20-60
s of noise to reach a sufficiently reliable estimate. Re-computation of TF
and PF parameters is required after all changes that influence the way the
time-frequency information is expressed.

3.4.1 Broadband residue
This chapter focuses on tones, pulses, and chirps that lead to a narrow ex-
pression of energy in time-frequency representations. However, broader com-
ponents such as bursts, band-limited noise, and broadband noise are also
important for sources like cars, whispered speech, and wind. Furthermore,
the background of almost all natural sounds consists of indistinguishable
contributions from many uncorrelated distant sources that lead to a broad-
band contribution. This broadness, in time and frequency, is characterized
by random energy fluctuations.

The proposed techniques can be used to detect and characterize the cen-
ters of the narrow components. The smooth flanks of tones, chirps, and
pulses will not be selected due to the focus on peaks. However, since the
shape of these components is predictable, they can, in principle, be se-
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lected when the development of the peaks is known. The remaining spectro-
temporal area, characterized by random fluctuations with a frequency depen-
dent standard deviation, consists of broadband or (indistinguishable) back-
ground sources. While tones, chirps, and pulses can easily be strung together
to form larger units, the way to combine areas with noise-like evidence in
single source representations is not directly apparent and is a topic of future
research.

3.4.2 Relation with sparse modeling techniques
The purpose of the introduced measure is quite different from sparse mod-
eling techniques (Davies and Daudet, 2006), such as (Molecular) Matching
Pursuit. These methods typically optimize represented signal energy in-
stead of reliable single source information. However, in many situations
the final result, interpreted as time-frequency information about sources,
may appear similar. Sparse modeling techniques approximate a signal in
the time-domain by representing it as a weighted superposition of elemen-
tary waveforms from a fixed dictionary. The aim is typically to approximate
the (audible) signal energy with a minimal number of contributions. As
such these modeling techniques represent all sources without any physical
constraints such as representing an underlying physical continuity of the
source. Nevertheless the distribution of time-frequency centers of the ele-
mentary units may reflect a strong correlation with source information. The
Molecular Matching Pursuit (Daudet, 2006) is a variant that constraints the
selection of elementary waveforms by requiring them to form larger units
according to a source model (typically certain types of music). If the source
model is suitable, this provides considerable advantages and it leads to units
that can be interpreted in terms of source properties.

However, all sparse modeling techniques require considerable processing.
They operate in the time domain with a high sample rate and represent a
computational load of the order Nlog(N), where N is the dictionary size. This
makes the application of these techniques less suitable to determine time-
frequency regions where well-formed and reliable tones, pulses and chirps
might exist. Although the tone- and the pulse-fit have no direct relation to
coding, it might be possible that they can be used to select suitable dictionary
units because both represent information about the relative contribution of
points in the time-frequency plan. As such they might short circuit the
demanding search process associated with matching pursuit.

Zivanovic et al. (Zivanovic et al., 2008) introduced a method of classifying
peaks in the DFT-domain, which is similar to the approach presented here,
i.e. they integrate over the bins belonging to a peak. Their features to
classify a peak as noise, tone or side-lobe resemble an area, not unlike our
selection criterion. The advantage of our method is the absence of the need
to search for bins belonging to a peak.
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Amplitude and frequency modulation will result in cutting up the above-
threshold region into the regions of the individual beats for sufficiently high
levels of noise (depending on the depth of the modulation). If the size of these
area’s becomes smaller than our threshold size for noise, the signal will be
discarded if no knowledge-driven algorithm searches for regularly repeating
beats.

The result of the TF filter could be used as a bootstrap for many other
techniques that require a reasonable estimate of the number of tones in
a signal. Examples are sinusoidal modeling (Marchand and Depalle, 2008;
Röbel, 2007), where the search would only have to be started in a few regions,
and gaussian-mixture-model based methods (Roux et al., 2007) where the
number of gaussians in the mixture needs to be known.

3.4.3 Relation with human processing
The relation between the local SNR and the fraction of the signal component
found in figure 3.5 is intriguing because it lies close to the lower range of
the values of the local SNR reported by Fletcher (reviewed in (Allen, 1994)).
Although Fletcher estimated a range of 0 to 30 dB local SNR and the range
here is about 0 to 20 dB, they can be related. In the case of Fletcher the
range corresponded to improvements in vowel recognition probabilities and
not to fractions of signal component found, which should be considered as
only a small part of the process of phoneme recognition.

This is the first report of a low level signal description that directly re-
lates the local SNR to probabilities. Moreover, the measure is also defined on
a similar range as Fletcher. This suggests that some variant of the tone-fit
and the pulse-fit might indeed play a role in the auditory system by translat-
ing complex time-domain patterns into level independent information that
relates spectro-temporal information to physically and statistically meaning-
ful information. This role might be of central importance in understanding
the reliability of the auditory system, since it opens a controlled way to cou-
ple signal-driven and knowledge-driven processing with the optimal use of
physical information.

3.5 Conclusion
Together, the experiments have shown that the tone- and pulse-fit form an ef-
ficient, robust, and informative low level signal representations that comply
with the requirements listed in section 3.1.3. The experiments have shown
that TF and PF are able to indicate all tones and pulses with a high local
SNR (figures 3.3, 3.5, and 3.6). Therefore they are, unlike dynamically es-
timated adaptive background models, insensitive to threshold estimations
errors (figure 3.3, lower panel). The measure is dependent on the local SNR
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in a predictable and by and large channel-independent way (figure 3.5), ex-
pressed in standard deviations of white (or more generally broadband) noise
(figure 3.6). Moreover the measure has been shown to be suitable for chirps
as an intermediate signal class between sinusoids and pulses. Slow sweeps
are well described by the tone-fit, very steep ones by the pulse-fit and inter-
mediate values by a superposition (figure 3.4). This set of desirable prop-
erties provides information that can be used by a later signal component
tracking stage. All in all, the tone- and the pulse-fit provide time-frequency
regions where reliable tonal and pulsal evidence can be derived about the
sources that contribute to the signal. These regions have properties that are
suitable for environmental sound recognition and results on environmental
sound recognition using the tone- and the pulse-fit measure can be found in
chapter 4.



4

Sound event identification
through expectancy-based
evaluation of signal-driven

hypotheses

This chapter first appeared as: Johannes D. Krijnders, Maria E. Niessen,
and Tjeerd C. Andringa. Sound event recognition through expectancy-based
evaluation of signal-driven hypotheses. Pattern Recognition Letters, 2010.
Work on the dynamic network model as described in section 4.2 is by M.E.
Niessen.

We present the results of an experiment where signal-driven (bottom-up)
recognition is combined with knowledge of the context (top-down knowledge)
to improve the performance of environmental sound recognition in real-world
circumstances. The real-world sonic environment is often referred to as a
soundscape, that is, an environment of sounds with emphasis on the way it
is perceived and understood by an individual or by a society (Schafer, 1977).
Although full soundscape analysis is beyond the scope of this chapter, we aim
to build a system that can become the basis for an automatic soundscape
analysis tool by identifying sound events in real-world environments.

A system that identifies sound events in continuous recordings has ad-
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ditional requirements compared to a system that classifies sound samples,
of which is known that they have content. In recognition, a system needs
to segment the signal and separate the sources before it can classify them
(Shinn-Cunningham, 2008; Griffiths and Warren, 2004; Roman et al., 2006;
Barker et al., 2005).

Furthermore, a system that analyzes soundscapes has to deal with trans-
mission effects such as concurrent sources and reverberation. Reverberation
results in a mixing of the target sound with a time delayed version of it-
self. Therefore, it precludes the successful application of feature vectors
that describe the whole spectrum, such as Mel-frequency cepstral coefficients
(MFCC’s) and the continuous wavelet transform (CWT). MFCC’s have been
shown to be very successful for single-source, non-reverberant speech recog-
nition (O’Shaughnessy, 2008). Moreover, MFCC’s and CWT have been used
successfully in environmental sound recognition provided that the recordings
contain a single, clean source (Cowling and Sitte, 2003). However, this is an
unrealistic approximation for actual environmental sounds.

Real-world environments pose another problem on techniques used in
speech recognition. Speech recognition relies on a strong temporal ordering,
but for environmental sounds this ordering is far weaker. Speech recognition
techniques exploit this ordering by applying hidden Markov models to find
the best model sequence (O’Shaughnessy, 2008). In the case of non-speech
sound recognition, such as music genre determination, it has been shown
that temporal information is not necessary to recognize genre (Aucouturier
et al., 2007). However, music genre determination does not require the de-
tection of sound events and is therefore not suitable to describe the sonic
environment in detail.

Another method for sound analysis, the bag-of-frames (BOF) method, has
been shown to be able to identify scenes from real-world recordings (Aucou-
turier et al., 2007). However, the BOF method is not designed to represent
details about individual sources in the signal, because it uses long-term
statistics of the complete spectral range. Nevertheless, information derived
with BOF methods may provide contextual information to guide the classi-
fication of sound events.

In contrast to the BOF method and whole spectrum descriptors, the meth-
ods we present in this chapter segments the spectrum on the basis of the
local spectro-temporal properties. Segments are likely to stem from a single
source when they are based on local properties. The robustness and reliabil-
ity of these segments, called signal components, are improved with grouping
principles from auditory scene analysis, such as common onset, common off-
set and common frequency development (Bregman, 1990; Ellis, 1999). These
groups are classified as sound events using a naive Bayes classifier.

Systems that perform environmental sound recognition, with similar pre-
processing as proposed in this chapter, are applied commercially in real-life
situations (van Hengel and Andringa, 2007). These systems extract one bit
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of information from their environment, namely: “is there verbal aggression,
or not?”. The more general problem of environmental sound recognition is
more complex, but shares some properties with information retrieval, espe-
cially with associative retrieval (Crestani, 1997). For both applications it is
desirable to retrieve relevant information that is associated with some in-
formation item, such as a user query. In environmental sound recognition,
retrieval corresponds to estimating the presence of sources and processes
from the signal’s history and its environmental context. Similar to informa-
tion retrieval, it is not essential to recognize all sound sources (documents).
Instead, it is important to determine sufficient information about the envi-
ronment to extract relevant parts of the signal, that is, being able to answer
the question that spawned the search. Because of the similarities between
environmental sound recognition and associative information retrieval, we
use the same measures of success, such as precision, recall, and the F -
measure.

The dataset used in this chapter is created to test aggression detection
systems. However, the content is fairly rich, since it is recorded on a busy
train station. Therefore, it includes problems of real-world environments,
such as transmission effects and ambiguous sound events. For example, the
sound of a train and a subway are very similar. Based on the sound alone,
even human listeners have problems identifying the event correctly, unless
they are provided with context (Ballas and Howard, 1987). An automatic
system that identifies sound events in real-world situations can benefit from
contextual information to recognize events, similar to humans listeners.

To approach this human strategy, we propose a method inspired by cog-
nitive research (Quillian, 1968; McClelland and Rumelhart, 1981). This
method constructs a dynamic network that keeps track of both bottom-up
signal information and contextual knowledge. By using more information
than what can be known from the signal at each point in time, the sys-
tem is not only more robust to noise, but it can also distinguish between
sound events that are similar in acoustic structure but different in meaning
(Niessen et al., 2009b). The nodes of the dynamic network represent infor-
mation about sound events at different levels of complexity. Whenever new
signal-driven information becomes available, the information in the network
is updated. Subsequently, this information is used to form expectancies of
future sound events.

This chapter is divided in five sections. The following section discusses
the dataset. Furthermore, we explain the signal-driven processing signal
components and machine learning. The third section describes how contex-
tual knowledge is learned and incorporated in the system. Section 4.3 dis-
cusses the results of the signal-driven and the combined system, which uses
knowledge of the context on top of the signal-driven information. Finally, in
the fifth section we explain and discuss the results and give suggestions for
future work.
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Table 4.1: The annotated classes and the number of their occurrences in the dataset.

class #
singing 82
speech 521
train 15
subwayDoorSignal 14
subway 40
kick 26
scream 290

4.1 Signal-driven processing
4.1.1 Dataset
The dataset (chapter 6, Zajdel et al., 2007) consists of 40 enacted scenes
from 16 different scenarios, which last between 1 and 2 minutes each. The
total duration of the recordings is 54 minutes. The scenes were acted by
professional actors (three men, one woman) on a platform of the station Am-
sterdam Amstel. The recordings are distorted by reverberation, because the
Amstel station is a glass box. The platform was in normal use by trains on
one side and subway trains on the other side. The actors took turns in play-
ing the scenes. For example, the “pickpocket” scenario was played out twice
with different actors. All scenarios were played out twice or more. The 16
scenarios were based on stories occurring at stations, such as friends meet-
ing, enthusiastic football supporters and diverse forms of verbal aggression
and vandalism. The scenes were recorded by 8 microphones (16 bits, 44.1
kHz sampling rate), of which one was used for this study. This microphone
was located about 2 meters from the centre of the action and about two me-
ters from the subway track. Saturation of the microphones was checked not
to occur when goods trains passed. The scenes were also captured by three
calibrated cameras.

The 40 scenes were annotated by the authors for 7 classes (see table 4.1),
based on audio and video. The start and stop times of each event were an-
notated. For subways and trains, and for some speech, singing and screams,
these times were ambiguous, because it is hard to indicate the exact time
these events become loud enough to be detectable. The assignment of classes
included subjective decisions like whether or not a sound is speech or a
scream. These decisions were left to the annotator. Therefore, the annota-
tions are far from perfect (see chapter 5).

4.1.2 Signal components
All recordings are processed using the methods from chapter 3. The cochleograms
are created using a 100 channel gamma-tone filterbank and using a frame-
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size of 5 ms. The tone-fit and pulse-fit representations are thresholded to
create a binary mask. This threshold is set to twice the standard deviation of
the TF or PF when applied to white noise. Areas that are too small to be ei-
ther valid tones or valid pulses are discarded. This pruning, in combination
with the mask threshold, limits the number of spurious areas that are caused
by broadband signals, while allowing tonal or pulse-like signals. Within the
remaining areas the energy maxima of the cochleogram are strung together
horizontally to form tonal, or vertically to form pulse-like signal components
(see figure 4.1).

