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Outline

Learning the visual appearance of objects from
scratch - with curiosity-based autonomous
exploration and social guidance

Learning by demonstration whole-body
manipulation on humanoids

HEAP project - Incorporating human
preferences to improve grasping of irregular
objects in a heap



Outline

Learning the visual appearance of objects from
scratch - with curiosity-based autonomous
exploration and social guidance
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Object learning through interaction

autonomous object learning object learning
learning of through active through joint
visuomotor models exploration attention

o INtrinsic motivation + .
powerful social

. aut. exploration + ,
learning tools . . guidance
social guidance

IROS 2012 IEEE TAMD 2014 Front. Neurorob. 2013



exploration and interaction

(better models with categories)
A

active exploration

(manipulation, better models)
A

observation
(pure vision: models and entities)



Multimodality for object learning

robot

de pth ontou

depth data

object

segmented proto-object

human

KLT points

optical flow
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vision

exploration and interaction

(better models with categories)
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active exploration

(manipulation, better models)
A

observation
(pure vision: models and entities)



Multimodality for object learning

robot object human

+ proprioception

mid-level mid-level
dictionary . HSV . SURF dictionary
mid-features mid-features
@ entities + views

low-level ‘ low-level

icti HS, SU,RF dictionary

dictionary superpixels points

~ 7

segmented proto-object

depth ﬁontours KLT points

depth data optical flow

proprioception vision



Observation alone is not enough

vision entities + collected views model

The robot learns the objects
demonstrated by the human.

The robot has not yet learnt to
identify its body, hence

all entities are labeled by an
"unknown" category.

Lyubova, Ivaldi, Filliat (2016) From passive to interactive object learning and recognition through
self-identification on a humanoid robot. Autonomous Robots, 40(1):33-57. 10



Acquire better models through action

MALSi Ak

Pushing objects

side push, pick & place

lvaldi, Nguyen, Lyubova, Droniou, Padois, Filliat, Oudeyer, Sigaud (2014) Object learning through
active exploration. IEEE Transactions on Autonomous Mental Development.




Active exploration of objects

action does not change the view o st
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Active exploration & social guidance

social exploration intrinsic motivation autonomous exploration
SGIM-ACTS r— |

exploration strategy

Vo

actor action object

withdraw

robot asks human to show a new object robot pushes the object



Active exploration & social guidance

Select
Task &Strategy

autonomous

—Jp Social Guidance interaction with
exploration

Exploration
Strategies

—Jp Autonomous

Exploration Request to
Strategies caregiver progress
Sy v AL
Strategy & PPINg
Task Space br br
Exploration
LM LM

State Space
Exploration ar ar

lvaldi, Nguyen, Lyubova, Droniou, Padois, Filliat, Oudeyer, Sigaud (2014) Object learning through
active exploration. IEEE Transactions on Autonomous Mental Development.



Curiosity-driven exploration of objects

* Focusing on the objects that are not yet learned
* choosing the appropriate action for each object

Exploration: the robot decides at each time
which object and which action
to test (it can also ask the teacher to help)

e s A1 [ =
show me the car i push the ball" | tanlieaigeitcifgﬁnand ‘f =
H |
ball = yellow car = red bear — ... g TR

Intrinsic motivation

lvaldi, Nguyen, Lyubova, Droniou, Padois, Filliat, Oudeyer, Sigaud (2014) Object learning through
active exploration. IEEE Transactions on Autonomous Mental Development.



Active exploration & social guidance

* with the “bad”teacher the robot
takes and throws more the objects

(41% vs 24%)

* the “good” teacher has a catalysing
effect: learning process is 25% faster

e with intrinsic motivation, the robot
spends most of its time in learning

the cube (54% and 51% with bad and
good teacher respectively)

f-measure

chosen
object |
chosen

action |

"bad" teacher helpful teacher

intrinsic motivation

random

time-steps

~actions mmmpush lift
objects mmmcarmmmcube mmm ball

show
bear s dog



Better learning with action and interaction

entities, views

>

proprioception

The robot learns the objects
through manipulation.

The robot learns to
identify its body, hence
entities can be categorized as

sjoints 50 "robot hand", "human hand"
3 joints 1 joint

3 joints

1 joint \ 9 " /

" 3 joints” A, N

arms and torso

and "object".

Visual sensor

entities detected

motors states in the visual field
entity?
entities
motion
analysis Object grasped Object grasped
Robot Human by the human by the robot
category (c,) category (c;)

I S |

Lyubova, Ivaldi, Filliat (2016) From passive to interactive object learning and recognition through
self-identification on a humanoid robot. Autonomous Robots, 40(1):33-57.



Better object recognition
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Lyubova, Ivaldi, Filliat (2016) From passive to interactive object learning and recognition through
self-identification on a humanoid robot. Autonomous Robots, 40(1):33-57. 18



Better object recognition
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This is open-ended!!
No limit to the number of objects, they are learned incrementally.

