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nda of Works!
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We propose a novel Direct and Sparse formulation for Structure from Motion,
which we implement as monocular Visual Odometry (DSO).

[Visual SLAM: ORB-SLAM, DSO.. ]




Kinda of Works...
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Off-the-shelf libraries are still
brittle and require careful data
collection and parameter tuning
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e not enough for safety-critical
applications

® involve extensive human
supervision




Why Research on Perception?

Perception success.. and its failures
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Googlc

“Google employs a small army of human operators
images: Evtimov et al to manually check and correct the maps”

Camouflage graffiti and art stickers cause a neural network to misclassify stop signs as [Wired]
speed limit 45 signs or yield signs.
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Outline

Certifiable Perception:
algorithms that are
"hard to break”

Kimera: real-time
high-level understanding
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3D Registration (a.k.a. scan matching)

e 3D Registration problem: find rigid transtormation
(position, rotation) that aligns two point clouds
e Object pose estimation
e Motion estimation (scan matching)

B EEEEECEFLIIER

Typical registration procedure:
- extract features

- match “similar” features

- compute relative pose
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3D Registration (a.k.a. scan matching)

e 3D Registration problem: find rigid transtormation
(position, rotation) that aligns two point clouds
e Object pose estimation
e Motion estimation (scan matching)

Typical registration procedure:
- extract features
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3D Registration: State of the Art

Registration without outliers:

N
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e Can be solved in closed form
[Horn’87, Arun’87]

Registration with outliers:
» Fast heuristics [ICP and variants,
RANSAC]: tolerate small amount of
outliers, no performance guarantee

* Global solvers [Branch-&-Bound,
Mixed-integer programming]: tolerate
many outliers but run in exponential

time [Zhou et al, ECCV'16, Izatt et al., IJRR’17]
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Bad News: Outlier Rejection is Inapproximable

Key result: outlier rejection is inapproximable.
In the worst case, there is no polynomial-time
algorithm that can compute a near-optimal solution

[see also results from Chin et al.]

Paradigm shift: certifiably robust algorithms
Algorithms that can assess their performance in each
problem instance:

e perform well and certify correctness in common instances
e detect and declare failure in worst case problems (the
once which are impossible to solve in polynomial time)

Tzoumas, Antonante, Carlone. Outlier-robust spatial perception:
Hardness, general- purpose algorithms, and guarantees. ArXiv, 2019. 19



Certifiably Robust 3D Registration

Proposed:
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Certifiably Robust 3D Registration

Proposed:
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Large cost
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TEASER: Truncated least squares Estimation
And SEmidefinite Relaxation

1) Discrete-Continuous - (L6 2 (1=0k) 5
: _ - min Z 5 |br, — Rayg||* + 5 ¢
Estimation (NP-hard): %700, =

2) Quadratically-

Constrained min Y 2TQx

- mEIR‘l(A"‘Fl) i=1
Quadratic Program ;.. 1, iz, =1
(QCQP) (non- Ty, k) = Ty,

convex, NP-hard)

*non-trivial: naive relaxation does not work well
- proposed has astonishing performance

3) Novel convex relaxation
(solvable in polynomial-time)

H. Yang and L. Carlone. A Polynomial-time Solution for Robust Registration with Extreme Outlier Rates. RSS 2019.

H. Yang and L. Carlone. A quaternion-based certifiably optimal solution to the Wahba problem with outliers. ICCV, 2019. o3



Certifiably Robust 3D Registration

Theorem 2 (Certification of robustness): |f the solution Z* of the convex
relaxation has rank 1, then Z* can be factored into Z* = xTx, and x is the

optimal solution of the original (combinatorial, non-convex) truncated
least squares problem.

If rank = 1, all outliers o

. . . = —Naive SDP
are rejected and inliers —TEASER
have small errors 2°

Outlier ratio

(a) Solution rank

H. Yang and L. Carlone. A Polynomial-time Solution for Robust Registration with Extreme Outlier Rates. RSS 2019.
H. Yang and L. Carlone. A quaternion-based certifiably optimal solution to the Wahba problem with outliers. ICCV, 2019. 24



TEASER: Results

:
Comparison  _*
against naive  £°
relaxation: S
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(b) Rotation errors
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(b) Translation Error (exponential time)

TEASER: first polynomial-time algorithm that tolerates extreme outliers rates
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TEASER: RGB-D Object Detection

97.37% 96.87%
outliers outliers outliers outliers
Stanford Bunny L -

80% outliers v ", R
(a) Cluttered scene

26



Other applications

Robust Simultaneous Localization and Mapping

067 06

o a
0 01(5 93(; %5
® A R discrete
g” L T @ ® ariables
L JE I L (inlier selection)

bl
(pose graph)
Lidar-based Object Localization Camera-based Object Localization
Proposed RANSAC Proposed RANSAC

H. Yang, P. Antonante, V. Tzoumas, L. Carlone. Graduated non-convexity for robust spatial
perception: From non-minimal solvers to global outlier rejection. Arxiv, 2019.
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Certifiable Perception:
algorithms that are
"hard to break”

Kimera: real-time

high-level understanding
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Releasing Kimera

Real-time metric-semantic visual-inertial SLAM

First person view

A. Rosinol, M. Abate, Y. Chang, and L. Carlone. Kimera: an open-source library |
for real-time metric-semantic localization and mapping. Arxiv, 2019.



Architecture
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Kimera-VIO & Kimera-Mesher

Kimera-VIO tracks sparse 3D landmarks for fast and accurate state estimation




Why Kimera”

solving 2D semantic segmentation failures:
2D semantic segmentation is doomed to fail...
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Why Kimera”

solving 3D reconstruction failures




Conclusion Thank you!

- Robustness
- robust perception is inapproximable :-(
- certifiable perception: give up on solving all problems, but
declare failure it you cannot solve a problem
(most of the state-of-the-art approaches fail silently..)
- fast implementation of TEASER coming soon!

* High-level understanding: key to many applications
- initial step towards Spatial Perception
- opportunities to bridge learning and geometry
- It's also about robustness
- https://github.com/MIT-SPARK/Kimera
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https://github.com/MIT-SPARK/Kimera

