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Abstract— Deep Reinforcement Learning techniques demon-
strate advances in the domain of robotics. One of the limiting
factors is the large number of interaction samples usually
required for training in simulated and real-world environ-
ments. In this work, we demonstrate that tactile information
substantially increases sample efficiency for training (by 97%
on average), and simultaneously increases the performance in
dexterous in-hand manipulation of objects tasks (by 21% on
average). To examine the role of tactile-sensor parameters in
these improvements, we conducted experiments with varied
sensor-measurement accuracy (Boolean vs. float values), and
varied spatial resolution of the tactile sensors (92 sensors vs.
16 sensors on the hand). We conclude that ground-truth touch-
sensor readings as well as dense tactile resolution do not further
improve performance and sample efficiency in the tasks. We
make available these touch-sensors extensions as a part of
OpenAI-Gym robotics Shadow-Dexterous-Hand environments.

Fig. 1. Shadow Dexterous Hand equipped with fabrics-based tactile sensors
in the palm and finger phalanges (indicated green) and fingertip sensors
realized by Molded-Interconnect-Devices (indicated yellow) [1, 2]

Fig. 2. 92 touch sensors covering the Shadow Dexterous Hand model.
This is a technical visualization to represent the essence of our model.
Red sites represent activated touch sensors, where a block is pressing
against the touch sensitive area. Green sites represent inactive touch sensors.
A video demonstration of the extended environments can be found at
https://rebrand.ly/TouchSensors.
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I. INTRODUCTION

Deep Reinforcement Learning techniques demonstrate ad-
vances in the domain of robotics. For example, dexterous
in-hand manipulation of objects with an anthropomorphic
robotic hand [3, 4]. An agent with a model-free policy was
able to learn complex in-hand manipulation tasks using just
proprioceptive feedback and visual information about the
manipulated object. Despite the good performance of the
agent, absence of tactile sensing imposes certain limitations
on these approaches. In cases, like insufficient lighting
conditions, or partial visibility of the manipulated object
due to occlusion (e.g. by the manipulator itself), the tactile
sensing may be necessary to perform an in-hand manip-
ulation task [5]. Continuous haptic feedback can improve
grasping acquisition in terms of robustness under uncertainty
[6]. Different to these works with static objects, we present
empirical results in simulation that show that including tactile
information in the state improves the sample efficiency and
performance for dynamic in-hand manipulation of objects.

Humans perform better in dexterous in-hand manipulation
tasks than robotic systems. One of the reasons is the rich
tactile perception available to humans which allows to rec-
ognize and manipulate an object even without vision [7],
instead just rely on tactile information. In such cases, tactile
perception is one of the key abilities for in-hand manipulation
of objects and tool usage. The importance of tactile sensing
for object recognition was demonstrated on a multifingered
robotic hand [8] as well as for successful grasping on a two-
fingered gripper with high-resolution tactile sensors [9].

Multisensory fusion [10] techniques may help at the level
of geometry, contact and force physics. For example, an
autoencoder can translate high-dimensional sensor represen-
tations in a compact space, and a reinforcement learner
can learn stable, non-linear policies [11]. Learning curves
for tactile representations learned with different types of
autoencoders can be found here [11].

Recent works describe approaches to bring the tactile
sensing to anthropomorphic hands like the Shadow Dexter-
ous Hand, by providing integrated tactile fingertips [1] as
shown in Fig. 1 and constructing a flexible tactile skin [2].
The tactile skin comprises stretchable and flexible, fabric-
based tactile sensors capable of capturing typical human
interaction forces within the palm and proximal and distal
phalanges of the hand. This enables the hand to exploit
tactile information, e.g. for contact or slip detection [12, 13].
The distribution of tactile sensors in these works resembles
our segmentation of the simulated Shadow Dexterous Hand
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into 92 tactile-sensitive areas. [14] proposed a deep tac-
tile model-predictive control framework for non-prehensile
manipulation to perform tactile servoing and to reposition
an object to user-specified configurations, indicated by a
goal tactile reading, using the learned tactile predictive
model. [15] studied how tactile feedback can be exploited
to adapt to unknown rollable objects located on a table and
demonstrated the possibility of learning feedback controllers
for in-hand manipulation using reinforcement learning on an
underactuated, compliant platform. The feedback controller
was hand-tuned to successfully complete the tasks.

