

LEARNING TO MODEL THE ENVIRONMENT FOR INTERACTION Hao Su

IROS Workshop on Perception and Grasping Macau, China

Perception Models the Environment for Action

Learning to Model the Environment for Interaction

Hao Su UC San Diego

Perception Models the Environment for Action

Learning to Model the Environment for Interaction

Hao Su UC San Diego

Geometry, Dynamics, Structure, ...

Hao Su

UC San Diego

Model-based Planning/Control

UC San Diego

Hao Su

S^4G : Amodal Single-view Single-Shot SE(3) Grasp Detection in Cluttered Scenes

CoRL 2019

Robotics Grasping

- Most fundamental problem in robotics
- Serves as the initial step for other robot manipulation tasks
- E.g. open the door, use a hammer
- Analytical model of object grasping has already developed

Classical Grasping

- However, classical method based on analytical model:
 - Needs detailed info about the object, e.g. complete geometry, friction, CAD

- Query based grasping
 - Built a database with pre-computed/labeled grasp
 - Match object with database, estimate the 6D pose

Learning-based Grasping

- Can work for partially-observed geometry
- However, hard for human annotator to label full DOF ground-truth
- Limited to 3-4 DOF planar grasping for a long time

Industry assembly line, not domestic robot

Learning to Model the Environment for Interaction

UC San Diego

SE(3) Grasp over 3/4 DoF Grasp

 Only 63.38% objects can be grasped by nearly vertical grasps (0°, 15°).

Classical Grasping Prediction: Sample-based

- Generate SE(3) grasp from sampled point $c \in \mathscr{C}$
- Perform local search for antipodal grasp
- Using prior knowledge to remove naïve grasp
- Often use a Darboux frame to facilitate such search

Costly, hard to sample from 6-D space!

Motivation

- Multi-view -> single-view
- Single object -> Whole scene
- Sampling -> Direct regression

Generating Densely-labeled Training Data

Generating Densely-labeled Training Data

Physically-plausible Scene Synthesis from Objects

Learning to Model the Environment for Interaction

UC San Diego

Generating Densely-labeled Training Data

Store the Grasping Poses on the Surface

- Our frame: Sample contact points and check normal consistency
- Store on the points: Rotation Gripper Frame Origin Position Score Assigned Point Contact area Different from Darboux Frame, more suitable for thin surfaces

Generating Densely-labeled Training Data

Scene-Level Collision and Robustness Evaluation

- From object-level grasp to scene level grasp
- Rendering noisy viewed point cloud as input for neural network
- Evaluate the quality metric under execution error

Grasp Proposal as Per-point Labeling

- Single-view
- Single-shot (v.s. sample-based)
- SE(3)

Qi, Charles Ruizhongtai, et al. "Pointnet++: Deep hierarchical feature learning on point sets in a metric space." Advances in neural information processing systems. 2017.

Hao Su

UC San Diego

Rotation Representation for Regression

- Quaternion and Euler angle are discontinuous at certain point
- We regress 6D representation of rotation matrix with redundancy
- L2 loss for regression

PointNet++ based Architecture

- Extracts hierarchical point set features
- Robust to partial and noisy observation
- Infer geometry relationship between objects in the scene.

Experiments

- Single-view depth from Kinect
- Zero-shot learning setting (novel test objects)

Experiments

- Robotics experiments with cluttered scene
- 30 objects not present in the training data

Experimental

	Grasp quality		Time-efficiency		
	Success rate	Completion rate	Processing	Inference	Total
GPD (3 channels)	40.0%	60.0%	$24106~\mathrm{ms}$	$1.50 \mathrm{\ ms}$	$24108 \mathrm{\ ms}$
GPD (12 channels)	33.3%	50.0%	$27195 \mathrm{ms}$	$1.70\mathrm{ms}$	$27197 \mathrm{ms}$
PointNetGPD	40.0%	60.0%	$17694 \mathrm{ms}$	$2.86\mathrm{ms}$	$17697 \mathrm{ms}$
Ours	77.1%	92.5%	$5804\mathrm{ms}$	$12.60 \mathrm{ms}$	$5817 \mathrm{ms}$

Mapping State Space using Landmarks

NeurIPS 2019

(d) FetchPush

(h) Acrobot

Background: Universal Goal Reaching

- Learn a policy to reach given goals
- The agent will receive -1 penalty (reward) every time step, unless it reaches the given goal.
 - It's a sparse reward setting
- Finding a shortest path on a graph?
 - Reward becomes negative shortest path distance (if no discount)

Universal Function Value Approximator

- Q(s, a, g): goal-conditioned Q value
- Hindsight Experience Replay (HER) is the SOTA (baseline) for this problem

Long-horizon RL is Difficult

- Q(s, a, g) is not accurate if g is faraway from s
 - Reason 1: The number of state-goal pairs increases quadratically while the network capacity is limited.
 - Reason 2: if (s, g) is some unseen pairs, long-term extrapolation is not reliable (take the maze as an example).