4.1.3 Harmonic complexes
If possible, the tonal signal components are combined into harmonic com-
plexes (HC) by selecting more and more tonal signal components that com-
ply with the properties of a harmonic complex. Harmonic complex formation
starts by selecting concurrent signal components that have a harmonic rela-
tion. These hypotheses generate new hypotheses at fundamental frequencies
in the range between 300 and 1200 Hertz by shifting harmonic positions of
the signal component. These hypotheses are extended with more and more
signal components. The process ends by selecting the hypotheses that comply
best to a well-formed HC by maximizing score S:

S = nsc + bf0 + nh −
�

sc

rmssc −
�

sc

∆fsc (4.1)

where nsc is the number of signal components in the group, bf0 is one or
zero depending on the existence of a signal component at the fundamental
frequency, nh is the number of sequential harmonics in the group, rmssc

are the root mean square values of the difference of a signal component and
the fundamental frequency after the mean frequency difference is removed,
and ∆fsc is the mean difference between the fundamental frequency and the
frequency of the signal component divided by its harmonic number.

For each harmonic complex we calculate nine features, listed in table 4.2.
These features will be used in the signal-driven recognition stage.

4.1.4 Broadband events
Evidence for broadband events, such as trains, is determined by an algorithm
that searches for slow broadband changes in the signal. These events have
to satisfy a combination of criteria. The change in signal must last at least
2 seconds, and 30% of the frequency channels must be more than 6 dB
above the long-term background. The long-term background is calculated
per channel as the energy value that is exceeded more than 95% of the time.
This level of 95% assumes that each channel is dominated by background
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Table 4.2: The features extracted from each harmonic complex. Features 1, 2, 3 and
9 are picked by the authors to indicate the strength of the harmonic complex. The
other features are selected from van Hengel and Andringa (2007); Zajdel et al. (2007)
to discriminate speech, scream, singing and subwayDoorSignal.

# description
1 length in seconds
2 score from eqn. 4.1
3 number of signal components
4 mean energy under the signal components
5 std deviation of energy under the signal
6 spectral tilt of the signal components
7 mean fundamental frequency
8 standard deviation of fundamental frequency
9 feature 2 divided by feature 1

noise at least 5% of the time. The criterion is fairly safe and works well in
practice, assuming that a temporal scope can be chosen appropriately. We
chose a temporal scope that was as long as the whole file (about a minute).
The energy must exceed the background by three standard deviations of
white noise in that channel.

The events that comply to the aforementioned criteria are described with
a feature vector of 20 features. The first 15 features are three properties
calculated in five frequency bands. Every frequency band contains 20 chan-
nels. The 5 remaining features are the first five cepstral coefficients that
describe the spectral envelope. The three properties for the five bands are
only computed for the 10% most energetic time-frames per event. The first
property is the correlation between points in time separated by half a sec-
ond. This correlation is typically high for slowly changing events and low for
fast changing events, such as speech. The second property is the distance
between the frequency band and the average energy, in terms of standard
deviations of white noise. This property is level-independent and reflects
the energy distribution over the bands. The distribution can be different
between subway trains and normal trains. The third property is the aver-
age foreground-to-background ratio for each band, which reflects the total
energy per band compared to the background. This property might differen-
tiate between nearby and far-away events.

4.2 Dynamic network model
The signal-driven processing provides hypotheses based on information in
the signal. However, real-world sound recordings, such as in the dataset used
in this study (see section 4.1.1), are distorted by transmission effects similar
to broadband noise. Furthermore, some sound events can produce similar
acoustic signals, but have a different meaning. For example, although speech
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Figure 4.2: The background shows the cochleogram of a few screams and a departing
subway train. The black lines indicate signal components, the thick black lines are
grouped together to form harmonic complexes, and the white lines indicate their fun-
damental frequencies. Spurious contributions, due to pattern in noise are inevitable,
but they can be discarded if they do not contribute to patterns at higher levels of
aggregation.
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and screams result in a similar acoustic pattern, they differ in meaning, and
require a different response. Distortions due to transmission effects and
ambiguous sounds might lead to erroneous hypotheses, because the signal
provides too little information to allow a correct inference. Knowledge about
the environment and the context of a sound event can be used to improve
the classification through predictions. Specifically, past sound events can
lead to expectancies of the sound events that will follow. If a signal-driven
hypothesis matches an expectancy, it is more likely to be correct. In this
section we present a model that creates expectancies of sound events and
evaluates the signal-driven hypotheses based on these expectancies. The
description of the way the model operates is given in more detail in (Niessen
et al., 2009b).

4.2.1 Knowledge network
The knowledge about the environment is learned in a supervised training
phase and stored in a static network, referred to as the knowledge network.
This knowledge network is similar to semantic networks used in information
retrieval (e.g. Crestani, 1997; Maanen et al., 2008). Information retrieval
is concerned with retrieving relevant information associated with some in-
formation item, such as a user query. Therefore, semantic relations, like
similarity, between pieces of information are stored in a semantic network.
Nodes in this network represent information items, and the connections be-
tween the nodes represent the relations between these pieces of information.
In automatic sound recognition, a node could represent a speech event, or
a whistle followed by a train arrival. Furthermore, the relation between
events are represented by the strength of their connection.

Annotations of sound recordings (see section 4.1.1) are used in the su-
pervised training phase to learn relations between sound events. When two
sound events occur within a certain interval, they are combined in a sep-
arate node. The relation between the node that represents the sequence
of the events and the nodes that represent the individual sound events is
calculated according to a term-weighting approach used in automatic docu-
ment retrieval (Salton and Buckley, 1988). In this method the importance
of a term (word or phrase) in a document is determined by multiplying its
frequency in the document with the inverse frequency it occurs in other doc-
uments. Hence, the term is important for a document if it occurs often in
that document and infrequently in other documents. Analogously, if a sound
event A is encountered often in combination with some sound event B, and
little with other sound events, it is important in the event sequence S : A−B.
Accordingly, the strength between the sound event A and the event sequence
S is:

wA,S = tf · log
�

N

n

�
, (4.2)
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where N is the total number of sequences, n is the number of sequences in
which A occurs, and the term frequency is given by:

tf =
fA,S√

fA
, (4.3)

where fA,S is the number of occurrences of A in S, and fA is the total number
of occurrences of A in the training set.

Most sequences represent events that can occur in any order. For ex-
ample, sound events produced by people, such as singing and speech, will
generally be heard together, but not in a fixed order. However, for some se-
quences the order can be very indicative. For instance, in the dataset there
are trains departing, which are always preceded by a whistle of the conduc-
tor. Hence, if a whistle is heard, a strong expectancy of a train departing
should arise. To capture the expectancies of fixed sequences, we determine
whether the sound events that constitute a sequence have a strong bias to a
specific order. For these fixed sequences the mean time difference between
the events is used in a function to calculate the expected value of the second
event in the sequence. In other words, the first sound event of a fixed se-
quence primes the network for the second sound event after a learned time
interval. In the next subsection we will show how this expected value is
computed for both ordered and non-ordered sequences.

4.2.2 Dynamic network of hypotheses
Once the knowledge network is fully trained, it is used in the operation phase
to evaluate signal-driven hypotheses of sound events. Each signal-driven
hypothesis is initiated as a node in the dynamic network. The dynamic
network has three levels of representation. The hypotheses at the first level
represent detected structures in the signal, as described in section 4.1. The
second level consists of hypotheses of possible sound events that explain
the structures. Finally, the third level contains hypotheses of sequences
of events, as described in the previous subsection. Figure 4.3 shows an
example of a network with two signal-driven hypotheses about structures in
the signal, their connections to possible sound events that caused them, and
a sequence of which they might be part.

When a new signal-driven hypothesis is added to the dynamic network,
the configuration of the network is updated. First, the hypothesis that rep-
resents a structure in the signal is connected to hypotheses of sound events
that can explain the structure. The strength of this connection is determined
through naive Bayes classification of the structures, as will be described in
section 4.3.1. Next, the connections of these sound events to possible event
sequences are retrieved from the knowledge network and added to the dy-
namic network. The connections in the network are only between hypotheses
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Figure 4.3: An example of a network with two signal-driven hypotheses about struc-
tures in the signal. Both hypotheses are connected to two hypotheses of sound events
that can explain the structure. Two of these hypotheses are part of an event sequence,
increasing the support for the sound events that are part of the sequence.

at different levels, as can be seen in Figure 4.3. As a consequence, the dy-
namics and hierarchy of the network are captured by the hypotheses and
their connections.

4.2.3 Activation
The activation value of a hypothesis is a weighted sum of its input activation
from connected hypotheses. The activation of a signal-driven hypothesis is
spread through the network after the configuration is updated. As a result,
every hypothesis in the network holds a confidence value after spreading the
activation. A description of the details of the spreading activation algorithm
can be found in (Niessen et al., 2009b). The activation values of all hypothe-
ses in the network decrease with time when they get no reinforcement from
signal-driven evidence.

The activation values of event sequences are used to compute the expected
activation of events that are not active yet, and are part of the sequence. For
example, in a non-fixed event sequence such as singing and speech, of which
speech is already identified, the expected activation of a singing event is
calculated by multiplying the activation value of the event sequence with
the connection strength between the sequence and the type of event (see
Formula (4.2)). Since the activation value decays with time, the expected
value is smaller when the other event of the sequence occurred longer ago.

For fixed event sequences, the expected value will furthermore be depen-
dent on the time when the event is expected:

Âi(t) = wijAj(t−∆t)e
−(∆t−T̄ )2

2σ2 , (4.4)
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Figure 4.4: The upper panel shows the cochleogram of a complete scenario. A darker
color corresponds to more energy. In the first 40 seconds there is some speech and
singing. At t = 41 s a subway horn occurs, which is followed by the noise event of
a subway train passing by. Around t = 55 s four clear screams occur, followed by a
few more muffled ones. At t = 72 s a subway train enters the station, again followed
by screams. The lower panel shows the annotations and detections for the different
classes. The lower, black, lines represent the annotations, the middle, gray, lines the
signal-driven detections, and the upper, light-gray, lines the final, expectancy-based
results.

where wij is the connection strength between expected sound event i and
event sequence j, Aj(t−∆t) is the previous activation value of event sequence
j, ∆t is the time span since j started, and average time span T̄ and standard
deviation σ describe the time distribution of the event sequence, as it is
learned during the supervised training phase.

4.3 Experiments

To test the system we apply it to the dataset of 40 realistic recordings (see
section 4.1.1). In the first experiment only the signal-driven classification is
used. In the second experiment these results are used in the expectancy-
based dynamic network.
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Figure 4.5: The results of the signal-driven classification (white bars) and of the
expectancy-based results (black bars).

4.3.1 Experimental setup
All 40 audio files were processed with the methods explained in section 4.1 to
extract harmonic complexes and their features (see table 4.2). The harmonic
complex with the highest score and overlap was selected for each annotation
and labeled according to the annotation. Harmonic complexes that do not
overlap in time with an annotation were labeled as noise. Harmonic com-
plexes that do overlap with an annotation, but do not have the highest score,
are discarded. From these files, 40 pair files were generated, of which 40
files were used for training, all with the instances from one scene left out,
and 40 files were used for testing, with instances from the scene that was
left out, thus creating a leave-one-scene-out set.

Because of the strong link with information retrieval (see section 4.2.1)
we use performance measures from that field, such as precision and recall,
to quantify the performance of our system. Precision is a measure for the
fraction of time our detections were correct, and recall is a measure for
the fraction of detections we should have made are actually made. The F -
measure is the harmonic mean of these two, giving a single performance
measure. The formula’s are given as:

precision =
TP

TP + FP
(4.5)

recall =
TP

TP + FN
(4.6)

F = 2
precision · recall
precision + recall

(4.7)
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where TP is the true positive rate, FP is the false positive rate, and FN is
the false negative rate.

For the first experiment a naive Bayes classifier from the Weka toolbox
((Witten and Frank, 2005)) was trained on the leave-one-scene-out training
file and tested on the corresponding testing file. The labeling and classifi-
cation of the noise regions was performed in the same way as the harmonic
complex classification. The results of both classifications were taken together
to create a single result set.

In the second experiment the supervised training of the knowledge net-
work (see section 4.2.1) was performed on the same data as the classifier,
that is, the annotations of the leave-one-scene-out training file. Hence, the
test set was not used for training. On average 18 different types of sequences
were encountered in the training set. These sequences are composed of the
7 classes listed in table 4.1. An average of 89 examples of each sequence
was used to train the weights in the knowledge network. The spread of the
number of examples per sequence is very large, ranging from 2 to 730. For
the testing, the results of the classifier were input for the dynamic network
of hypotheses (see section 4.2.2).

4.3.2 Signal-driven results
The white bars of figure 4.5 show the F -measure, the precision, and the
recall of the signal-driven classification. The overall F -measure is 0.37, the
overall precision is 0.39, and the overall recall 0.34. The results of one of the
scenes are shown in the lower panel of figure 4.4.

Part of the errors arise from alignment errors of the annotations. For
example, all detections of the subway trains are longer than the annotations.
This problem is hard to solve, because the annotators did not agree when on
the moment when a train is first and last detectable. Therefore, the detection
cannot agree with both annotators. A partial solution would be to introduce
“don’t care” regions around annotations where the algorithm is not punished
for incorrect detections.

The major groups of confusion are between trains and subway trains,
and between speech, singing, and screams. These confusions may partially
be caused by confusion in the annotations. The distinction between a train
and a subway train is hard to make based on audio recordings, even for a
human annotator. The boundaries between the classes speech, singing and
scream are fairly arbitrary, which causes confusion in the annotations.

The F -measure on the kick class is small because it is neither a harmonic
nor a broadband sound. The features we have used were not suited for
describing these pulse-like sounds.

The systems calculations run at about real-time on a modern PC (2 GHz
dual-core). However, the current Matlab code is not optimized. Based on
similar systems optimized for speed (van Hengel and Andringa, 2007) we
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estimate that the performance could be around four times real-time on the
same machine.

4.3.3 Expectancy-based results
The black bars of figure 4.5 show the performance measures for the classi-
fication including the dynamic network. The overall F -measure improves to
0.45 (20%), the overall precision to 0.42 (8%) and the overall recall to 0.49
(44%). The main improvement is in the recall of the classes that have more
harmonic content (singing, screams and speech), because events of these
classes are more likely to be of the same class as their neighbors. As a
consequence, the network may change a speech classification to a scream
when surrounded by screams. If this change is correct, both the recall of the
scream class and the precision of the speech class increase. However, the
increase in precision is moderated by other erroneous changes. As a result,
the overall precision does not increase substantially. Due to the ambiguous
nature of some of the classes and the acoustic environment a high F -measure
is not achieved. So we conclude that the inclusion of the dynamic network
leads to a result more consistent with manual annotation.