Another challenge is the sample efficiency in learning
of model free DRL methods. Assuming the importance of
tactile information for in-hand manipulation of objects, it
is necessary to measure how sensory information influences
learning and overall performance for in-hand manipulation
tasks. We selected well established and benchmarked Ope-
nAI Gym simulated environments for robotics which include
in-hand manipulation of objects with anthropomorphic-hand
tasks. We extended these environments with touch sensors
and compared the steepness of the learning curves with and
without tactile information. We demonstrate that the sample
efficiency and performance can be increased when tactile
information is available to the agent. To fully examine the
roll of tactile sensing, we are providing analysis of sensor
measurement accuracy - a highly important aspect in using
tactile sensing on physical robots, and examining the role
of the spatial resolution of the tactile sensors on the hand.
These experiments provide beneficial knowledge for those
looking to build robots with tactile sensors for manipulation.

A logical next step is to employ such hands to study the
impact of tactile information on manual skill learning. With
the current sample efficiency of model free reinforcement
learning this will require a combined strategy that connects
simulation and real-world learning stages. As a step towards
such an approach and to generate insights about how the
availability of touch sensing impacts on manual skill learning
with model free DRL approaches, we here present results of
a simulation study, particularly with respect to the factors
sample efficiency and performance level. To this end, we (i)
extended the OpenAI Gym robotics environments with touch
sensors designed to closely mimic the touch sensing of the
robot hand [1][2], (ii) compared learning results for OpenAI
Gym robotics environments with and without touch sensing.
We find for all four learning tasks a significantly increase in
sampling efficiency along with improved performance of the
trained agents.

II. METHODS

OpenAI Gym [16] contains several simulated robotics
environments with the Shadow Dexterous Hand. These en-
vironments use the MuJoCo [17] physics engine for fast
and accurate simulation. These are open source environments
designed for experimental work and research with Deep Re-
inforcement Learning. The anthropomorphic Shadow Dex-
terous Hand model, comprising 24 degrees of freedom (20
actuated and 4 coupled), has to manipulate an object (block,

TABLE I
NEW OPENAI GYM ROBOTICS ENVIRONMENTS WITH TOUCH SENSORS:

-V0 (BOOLEAN), -V1 (FLOAT-VALUE)
HTTPS://GITHUB.COM/OPENAI/GYM

HandManipulateBlockRotateZTouchSensors
HandManipulateBlockRotateParallelTouchSensors
HandManipulateBlockRotateXYZTouchSensors

HandManipulateBlockTouchSensors
HandManipulateEggRotateTouchSensors

HandManipulateEggTouchSensors
HandManipulatePenRotateTouchSensors

HandManipulatePenTouchSensors

TABLE II
THE 92 AND 16 TOUCH-SENSOR ENVIRONMENTS.

lower phalanx of the fingers (4x) 7 sensors x 4 1 sensor x 4
middle phalanxes of the fingers (4x) 5 sensors x 4 1 sensor x 4

tip phalanxes of the fingers (4x) 5 sensors x 4 1 sensor x 4
thumb phalanxes (3x) 5 sensors x 3 1 sensor x 3

palm (1x) 9 sensors x 1 1 sensor x 1
All touch sensors 92 sensors 16 sensors

egg, or pen) so that it matches a given goal orientation,
position, or both position and orientation.

