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Abstract

* If robots are to adapt to new users, news tasks and new
environments, they will need to conduct a long-term learning
process to gradually acquire the knowledge needed for that
adaptation.

* One of the key features of this learning process is that it is open-
ended.

* The Intelligent Robotics and Systems group of the University of
Aveiro has been carrying out research on open-ended learning in
robotics for more than a decade.

— Different learning techniques were developed for object recognition,
grasping and task planning.

— These techniques build upon well established machine learning
techniques, ranging from instance-based learning and bayesian
learning to abstraction and deductive generalization.

— Our approach includes the human user as mediator in the learning
process. Key features of open-ended learning will be discussed.

— New experimental protocols and metrics were designed for open-
ended learning and will also be presented.
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Intelligent Robots

* Animate - Respond in real- PR
time to changing conditions [ Sustem
in the environment

* Adaptable - adapt to
different tasks, users and
environments

* Accessible- explain beliefs,
motivations and intentions;
be easy to instruct

Seabra Lopes, L. Connell & JH (2001) Semisentient Robots: Routes Integrated Intelligence, IEEE Intelligent
Systems, 16 (5), 10-15.



Capabilities of Intelligent Robots

A tight coupling of perception and action, to be
animate
Reasoning, to be adaptive

— High-level interpretation capabilities, for updating a model
of the state of the world

— Planning, to determine sequences of action to achieve the
given goals

Learning, to be even more adaptive

Memory, to store the world model and learned
knowledge

Speaking the language of the user, to be accessible



Learning for intelligent robots

* Supervised — to include the human instructor in the learning
process.

* On-line — so that learning takes place while the agent is running.

* Opportunistic — the system must be prepared to accept a new
example when it is observed or becomes available, rather than
according to a pre-defined training schedule.

* Incremental — it is able to adjust the learned descriptions when a
new example is observed.

 Open-ended — itis able to acquire and incorporate new concepts.

 Concurrent — it is able to handle multiple learning problems at the
same time.

 Meta-learning — it is able to determine which learning parameters
and configurations are more promising for different problems,
ensuring each problem is handled in the best way.

Seabra Lopes, L. and A. Chauhan (2007) How many Words can my Robot learn? An
Approach and Experiments with One-Class Learning, Interaction Studies, 8(1), p.
53-81.




Intrinsic Motivation and Meta-Learning

* Intrisic motivation is a set of hard-wired internal

rewards and mechanisms that drive the behavior
of an agent

— Especially when exploring and learning about the
environment

— Intrinsic meta-learning mechanisms can be essencial
to maximize learning success

Seabra Lopes, L. and Q.H. Wang (2002) Towards Grounded Human-Robot
Communication, Proc. 11th IEEE Int'| Workshop on Robot and Human Interactive
Communication (ROMAN'2002), Berlin, Germany, p. 312-318.

Oudeyer P-Y, Kaplan, F. and Hafner, V. (2007) Intrinsic Motivation Systems for

Autonomous Mental Development, IEEE Transactions on Evolutionary Computation,
11(2), p. 265-286




Instructor actions

Point
Teach
Ask
Correct

Architecture (2007)
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Experimental setup (2007)
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Evolution — Recovery — Breakpoint

* Evolution - Depends on the ability of the learner to
adjust category representations when a new word is
introduced.

* Recovery - The discrimination performance will
generally deteriorate with the introduction of a new
word. The time spent in system evolution until
correcting and adjusting all current categories defines
recovery. Recovery is based on classification errors and
corresponding corrective feedback.

* Breakpoint - Inability of the learner to recover and
evolve when a new category is introduced.