4.4 Discussion
In the previous section we have demonstrated that the combination of signal-
driven algorithms and a dynamic network of hypotheses results in a recog-
nition improvement for most sound event classes compared to an exclusively
signal-driven method. Especially the classes that have similar signal struc-
tures, and hence rely more on context for their interpretation (screams,
speech and singing), are better identified in the combined approach. Classes
that are already identified well by the signal-driven algorithm (subway and
train) gain little improvement from the dynamic network. Finally, both
classes that occur infrequently, and hence have little training examples, and
classes that are not yet captured well by the signal features, show a small
performance reduction.

We have shown that the use of a dynamic network model improves the
overall performance of environmental sound recognition. However, apart
from sound event recognition, this model provides more divers ways to an-
alyze a soundscape. More specifically, through hierarchical relations in the
network, recognition of sound events can lead to abstract descriptions of the
soundscape. This introduces the possibility to describe complex activities
in the neighborhood of the microphone with complex and efficient linguistic
descriptions (Guastavino, 2007).

Furthermore, the input information that is presented to the network is
not limited to a specific modality. In Niessen et al. (2009a) we show that the
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dynamic network model can also be used to improve visual robot localization.
Because the model can receive input from different modalities, it can com-
bine multiple modalities in a single system. For example, if input from one
modality, such as images, is insufficient, input from other modalities, such
as audio or GPS, can help to generate predictions. In future work we plan
to integrate information from multiple sources of knowledge to reach more
reliable event recognition with richer descriptions.

One of the major problems in the development of environmental sound
recognition systems that operate in real-life situations is the lack of large,
diverse, and annotated datasets that can be used for training and testing.
This is one of the reasons that we tested on a dataset that represented only
a single location and a limited amount of events. The main problem of con-
structing more realistic datasets is the large number of different events that
can occur outdoors and the associated time it takes to annotate a represen-
tative set. The development of an annotation tool for soundscape research is
helpful in this respect.

Another problem in environmental sound recognition is performance eval-
uation. We have used the measures precision and recall to quantify the
performance, since these measures are common in the related task of in-
formation retrieval. We calculated these measures in terms of the temporal
overlap of annotations and classifications. However, if we were to apply these
measures in line with the field they were originally developed for, we should
only check whether or not an annotated event was detected. We have chosen
for overlap instead of presence, because the combination of the short annota-
tions of speech events in combination with small temporal alignment errors
made the attribution difficult. Allowing some flexibility in matching system
detections with hand annotations may alleviate this problem. This however
requires a more formal justification, before it can be applied.

The current system shows that it is possible to build a recognition system
that captures many of the events of a realistic and minimally constrained
sonic environment. The background was completely uncontrolled while the
foreground consisted of actors who improvised a range of both social and
aggressive activities. We have shown that it is beneficial to use the his-
tory of identified sound events to form a context in which the current sonic
evidence is weighted. This is done by forming a dynamic network that mim-
ics short-term memory dynamics. The interplay of knowledge-driven and
signal-driven processing is characteristic for human perception. Since hu-
man perception is effectual in a wide range of acoustic environments, we
consider this interplay a promising approach for robust automatic sound
recognition.
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How to evaluate the sources
in a soundscape?

This chapter first appeared as: Johannes D. Krijnders, Maria E. Niessen,
and Tjeerd C Andringa. Annotating soundscapes. In Internoise 2009, 2009.

5.1 introduction
Humans can recognize events in the sonic environment (soundscape) seem-
ingly effortlessly. However, this ability thus far eludes our technical abilities
(Cano, 2006). Automatic sound recognition has important applications in
fields as diverse as environmental noise monitoring, robotics, security sys-
tems, content-based indexing of multi-media files, and even modern human-
system interfaces. Most sound recognition research is aimed at improving
one aspect of these application domains, such as speech recognition or music
genre detection. These limited domain solutions can rely on domain de-
pendent assumptions that simplify the problem considerably. For example,
within music classification (Aucouturier et al., 2007) or speech recognition
(O’Shaughnessy, 2008) it is typically assumed that the input does not contain
multiple uncorrelated streams of sonic evidence. As a consequence, stream
segregation and other problems are defined out of the problem-space and are
not addressed scientifically.
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In contrast to domain specific solutions, a general sound recognition sys-
tem should be robust to the complexities of unconstraint soundscapes, such
as strong and varying transmission effects and concurrent sources. To han-
dle real-world complexities, human perception relies on signal-driven pro-
cessing, but also on contextual knowledge and reasoning (Niessen et al.,
2009b). Therefore, a general sound recognition system should comprise an
interaction of signal-driven techniques and interpretation of the context.

This paper focuses on the development of a tool to facilitate real-world
sound annotation for training and benchmark purposes. It uses a set of
simple algorithms to detect sonic events and to classify these events. The
interaction between semantic content, in the form of annotations, and signal-
based evidence forms the basis of future, more general, sound recognition
systems. The annotation of everyday sounds must lead to an adequate de-
scription of the content of a sound-file in terms of the interval in which an
event occurred. Annotation is a time-consuming, and knowledge intensive
task, which is usually quite boring as well. This is probably the reason why
there is currently only a single annotated database of sounds in realistic
everyday conditions (van Grootel et al., 2009). Carefully selected everyday
sounds in benign conditions have been used in other studies (Gygi et al., 2007;
Marcell et al., 2000). However for these sounds the annotation problem is
trivialized, because the datasets contain single sound events in a single file.

There are many difficulties associated with real-world sound annotation:
The great within class diversity of sounds (e.g. cars at different distances
and speeds) in combination with the co-occurrence of other classes makes it
difficult to interpret a visual rendering of the signal as spectrogram and to
annotate the visual representation without listening to the sounds in con-
text. Visual inspection of spectro-temporal representations is an important
aid for annotation, but attentive listening to the sound is essential. Sonic
events are often difficult to recognize using sound as the only modality. It is
important to annotate the sound during, or soon after, recording. The use of
video information can be very helpful whenever the sound sources are clearly
visible and easily attributable (which is often not the case). Anecdotic evi-
dence suggests that annotation by someone who was not present when the
sound was recorded is much more error-prone and often many sounds can-
not be annotated in detail. For example, the difference between cars, truck,
busses, and even motorcycles is usually not at all obvious.

The co-occurrence of multiple qualitatively different sonic events and
sound producing processes can lead to very complex signals, e.g. coffee-
making in a lively kitchen. In these cases it is difficult to track multiple un-
correlated processes and describe each in detail. One might aim to annotate
the so-called foreground or, alternatively, the events that attract attention.
However, this creates the new problem of determining what attracts atten-
tion or what to assign to the foreground. The large number of individually
distinguishable events of a similar kind, such as singing birds in a forest,
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entails a lot of repetitive work. Realistic environments contain many barely
audible events, e.g. distant speakers, which might or might not be included
in the annotation. Not including these might unjustly punish a detection sys-
tem that detects the valid, but un-annotated, events. Conversely, including
even the faintest events is both time-consuming and prone to classification
errors.

Finally, the determination of the precise moment of the start and end
of audible events is subject to similar difficulties as those in the previous
point. Especially the detection of the on- or offset of a gradually developing
event, like a passing car in a complex environment, is often quite arbitrary.
If the measure of success of a recognition system is based on determining the
intervals in which events occur, the system is punished for any deviation of
this arbitrary choice. The difference between annotators who were present
and who were not, suggests that the sonic evidence may often be insufficient
(for the human listener). This poses a fundamental problem for each sound-
only annotation or recognition system, whether human or machine; a correct
recognition result may simply be impossible. Hence, a perfect ground-truth
is not a realistic goal for a real-world sound recognition system. Instead,
a performance equivalent to human performance when not present during
recording is more appropriate.

The current paper focuses on an annotation tool that helps to provide
more insight in these problems and helps to alleviate a number of them. It
assists a human annotator by reducing the number of repetitive actions by
automatically suggesting annotations based on previous annotations. This
allows for the human annotator to accept the suggested annotation simply as
an instance of the proposed class, instead of having to select it from a (long)
list of possible classes. Within the annotation system we try to maximize
the probability that the true event class is on top of the list. Initially this list
is simply alphabetic. During manual annotation the class list is reordered
according to the estimated probability that a certain event is an instance of
the most likely classes.

In the next section, we will give an overview of the annotation system.
Furthermore, we present the data on which it is tested. In the third section
we will give the results of a pilot-experiment on a set of real-world recordings.
The paper ends with a short discussion of the annotation process.

5.2 Methods
In this section we first describe the dataset that is used to test the annotation
system. This system is based on processing sound in the spectro-temporal
domain. Therefore, the sound signal is first pre-processed, which will be
explained in section 5.2.2. Subsequently, we describe how the sound is seg-
mented into regions that are likely to include the most energetic spectro-
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temporal evidence of the main sources. In section 5.2.3 we show how these
regions are described in terms of a feature vector, and how this feature vec-
tor is used to classify the regions. The section is concluded with a system
overview, which is shown in Figure 1.

5.2.1 Dataset
The dataset was collected under different weather conditions on a number of
days in March 2009 in the town of Assen (65,000 inhabitants, in the north
of the Netherlands). The recordings were made by six groups of three stu-
dents as part of a master course on sound recognition. Each group made
recordings of three minutes at six different locations: a railway station plat-
form, a pedestrian crossing with traffic lights, a small park-like square,
a pedestrian shopping area, the edge of a forest near a cemetery, and a
walk between two of the positions. Recordings were made using M-Audio
Microtrack-II recorders with the supplied stereo microphone at 48 kHz and
24 bits stereo. This data, with annotations by the students, will be made
available on http://daresounds.org.

5.2.2 Preprocessing
The first processing is the transformation of the audio signal to the time-
frequency domain using the techniques described in section 2.3. From the
resulting cochleogram the tone-fit and pulse-fit values as described in chap-
ter 3 are calculated. The cochleogram is used in the next section for segmen-
tation and the cochleogram, tone-fit and pulse-fit representation are used in
the feature vectors as described in section 5.2.3.

Segmentation

The segmentation strategy is fairly basic. It is aimed at the inclusion of
spectro-temporal maxima in the form of blobs in the spectral and/or temporal
direction. These blobs become prominent by subtracting a strongly smoothed
cochleogram from the original. The cochleogram is smoothed in the tempo-
ral direction through leaky integration with a time-constant τ = 5s. The
time constant τ determines the separation between fast, typically foreground,
sonic events and slow, typically background, events. The leaky integration
operation corresponds to a delay in the expression of mean energy values
that is corrected by time-shifting the resulting values backwards with the
time-constant. This time-shift leads to a delay equal to the time-constant,
which is not problematic for off-line processing, but that is not desirable for
online and real-time processing. The temporal smoothing of time-series x(t)
to yield xs(t) is defined by:
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Figure 5.1: Overview of the assisted annotation system. The two gray blocks are the
only places of human intervention.
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xs(t) = x(t− δt) exp(−δt/τ) + x(t)(1− exp(−t/τ)) (5.1)

δt denotes the frame step of 5 ms. In addition to temporal smoothing, the
cochleogram is also smoothed in the frequency direction by taking a moving
average over 7 channels. The difference between the original cochleogram
and the smoothed cochleogram can be termed a fast-to-slow-ratio and is ex-
pressed in dB. The regions with a fast-to-slow-ratio of more than 2 dB are
assigned a unit value in a binary mask. This mask is smoothed with a
moving average in both the temporal direction (25 ms) and the spectral di-
rection (5 channels). The final mask is obtained by selecting average mask
values greater than 0.5, which smoothens region perimeters and reduces the
number of supra-threshold time-frequency points in the inner-regions of the
mask that lead to small holes in the mask. The final segmentation step is
the estimation of individual coherent regions in the mask and to assign a
unique number to each region. The smallest bounding box that contains the
whole region is used to represent the region graphically (see figure 3). There
are no special safeguards to ensure either that each region represents infor-
mation of a single source, or that all information of the source is included
in the regions. For example, when two cars pass at approximately the same
time, a single region will represent both. Alternatively, sounds that are par-
tially masked by (slowly developing) background sounds tend to break up
into a number of smaller regions, that are each less characteristic of the
source. Nevertheless, the current settings seem able to include important
source information of a wide range of sources.

5.2.3 Feature vectors
The feature vectors must describe the source information represented by the
regions. The 37-dimensional feature vector represents properties related to
the physics of the source. Note that normal approaches to environmental
sound feature estimation (Cowling and Sitte, 2003) make no effort to in-
clude source physics other than representing frequency content. The use of
the TF/PF-values allows us to attribute signal energy to tonal, pulse-like, or
noisy contributions, which result from either source limitations or transmis-
sion effects. Table 1 describes the feature vector. The feature vector reflects
the channel contributions per region, the fast-to-slow ratio, and the distribu-
tion of tonal (TF ) and pulse-like (PF ) contributions. These signal descriptors
are represented by 7 different percentile values from the histogram of the
local indicators. Different percentile values might be indicative for different
classes. For example, the 90 and 95 percentile values might be highly indica-
tive for footsteps in noise, while the other percentiles might not discriminate
from a the noisy contribution in a car passage.
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Table 5.1: Region feature vector description

Feature Dim Percentile or range Description
Size 1 > 0.02 Fraction of spectro-temporal area equiv-

alent to 1 s

Channel mean 1 1 - 100
Average channel number (1 is highest,
100 is lowest). This corresponds to av-
erage log-frequency contribution.

Channel std 1 < 50 Provides a single number indication of
the channel spread.

Fast-to-Slow-Ratio 7 [ 5 10 25 50 75 90 95 ]
The distribution of Fast-to-Slow-
percentiles provides information about
the distribution of strong foreground
values

TF 7 [ 5 10 25 50 75 90 95 ]
The distribution of TF values provides
information about the distribution of
strong sinusoidal contributions.

PF 7 [ 5 10 25 50 75 90 95 ]
The distribution of PF values provides
information about the distribution of
strong pulse-like contributions.

Channel distribution 7 [ 5 10 25 50 75 90 95 ]
The channel distribution provides more
detailed information about the pattern of
contributing channels.