As a step towards touch-augmented RL we extended the
Shadow Dexterous Hand model with touch sensors avail-
able as new environments (Table I) in the OpenAI Gym
package [16]. We covered all five fingers and the palm of
the Shadow Dexterous Hand model with 92 touch sensors
(Fig. 2; Table II). For the agent, the only difference between
the robotics environments with and without touch sensors
is the length of the state vector that the agent gets as
an input at each time step. For the original OpenAI Gym
simulated environments for robotics (Table I) without touch
information, the state vector is 68-dimensional (Table III) [4].
In the environments with 92 touch sensors the state vector is
160-dimensional (68+92). As an additional experiment, we
grouped 92 sensors into 16 sub-groups (Table II) to reduce
the tactile sensory resolution (”16 Sensors-v0”). If any of
sensors in a group has a greater than zero value, then the
sub-group returns True, otherwise False. The grouping was
done per phalanx (3 phalanx x 5 digits) plus a palm resulting
in 16 sub-groups (Table II). In the environments with 16
touch sensors sub-groups the state vector is 84-dimensional

TABLE III
NEURAL NETWORK INPUT VECTOR IN THE HAND ENVIRONMENTS.

Type Length

Joint angles 24
Joint angles‘ velocity 24

Object‘s position XYZ 3
Object‘s velocity XYZ 3

Object‘s orientation (quaternion) 4
Object‘s angular velocities 3

Target position of the object XYZ 3
Target orientation of the object XYZ (quaternion) 4

All values without touch sensors 68
Touch sensors 92

All values with touch sensors 160

https://github.com/openai/gym


(68+16). For a given state of the environment, a trained
policy outputs an action vector of 20 float numbers used for
position-control (actuation center + action * actuation range)
of the 20 actuated degrees of freedom.

The MuJoCo [17] physics engine provides methods to
mimic touch sensing at specified locations. This is based
on specifying the tactile sensors’ active zones by so-called
sites. Each site can be represented as either ellipsoid or box.
In Fig. 2, the sites are visualized as red and green transparent
shapes attached to the hand model. If a body’s contact point
falls within a site’s volume, and involves a geometry attached
to the same body as the site, the corresponding contact force
is included in the sensor reading. The output of this sensor
is non-negative scalar. At runtime, the contact normal forces
of all included contact points of a single zone are added and
returned as the simulated output of the corresponding sensor
[18][19].

The learning agent in the environments is an Actor and
Critic network: 3 layers with 256 units each and ReLU
non-linearities. We evaluate the learning using Deep De-
terministic Policy Gradients (DDPG) [20] and Hindsight
Experience Replay (HER) [21] techniques. All hyperpa-
rameters and the training procedure are described in de-
tail in [21, 4], and are available in a code implementa-
tion as a part of the OpenAI Baselines (HER) repository
(https://github.com/openai/baselines)[22].

For all environments, we train on a single machine with 19
CPU cores. Each core generates experience using two paral-
lel rollouts and uses MPI for synchronization. We train for
200 epochs, which amounts to a total of 38x106 timesteps.
We evaluate the performance after each epoch by performing
10 deterministic test rollouts per MPI worker and then
compute the test success rate by averaging across rollouts
and MPI workers. A test is counted as successful when, at
the end of the test rollout, the manipulated object occurs in a
rewarded state determined by the reward function. The train-
ing environments - the original and the newly contributed
touch-augmented ones as listed in Table I - are available as
part of OpenAI-Gym (https://github.com/openai/gym) [22].
In all cases, we repeat an experiment with five different
random seeds (4, 20, 1299, 272032, 8112502) and report
results by computing the median test success rate as well as
the interquartile range.

Following [4], in all tasks we use rewards that are sparse
and binary: The agent obtains a reward of 0 if the goal
has been achieved (within some task-specific tolerance) and
1 otherwise. Actions are 20-dimensional: we use absolute
position control for all non-coupled joints of the hand. We
apply the same action in 20 subsequent simulator steps (with
t = 0.002 s each) before returning control to the agent, i.e.
the agent’s action frequency is f = 25 Hz. Observations
include the 24 positions and velocities of the robot’s joints.
In case of an object that is being manipulated, we also
include its Cartesian position and rotation represented by
a quaternion (hence 7-dimensional) as well as its linear
and angular velocities. In case of a ”...TouchSensors-v0”
environment with touch-sensors, we also include a vector

(92 Boolean values) representing tactile information. In case
of a ”...TouchSensors-v1” environment with touch-sensors,
we include a vector (92 float values) representing tactile
information.

