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Two Important Aspects in Cognitive Development
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Predictive Coding: A Principle of Human Brain
[Friston et al., 2006; Friston, 2010; Clark, 2013]

e The human brain perceives the world (i.e., perceptual inference) and acts on the world (i.e., active
inference) so as to minimize prediction errors.
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Optical lllusion Generated by Predictive Brain

Which area is lighter, A or B?
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Cognitive Development Based on Predictive Learning
[Nagai, Phil Trans B 2019]

* Infants acquire various cognitive abilities through learning to minimize prediction errors:

(a) Updating the internal model through own
sensorimotor experiences

— Non-social (i.e., self-oriented) behaviors
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Cognitive Development Based on Predictive Learning

[Nagai, Phil Trans B 2019]

* Infants acquire various cognitive abilities through learning to minimize prediction errors:

(b) Generating actions to alter sensory signals
— Proto-social (i.e., other-oriented) behaviors
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Open-Ended Cognitive Development
in Robots




Action Production Facilitates Action Perception in Infants
[Sommerville et al., 2005; Gerson & Woodward, 2014]

« 3-month-old infants detect the goal-directed structure of others’ actions only when they were given

experiences of generating the same actions.
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Mirror Neurons [Rrizzolatti et al., 1996: 2001]

[Human MNS]
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[Rizzolatti et al., 1996] Nature Reviews | Neuroscien ce
» Originally found in monkey's premotor cortex lacoboni & Dapretto, 2006]
* Discharge both:
— when executing own actions
— when observing the same action performed by other individuals

» Understand others" action and intention based on self's motor representation




Predictive Learning for Action Production and Perception

Action production:

* Predictive learning (i.e.,
minimizing ||xin — Xpre||)
to associate visual, tactile,

vision tactile  proprioception
Xpre(t —T + 1), ..., Xpre(t)

and proprioceptive signals
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[Copete, Nagai, & Asada, ICDL-EpiRob 2016]



Predictive Learning for Action Production and Perception

Action production:

* Predictive learning (i.e.,

tactile and proprioceptive
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Result 1: Prediction of Observed Action

Predicted
image

Actual
Image

InPUt/ output signals Predicted image Classification of prediction
* Vlision: camera image (30 dim) |
: Correct goal
* Tactile: on/off (3 dim)
* Proprioception: joint angles of the arm (4 dim) Incorrect goal
...forT = 30 steps
Assumption No goal

* Shared viewpoint between self and other
[Copete, Nagai, & Asada, ICDL-EpiRob 2016]



Result 2: Prediction Accuracy Improved by Action Generation

Learning through action generation
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Open-Ended Affordance Learning
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Staged Development of Robot Skills

1. Discovery of behavior primitives

— Arobot equipped with reflexes learns to discover behavior primitives by exploring
its parameter space.

2. Affordance learning

— The robot executes the discovered behavior primitives on different objects and
learns the cause-and-effect relationship (i.e., affordance).

3. Imitation learning through social interaction
— The robot imitates actions presented by tutors by exploiting learned affordances.

[Ugur, Nagai, Sahin, & Oztop, IEEE TAMD 2015]



Stage 1: Discovery of Behavior Primitives

* Inherent reflex behaviors (swiping and
grasping) are executed on an object using
different parameters:

— Target position
— Initial and end positions of the hand
— Open and close states of the hand

» Behavior primitives b, are discovered based
on the similarity of the tactile profile T ¢r.5;:

: N
Explore parameter space of reach-grasp reflex {Ci}{zl «— X — means ({T{ra]} . )
J=1

[Ugur, Nagai, Sahin, & Oztop, IEEE TAMD 2015]



Result 1: Behavior Primitives Discovered through Explorations

Class 1 Class 2 Four primitives:
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[Ugur, Nagai, Sahin, & Oztop, IEEE TAMD 2015]



Stage 2: Affordance Learning

* Affordances (finit, bi, f effect) are acquired
by executing the behavior primitives b; on
different objects with different features f
(e.g., size, position, etc.):

<finit» bi, feffect)
where feffect — fend — finit

o Effects feofrect are learned to be predicted by
further exploring b; with different end
positions:

(finiv bi) = feffect (fend)

4— A 4.V i 4= YT\L
Apply discovered behavior primitives on different objects

[Ugur, Nagai, Sahin, & Oztop, IEEE TAMD 2015]



Result 2: Affordance and Effect Prediction
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Stage 3: Imitation Learning through Social Interaction

« Affordances involving multiple objects are learned through social interaction using the acquired single-
object affordances.

* Sub-goals (i.e., finits - » frs --» fenq) t0 be imitated are extracted based on single-object affordances.

ex.) Affordances acquired by Without action exaggeration With action exaggeration
the robot
— Pushability
— Rollability .fmt fend r i
— Graspability ‘ ‘ B ‘

[Ugur, Nagai, Sahin, & Oztop, IEEE TAMD 2015]
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Result 3: Impact of Social Interaction on Demonstrations

e Roundabout ratio: lower = higher e Duration of demonstration: shorter = longer
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[Ugur, Nagai, Sahin, & Oztop, IEEE TAMD 2015]
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Cognitive Development Based on Predictive Learning
[Nagai, Phil Trans B 2019]

* Infants acquire various cognitive abilities through learning to minimize prediction errors:

(a) Updating the interna
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(b) Generating actions to alter sensory signals
— Proto-social (i.e., other-oriented) behaviors

Internal model

LY

Moto\\){tput —

*\

proprioceptive prediction error

prediction

Sensory input [e——




PHILOSOPHICAL
TRANSACTIONS B

royalsocietypublishing.org/journal/rsth

L)

ReVi ew Check for

updates

Cite this article: Nagai Y. 2019 Predictive
learning: its key role in early cognitive
development. Phil. Trans. R. Soc. B 374:
20180030.
http://dx.doi.org/10.1098/rsth.2018.0030

Accepted: 05 January 2019

One contribution of 17 to a theme issue ‘From
social brains to social robots: applying

Predictive learning: its key role in early
cognitive development

Yukie Nagai

National Institute of Information and Communications Technology, Suita, Osaka 565-0871, Japan

YN, 0000-0003-4794-0940

What is a fundamental ability for cognitive development? Although many
researchers have been addressing this question, no shared understanding
has been acquired yet. We propose that predictive learning of sensorimotor sig-
nals plays a key role in early cognitive development. The human brain is
known to represent sensorimotor signals in a predictive manner, i.e. it attempts
to minimize prediction error between incoming sensory signals and top—down
prediction. We extend this view and suggest that two mechanisms for mini-
mizing prediction error lead to the development of cognitive abilities during
early infancy. The first mechanism is to update an immature predictor. The pre-
dictor must be trained through sensorimotor experiences because it does not
inherently have prediction ability. The second mechanism is to execute an
action anticipated by the predictor. Interacting with other individuals often
increases prediction error, which can be minimized by executing one’s own
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