Channel spread 3 5-95, 10-90, 25-75

Provides more detailed information
about the channel spread as the dif-
ference in channel numbers between
three percentile pairs of the channel
distribution

Frame spread 3 5-95, 10-90, 25-75
Provides more detailed information
about the temporal spread as the differ-
ence in frame numbers between three
percentile pairs of the frame distribution



76 Chapter 5. How to evaluate the sources in a soundscape?

Classification

Classification of regions based on the feature vector must lead to proposed
classes for regions similar to annotated regions. The classifier should func-
tion in an on-line fashion and must not require long re-training phases.
Additionally, the classifier should be able to function with minimal training
data. This combination of demands suggests a simple k-nearest-neighbor
(kNN) classifier (Duda et al., 2000). Such a classifier stores all training
feature vectors in a matrix. It classifies each region by calculating the Eu-
clidian distance d to all vectors in the training matrix and selecting the k
closest training examples which each represent an example of a single class.
A simple majority voting system is used to determine the best class for the
region. To create a distribution over multiple classes we count the number
of occurrences a class in the top k = 5 and divide this by kdP

d to get a number
indicating the match.

System overview

An overview of the annotation system is given in Figure 1. The system loads,
pre-processes, and segments the data of a single file and presents the result
to the user. First, the user selects a region. The selected region can be
played as sound and a matching class can either be selected from a class-
list or added to the class-list. Initially the list is ordered alphabetically, but
when sufficiently matching examples of the class have been encountered, the
top-positions on the list will be ordered according to class-likelihood. After
class assignment, the kNN training matrix is extended with the feature
vector of the region. If the match of a class exceeds a threshold (here set
to p>0.04), it is automatically classified as that class. If the match exceeds
0.01, the region will be conditionally classified, which entails that the user
has to accept the classification before it is included in the kNN training
matrix. Regions that end up without annotation are discarded after the
user decides that the file is annotated in sufficient detail. To measure the
performance of the system we track the class-rank of manually annotated
regions, the number of automatically annotated regions, and the number
of accepted regions. The number of discarded regions is a measure for the
performance of the segmentation. The final output of the system is a list of
classes assigned to regions.

5.3 Results and discussion
Measuring the performance of the system in meaningful numbers is diffi-
cult. A sensible measure is the time saved by this system compared to full
manual annotation of start and stop times of the sound events. However
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Figure 5.2: The cochleogram of several passing cars. Darker means more energy. Solid
lines denote manual annotation. Dashed lines denote automatic classification, the
dash-dotted lines denote still unclassified regions. The cars are segmented in the
pink boxes. A bird is segmented in the green box. The purple boxes are not (yet)
annotated.

Table 5.2: Results of an annotation session on the Assen dataset (N = 101)

alphabetical first second total
15% 74% 13% 100%
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each annotation session will result in different annotations due to the rea-
sons formulated in the introduction. This makes a fair comparison difficult.
Furthermore the current system is not yet sufficiently user-friendly to al-
low a good comparison. Alternatively we measured how often the correct
class was suggested by the kNN classifier. The results are shown in table
2. When a class is either not annotated yet or misclassified, it is marked as
“alphabetical”, otherwise it is ranked as first or second. Without automated
annotations one expects an average rank equal to half the number of classes.
Note that with k = 5 it is possible to have 5 different classes in the list, but
third, fourth or fifth ranked classes did not occur in the test. The current
system is a first installment of the annotation tool. Its initial performance
is encouraging, but each aspect can and must be improved before it is truly
useful. The further improvement of the tool will depend strongly on an im-
proved understanding of the annotation process, which in turn is a special
form of listening. Initial experience with assisted annotation indicates that
the annotator does not analyze the file from start to end, but instead prefers
to focus either on individual environmental processes or on individual audi-
tory streams. This allows maximal benefit from process/stream dependent
knowledge. It is possible that everyday listening (Gaver, 1993b) reflects this
so that at most one stream is analyzed with all available knowledge: the fo-
cus of auditory attention. All other streams are analyzed in less detail. This
observation in combination with and the annotation problems formulated in
this paper suggest that the question “What do we do when we listen” should
become a focus of active research.
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6

Ambient awareness:
Aggression detection

This chapter first appeared as: Wojtek Zajdel, Johannes D. Krijnders,
Tjeerd C. Andringa, and Dariu M. Gavrila. Cassandra: audio-video sen-
sor fusion for aggression detection. In Proceedings of 2007 IEEE Interna-
tional Conference on Advanced Video and Signal Based Surveillance, pages
200–205, 2007.

Surveillance technology is increasingly fielded to help safeguard public
spaces such as train stations, shopping malls, street corners, in view of
mounting concerns about public safety. Traditional surveillance systems
require human operators who monitor a wall of CCTV screens for specific
events that occur rarely. Advanced systems have the potential to auto-
matically filter-out spurious information and present the operator only the
security-relevant data. Existing systems have still limited capabilities; they
typically perform video-based intrusion detection, and possibly some trajec-
tory analysis, in fairly static environments. In the context of human activity
recognition in dynamic environments, we focus on the relatively unexplored
problem of aggression detection.

Earlier work involved solely the video domain and considered fairly con-
trolled in-door environments with static background and few (two) persons
(Datta et al., 2002). Because events associated with the build-up or en-
actment of aggression are difficult to detect by a single sensor modality
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Figure 6.1: Typical cochleograms of aggressive and normal speech (bottom an top
figure, respectively). Energy content is color-coded (increasing from blue to red).
Note the higher pitch (marked by thick white lines) and the more pronounced higher
harmonics for the aggressive speech case.

(e.g. shouting versus hitting-someone), in this work we combine audio-
and video-sensing. At the low level raw sensor data are processed to com-
pute “intermediate-level” events or features that summarize activities in the
scene. Examples of such descriptors implemented in the current system
are “scream” (audio) or “train passing” and “articulation energy” (video). At
the top level, a Dynamic Bayesian Network combines the visual and au-
ditory events and incorporates any context-specific knowledge in order to
produce an aggregate aggression indication. This is unlike previous work
where audio-video fusion dealt with speaker localization for advanced user-
interfaces, i.e. using video information to direct a phased-array microphone
configuration Pentland (1996).
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6.1 System description

6.1.1 Audio unit
Audio processing is performed in the time-frequency domain with an ap-
proach common in auditory scene analysis (Wang and Brown, 2006). The
transformation of the time-signal to the time-frequency domain is performed
by a model1 of the human ear (Duifhuis et al., 1985). This model is a
transmission-line model with its channels tuned according to the oscillatory
properties of the basilar membrane. Leaky-integration of the squared mem-
brane displacement results in an energy-spectrum, called a cochleogram (see
figure 6.1, section 2.3).

A signal component is defined as a coherent area of the cochleogram that
is very likely to stem from a single source. To obtain signal components,
the cochleogram is first filtered with a matched filter which encodes the re-
sponse of the cochlea to a perfect sinusoid of the frequency applicable to
that segment. Then the cochleogram is thresholded using a cut-off value
based on two times the standard deviation of the energy values. Signal
components are obtained as the tracks formed by McAulay-Quatari track-
ing (McAulay and Quatieri, 1986), applied on this pre-processed version of
the cochleogram. This entails stringing the energy maxima of connected
components together, over the successive frames.

Co-developing sinusoids with a frequency development equal to an integer
multiple of a fundamental frequency (harmonics) are subsequently combined
into harmonic complexes. Note that these harmonics can be combined safely
because the probability is small that uncorrelated sound sources show this
measure of correlation by chance.

Little or no literature exists on the influence of aggression on the proper-
ties of speech. However the Component Process Model from Scherer (Scherer,
1986) and similarities with the Lombard reflex (Junqua, 1993) suggest a cou-
ple of important cues for aggression. The component process theory assumes
that anger and panic, emotions strongly related to aggression, are seen as
a ergo-tropic arousal. This form of arousal is accompanied by an increase
in heart frequency, blood pressure, transpiration and associated hormonal
activity. The predictions given by the model show many similarities with
the Lombard reflex. The increased tension on the vocal chords increases
the pitch and enhances the higher harmonics, which leads to an increase in
spectral tilt. These properties, pitch (fundamental frequency (f0)) and spec-
tral tilt (a measure of the slope of the average energy distribution, calculated
as the the energy of the harmonics above 500 Hz divided by the energy of
the harmonics below 500 Hz) are calculated from the harmonic complexes.

1We thank Sound Intelligence (http://www.soundintel.com) for contributing this model and cooper-
ation on the aggression detection methods.
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Figure 6.2: (Left) Optical-flow features for detecting trains in motion. (Right) Repre-
senting people: ellipses (for tracking) and points (for articulation features).

The audio detector uses these two properties as input for a decision tree. An
example of normal and aggressive speech can be seen in figure 6.1.

6.1.2 Video unit
Analysis of the video stream aims primarily at computing visual cues char-
acteristic for physical aggression among humans. Physical aggression is
usually characterized by fast articulation of body parts (i.e. arms, legs).
Therefore, a principled approach for detecting aggression involves detailed
body-pose estimation, possibly in 3D, followed by ballistic analysis of move-
ments of body parts. Unfortunately, at present pose estimation remains a
significant computational challenge. Various approaches (Gavrila, 1999) op-
erate at limited rates and handle mostly a single person in a constrained set-
ting (limited occlusions, pre-fitted body model). Simplified approaches rely
on a coarser representation human body. An example is a system (Datta
et al., 2002) that tracks a head of a person by analyzing body contour and
correlates aggression with head’s “jerk” (derivative of acceleration). In prac-
tice, high-order derivatives related to body contours are difficult to estimate
robustly in cases where the background is not static and there is a possibility
of occlusion.

Visual aggression features

Here we consider alternative cues based on an intuitive observation that
aggressive behavior leads to highly energetic body articulation. We esti-
mate (pseudo-) kinetic energy of body parts using a “bag-of-points” body
model. The approach relies on simple image processing operations and yields
features highly correlated with aggression. For detecting people our video
subsystem employs adaptive background/foreground subtraction technique
(Zivkovic, 2004). The assumption of static background scene holds fairly
well in the center view area, where most of the people enter the scene. After
detection, people are represented as ellipses and tracked with an extended
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version of the mean-shift tracking algorithm (Zivkovic and Kröse, 2004).
The extended tracker adapts position and shape of the ellipse (tilt, axes) and
thus facilitates a close approximation of body area even for tilted/bended
poses. Additionally, the mean-shift tracker handles well partial occlusions
and achieves near real-time performance. We consider human body as a col-
lection of loosely connected points with identical mass. While such a model
is clearly a simplification, it reflects well the non-rigid nature of a body and
facilitates fast computations. Assuming Q points attached to various body-
parts, the average kinetic energy of an articulating body is given by the
average kinetic energy of points,

E =
1
Q

Q�

i=1

1
2
mi|vi − ve|2 (6.1)

where vi, mi denote, respectively, velocity vector and mass of the i-th point,
and ve denotes the velocity vector of the ellipse representing the person. By
discounting overall body motion we capture only the articulation energy. Due
to the assumption of uniform mass distribution between points, the total body
mass becomes a scale factor. By omitting scale factors, we obtain a pseudo-
kinetic energy estimate in the form E = 1

Q

�Q
i=1 |vi − ve|2 Such features

are assumed to measure articulation and will be our primary visual cues
for aggression detection. Computation of energy features requires selecting
image points that represent a person. Ideally, the points would cover the
limbs and the head since these parts are mostly articulated. Further, to
estimate velocities, the selected points must be easy to track. Accordingly, we
select Q = 100 points within an extended bounding box of a person by finding
pixels with the most local contrast (Shi and Tomasi, 1994). Such points are
easy to track and usually align well with edges in an image (which in turn
often coincide with limbs as in figure 6.2, right). For point tracking we use
the KLT algorithm (Shi and Tomasi, 1994) (freely available implementation
from the OpenCV library).

Train detection

An additional objective of the video unit is detecting trains in motion. Trains
moving in and out of a station produce sonic noise that often leads to spuri-
ous audio-aggression detections. Therefore recognizing trains in video opens
a possibility for later suppressing of such detections. A train usually ap-
pears as a large, rigid body and moves along a constrained trajectory. For
a given view and rail section we define a mask that indicates the image re-
gions where a train typically appears. In this region we track frame-to-frame
motion of N = 100 image features with KLT (Shi and Tomasi, 1994) tracker
(figure 6.2, left). The features’ motion vectors are classified as train/non-
train by a pre-trained nearest neighbor classifier. A train in motion is de-
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yk yk+1

Figure 6.3: Dynamic Bayesian Network representing the probabilistic fusion model.
The rectangular plate indicates M = 4 replications of the train sub-network.

tected when more then 50% of the features are classified positively. Due to
the constrained movement of trains, our detector turns out quite robust to
occasional occlusions of the train area by people.

6.1.3 Fusion unit
The fusion unit produces an aggregate aggression indication given the fea-
tures/events produced independently by the audio and video subsystems. A
fundamental difficulty with fusion arises from inevitable ambiguities in hu-
man behavior which make it difficult to separate normal from aggressive ac-
tivities (even for a human observer). Additional problems follow from various
noise artifacts in the sensory data. Given the noisy and ambiguous domain
we resort to a probabilistic formulation. The fusion unit employs a proba-
bilistic time-series model (a Dynamic Bayesian Network, DBN (Ghahramani,
2001)), where aggression level can be estimated in a principled way by solv-
ing appropriate inference problem.

Basic model

We denote the discrete-time index as k = 1, 2, ..., and set the gap between
discrete-time steps (clock ticks) to 50ms. At the k-th step, ya

k ∈ 0, 1 denotes
the output of audio aggression detector, and yv

j,k denotes the pseudo-kinetic
energy of the j-th, j = 1, ..., J , person. Our system can comprise several train
detectors monitoring non-overlapping rail sections. The binary output of the
m-th, m = 1, ..., 4 = M , train detector will be denoted as yT

m,k ∈ 0, 1. (We
tested a configuration with M = 4.)
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Our aim is to detect “ambient” scene aggression, without deciding pre-
cisely which persons are aggressive. Therefore we reason on the basis of a
cumulative articulation measurement yv

k =
�

j yv
j,k over all persons. Addi-

tionally, the cumulative is quite robust to (near-)occlusions when articulation
of one person could be wrongly attributed to another.

In order to reason about aggression level, we use a 5-step discrete scale
< 0, 1 >: 0.0 (no activity), 0.2 (normal activity), 0.4 (attention required), 0.6
(minor disturbance), 0.8 (major disturbance), and 1.0 (critical aggression).

Importantly, the aggression level obeys specific correlations over time and
should be represented as a process (rather than an instantaneous quantity).
We will denote aggression level at step k as ak and define a stochastic process
ak with dynamics given by a 1st order model:

p(ak+1 = i|ak = j) CPTa(i, j) (6.2)

where CPTa(i, j), denotes a conditional probability table. In a sense, the first
order model is a simplification as it captures only short-term dependencies.