Manipulate Block: A block is placed on the palm of the
hand. The task is to manipulate the block such that a target
pose is achieved. The goal is 7-dimensional and includes the
target position (in Cartesian coordinates) and target rotation
(in quaternions). We include multiple variants:

HandManipulateBlockFullTouchSensors: Random target
rotation for all axes of the block. Random target position.

HandManipulateBlockRotateXYZTouchSensors: Random
target rotation for all axes of the block. No target position.
A goal is considered achieved if the distance between the
manipulated objects position and its desired position is less
than 1 cm (applicable only in the Full variant) and the
difference in rotation is less than 0.1 rad.

Manipulate Egg: An egg-shaped object is placed on the
palm of the hand. The goal is 7-dimensional and includes the
target position (in Cartesian coordinates) and target rotation
(in quaternions).

HandManipulateEggFullTouchSensors: Random target ro-
tation for all axes of the egg. Random target position. A
goal is considered achieved if the distance between the
manipulated objects position and its desired position is less
than 1 cm and the difference in rotation is less than 0.1 rad.

Manipulate Pen: A pen-shaped object is placed on the
palm of the hand. The goal is 7-dimensional and includes the
target position (in Cartesian coordinates) and target rotation
(in quaternions).

HandManipulatePenRotateTouchSensors: Random target
rotation x and y axes of the pen and no target rotation around
the z axis. No target position. A goal is considered achieved
if the difference in rotation, ignoring the z axis, is less than
0.1 rad.

For the sake of brevity, further details about training
procedure, reward function, goal-aware observation space,
and neural network parameters are available in [4], since our
main contribution focuses on the extension of the existing
Shadow Dexterous Hand model by tactile sensors.

III. EXPERIMENTAL RESULTS

We tested how tactile information helps to increase per-
formance and samples efficiency of training on the object
manipulation tasks. To this end, we have reproduced the
experiments where no touch sensors were used [4], and
conducted the same experiments with additional touch-sensor
readings. To provide insights about how different aspects
of tactile information (accuracy, tactile resolution) influence
learning and performance we conducted three experiments.
In the first experiment we added float-value readings from
92 sensors to the state (red curves in Fig. 3). This experiment
can be reproduced in the OpenAI-gym-robotics environments
ending at ”...TouchSensors-v1”. In the second experiment
we added Boolean-value reading from the same 92 sensors
to the state (black curves in Fig. 3). The experiment can
be reproduced in the OpenAI-gym-robotics environments



TABLE IV
AVERAGE PERFORMANCE IN THE RANGE OR 150-200 EPOCHS (FIG. 3)
WITH AND WITHOUT TACTILE INFORMATION (LEFT FOUR COLUMNS).

PERFORMANCE-INCREASE RATIO OF LEARNING WITH TACTILE

INFORMATION IN COMPARISON TO LEARNING WITHOUT TACTILE

INFORMATION (RIGHT THREE COLUMNS).
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HandManipulate
Egg 0.74 0.83 0.85 0.85 1.12 1.15 1.15

HandManipulate
BlockRoatateXYZ 0.92 0.94 0.94 0.93 1.02 1.02 1.01

HandManipulate
PenRotate 0.28 0.32 0.31 0.30 1.14 1.11 1.07

HandManipulate
Block 0.19 0.30 0.30 0.29 1.58 1.58 1.53

Mean 1.22 1.22 1.19

ending at ”...TouchSensors-v0”. In the third experiment we
grouped 92 sensors into 16 sub-groups (Table II) to reduce
the tactile sensory resolution. If any of sensors in a group
has a Boolen-True value, then the sub-group returns True,
otherwise False. The grouping was done per phalanx (3
phalanx x 5 digits) plus a palm resulting in 16 sub-groups
(Table II). Thus in the third experiment we added Boolean-
value readings from the 16 sub-groups to the state (green
curves in Fig. 3).

