Learning objects by autonomous exploration and human interaction

Serena Ivaldi

Team LARSEN, INRIA serena.ivaldi@inria.fr

WS "Open-ended learning for object perception & grasping" @ IROS - 8/11/2019

Outline

Learning the visual appearance of objects from scratch - with curiosity-based autonomous exploration and social guidance

Learning by demonstration whole-body manipulation on humanoids

HEAP project - Incorporating human preferences to improve grasping of irregular objects in a heap

Outline

Learning the visual appearance of objects from scratch - with curiosity-based autonomous exploration and social guidance

Learning by demonstration whole-body manipulation on humanoids

HEAP project - Incorporating human preferences to improve grasping of irregular objects in a heap

Learning like a child

Object learning through interaction

autonomous learning of visuomotor models

powerful learning tools

IROS 2012

object learning through active exploration object learning through joint attention

intrinsic motivation + aut. exploration + social guidance IEEETAMD 2014

social guidance

Front. Neurorob. 2013

Multimodality for object learning

exploration and interaction

(better models with categories)

active exploration

(manipulation, better models)

observation

(pure vision: models and entities)

Multimodality for object learning

robot

object human

model, category

exploration and interaction

(better models with categories)

active exploration

(manipulation, better models)

observation

(pure vision: models and entities)

proprioception vision

Multimodality for object learning

object robot human model, category identified entity identified view mid-level mid-level HSV SURF dictionary dictionary mid-features mid-features low-level low-level HSV SURF dictionary dictionary points superpixels segmented proto-object \bigcirc depth contours KLT points depth data optical flow

Observation alone is not enough

entities + collected views

model

The robot learns the objects demonstrated by the human.

The robot has not yet learnt to identify its body, hence all entities are labeled by an "unknown" category.

Acquire better models through action

Pushing objects

grasp lift throw

grasp lift rotate put

side push, pick & place

Ivaldi, Nguyen, Lyubova, Droniou, Padois, Filliat, Oudeyer, Sigaud (2014) Object learning through active exploration. IEEE Transactions on Autonomous Mental Development.

Active exploration of objects

action does not change the view

action provokes a new view

Active exploration & social guidance

Active exploration & social guidance

Ivaldi, Nguyen, Lyubova, Droniou, Padois, Filliat, Oudeyer, Sigaud (2014) Object learning through active exploration. IEEE Transactions on Autonomous Mental Development.

Curiosity-driven exploration of objects

- Focusing on the objects that are not yet learned
- choosing the appropriate action for each object

Ivaldi, Nguyen, Lyubova, Droniou, Padois, Filliat, Oudeyer, Sigaud (2014) Object learning through active exploration. IEEE Transactions on Autonomous Mental Development.

Active exploration & social guidance

- with the "bad" teacher the robot takes and throws more the objects (41% vs 24%)
- the "good" teacher has a catalysing effect: learning process is 25% faster
- with intrinsic motivation, the robot spends most of its time in learning the cube (54% and 51% with bad and good teacher respectively)

Better learning with action and interaction

The robot learns the objects through manipulation.

The robot learns to identify its body, hence entities can be categorized as "robot hand", "human hand" and "object".

Better object recognition

Major label, observation Major label, interaction Pure label, interaction

Better object recognition

This is open-ended!!

No limit to the number of objects, they are learned incrementally.

Major label, observation Major label, interaction Pure label, interaction

Outline

Learning the visual appearance of objects from scratch - with curiosity-based autonomous exploration and social guidance

Learning by demonstration whole-body manipulation on humanoids

HEAP project - Incorporating human preferences to improve grasping of irregular objects in a heap

Towards whole-body manipulation

Grasping an object is a particular task adding to the balancing and locomotion tasks of the whole-body robot controller.

Towards whole-body grasping & manipulation

Tele-operation/retargeting is the whole-body kinesthetic teaching

Penco et al (2018) **Robust real-time whole-body motion retargeting from human to humanoid.** Proc. IEEE/RAS International Conf. on Humanoid Robots (HUMANOIDS).

Transfer paradigm: from humans to robots

Towards whole-body grasping & manipulation

Penco et al (2018) **Robust real-time whole-body motion retargeting from human to humanoid.** Proc. IEEE/RAS International Conf. on Humanoid Robots (HUMANOIDS).

Auto-tuning the controller

Can we make sure that the robot controller can execute in principle any retargeted human motion in real-time?

Auto-tuning the controller for teleoperation

Learning the control structure and the parameters that enable the robot to perform a variety of motions

Auto-tuning the controller for teleoperation

WE RECORD A SEQUENCE OF DOUBLE SURPORT MOVEMENTS FROM A HUMAN OPERATOR

Auto-tuning the controller for teleoperation

Learning the control structure and the parameters that enable the robot to perform a variety of motions

Demonstrating whole-body manipulation

Whole-body co-manipulation with a human

- Take into account the entire human dynamics in a multi-task QP controller for collaborative manipulations
- Joint level controller for the robot, but capable of reacting to the human

Human collaborator (to be replaced by robot)

Recorded human

Robot collaborator Simulated human

K. Otani, K. Bouyarmane, S. Ivaldi (2018) ICRA

Whole-body co-manipulation with a human

Proposed approach:

- Model the human as a robot \rightarrow multi-robot QP controller
- Reason in terms of balance of the couple human+robot, not robot only

$$\begin{array}{ll} \underset{\ddot{q},\tau,f}{\text{minimize}} & \sum_{k} w_{k} || \ddot{g}_{k} - \ddot{g}_{k}^{des} ||^{2} & \text{Individual or combined tasks} \\ (\text{e.g. combined CoM for balance}) \\ \text{subject to} & M\ddot{q} + N = J_{0}^{T}F^{0} + (J_{1} - \Psi^{T}J_{2})F^{-} + S\tau \\ & J_{0}\dot{q} = 0 & \text{Equal and opposite contact forces} \\ & (J_{1} - \Psi^{T}J_{2})\dot{q} = 0 & \text{between robots} \\ & f \in \mathcal{C} & \text{Non-slipping contacts between robots} \end{array}$$

torque limits, joint limits, collision avoidance

K. Otani, K. Bouyarmane, S. Ivaldi (2018) ICRA

Whole-body co-manipulation with a human

EXPERIMENT 1: PICK AND PLACE

K. Otani, K. Bouyarmane, S. Ivaldi (2018) ICRA

Outline

Learning the visual appearance of objects from scratch - with curiosity-based autonomous exploration and social guidance

Learning by demonstration whole-body manipulation on humanoids

HEAP project - Incorporating human preferences to improve grasping of irregular objects in a heap

EU Project HEAP

Human guided learning of robotic heap sorting

Why do we need human guidance?

HEAP setup & context

We already have plenty of grasping algorithms that we can use to find the best candidate grasp for the objects in the scene...

Planned grasp on color (Q=0.182)

Planned grasp on depth (Q=0.182)

Dex-Net 4.0:

Learning Ambidextrous Robot Grasping Policies

Science Robotics Journal 2019 berkeleyautomation.github.io/dex-net

Dexnet

- Planned grasps -

- Planned grasp at depth 0.643m with Q=0.972 -

=> Dexnet 2.0, Malher et al., RSS 2017

https://github.com/BerkeleyAutomation/gqcnn

I) Because some objects challenge our cameras

➡ Crystals

Planned grasp at depth 0.650m with Q=0.203

I) Because some objects challenge our cameras

➡Mirror

Planned grasp at depth 0.656m with Q-C.996

2) Because the best grasp candidate automatically computed by a grasping algorithm (here: Dexnet 2.0) is not the best choice according to the human, it is not what the human would do

➡Pipe

- Planned grasp at depth 0.643m with Q=0.972

2) Because the best grasp candidate automatically computed by a grasping algorithm (here: Dexnet 2.0) is not the best choice according to the human, it is not what the human would do

➡Broom

3) Because grasping algorithms do not reason about the objects fragility

the Duplo tower will break during grasping and transportation

- Planned grasps -

Integrating human preferences

Good demonstrations

0

Oct-16-2019

122903 color.png

Oct-16-2019

170139 color.png

Oct-16-2019

170041_color.png

Oct-16-2019

170041_depth.png

Oct-16-2019

Oct-02-2019

Oct-16-2019

Oct-16-2019

170139 depth.png

122903_depth.png

152857_depth.png

Oct-03-2019

123206 color.png

Oct-16-2019 123318_color.png

Sep-23-2019

1337_color.png

131337_depth.png

Sep-23-2019

Oct-16-2019

123225_color.png

Sep-23-2019

125822_color.png

E 1 Sep-23-2019 132030_color.png

5

132030_depth.png

Sep-23-2019 132237_depth.png

125543_depth.png

Oct-16-2019

123210_depth.png

Bad demonstrations

Oct-16-2019

123225_depth.png

Sep-23-2019

125822_depth.png

Oct-16-2019

123308_depth.png

Sep-23-2019

125904_depth.png

Sep-23-2019_ 130159_depth.png

Sep-23-2019 132237_color.png

Oct-16-2019

123308_color.png

Sep-23-2019

125904_color.png

181944_color.png

Sep-23-2019_ 0127_color.png

Integrating human preferences

Learning grasp preference models for classes of objects

Human guidance & preferences

(unsupervised - k-means & u-maps)

Human guidance & preferences

Classes of objects that were automatically created

Still work in progress...

Summary

Autonomous curiosity based exploration Human guidance in exploring objects

Methods for demonstrating whole-body manipulation (open-ended, without constraints)

Incorporating human preferences and learning class-specific grasp preferences (incrementally)

Acknowledgments

N.Lyubova, D. Filliat, S.M. Nguyen, A. Droniou, O. Sigaud, P.-Y. Oudeyer

L. Penco, J.B. Mouret, V. Modugno, W. Gomes

L.Vianello,Y. Fleytoux, A. Ma, J.B. Mouret

Thank you! Questions?

N.Lyubova, D. Filliat, S.M. Nguyen, A. Droniou, O. Sigaud, P.-Y. Oudeyer

L. Penco, J.B. Mouret, V. Modugno, W. Gomes

L.Vianello,Y. Fleytoux, A. Ma, J.B. Mouret