The measured visual (yv
k) and auditory (ya

k) features are treated as sam-
ples from an observation distribution (model) that depends on the aggres-
sion level ak. Since (later on) we will incorporate information about passing
trains, we introduce a latent train-noise indicator variable nk ∈ 0, 1 and
assume that the observation model

p(yv
k , ya

k)|ak, nk) (6.3)

depends also on the train-noise indicator. The model takes the form of a con-
ditional probability table CPTo, where the cumulative articulation feature
is discretized.

Train models

The fusion DBN comprises several subnetworks — train models which couple
train detections yT

m,k with the latent train-noise indicator nk. Additionally,
each train model encodes prior information about duration of a train pass.
For the m-th rail section, we introduce a latent indicator im,k ∈ 0, 1 of a train
passing at step k. We assume that the train detections yT

m,k, the train-pass
indicators im,k, and the train noise nk obey a probabilistic relation

p(yT
m,k|im,k) = CPTt(yT

m,k, im,k) (6.4)
p(nk|i1:M,k) = CPTn(nk, i1:M,k) (6.5)

For each rail, the model 6.4 encodes inaccuracies of detector (mis-detections,
false alarms). The model 6.5 represents the fact that passing trains usually
induce noise, but also that sometimes noise is present without a passing
train. Since a typical pass takes 5 − 10 seconds (100 − 200 steps) the pass
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indicator variable exhibits strong temporal correlations. We represent such
correlations with a time-series model based on a gamma distribution. A
gamma pdf γ(τm, αm, βm) is a convenient choice for modeling duration τm

of an event (αm, βm are parameters). To apply this model in a time-series
formulation, we replace the total duration τm with a partial duration τm,k

that indicates how long a train is already passing a scene at step k. By
considering a joint process im,k, τm,k temporal correlations can be enforced
by the following model

p (im,k+1 = 1|τm,k, im,k = 0) = ηm (6.6)
p (im,k+1 = 1|τm,k, im,k = 1) = p(τm > τm,k) = (6.7)

=
� +∞

τm,k
γ(τm, αm, βm)dτm = 1− F (τm,k, αm, βm) (6.8)

where F () is a gamma cumulative density function. Parameter ηm denotes
a probability of starting a new train pass. At the k-th step, the probability
of continuing a pass is function of the current duration of the pass. A con-
figuration (im,k+1 = 1, τm,k, im,k = 1) implies that a pass does not finish yet
and the total pass duration will be larger than τm,k, hence the integration.
Further, the partial duration variable obeys a deterministic regime

τm,k+1 =
�

0 iff im,k+1 = 0
τm,k+1 = τm, k + � otherwise (6.9)

where � = 50 ms is the period between successive steps.

Inference and learning

In a probabilistic framework, reasoning about aggression corresponds to solv-
ing probabilistic inference problems. In an online mode, the key quantity of
interest is the posterior distribution on aggression level given data collected
at up to the current step, p(ak|yv

1:k, ya
1:k, yt

1:m,1:k). From this distribution we
calculate the expected aggression value, which will be the basic output of
the fusion system.

Given the graphical structure of the model (figure 6.3), the required dis-
tribution can be efficiently computed using a recursive, forward filtering pro-
cedure (Ghahramani, 2001). We implemented an approximate variant of the
filtering procedure, known as the Boyen-Koller algorithm (Boyen and Koller,
1998). At a given step k, the algorithm maintains only marginal distribu-
tions p(hk|yv

1:k, ya
1:k, yt

1:m,1:k), where hk is any of the latent variables. When
new detector data arrive, the current-step marginals are updated to repre-
sent the next-step marginals. An important modeling aspect are temporal
developments of processes in the scene. Unlike the binary train-pass events,
aggression level usually undergoes more subtle evolutions as the tension and
anger among people build up. Since the assumed (1st-order) model might
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Figure 6.4: A screen-shot of the CASSANDRA prototype system. In the lower part of
the right window, various intermediate quantities are shown: the probabilities for
trains on various tracks (currently zero), the output of the video-based articulation
energy (“People”, currently mid-way), the output of the audio detector (currently at
maximum). The slider covering the right side shows the overall estimated aggression
level (currently “major disturbance”).

not capture well long-term effects and a stronger model would be rather com-
plicated we enforce temporal correlations with a simple low-pass filter. The
articulation measurements (before inference) and the expected aggression
level (after inference) are low-pass filtered using a 10 s running-average filter.
The parameters of our model: probability tables: CPTa, CPTo, CPTn, CPTt

and the parameters αm, βm of the gamma pdf’s) are estimated by maximum-
likelihood learning. The learning process relies on detector measurements
from training audio-video clips and ground-truth annotations. The annota-
tions are particularly important for learning the observation model CPTo.
An increased probability of a false auditory aggression in the presence of
train noise, will suppress the contribution of audio data to the aggression
level when the video subsystem reports a passing train.

6.2 Experiments
We evaluate the aggression detection system using a set of 13 audio-video
clips (scenarios) recorded at a train station. The clips (each 100s-150s) fea-
ture 2-4 professional actors who engage in a variety of activities ranging from
normal (walking) through slightly excited (shouting, running, hugging), mod-
erate aggressive (pushing, hitting a vending machine) to critically aggressive
(football-supporters clashing). The recording took place at a platform of an
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Figure 6.5: Aggression build-up scenario. (Top graph) Audio-aggression detections.
(Middle graph) Visual articulation measurements. (Bottom graph) Estimated and
ground-truth aggression level. The gray lines show uncertainty intervals (2ÃŮ std.
deviation) around raw (before filtering) expected level. (Images) Several frames
(timestamps: 45 s, 77 s, 91 s, 95 s). Notice correspondence with the articulation
measurements.
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actual train station (between two rail tracks, partially outdoor) and there-
fore incorporates realistic artifacts, like noise and vibrations from trains,
variable illumination, wind, etc. Scenarios have been manually annotated
with a ground-truth aggression level by two independent observers using
the scale mentioned in section 6.1.3. Aggression toward objects was rated
approx. 25% lower than aggression toward humans, i.e. the former did not
exceed a level of 0.8. Figure 6.5 details the results of the CASSANDRA sys-
tem on a scenario involving gradual aggression build-up. Here, two pairs
of competing supporters first start arguing, then get in a fight. The bottom
panel shows some illustrative frames, with articulation features highlighted.
We see from figure 6.5 that the raw (before low-pass filtering) articulation
measurements are rather noisy, however the low-pass filtering reveals strong
correlation with ground-truth aggression level. The effect of low-pass filter-
ing of the estimated aggression level is shown bottom plot of figure 6.5. A
screen-shot of the CASSANDRA system in action is shown in figure 6.4. We
considered two quantitative criteria to evaluate our system. The first is the
deviation of the CASSANDRA estimated aggression level from the ground-
truth annotation. Here we obtained a deviation of mean 0.17 with standard
deviation 0.1. The second performance criterion considers aggression detec-
tion as a two-class classification problem of distinguishing between “normal”
and “aggressive” events (by thresholding aggression level at 0.5). Match-
ing ground-truth with estimated events allows us to compute detection rate
(%) and false-alarm rate (per hour). When matching events we allowed a
time deviation of 10 s. The cumulative results of leave-one-out tests on 13
scenarios (12 for training, 1 for testing) are given in figure 6.7. Comparing
the test results for three modalities (audio, video, fusion of audio+ video),
we notice that the auditory and visual features indeed are complimentary;
with fusion the overall detection rate increased without introducing addi-
tional false alarms. It is important to note that our dataset is heavily biased
toward occurrences of aggression, i.e. which put the system to a difficult
test. We expect CASSANDRA to produce much less false alarms in a typ-
ical surveillance setting, where most of the time nothing happens. Table
6.1 gives an overview of the detection results on the scenarios. We notice
that the system performed well on the clearly normal cases (scenarios 1-3)
or aggressive cases (scenarios 9-13), while borderline scenarios were more
difficult to classify. The borderline behavior (e.g. scenarios 7-8) turns out
also difficult to classify for human observers given the inconsistent ground-
truth annotation in Tab. 1. The CASSANDRA system runs on two PCs (one
with the video and fusion units, the other with the audio unit). The overall
processing rate is approx. 5Hz with 756x560x 20Hz input video stream and
44 kHz input audio stream.
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Table 6.1: Aggression detection results by scenario. The table indicates number of
events (positive = aggressive). Figure 6.6 shows example frames from the 5th sce-
nario.

ground-truth detected events
id scenario content positive true-pos. false-pos.
1 normal: walking, greeting 0 0 0
2 normal: walking, greeting 0 0 1
3 excited: lively argument 0 0 0
4 excited: lively argument 1 1 0
5 aggression toward a vend. machine 1 0 1
6 aggression toward a vend. machine 1 0 0
7 happy football supporters 1 1 0
8 happy football supporters 0 0 1
9 supporters harassing a passenger 1 1 0

10 supporters harassing a passenger 1 1 0
11 two people fight, third intervenes 1 1 0
12 four people fighting 1 1 0
13 four people fighting 1 1 1

Figure 6.6: Selected frames from a scenario involving aggression toward a machine.

6.3 Conclusions and future work
We demonstrated a prototype system that uses a Dynamical Bayesian Net-
work to fuse auditory and visual information for detecting aggressive be-
havior. On the auditory side, the system relies on scream-like cues, and on
the video side, the system uses motion features related to articulation. We
obtained a promising aggression detection performance in a complex, real-
world train station setting, operating in near realtime. The present system
is able to distinguish well between clear cases of aggression and normal
behavior. In the future, we plan to focus increasingly on the “borderline”
cases. For this, we expect to use more elaborate auditory cues (laughter
vs scream), more detailed visual cues (indications of body-contact, partial
body-pose estimation), and stronger use of context information.
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Figure 6.7: Cumulative detection results by sensor modality.
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Evaluation on a dataset of
city sounds

This chapter is based on: Maria E. Niessen, Johannes D Krijnders, and
Tjeerd C Andringa. Understanding a soundscape through its components.
In Proceedings of Euronoise 2009, EN09_242, 2009.

In chapter 4 we developed a recognition technique based on signal-driven
recognition and knowledge-driven re-evaluation. This technique was tested
on a dataset recorded on a station in the Netherlands, while this was an
uncontrolled environment, recordings were only made during one day and
the number of possible sound classes was limited. In this chapter we present
the application of the same techniques on a more diverse dataset. Recordings
were made on several different days and with changing weather conditions.
In addition the recordings were made on six different locations. The result
was a dataset that is more representative for a system employed in a city.

In the following section we will describe the methods that we developed
to segment and label components in a soundscape. In the third section we
present a dataset, which is used in an experiment to test the combined
methods. Finally we will discuss the results of the experiment, and give an
outlook on future work.

95
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7.1 Methods
To identify acoustic events in a continuous sound signal, we first selected
components from the sound signal that are likely to stem from a single source
(section 7.1.1). Subsequently, we applied a model of human memory to select
the most likely label for the events that constitute these components, based
on a prediction of the recording location (section 7.1.2). The methods are
only briefly described here. For a detailed description we refer to chapter 3
(Krijnders et al., 2010) and chapter 4 (Niessen et al., 2009b).

7.1.1 Sound Processing
The spectrogram of the sound signal is segmented on the basis of the lo-
cal spectro-temporal properties. Segments are likely to stem from a single
source when they are based on local properties. For example, local energy
maxima that resemble tones and are developing smoothly in time are likely
to stem from the same source. The robustness and reliability of these seg-
ments, called signal components, are improved with grouping principles from
auditory scene analysis, such as common onset, common offset and com-
mon frequency development (Bregman, 1990; Ellis, 1999). The strategy to
combine local signal properties and grouping principles allows the selection
of qualitatively different types of groups, namely tones and harmonic com-
plexes, pulses, and broadband events. A physical description of these groups
is used to classify and label them as sound events using a k-nearest neighbor
(k-NN) classifier.

7.1.2 Dynamic Network Model
The segmented and labeled group derived in the previous section are reeval-
uated using a dynamic network model. This is beneficial because the sound
signal can be distorted or masked by transmission effects. Furthermore, the
labeling using a k-NN classifier is never perfect. To solve these problem
the network incorporates knowledge of the context, based on the short-term
history of events.

The network is identical to the one used in section 4.2 (Niessen, 2010),
with the exception that the top-level nodes represent recording locations
rather than sequences of events. This is more appropriate for this dataset
and it allows the network to predict the location of the recording.

7.2 Experiment
We present an experiment to demonstrate that the proposed methods can be
used to identify events in a soundscape given a predicted location. First, we
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Table 7.1: Examples of annotated classes and their occurrences.

Class Total number of occurrences Sum of duration of occurrences
Bird 238 17 min
Bike 30 2 min 20 sec
Rooster 16 43 sec
Horn 8 11 sec
Shopping bag 1 7 sec

describe the dataset that is used in the experiment. Next, the setup of the
experiment is explained, and in the last part we present the results of the
experiment.

7.2.1 Data
The dataset was collected under different weather conditions on a number of
days in March 2009 in the town of Assen (65,000 inhabitants, in the north of
the Netherlands). The recordings were made by six groups of three students
as part of a master course on sound recognition. Each group made recordings
of three minutes at six different locations: a railway station platform, a
pedestrian crossing with traffic lights, a small park-like square, a pedestrian
shopping area, the edge of a forest near a cemetery, and a walk between
two of the positions. Recordings were made using M-Audio Microtrack-II
recorders with the supplied stereo microphone at 48 kHz and 24 bits stereo.
This data, with annotations, will be made available on http://daresounds.org.

All the recordings were annotated by two students separately. These two
annotations were merged, such that equal labels did not overlap, but became
one instance. We examined the resulting merged annotations, and adjusted
them when necessary. However, we did not introduce new annotations. (An
exception was made for the annotations of one group, which we had to com-
plete because they were too meager.) We ensured that the names of events
were uniform across all the files to prevent the dynamic network model from
learning annotators rather than locations. The total of 44 audio files, with
an average duration of 3,5 minutes, were annotated for 54 different classes.
However, half of these classes were annotated less than 5 times, while just
a few classes comprised most of the annotations. In table 7.1 a few examples
of annotated classes are given, ranked according to their frequency in the
complete dataset.