Experiments: teaching protocol

Teach(Category,)
n<1
repeat
n&n+l
Teach(Category,)
k<0
c<1
repeat
x & previously unseen instance of Category,
C, < Ask(x)
if C, = Category.,:
Correct(x,Category,)
cé&c+lifcnelsel
k & k+1if k <3n else k
A & average accuracy in last k question/correction iterations
until ((A> A, and k=n) or

(teacher sees no improvement in protocol accuracy))

until (teacher sees no improvement in protocol accuracy)




Metrics and plots
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Architecture (2008)
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Seabra Lopes, L. and A. Chauhan (2008) Open-Ended Category Learning for Language
Acquisition, Connection Science, 20 (4), 277-297.




A longer experiment — 68 objects




Evolution of classification precision
versus number of question/correction
iterations
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Simulated Teacher

Take over the task of the human teacher

Follow the teaching protocol and interact with the
learning agent using the teach, ask and correct actions

Given an object-images dataset, the simulated teacher
picks images randomly for interaction with the learning
system and uses each stored image at most once

When the learning agent is ready to learn a

new category, the simulated teacher randomly
selects and teaches the
next category

Learning Simulated
Agent Predicted Class Teacher

Correct



Grounding spoken words
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Chauhan, A., and L. Seabra Lopes (2011) Using Spoken Words to guide Open-ended
Category Formation, Cognitive Processing, vol. 12(4), p. 341-354.




Protocol accuracy

A long experiment (293 cats.)
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Chauhan, A., L. Seabra Lopes (2015) An Experimental Protocol for Evaluation of
Open-Ended Category Learning Algorithms, |[EEE Conference on Evolving and Adaptive
Intelligent Systems (EAIS’2015), Douai, France.




Results

Learning Stopping #cata vAAave., protocol  Globa
S approach condition # e learned : - acc.(%) (%

SVDD ack of data 5 1070.4 19.5 53.2 56.7
LANGGE8 : - ; 7 ; 5 ;
COMP Lack of data 2 14.5 i61.5 26.1 50.4 H2.2
Breakpoint 3 5.3 140.3 8.22 52.5 60.4
MCML (ATl cats. learned > 5 68.0 8556 3.8 77.0 78.1
e ..q. Jnd. 19.C 20, o r,
SVDD Lack of data 3 0 322.0 19.9 46.0 19.6
( Ereakpoint ) 2 7.5 141.5 10.0 47.9 53.9
COIL-100 T = =
COMP Lack of data 4 17.5 530.0 13.3 54.7 58.6
Breakpoint 1 10 158.0 7.5 48.5 57.6
MOML All cats. learned 1 100.0  2319.0 8.3 63.2 68.4
Lack of data 4 64.3 1385.0 7.8 63.6 68.1
SVDD Breakpoint 5 3.6 35.0 5.4 49.9 59.0
ETHS0
COMP Breakpoint 5 4.2 66.4 8.1 46.1 50.4
MCML All cats. learned 5 8.0 141.6 8.3 53.7 59.9
T : ; i j
ALOL1000 SVDD Breakpoint 5 3.4 54.2 8.5 41.3 47.3

MCML Lack of data 5 259.4 7789.0 10.6 64.4 68.0




Axes of evaluation

A Quality
(e.g. accuracy,
precision, recall)

Quantity \ Resources

(e.g. num. categories) (e.g. learning
time, used
memory)




RACE - 2011-2014

RACE = Robust Autonomous Competence
Enhancement

FP7
Hamburg, Leeds, Orebro, Osnabruck, Aveiro

Aveiro:

— Interactive open-ended learning about objects
and activities



Experience Extraction

e Experiences typically abstract from low-level or
irrelevant data, given the intended use of
experiences

* The information in a raw experience can be
subject to
— Representation change
— Downsampling

— Heuristics
* Temporal segmentation
* Filtering



Teaching the category of an object

Pointing at

* The instructor points to an object (a Mug) with the hand

* Inthe graphical interface, a menu can be used to label de
object as Mug

e After that, the object is recognized as Mug



Teaching how to serve a coffee
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Very different experiences

armmovstureas
armumtunEturEB(]' )

a rmtuc'stu re62

armmov

. / premanipula -asouthtable'1 § \ P
armmovslur&lﬂ" AN \ armuntu03|ure1 1 -

armmovslureSO armmovsturé1u . armunna
stured? pIacmgaTenghllae \ i

aeastcounter!