Our Approach: Planning with a Landmarkbased Map

- View the MDP as a graph
- Sample Landmarks
- Build the Graph

Planning

Landmark Sampling

- **Replay buffer**: stores the transition collected by HER
- Landmarks Sampling: Using farthest point sampling (based on Q) from the replay buffer
- A compressed state space representation
- Encourages exploration to boundary states

Planning

- Add the current state *s* and goal into the graph
- Find shortest path using Bellman-ford algorithm
- Find the next landmark l_i in the path
- Use HER to generate a local policy $\pi(s, l_i)$. (DDPG or DQN)

Experiments: FourRoom

Learning to Model the Environment for Interaction

Hao Su UC San Diego

Experiments: Continuous Control task

UC San Diego
Experiments: Continuous Control task

(a) 2DReach

(b) 2DPush

(c) BlockedFetchReach

(g) Complex AntMaze

(d) FetchPush

(h) Acrobot

- Pure model-free RL is not good for learning long-horizon actions
- Decouple planning and local polices (network-based policy)
- Landmark-based map helps planning and exploration

Point-based Multi-View Stereo Network

ICCV 2019 (oral)

Multi-view Stereo (MVS)

Target:

Reconstruct the 3D shape from a set of images and camera parameters

Learned feature more robust matching

Learned feature more robust matching

Shape prior \implies more complete reconstruction

Learned feature \implies more robust matching

Shape prior \implies more complete reconstruction

Key Component: 3D Cost Volume

Learning to Model the Environment for Interaction

Hao Su

UC San Diego

1

Dense 3D CNNs

Dense 3D CNNs

Limitation:

Memory consumption cubic to resolution

Limitation:

Memory consumption cubic to resolution

not feasible for high-resolution accurate reconstruction

Are all these 3D CNNs necessary?

Are all these 3D CNNs necessary?

Cost-volume

Are all these 3D CNNs necessary?

Cost-volume

Surface points

Point MVSNet

Learning to Model the Environment for Interaction

Hao Su

UC San Diego

Point Cloud Representation

Suitable for sparse occupancy memory-efficient

Viewed images

Initial Point Cloud

Reference camera

Unprojection

Coarse Depth map

Initial point cloud

Learning to Model the Environment for Interaction

Hao Su UC San Diego

Point Flow

Point Flow

How to predict the flow to the GT surface?

Point Flow

How to predict the flow to the GT surface?

Learning to Model the Environment for Interaction

Hao Su UC San Diego

Point Feature

Dynamic feature fetching

expected offset

$$\Delta d_p = \mathbf{E}(ks) = \sum_{k=-m}^{m} ks \times \operatorname{Prob}(\mathbf{\tilde{p}}_k)$$

expected offset

$$\Delta d_p = \mathbf{E}(ks) = \sum_{k=-m}^{m} ks \times \operatorname{Prob}(\mathbf{\tilde{p}}_k)$$

Results

Learning to Model the Environment for Interaction

Hao Su

UC San Diego

DTU Benchmark

49 views / scene

DTU Benchmark 49 views

20 32.5 45 57.5 70 (%) f-score of 0.3mm

DTU Benchmark 49 views

DTU Benchmark 49 views

Memory Efficiency

Memory Efficiency

Accurate Reconstruction on DTU

MVSNet

Ground truth

Reconstruction is More Complete

Camp [2]

Ours

Learning to Model the Environment for Interaction

UC San Diego

only refine the ROI depth

only refine the ROI depth

only refine the ROI depth

sparse denser

only refine the ROI depth

sparse denser densest

only refine the ROI depth

sparse denser densest

• MVS target surface is **sparse** in 3D space

- MVS target surface is **sparse** in 3D space
- Point MVSNet process the surface points directly

- MVS target surface is **sparse** in 3D space
- Point MVSNet process the surface points directly
- Better time and memory efficiency

- MVS target surface is **sparse** in 3D space
- Point MVSNet process the surface points directly
- Better time and memory efficiency
- **Iterative** refinement

PartNet: A Database for Actionable Information

573,585 part instances over 26,671 3D models covering 24 object categories

CVPR2019

Interactive Simulated Environment Modeling

Interactive Simulated Environment Modeling