7.2.2 Setup
The annotations of sound recordings were used to train both the k-NN clas-
sifier, for the labeling of the signal-driven groups, and the knowledge of the
dynamic network. For the k-NN classifier, all 44 audio files were processed
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with the signal-driven method described in section 7.1.1. The segmented
groups with the highest score that overlapped with an annotation were given
that annotation as a label. Groups that did not overlap in time with an an-
notation were labeled as noise. All other groups were discarded. From these
processed files, 44 file pairs were generated. Each file pair consisted of a file
used for training, for which the labeled groups from 43 files were used, and
a test file, which contained all the groups from the one file that was left out,
resulting in a leave-one-out set. Additionally, the annotations of the training
file of each file pair were used to train the weights in the dynamic network
model (see section 7.1.2).

In the test phase, the groups in the test file are used as input for the
dynamic network (see figure 4.3). Subsequently, the possible classes that
the group can represent are initiated as event hypotheses in the network.
The weight between the group and the event hypotheses is the probability of
each class given by the k-NN classifier. If the event cannot be classified and
is labeled as noise by the k-NN classifier, the weights are set to the prior
probabilities of each event. Based on the events hypothesized by the net-
work, the network forms a hypothesis of the location, which in turn initiates
expectancies of certain sound events that might follow. The results of this
combined approach are the most likely events that explain the segmented
groups, given the identified sound events and their predicted location.

The most likely events, according to the k-NN classifier and the combined
model, are compared to the annotations to measure the performance of the
recognition system. The performance is measured with the F-measure. The
F-measure is used in information retrieval to test the effectiveness of the
performance of a system (van Rijsbergen, 1979), for example a search en-
gine. The F-measure is computed as the harmonic mean between the recall,
which represents whether relevant results are retrieved, and the precision,
which represents whether irrelevant results are not retrieved. Applied to
the results of automatic sound identification, precision is a measure for the
fraction of time the identifications are correct, and recall is a measure for
the fraction of identifications that are made out of the amount that should
have made.

7.2.3 Results
The success of the dynamic network model, as applied in this study, depends
on whether the location prediction is correct. The location predictions of the
test files are listed in table 7.2. The number of test files at each location
is included between parentheses behind the location name. The location
predictions of the 7 test files of recordings while walking are not included,
because they cannot be assigned to a single location. The top 1 indicates how
many location predictions are correct on average for a specific location (the
spread in standard deviations is given between parentheses). The model has
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Table 7.2: Correct classification rate (average and spread) of location predictions.

Location Top 1 Top 2 Top 3
City center (7) 0.01 (0.02) 0.02 (0.02) 0.03 (0.03)
Graveyard (7) 0.04 (0.05) 0.04 (0.05) 0.20 (0.16)
Museum (8) 0.25 (0.16) 0.78 (0.30) 0.89 (0.16)

Traffic lights (7) 0.04 (0.05) 0.18 (0.19) 0.65 (0.29)
Train station (8) 0.66 (0.19) 0.85 (0.07) 0.88 (0.07)

an activation or confidence value for all the location hypotheses. Therefore,
if the best prediction is not correct, the second best might be. The top 2
and 3 specify whether the correct location is among the second or third best
predictions.

Only two locations can be predicted well, the train station and the mu-
seum, because some of the sounds the model can identify are very specific
for one of these two locations, such as train sounds for the train station. In
contrast, many of the other sounds the model can identify reliably, such as
cars and speech, are generic, and can occur at any of the locations. There-
fore, the location prediction is not reliable in many test files and also not
crucial as predictions would the same anyway.

The location prediction is based on the classified segmented groups, and
used to select the most likely label for the group. Of all 54 annotated classes,
12 classes are identified (segmented and labeled) by the combined model
(the segmentation algorithm, the k-NN classifier, and the dynamic network).
These 12 classes are the classes that are often annotated. Hence, the k-
NN classifier and the dynamic network model can learn these classes better
than classes that occur infrequently. Table 3 shows the F-measure, precision
and recall of the identifications made by the k-NN classifier (K) and by the
dynamic network model (D) for the 12 classes. The number of test files (out
of the total of 44) in which at least one instance of a class was found by
either one of the models, is given in parentheses behind the class name.
The F-measures that are zero for both models are not included in the mean
values in the table. The bottom row indicates the measures weighted for
the number of test files. On average, the dynamic network model improves
the F-measure, mostly through an increased recall, which means that more
correct instances of annotations are recognized than with the k-NN classifier
in isolation.

7.3 Conclusions
In the previous section we have demonstrated that a model that combines
both signal-driven algorithms and knowledge in the form of the predicted
location, improves the identification of sound events in a real-world environ-
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Table 7.3: F-measure, precision, and recall of k-NN classifier (K) and dynamic network
model (D).

Sound class F-measure (K / D) Precision (K / D) Recall (K / D)
Bird (6) 0.02 / 0.17 0.34 / 0.65 0.01 / 0.12
Braking train (3) 0.20 / 0.09 0.15 / 0.12 0.32 / 0.14
Bus (8) 0.10 / 0.23 0.22 / 0.19 0.09 / 0.41
Car (27) 0.45 / 0.36 0.62 / 0.53 0.43 / 0.35
Footsteps (12) 0.02 / 0.17 0.49 / 0.71 0.01 / 0.14
Passing train (2) 0.73 / 0.73 0.62 / 0.62 1 / 1
Pressure cleaning (1) 0 / 0.08 0 / 1 0 / 0.04
Speech (15) 0 / 0.08 0.52 / 0.33 0.02 / 0.16
Starting train (2) 0.22 / 0.13 1 / 0.50 0.12 / 0.08
Truck (3) 0.05 / 0.25 0.63 / 0.88 0.02 / 0.15
Truck stationary (1) 0.09 / 0 1 / 0 0.05 / 0
Wind (24) 0.10 / 0.19 0.48 / 0.34 0.08 / 0.25
Weighted average 0.18 / 0.24 (+33%) 0.50 / 0.46 (-8%) 0.17 / 0.26 (+53%)

ment. The overall results may not seem impressive, but this is partly ex-
plained by the performance measure. The F-measure is based on the overlap
of the annotations and the labeled groups. Therefore, it is dependent on both
the annotations and the detection algorithm. Annotating sound is a complex
process. The annotators did not only use information in the recording, but
also knowledge of the environment, because they were present during the
recordings. We cannot determine to what extend the annotations are based
on the recording or on their knowledge. Some annotated sound events can
even hardly be identified by a human listener who has to rely on the audio
signal alone.

In contrast, the detection algorithm relies only on the recorded signal.
This signal is uncontrolled and thus very challenging for the algorithm that
segments relevant parts. Furthermore, the recordings contain a wide variety
of sounds events, most of which occur only a few times in all the recordings.
To be able to learn the patterns of a sound event, the k-NN classifier (or any
other classifier) needs more examples than were available of most classes in
the dataset in this study.

These observations indicate that modeling the context is essential to
achieve robust event identification in real-world environments. Indeed we
have shown that context, in the form of location, improves event identifica-
tion substantially, even though it is so far only based on acoustic informa-
tion. Since the dynamic network model relies on the segmented groups, it
cannot identify events that are not segmented. Additionally, the location is
not predictive for many generic classes, such as speech and cars. However,
the generic classes occur most often, and are best classified by the k-NN
classifier. In other words, the rare events are the events that are good pre-
dictors of a location, while these are the hardest events to learn, because
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they are rare. However, the dynamic network model is not limited to process
acoustic information. In another study we show that the dynamic network
model can also be used to improve visual robot localization (Niessen et al.,
2009a). Because the model can receive input from different modalities, it
can combine multiple modalities and factors in a single system that returns
a single analysis. We plan to integrate information from multiple sources of
knowledge so that the context is modeled more profoundly.

In summary, the combined model provides a new way to analyze sound-
scapes by identifying its components. Because these components are also
based on knowledge of the context of the acoustic events, they are a first
approximation of meaningful events. However, to improve the identification
of these components in the complexity of real soundscapes, we require a
combined development of segmentation algorithms and models that can in-
clude non-acoustical factors. Furthermore, we will study human perception
in parallel, so we can validate the model for soundscape analysis. Vice versa,
the development of a system to analyze a soundscape automatically might
increase our understanding of human soundscape perception.
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Automatic Extraction of
Formants in Noise

This chapter is based on: Bea Valkenier, Johannes D. Krijnders, R.A.J. van
Elburg, and T.C. Andringa. Robust vowel detection. In Proceedings of
NAG/DAGA 2009, pages 1306-1309, 2009. and Bea Valkenier, Johannes D.
Krijnders, R.A.J. van Elburg, and T.C. Andringa. Automatic Extraction of
Formants in Noise. Submitted to Interspeech, 2010.

8.1 Introduction
In previous chapters we have shown the application of the recognition tech-
niques developed in chapters 3 and 4 on realistic recordings. While the
application to realistic recordings is the main goal of these techniques it
is useful to test the techniques on datasets that are carefully recorded and
selected because the annotation are less ambiguous. In this chapter the
dataset consists of vowels and is annotated both on formants and fundamen-
tal frequency. Formants are the resonance frequencies of the vocal tract;
they change as the shape of the vocal tract changes. As such, formants are
important acoustical cues for the description and identification of phonemes.
The task of automatic formant frequency estimation is traditionally inves-
tigated by methods based on spectral analysis. Such representations can
be used to accurately estimate the formant positions and formant develop-
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ments Vargas and McLaughlin (2008) in clean speech. However, efforts that
focus on formant detection in noise (Mustafa and Bruce, 2006; Hillenbrand
and Houde, 2003; de Wet et al., 2004; Yan et al., 2006) show much worse
performance.

One of the fundamental problems with spectral analysis is that signal
and noise are treated alike and spectral shape information is spread over all
parameters. As a result, the features are not stable through varying noise
conditions. This urges the user to train and test a system in similar con-
ditions. Furthermore the possibility to suppress noise or separate sources
after feature estimation is reduced. Improved preprocessing yielded only
limited progress towards a solution of this problem. For instance, cepstral
mean subtraction can lead to acceptable recognition results (Yan et al., 2006)
but only as long as the acoustic environment complies to highly specific con-
ditions, such as predictable or steady noise. Other methods try to identify
unreliable regions before recognition and analyze only the parts that are
marked as reliable in order to bias the information towards representing the
target speech Cooke et al. (2001). Such methods work fine as long as enough
reliable observations are made which is not the case in SNR’s lower than
0dB. Although these and other methods improve the signal descriptions in
noisy conditions, the fundamental problem of inclusion of the noise in the
spectral features is still unaddressed.

In contrast, human listeners can detect and recognize speech with rela-
tively little hindrance of background noises (Lippmann, 1997; O’Shaughnessy,
2008) which might partly be explained by the characteristics of the extracted
features. Human listeners might exploit the fact that some of the informative
constituents of the speech sound, namely harmonics near formant positions
are relatively robust to noise. Formants or equivalently resonances in the
vocal tract stand out energetically and are robust to noise. As a result, the
same or similar values could, in principle, be automatically derived from
noisy as well as clean speech. In this paper, we test this assumption. We
present a newly developed formant-detection algorithm, which can be im-
plemented as a real-time system, that uses features similar to the features
hypothesized to be used by humans. We test the robustness of the algorithm
to noise and compare with the results from (Yan et al., 2006). Next we apply
a simple classification method (Best First Search) in order to compare our
results with results from (de Wet et al., 2004) who used the same database
to test the robustness of formant-like features.
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8.2 Method

8.2.1 Algorithm
To calculate the formant trajectories we calculate a cochleogram of the audio
signal with the gamma-tone filterbank as described in section 2.3. For the
cochleogram the tone-fit (chapter 3) is calculated and the from the tone-fit
matrix signal-components are extracted (chapter 4). An example of signal
components extracted from a cochleogram of the utterance “hud” can be seen
in figure 8.1(a). These signal components are combined to form harmonic
complexes using the methods described in section 4.1.3. The hypothesized
harmonic complex with the highest score is used in the next step. The fun-
damental frequency and selected signal components can be seen in figure
8.1(b). Because not all harmonics are found as signal components the next
stages of processing use the energy at the harmonic positions based on the
fundamental frequency.

Except for a special case, Lombard speech (section 6.1.1, Junqua (1993)),
the formant trajectories do not coincide with the harmonics. Therefore a
quadratic interpolation is applied to estimate the real formant location from
the harmonics around and including the maximum. This interpolation pro-
vides the final estimate of the formant positions as shown in figure 8.1(c).
Formant estimates with minimal distance in the frequency plane are con-
nected into formant tracks. Finally we keep formants of sufficient duration
(7 frames or more, figure 8.1(d)).

8.2.2 Material
The formant extractor was tested on the American English Vowels dataset
(AEV) (Hillenbrand et al., 1994). The dataset consists of 12 vowels pro-
nounced in /h-V-d/ context by 48 female, 45 male and 46 child speakers. All
vowels can be correctly classified by American English listeners. The AEV
dataset is annotated for the first four formants at 8 points in time for each
vowel, which makes it a suitable ground truth. We added pink noise in de-
creasing signal to noise ratios (SNRs), from 30dB to -14dB SNR. The step
size was 10dB at SNR’s above zero and 2dB at lower SNR’s . Pink noise was
chosen because it masks speech evenly.

8.2.3 Evaluation
Two performance measures on formant detection for the first three annotated
formants are calculated. The first three formants are necessary to classify
vowels . First, a detection ratio (rd) is calculated, giving the fraction of
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are extracted and are described as a line through the best 
matching location. We call such a description a signal 
component (fig.1a). The final step before the formant 
extraction is the  combining of signal components to HC’s 
(fig.1b). To that end, hypotheses of signal components that 
overlap in time and have almost (within 0.1) an integer 
frequency relation to each other are generated. For each 
hypothesis a fundamental frequency is calculated. Next, 
more hypotheses at octaves above and below each 
hypothesis are added. More matching signal components are 
added to each hypothesis if they increase the score of that 
hypothesis. The score is given by: 
 

! " #$% & '() & #* + , -./$% + , 0 1$%$%$%      (3), 
 

where  nsc is the number of signal components in the group,  
bf0 is one or zero depending on the existence of a signal 
component at the fundamental frequency, nh is the number 
of sequential harmonics in the group, rmssc are the root 
mean square values of the differences of the signal 
component and the fundamental frequency after the mean 
frequency difference is removed and  fsc is the mean. The 
hypothesis with the highest score is used in the next step. 
The exact resonance frequencies of the vocal tract might fall 
in between two harmonics. Therefore, the formant 
frequency is estimated from the energy in the harmonics. A 
three point quadratic interpolation over the harmonics 
around the maximum gives a final estimate of the formant 
location (fig1c). Formant estimates with minimal distance in 
the frequency plane are connected into formant tracks. 
Finally we keep formants of sufficient duration (7 frames or 
more, fig 1d). 
 