placingarea

armmovsluredi
armmovstule12 /
armcartul 43

anmimov|

movsturefi?". I / armuntusturei%

armunnamedposture? / armtucsturew
afmunha osturel7 N armmuv

- armmDvslure“J
i "Ie T

sture4 / armtuc

) '.a'rmunnaostlgrssi z rol

psture20

armmovslureSS

armmev

armmovy|

arm mo

re27
rolfota) 14 =
ure19 armtuc ture25
1 g v - armunnnsture‘a
armunna 7 . = A - - ) —— armunnaostu_reE?
- -/ armtes stureaa - - . ;
er1 Ny - -
y armcarfypostur

ture 14

afmmo: urg2d > manipulatios

armmovs(uresd \ armmnvsl

cstureBs

mbvslureaz
~ paciﬂgarﬂeﬁtﬂblm
1 0sture2
armmovslureZE arm'unnsus(urezg y armmov{ngppsture18
armmnvstureED armu_nnaostul‘eSS o torsou.
. y’lp_% .
\ osture39 i ”nrsodosturew
armcature47 .
- . _torsad -@n stures

torsoriofingpostures
Eumcu’@ture?
oorareaslaurann

Hposture2

lorscmostuve1 0

torsod



Concepts

* Conceptualization is the process of forming a new
concept by assigning a description and a name to
a real-world pattern

— Concepts can be generated from one or multiple
experiences

* Learned concepts enable to:

— Recognize instances, e.g. recognize an object as being
a Mug

— Generate solutions to concrete problems, e.g.
Generate a plan to correctly serve a coffee to a guest



Semantic versus perceptual
information

* Semantic information
— Symbolic
— Explicit / declarative / relational
— Slow processing
* Perceptual information
— Numeric
— Implicit / pattern based
— A lot of data
— Requires fast processing
* Connecting language / semantic information to perception
— Grounding concept names
— Anchoring object names



RACE — architecture discussion
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Oliveira, M., L. Seabra Lopes, H. Kasaei, G.H. Lim, A.M. Tomé, A. Chauhan (2016) 3D Object
Perception and Perceptual Learning in the RACE Project, Robotics and Autonomous
Systems, 75, p. 614-626.




Perception and perceptual learning

Object Detection

List of objects
on the table

Launch new object
perception pipeline

Reasoning and Interpretation
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Objects at multiple levels of abstraction

category layer ;===




Objects at multiple levels of abstraction

* Feature layer: spin-images (local features)
* Bag of visual words dictionary

* Latent Direchlet Allocation: local topics, per
object category (Local-LDA)

* View layer: representations of object views

e Category layer: each category represented by
a set of object views



GOOD:
Global Orthographic Object Descriptor

* Provides a good tradeoff
between |

— Descriptiveness

— Robustness to noise

— Computation time
— Memory usage

Integrated into
PCL 1.9.x



GOOD

e Video: https://www.youtube.com/watch?v=iEq9TAaY9us




Open-ended object category learning

 “Open-ended” means
— The set of target categories is not known in advance
— The training instances are online experiences of a
robot, and are not available in advance
* Learning approaches
— Instance-based
— Model-based (naive Bayes)
* Evaluation using a simulated teacher

following the open-ended
experimental protocol

Learning Simulated

Agent Predicted Class Teacher




Additional selected publications

Kasaei, S.H.M., L. Seabra Lopes, A.M. Tomé (2019) Local-LDA: Open-Ended
Learning of Latent Topics for 3D Object Recognition, |[EEE Transactions on Pattern
Analysis and Machine Intelligence, to appear

Kasaei, H., L. Seabra Lopes, A.M. Tomé, J. Sock, T.-K. Kim (2018) Perceiving,
Learning, and Recognizing 3D Objects: An Approach to Cognitive Service Robots,
32nd Conf. Artificial Intelligence (AAAI-18), USA, p. 596-603.