The limit is how much you are patient and interact with the robot :)
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Lyubova, Ivaldi, Filliat (2016) From passive to interactive object learning and recognition through
self-identification on a humanoid robot. Autonomous Robots, 40(1):33-57. 19



Outline

Learning by demonstration whole-body
manipulation on humanoids




Towards whole-body manipulation

Grasping an object is a particular task adding to the balancing and
locomotion tasks of the whole-body robot controller.




Towards whole-body grasping & manipulation

Tele-operation/retargeting is the whole-body kinesthetic teaching

Penco et al (2018) Robust real-time whole-body motion retargeting from human to humanoid.
Proc. IEEE/RAS International Conf. on Humanoid Robots (HUMANOIDS).




Transfer paradigm: from humans to robots
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Towards whole-body grasping & manipulation
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Penco et al (2018) Robust real-time whole-body motion retargeting from human to humanoid.
Proc. IEEE/RAS International Conf. on Humanoid Robots (HUMANOIDS). 24



Auto-tuning the controller

SOUAT REACHING HIGH REACHING LOW
Can we make sure that the robot controller
can execute in principle any

retargeted human motion in real-time!?

25



Auto-tuning the controller for teleoperation

Learning the control structure and the parameters that enable the
robot to perform a variety of motions
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Auto-tuning the controller for teleoperation

u'UENtE OF DOUBLE sun‘ AT MOVEMENTS
=FROM A HUMAN OPERATOHEE " v e
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Penco et al. - under review 27



Auto-tuning the controller for teleoperation

Learning the control structure and the parameters that enable the
robot to perform a variety of motions

Penco et al. - under review



Demonstrating whole-body manipulation

Penco et al. - under review



Whole-body co-manipulation with a human

* Take into account the entire human dynamics in a multi-task QP
controller for collaborative manipulations
* Joint level controller for the robot, but capable of reacting to the human

| 4
Human collaborator

Robot collaborator Simulated human
(to be replaced by robot) Recorded human

K. Otani, K. Bouyarmane, S. Ivaldi (2018) ICRA



Whole-body co-manipulation with a human

Proposed approach:
* Model the human as a robot = multi-robot QP controller
* Reason in terms of balance of the couple human+robot, not robot only

minimize Yy wj||g) — Gie*||> Individual or combined tasks
q,7,f - (e.g. combined CoM for balance)

subject to Mg+ N = JgFO + (J1 — \I!TJQ)F_ + 5T

Jog =0 Equal and opposite contact forces
: between robots
(J =¥t 1) =0

fecC

torque limits, joint limits, collision avoidance

Non-slipping contacts between robots

K. Otani, K. Bouyarmane, S. Ivaldi (2018) ICRA



Whole-body co-manipulation with a human

EXPERIMENT 1: PICK AND PLACE

K. Otani, K. Bouyarmane, S. Ivaldi (2018) ICRA



Outline

HEAP project - Incorporating human
preferences to improve grasping of irregular
objects in a heap




EU Project HEAP

L chist-era

Human guided learning of robotic heap sorting
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Why do we need human guidance?



HEAP setup & context U chistera
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VWWhy do we need human guidance

We already have plenty
of grasping algorithms
that we can use to find
the best candidate
grasp for the objects in
the scene...

Planned grasp on color (Q=0.182) Planned grasp on depth (Q=0.182)

=> Dexnet 2.0
Malher et al.,, RSS 2017

https://github.com/BerkeleyAutomation/ggcnn


https://github.com/BerkeleyAutomation/gqcnn

Dex-Net 4.0:

Learning Ambidextrous Robot Grasping Policies

Science Robotics Journal 2019
berkeleyautomation.github.io/dex-net



Dexnet

- Planncc grasp at depth 0.€43m with Q=0.972 -

=> Dexnet 2.0, Malher et al., RSS 2017

https://github.com/BerkeleyAutomation/ggcnn



https://github.com/BerkeleyAutomation/gqcnn

VWWhy do we need human guidance

|) Because some objects
challenge our cameras

= Crystals




VWWhy do we need human guidance

|) Because some objects
challenge our cameras

= Mirror




VWWhy do we need human guidance

- Hlanned grasps -

2) Because the best grasp
candidate automatically computed
by a grasping algorithm (here:
Dexnet 2.0) is not the best
choice according to the human, it
is not what the human would do

= Pipe

- Plarned grasp at depth 2.643m with Q=0 972




VWWhy do we need human guidance

2) Because the best grasp
candidate automatically computed
by a grasping algorithm (here:
Dexnet 2.0) is not the best
choice according to the human, it
is not what the human would do

=Broom




VWWhy do we need human guidance

3) Because grasping algorithms do not
reason about the objects fragility

= the Duplo tower will break during
grasping and transportation




Integrating human preferences

GRASP PREDICTIONS
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Integrating human preferences

Learning grasp preference models for classes of objects

: Training
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Human guidance & preferences

Train set. Good and Bad Grasps
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Summary

Autonomous curiosity based exploration
Human guidance in exploring objects

Methods for demonstrating whole-body
manipulation (open-ended, without
constraints)

Incorporating human preferences and learning
class-specific grasp preferences
(incrementally)
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Thank you! Questions!?
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