2.2. Material  
The formant extractor was tested on the American English 
Vowels dataset (AEV) [13]. The dataset consists of 12 
vowels pronounced in /h-V-d/ context by 48 female, 45 
male and 46 child speakers. All vowels can be correctly 
classified by American English listeners. The AEV dataset 
is annotated for the first four formants at 8 points in time for 
each vowel, which makes it a suitable ground truth. We 
added pink noise in decreasing signal to noise ratios (SNRs), 
from 30dB to -14dB SNR. The step size was 10dB at SNR's 
above zero and 2dB at lower SNR's . Pink noise was chosen 
because it masks speech evenly. 
 

2.3 Evaluation 
Two performance measures on formant detection for the 
first three annotated formants are calculated. The first three 
formants are necessary to classify vowels. First, a detection 
ratio (rd) is calculated, giving the fraction of annotated 
formants that is consistent with our detections,  
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Figure 1: Cochleogram of a male speaker pronouncing [hud]. (a) 
Energetic signal components (b) selected HC, the fundamental 

frequency is given by the striped line (c) formant 
detections (d) selected formants. 

 

We consider a detection to be consistent with the annotation 
if it falls within the range of 15% (1st formant), 12% (2nd 
formant) and 8% (3rd formant) from the annotated formant 
frequency. This equals a mean accepted error of respectively 
95Hz, 316Hz and 266Hz. The range is chosen such that 
formants that were considered correct by the authors 
according to visual inspection were included. Second, a 
measure is calculated for the detected formants that cannot 
be related to the annotated formants, the spurious peaks 
(rsp). This measure is the ratio between the number of extra 
detected formants at the annotated positions, and the number 
of annotated points, 
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Subsequently, the detected formants that are analogous to 
the ground truth formants are further investigated in how 
well they are able to classify the vowels in the test material. 
To that end, a feature vector is constructed, consisting of the 
frequency values of only the subset of detected formants 
that are analogous to the reference formants. Due to missing 
values, i.e. formants that were not detected, we were limited 
to a small number of classification algorithms to choose 
from. The best first tree (BFT) search algorithm from the 
WEKA toolbox [14] allows a weighting of different 
features. This is a relevant characteristic because different 
formants represent a different informational value and 
should be weighted accordingly. We used the BFT search 
algorithm using a tenfold cross validation method on the 
detected formants. 

Figure 8.1: Cochleogram of a male speaker pronouncing [hud]. (a) Energetic signal
components (b) selected HC, the fundamental frequency is given by the striped line
(c) formant detections (d) selected formants.

annotated formants that is consistent with our detections,

rd =
#(detected

�
annotated)

#(annotated)
(8.1)

We consider a detection to be consistent with the annotation if it falls
within the range of 15% (1st formant), 12% (2nd formant) and 8% (3rd for-
mant) from the annotated formant frequency. This equals a mean accepted
error of respectively 95Hz, 316Hz and 266Hz. The range is chosen such that
formants that were considered correct by the authors according to visual
inspection were included. Second, a measure is calculated for the detected
formants that cannot be related to the annotated formants, the spurious
peaks (rsp). This measure is the ratio between the number of extra detected
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formants at the annotated positions, and the number of annotated points,

rsp =
#(detected)−#(detected

�
annotated)

#(annotated)
(8.2)

Subsequently, the detected formants that are analogous to the ground
truth formants are further investigated in terms of how well they are able
to classify the vowels in the test material. To that end, a feature vector is
constructed, consisting of the frequency values of only the subset of detected
formants that are analogous to the reference formants. Due to missing val-
ues, i.e. formants that were not detected, we were limited to a small number
of classification algorithms to choose from. The best first tree (BFT) search
algorithm from the WEKA toolbox Witten and Frank (2005) allows a weight-
ing of different features. This is a relevant characteristic because different
formants represent a different informational value and should be weighted
accordingly. We used the BFT search algorithm using a tenfold cross valida-
tion method on the detected formants.

8.3 Results
Two performance measures on formant detection for the first three anno-
tated formants are calculated. The first three formants are necessary to
classify vowels. First, a detection ratio (rd) is calculated, giving the fraction
of annotated formants that is consistent with our detections,

8.3.1 Formant extraction
In figure 8.2 (top left and top right, bottom left) the detection rates (rd) and
proportion of spurious peaks (rsp) are plotted against an increasing SNR.
In clean conditions, 90% correct detections are made for all three speaker
classes for the first formant, and 75% correct for the second and third for-
mants. For a 0dB SNR, this is reduced for female and child speakers to 70%
for the first formant and 53% for the second formant; for male speakers the
decline is steeper: for a 0 dB SNR, an rd of 50% for the first and 35% for the
second formant is found. For all three speaker classes formants consistent
with the ground truth can still be extracted at negative SNR values. The
proportion of spurious peaks increases gradually to 15% at 0dB for male
speakers and -3dB for female and child speakers. To improve the interpre-
tation of the results of the HC extraction stage, table 8.2 shows the occur-
rences of HC’s that are not detected and the occurrences of HC’s that exhibit
an octave error compared to the fundamental frequency annotations in Hil-
lenbrand et al. (1994). The percentage of not extracted, as well as wrongly
extracted HC’s, is much higher for male speakers than for female and child
speakers which explains the relatively low performance of our method for
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3. RESULTS 
3.1 Formant extraction 
In Figure 2 (top left and top right, bottom left) the detection 
rates (rd) and proportion of spurious peaks (rsp) are plotted 
against an increasing SNR. In clean conditions, ~90% 
correct detections are made for all three speaker classes for 
the first formant, and ~75% correct for the second and third 
formants. For a 0dB SNR, this is reduced for female and 
child speakers to ~70% for the first formant and ~53% for 
the second formant; for male speakers the decline is steeper: 
for a 0 dB SNR, an rd of 50% for the first and 35% for the 
second formant is found. For all three speaker classes 
formants consistent with the ground truth can still be 
extracted at negative SNR values. The proportion of 
spurious peaks increases gradually to ~15% at 0dB for male 
speakers and -3dB for female and child speakers.  
To give a better insight in the results of the HC extraction 
stage, table 1 shows the occurrences of HC’s that are not 
detected and the occurrences of HC’s that exhibit an octave 
error calculated on the f0 annotations in [13]. The 
percentage of not extracted as well as wrongly extracted 
HC’s is much higher for male speakers than for female and 
child speakers which explains the relatively low 
performance of our method for male speakers. The fact that 
even in clean conditions some HC’s are missed or show an 
octave error indicates that the criterion on harmonic 
relations of the tonal components is too strict. Therefore we 
expect a possible improvement by relaxing this criterion.  
In the rsp measure a peak exists at low SNRs for all three 
speaker classes (figure 2, dotted line). This effect is due to 
an increased amount of octave errors in noisy conditions. A 
fundamental frequency that is too low results in more 
harmonics between two formant positions which explains 
the relative high amount of spurious peaks. If the SNR 
decreases, the number of incorrectly extracted harmonic 
complexes will first increase, resulting in an  increased 
amount of incorrect formant detections. Next, if the SNR 
decreases further, the overall number of extracted harmonic 
complexes will decrease due to missed harmonic complexes. 
 

Table 1: Type of mismatch for detection of the harmonic complex 
for male, female and child speakers. For male speakers more 

harmonic complexes are missed and more octave errors are made. 

 

  

  
Figure 2: Performance on formant extraction task; percentage of 

correctly extracted formants according to the annotations for 
female (top left), male (top right) and child (bottom left) speakers. 

The bottom right plane gives classification results using a BFT 
search algorithm. 

 

3.2 Vowel classification 
In the bottom right plane of figure 2 the classification scores 
obtained with the BFT search algorithm are shown. 
Recognition in clean speech is ~80% for all three speaker 
classes. In 0dB SNR, recognition for female speakers is 
60% and recognition for male speakers 35%. Table 2 shows 
the confusion matrix of the classifications of the vowels 
from all speakers pooled together. Relatively much 
confusions can be found between the vowel sounds ‘ae’, 
‘eh’ and ‘ah’, ‘aw’. Those four vowels are confused with 
one of the other sounds for 25% percent of the vowels. It is 
noteworthy that the same vowels are reported to be confused 
most often by human listeners [13]. 
 

ae ah aw eh ei er ih iy oa oo uh uw  

92 3 2 35 1 0 2 0 0 0 4 0 ae 

34 66 16 11 0 1 1 0 0 1 8 1 ah 

0 21 96 0 0 1 1 0 0 5 13 2 aw 

37 2 3 86 0 0 3 0 0 5 3 0 eh 

1 0 0 0 115 1 12 9 0 0 0 1 ei 

0 0 2 0 3 129 1 0 1 3 0 0 er 

2 0 0 4 9 3 114 3 0 2 0 2 ih 

0 1 0 0 11 2 5 114 1 3 0 2 iy 

0 0 3 0 0 1 0 1 106 14 3 11 oa 

0 2 0 1 0 5 0 0 17 96 4 14 oo 

0 10 19 0 1 1 1 0 4 13 89 1 uh 

0 0 0 0 0 2 3 1 4 14 0 115 uw 

Table 2: Confusion matrix of classification task in clean speech 
pooled over all speaker classes 

 SNR (dB) 30 20 10 0 -2 -4 -6 -14 

Female Not extracted(%) 0 0 1 18 23 35 51 98 

Octave error(%) 1 2 3 10 11 13 11 1 

Male Not extracted(%) 2 1 8 41 57 74 81 100 

Octave error(%) 8 6 10 7 5 3 3 0 

Child Not extracted(%) 0 2 1 17 28 39 51 98 

Octave error(%) 1 1 2 4 6 9 8 1 

Figure 8.2: Performance on formant extraction task; percentage of correctly extracted
formants according to the annotations for female (top left), male (top right) and child
(bottom left) speakers. The bottom right panel gives classification results using a
BFT search algorithm.

male speakers. The fact that even in clean conditions some HC’s are missed
or suffered from octave errors indicates that the criterion on harmonic rela-
tions of the tonal components is too strict. Therefore we expect a possible
improvement by relaxing this criterion. In the rsp measure a peak exists at
low SNRs for all three speaker classes (figure 8.2, dotted line). This effect is
due to an increased number of octave errors in noisy conditions. A funda-
mental frequency that is too low results in more harmonics between two for-
mant positions which explains the relatively high amount of spurious peaks.
If the SNR decreases, the number of incorrectly extracted harmonic com-
plexes increases, which results in an increased amount of incorrect formant
detections. If the SNR decreases further, the overall number of extracted
harmonic complexes decreases due to missed harmonic complexes.

8.3.2 Vowel classification
The bottom right panel of figure 8.2 shows the classification scores obtained
with the BFT search algorithm. Recognition in clean speech is 80% for
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Table 8.1: Confusion matrix of classification task in clean speech pooled over all
speaker classes. The background indicates the confusion found by Hillenbrand in
a recognition experiments by human listeners, black represents 100%, white 0%

ae ah aw eh ei er ih iy oa oo uh uw
ae 92 3 2 35 1 0 2 0 0 0 4 0
ah 34 66 16 11 0 1 1 0 0 1 8 1
aw 0 21 96 0 0 1 1 0 0 5 13 2
eh 37 2 3 86 0 0 3 0 0 5 3 0
ei 1 0 0 0 115 1 12 9 0 0 0 1
er 0 0 2 0 3 129 1 0 1 3 0 0
ih 2 0 0 4 9 3 114 3 0 2 0 2
iy 0 1 0 0 11 2 5 114 1 3 0 2
oa 0 0 3 0 0 1 0 1 106 14 3 11
oo 0 2 0 1 0 5 0 0 17 96 4 14
uh 0 10 19 0 1 1 1 0 4 13 89 1
uw 0 0 0 0 0 2 3 1 4 14 0 115

all three speaker classes. In 0dB SNR, recognition for female speakers is
60% and recognition for male speakers 35%. Table 8.1 shows the confusion
matrix of the classifications of the vowels from all speakers pooled together.
Relatively many confusions occur between the vowel sounds ‘ae’, ‘eh’ and ‘ah’,
‘aw’. Those four vowels are confused with one of the other sounds for 25%
percent of the vowels. It is noteworthy that the same vowels are reported
to be confused most often by human listeners (Hillenbrand et al., 1994), see
table 8.1.

8.4 Discussion
We described and tested a method to automatically extract formants based
on robust parts of the acoustical signal, namely the harmonics at formant
positions. In contrast to commonly used ASR features that degrade slowly
as a function of decreasing SNR, formant positions remain constant under
different noise conditions. The robustness of harmonics at formant positions
allows us to develop a method to extract similar feature values over a range
of acoustical conditions.

8.4.1 Harmonic complex extraction
The results in table 8.2 show that in clean situation the harmonic complex
extraction works near perfect for female and child voices. This performance
only starts to drop around 0 dB. The scoring function (equation 4.1) was not
optimized for this dataset, but rather for the dataset used in chapter 4. This
leaves room for improvement. The performance for male speakers, with a
lower fundamental frequency, leaves room for future work as well.
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Table 8.2: Type of mismatch for detection of the harmonic complex for male, female
and child speakers. For male speakers more harmonic complexes are missed and
more octave errors are made.

SNR (dB) 30 20 10 0 -2 -4 -6 -14
Female Not extracted(%) 0 0 1 18 23 35 51 98
Octave error(%) 1 2 3 10 11 13 11 1
Male Not extracted(%) 2 1 8 41 57 74 81 100
Octave error(%) 8 6 10 7 5 3 3 0
Child Not extracted(%) 0 2 1 17 28 39 51 98
Octave error(%) 1 1 2 4 6 9 8 1

8.4.2 Formant extraction
In noisy conditions our method compares well with existing methods pro-
posed in the literature. For instance the method proposed by (Yan et al.,
2006) is a linear prediction model consisting of a noise reduction stage, a
secondary hidden Markov model (HMM2) and a Kalman filter. This method
results in average estimation errors of respectively 17%, 12% and 8% for
the first, second and third formants in a SNR of 0dB train noise. Although
the method in (Yan et al., 2006) outperforms our method, a problem of the
method proposed by (Yan et al., 2006) is that it cannot be easily general-
ized to unseen types of noise, as the noise reduction methods are specifically
suitable for relatively stable types of noise and the method relies predomi-
nantly on de-noising of the input signal. In contrast to this our method can
be generalized to all types of noise.