Kasaei, S.H.M., M. Oliveira, G.H. Lim, L. Seabra Lopes, A.M. Tomé (2018) Towards
Lifelong Assistive Robotics: a Tight Coupling between Object Perception and
Manipulation, Neurocomputing, vol. 291, p. 151-166.

Kasaei, S.H.M., A.M. Tomé, L. Seabra Lopes, M.R. Oliveira (2016) GOOD: A Global
Orthographic Object Descriptor for 3D Object Recognition and Manipulation,
Pattern Recognition Letters, 83, 312-320.

Kasaei, H., M. Oliveira, G.H. Lim, L. Seabra Lopes, A.M. Tomé (2015) Interactive
Open-Ended Learning for 3D Object Recognition: An Approach and Experiments,
Journal of Intelligent & Robotic Systems, Springer, vol. 80, p. 537-553.




Adaptability to context change




Adaptability to context change ()

* Evaluate the intrisic ability of different
learning/recognition approaches to comply
with context change

— Without explicit context information

* Two rounds
— Evaluation using the standard teaching protocol

— Modified teaching protocol, simulating a change
of context



Adaptability to context change (ll)

e 1stround
— Evaluation using the standard teaching protocol
— Compute the Average Learned Categories (ALC)
* 2nd round
— Modified teaching protocol, simulating a change of context

— Context transition point generated randomly in the interval
[0.65,0.85]

 Compute adaptability
ALC,
A=
ALC,

— Where: ALC1 and ALC2 are the average learned categories
in the first and second contexts




Adaptability to context change (llI)

Approach -- Adaptability

RACE (sets of local features) 14.9 0.63
Bag of Words 16.3 16.5 1.01
Standard LDA 10.9 6.3 0.58
Local LDA 21.7 18.6 0.86
GOOD 27.3 13.6 0.50

Kasaei, H., L. Seabra Lopes, A.M. Tomé (2018) Coping with Context Change in Open-Ended
Object Recognition without Explicit Context Information, Proc. 2018 IEEE/RSJ Int. Conf.
Intelligent Robots and Systems (IROS'2018), p. 6806-6812.




Open-ended learning for grasping

Updated Categories /

—— View Instance " |_______________i
< Conceptualizer | s
Perceptual Memory 5| 77 Bajesian” ] instanceBased | k
— (Categories b [
Object Category M All View A |1 Instructions |§
Models Instances = 7 i |§
———————— 1~ 1 o User Instruction, N . lnoc
! I gle Obiject Point Cloud, | Kinesthetic i
! i! Object Affordance i Affordance E 8 = | Teachin g I g
i:i Recognition Recognition ;Categow Label o - | '% [ :I
) B2 e ! i i e i s
l |I 75 3 A . I = E Demonstrated |Grasp
I | | GOQD =l |15 Modified GOOD | 8 e
| !: Representation é é Representation | Vv v : v : <
| l | =]
o . I |'S
af | [l Pose-Invariant | || | Pose-Dependent || . | =4
E- : Il Feature Extraction Feature Extraction : Worklng Memory | GI'ElSp Memﬂry I %
@) I =
z| |l AA A A A 5 Iz
b : !I Object Point A 0 Object Point : § g Q% | Grasp I &
E | E| Cloud Cloud I § 'gﬂ § Eﬂ | N Templates |-§
gl | §°% | G |5
| . . | Object Pose =] = (&) Tas 13
:l| Object Tracking | +Point Cloud B E IS5 p | &
Ul ' S| | Affordance | Detection &
| :l_ 7Y ] § & Category Label | |
R e o By e o o o Bl g
Object Perception Pipeline 5 Action Results
Object Point Object Category Label = World Information, Task Plan
Cloud N v
_ i . Task & Grasp .
-~} Object Detection ; Execution Manager
Planning

Compare to the dorsal (“what”) and ventral (“where” and “how”) pathways in the brain



Grasp teaching actions

Point: point to the target object

Teach-category: teach the object category or the affordance

category of the selected object

—  Each stable pose of an object on the table may map to a different affordance
category.