8.4.3 Vowel classification
In noisy conditions the results for female and child speakers compare fa-
vorably with results found in the literature. (de Wet et al., 2004) report
on a vowel classification task on the same AEV database, in which they
used HMM2 to evaluate probabilities of both frequency and time. Using this
method 55% correct classifications in 0dB babble noise are found for female
and male speakers. For female speakers our method results in higher scores
(60%) although we used a simple classification mechanism (BFT search). We
already mentioned the possibility of improving the part of the algorithm that
extracts the harmonic complex and it is possible that identification can be
improved with a more advanced learning algorithm. This yields the pos-
sibility to obtain better results in noisy conditions for all speaker classes
compared to those reported by (de Wet et al., 2004). Apart from this positive
comparison, it is noteworthy that by using features similar to the features
hypothesized to be used by humans, we find confusions similar to those of
human listeners.
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8.5 Conclusion
We showed that it is possible to develop an automatic method to extract
formant feature values over a range of acoustical conditions that uses the
robustness of harmonics at formant positions. For pink noise we showed
that formants consistent with the ground truth can be extracted at low and
even negative SNR-values. We expect performance enhancement by further
optimizing our harmonic complex detection algorithm. These initial results
seem to suggest that formants, thought to be important for humans in speech
processing, can also constitute robust features for automatic vowel detection,
and possible automatic speech recognition, systems.
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Conclusions

Recent developments in soundscape research and systems for ambient aware-
ness have shown a need for a new range of sound classification and recog-
nition algoritms, because the results of current systems are rather limited.
So, why is automatically extracting useful information from many sonic en-
vironments not yet successful? The applications of the recent developments
require sound source recognition work in complex environments and with
flexible tasks. For some of these applications, for example acoustic aggres-
sion detection in the public space, the desired information is a single bit:
“are there aggressive vocalizations or not?”, for other applications, like in
soundscape research, a richer description is required.

Existing techniques for sound recognition are designed to function in
closed, specialized domains. Speech recognition and music genre recognition,
for example, work under the condition that the input is what they expect;
speech from the speaker and the environment the system was trained on,
or clean music recordings respectively. The idea that these closed domain
techniques will generalize to open environments has so far not materialized.
To operate in open environments we need to focus on the constancy and
invariants in the signal: the physics that produced it.

In contrast to current “engineered”, specific systems, we aim to develop
signal processing techniques that can handle sound in uncontrolled envi-
ronments. Such environments are outside the range of the problems solved
by current techniques, but are the normal environment for humans. These
novel techniques are based on the research questions: “How to select sonic
evidence that is likely to stem from a single source from a sound signal

113



114 Chapter 9. Conclusions

recorded in realistic acoustical circumstances?” and “How can the signal,
instead of the system design, guide the processing of the signal, towards an
optimal rendering of the information in the signal?”. In current recognition
systems the complete processing of the signal is dictated by the design of
the system. This entails that all possible input has to be considered by the
designer of the system, which is impossible in open environments. Instead
the system should be able to estimate if and to what extend and how the
incoming signal should be processed.

The approach taken is based on two observations. First, the fact that
many sounds have prominent tone-like and/or pulse-like components. These
components correspond to two main sound producing processes, resonance,
and impact respectively, and these components are the extremes in localiza-
tion in frequency (for tones) and time (for pulses). Because of this strong
localization the overlap-probability in the time-frequency plane is small for
uncorrelated sources, i.e. these sounds are sparse. Second, humans are able
to assign all components of a single source to a single representation. I.e.
we hear a car or a voice and not the components that constitute the sound.
This proces is called object formation and improves the robustness because
a group of components is more robust than the components in isolation.

Based on the first observation we developed a efficient method to extract
tones and pulses from a time-frequency energy representation. The extrac-
tion is based on comparing the energy profile around a time-frequency point
with the energy profile around the same point when excited with a pure
tone or pulse. The comparison is performed with a sparse matching filter
that captures the shape of the excitation in frequency or temporal direction
respectively. The resulting measures are called tone-fit and pulse-fit. The
tone-fit and pulse-fit

1. are independent of signal level,

2. are complementary when applied to chirps

3. have a strong, well-defined correlation with the local signal-to-noise
ratio,

4. are accurate in measuring frequency or time,

5. can separate tones with a relative frequency difference as small as
3%, smaller differences lead to a single component with a informative
amplitude modulation,

6. can separate pulses with a time separation equal or greater than the
group delay of the filterbank, smaller separations lead to a single com-
ponent with a informative frequency modulation,

7. correlate with perceptual descriptions of real-world recordings.
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Subsets with a high tone-fit or high pulse-fit are extracted. These subsets
have a high probability of stemming from a single source due to sparcity.
Broadband signals can also produce similar subsets, but these are always
small and can be eliminated with a size criterium.

Within each subsets, the energy maxima are strung together in time (for
tones) or frequency (for points) to from signal components. If appropriate the
tonal components are grouped based on common onset, common frequency
modulation and harmonic relation. This grouping improves the robustness
of the signal-component further. Apart from tones and pulses an important
other class of sounds are broadband sounds. These are extracted by selecting
regions that exceed the long-term background for some time and are not
classified as either tones or pulses.

During recognition the sound sources feature vectors are extracted for the
harmonic groups and broadband events. These feature vectors are classified
using using k-nearest neighbor classifiers.

To test the recognition systems, two datasets were created and annotated.
The first dataset was recorded on the Amsterdam Amstel train station. Sev-
eral scene were played by professional actors while the platform was in nor-
mal use. The content of these scenes ranged from normal station scenes to
aggressive scenes. Recordings were made with eight microphones and three
cameras. The dataset was annotated on both common and aggression re-
lated sound classes. The second dataset was recorded at several places in
the town of Assen (NL) on several different days in different weather condi-
tions by students. The number of sound classes and acoustical environments
is much larger than in the first dataset.

Annotations were made by specifying start and stop time and the class
for every event. For many classes the start and stop times were found to
be ambiguous, due to masking by other sources and personal choices of the
annotator. To alleviate part of the tediousness of the annotation work an
annotation tool was developed that preselects regions and suggests sound
classes based on previous annotations.

Performance on the datasets is measured with the F-measure on frames.
This measure is the harmonic mean between recall and precision, and pun-
ishes both failure to include frames for a specific class as well as including too
many frames. These measures are chosen based on similarities of the identi-
fication task with information retrieval. Because the ambiguity in the start
and stop times, the overlap of the recognition results with the annotations
will not be exact and the F-measure will be lower due to this mismatch, while
the recognition result is just as valid. For the Amstel station dataset the F-
measure is 0.18 for speech-like classes (“speech”, “singing”, “scream”), partly
because of the start and stop time ambiguity, but also because of arbitrary
boundaries between the classes. For the “train” and “subway” classes the F-
measure is around 0.5. For the Assen dataset the scores are similar, 0.45 for
“car”, down to 0.02 for “bird”, for most classes the precision is high and the
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recall low. The inter-annotator f-measure for this dataset is 0.46. Though
not directly comparable, it indicates that human annotators disagree on the
annotations which form the ground truth with the same order as the system
(dis)agrees with the ground truth. The signal-driven recognition stage can
be complemented with a dynamic network (PhD Thesis M.E. Niessen), which
increases the F-measure on average 20% for the Amstel dataset and 33% for
the Assen dataset.

The Amstel dataset was also used in an experiment where audio de-
tection results were fused with the results of aggression detection from the
video recordings. The combined results showed a higher detection rate (78%)
with no more false alarms (16 alarms/hour) than video in isolation (67%, 16
alarms/hour) and audio in isolation (45%, 4 alarms/hour).

Finally, the harmonic extraction was tested on the American-English
vowel dataset containing vowel spoken in between “h” and “d”. These vowels
were annotated on formant positions and on fundamental frequency. This
test showed that the performance of the harmonic complex extraction in
clean and moderately noisy situations is good (96%) and only drops signifi-
cantly around 0 dB signal-to-noise ratio. Performance on the recognition of
the vowels is 80% for all speakers classes, with confusion pattern that is not
unlike human confusions.

One of the main hurdles in developing systems for automatic sound recog-
nition in everyday situations is the lack of datasets. With the datasets
recorded on the Amstel station and in the town of Assen we hope to set the
standard for realistic, uncontrolled datasets. These datasets where recorded
with as little interference with the environment as possible, while still cap-
turing the events that we wanted to capture.

9.1 Future work
9.1.1 Signal Processing
In the current system, the signal processing is not influenced by the recogni-
tion stage nor by the users question. Instead the results of the signal-driven
recognition are only reevaluated by the knowledge-driven network. However,
it may be beneficial for the signal-driven stage to refine its analysis based on
the reevaluated classes. For example after the fan of a laptop is recognized
it will be useful to prevent the signal component belonging to the fan from
being used in harmonic complexes. On a level closer to the signal, tonal
components could be reconnected if they are part of the same harmonic in
a harmonic complex, if the presence of energy permits this. However the
lower the processing-level the less beneficial the knowledge-driven influence
will be.

Although the computational requirements of the signal-processing are



9.1. Future work 117

already within the capabilities of modern embedded systems, further im-
provements are to be made to improve these further. For example, taking the
knowledge-driven influence one step further, the system could go in “check-
ing mode” where the system only checks whether expected or earlier detected
source are still there.

In this thesis we have focussed on tones and pulses as important types of
signals and noise-like signals have only briefly been mentioned (section 4.1.4).
However this is an important class of signals, which requires a more statis-
tical, less localized approach. The distributions of the tone-fit and pulse-fit
may provide the basis of noise detection and identification, though more
broader (in time and frequency) measures may prove to be more effective.

So far all signal processing using the techniques in this thesis have been
audio signals. However, all possible signals are bound by the Heisenberg
inequality. Therefore the techniques like tone-fit and pulse-fit may be applied
to signals of other origin as well.

9.1.2 Annotation
In the current system training and performance measures depend crucially
on painstakingly annotated datasets. While these remain necessary for sci-
entific dissemination and detailed performance measurements, for most ap-
plications it may be suffice to annotate just the “mid-point” of the event. This
kind on annotation can easily be done in realtime for a limited number of
known sources. A set of buttons, one per class, would allow the annotator
to apply that label to a time instance. As annotators will want to wait to
be sure that the “mid-point” has passed an offset could be applied, or video
presentation or presence at the scene may allow the annotator to anticipate
the “mid-point”.

Such an “mid-point” annotation is also more robust then annotating the
start and stop times of a sound event as the event is less likely to be masked
at its most energetic point in time. For example, the passing of a car is
has a clear maximum in the energy, while the start and stop times may
be ambiguous due to masking by other sources. Continuous sources, air-
conditioning for example, would still require a continuous annotation though
as these lack a well-defined “mid-point”.

The performance measures, precision, recall and the F-measure are well
suited for these “mid-point” annotations. Instead of the per-time version of
these measures used in chapters 4 and 7, where length of the annotation/de-
tection had a big influence, the performance would be on event level.

Beside a ground truth, the annotation process can give insight in how
people listen to audio recordings. The full-temporal annotation is a very
precise and analytical task which may provide the most complete annota-
tion. However this is not a natural listening mode for humans. The “mid-
point” annotation allows for less analytical, more natural listening and that
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may result in missing sound sources. If time-pressure would be added more
sources will go unnoticed. This may provide insights in what people judge
to be important sources. This last qualification may also depend elements
in the task description. For example, does changing the location mentioned
in the task change which sources are deemed important. The same factors
should play a role in a automatic sound source recognition system, the sys-
tem should only invest resources in analyzing the sound to the “start/stop”
detail if the task of the system warrants it.

9.1.3 Recognition
The current system classifies unknown sound sources as being “noise”, with-
out further analyzing those sounds. A extension would be to use clustering
algorithms to group unrecognized sound sources and make them available
for annotation. This requires the signal-driven segmentation to work good
enough to extract reasonable groups that can be clustered. These techniques
could typically be incorporated in the annotation tool introduced in chapter 5.

In combination with other sensors, wind, rain or car detectors a number
of classes could be checked automatically. This makes it possible to side-
step the annotation process for these classes. Having multiple sensor(s)
(modalities) will also allow the system at large to monitor the functioning of
individual sensors.

Besides multiple sensors modalities the recognition at one sensors entails
that, when sensible for that class, surroundings sensors could go in “check-
ing mode” for that class. This would allow the system to reduce its overall
computational demands and increase it robustness. The human perceptual
system uses the same mechanism for exactly the same purpose (Harding
et al., 2008).

Finally, the preliminary work done on the recognition of vowels shows
encouraging results, but the real challenge in formant detection and vowel
recognition is in continuous speech. The research presented in chapter 8
should be expanded to databases of continuous speech like the TIMIT database
(Garofolo et al., 1993). Because these databases contain real speech both
vowels and consonants should be recognized. For voiced consonants methods
similar to those used for vowel can be applied, but for unvoiced consonants
techniques for broadband signals should be used. Also the formant trajec-
tories of voiced speech are influenced by adjacent speech sound. Because of
this influence the trajectories of the formants of voiced speech may exploited
to recognize the unvoiced parts.
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A

Gamma-chirp in formulae

The gamma-chirp cochlea-model is implemented as a filterbank with Nch

channels or segments:

ych(t) = hgc ⊗ x(t) (A.1)

where hgc are the filter-coëfficients that make up the gamma-chirp. They
are defined as:

hgc = atN−1e−2πbB(fch)tej(2πfcht+c log(t)) (A.2)

where fch is the center frequency of the channel, N the order of the gamma-
chirp (N = 4) and a = 1, b = 0.71 and c = −3.7. The center-frequencies are
logarithmical distributed between 60 and 4000 Hz. B is the bandwidth of a
filter and is given by the ERB scale Moore and Glasberg (1996):

B(fch) = 24.7 + 0.108fch (A.3)

To calculate a energy representation from the excitation, the excitation ych

is squared and leaky-integrated. The integration constant τch is channel
dependent. Finally the result is subsampled and the logarithm is taken to
compress the energy into a sensible range:

Ech(t) =
� t

t0

y2
ch(t− τ)e−τ/τchdτ (A.4)

τch = max(
2

fch
, 0.005) (A.5)

EdB,ch(fr) = 10 log10(Ech(fr dtfr)) (A.6)
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Figure A.1: Several steps in the calculation of the energy representation of a impulse
using a gamma-chirp. The step of taking the logarithm is not depicted.

where fr is the frame-number and dtfr the frame-size.
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