Ask-category: inquire the object category or the affordance

category of the target object, which the learning agent will predict

based on previously learned knowledge

Correct-category: if the agent could not recognize a given object
or its affordance correctly, the user can teach the correct one

Teach-grasp: using kinesthetic teaching, teach a grasp
configuration of the robotic arm to grasp the target object

Grasp: command the robot to grasp the target object



Kasaei, H., N. Shafii, L. Seabra Lopes, A.M. Tomé (2019) Interactive Open-Ended Object,
Affordance and Grasp Learning, Proc. IEEE Int. Conf. Robotics and Automation

(ICRA’2019).

Shafii, N., S.H.K. Kasaei, L. Seabra Lopes (2016) Learning to Grasp Familiar Objects Using
Object View Recognition and Template Matching, Proc. 2016 IEEE/RSJ Int. Conf.
Intelligent Robots and Systems (IROS'2016), p. 2895-2900.




Learning and grasping

e Video: https://www.youtube.com/watch?v=HoEjJJOynmY




* 40 objects
* First round

F_

* Teach how to grasp the

first 6 objects mm

* Try to grasp all 40 objects W/o affordance recognition 58% 65%

* Second round Shafii et al, 2016 55% 70%

* Teach how to grasp 2
additional objects

Kasaei et al., 2019 65% 95%

* Try again to grasp all 40 objects



Teaching how to serve a coffee
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Learning to achieve plan-based

tasks

— I e B—-
Experience Memory Concept Memory
Experience W\Experience T égﬁg:;\; —LLearned Concepts
User Interface Experience Extractor Conceptualizer Planning
Instructions | Infg\icr)r:ﬁion Experience ID \ Infggqrﬁion AExperience 1D Plan \ Infrr{(r)\':;qcion

Robot Platform + Execution Manager + Working Memory

* Teaching robots how to achieve tasks
e Extracting robot activity experiences

* Learning activity models from experiences

* Problem solving using the learned models




Experience-Based Planning Domains (EBPDs)

» An experience-based task planning domain is a tuple [mokntari et ai, 2016]

A = (Dy, De; A, E, M),

(25, 55,0;) is an abstract planning domain
(2¢,Sc, O¢) is a concrete planning domain

d

> D
> D,

|

e 2 is the static world information
e S is the set of possible states
e O is the set of planning operators
> A is a set of abstraction hierarchies relating D. to D,
.OCEOC_}GEEOQ J ch[ECUSC]_}paE{EaUSa]
» E is a set of plan-based robot activity experiences
» M is a set of learned methods (i.e., activity schemata)

» A task planning problem is a tuple P = (t, 0, sg, [g]|), where t is the task
to be acheived, 0 € 2., sp € Sand g € Sy (Sg € S)

7/42




Conceptualizing

robot activity experiences

Abstraction
Hierarchies

Concrete Domain ————{ Experience Generalization

’ Experience Memory ‘

Experience

Generalized experience

!}

l

Experience Abstraction

Goal Inference

Generalized and abstracted experience

|

Feature Extraction

Basic activity schema

Loop Detection

Activity schema with detected loops

L

Scope Inference

Scope of
applicability

Goal of
activity schema

Activity schema

Activity Schemata




Planning using the learned knowledge

Planning Problem

Problem Abstraction Abstraction Hierarchies

Abstracted problem

Activity Schema Retrieval <—ﬁ Activity Schemata

Activity schema

Abstract Planner (ASBP) Abstract Domain

Abstract plan

Concrete Domain -
Concrete Planner (SBP D
( ) Abstraction Hierarchies

Concrete plan



Learning and planning:
selected recent publications
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