Fig. 3 and results in Table IV demonstrate that tactile
information increases performance of the agent in the tasks.
We define 100% performance level as the average over the
last 50 epochs (epochs 150-200) of median test success rate
in the original ”NoSensors” environments (blue curves in
Fig. 3). To compare performance-increase ratio of learning
with tactile information in comparison to learning without
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[4, 1299, 8112502, 20, 272032]

Fig. 3. Curves - median test success rate. Shaded areas - interquartile
range [five random seeds]. Blue curves - learning without tactile infor-
mation (NoSensors), red curves - learning with float-value tactile readings
(Sensors-v1) from 92 sensors, black curves - learning with Boolean-value
tactile readings (Sensors-v0) from 92 sensors, green curves - learning with
Boolean-value tactile readings (Sensors-v0) from 16 sensor sub-groups.

TABLE V
LEFT FOUR COLUMNS: FIRST EPOCH WHEN A CONVERGENCE CURVE

(FIG. 3) REACHES THE AVERAGE PERFORMANCE (EPOCHS 150-200)
WITHOUT TACTILE INFORMATION. RIGHT THREE COLUMNS: SAMPLE

EFFICIENCY OF LEARNING WITH TACTILE INFORMATION IN

COMPARISON TO LEARNING WITHOUT TACTILE INFORMATION.
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HandManipulate
Egg 136 77 59 58 1.77 2.31 2.35

HandManipulate
BlockRoatateXYZ 85 56 60 75 1.52 1.42 1.13

HandManipulate
PenRotate 108 34 40 56 3.18 2.70 1.93

HandManipulate
Block 113 62 60 69 1.82 1.88 1.64

Mean 2.07 2.08 1.76

tactile information we divide the average performance over
the last 50 epochs (epochs 150-200) of the three experiments
(”92 Sensors-v1”, ”92 Sensors-v0”, ”16 Sensors-v0”) by the
average performance in the original experiment (”NoSen-
sors”). In each experiment, we observe on average more
than 1.19 times better performance (Table IV) when tactile
information is available.

Results in Table V demonstrate sample-efficiency increase
while training when tactile information is available. To
compare the sample efficiency for learning with and with-
out tactile information, we measured how many training
epochs were necessary to reach the performance level of an
agent trained without tactile information in an environment.
For example, in the HandManipulateBlock environment, the
”NoSensors” performance level equals 0.19 (Table IV) and
is reached after 113 epochs (Table V) when training without
tactile information. When training with float-value tactile
readings (92 Sensors-v1), the agent reaches the ”NoSensors”-
performance level of 0.19 first time already after 62 epochs
(Table V), which results in the 1.82 times increase (Ta-
ble V) in sample efficiency for training. When training with
Boolean-values tactile readings (92 Sensors-v0), the agent
reaches the ”NoSensors”-performance level of 0.19 first time
already after 60 epochs, which results in the 1.88 times
increase in sample efficiency for training. When training with
Boolean-values tactile readings with lower resolution (16
Sensors-v0)(Table II), the agent reaches the ”NoSensors”-
performance level of 0.19 first time already after 69 epochs,
which results in the 1.64 times increase in sample efficiency
for training. In each experiment, we observe on average more
than 1.76 times faster convergence (Table V) when tactile
information is available (Table V).



IV. DISCUSSION

In this work, we study the inclusion of tactile information
into model-free deep reinforcement learning. We consider
tasks with dynamic in-hand manipulation of known objects
by the Shadow-Dexterous-Hand model. We observe that
feedback from tactile sensors improves performance and
sample efficiency for training. Next to vision, tactile sensing
is a crucial source of information for manipulation of objects
and tool usage for humans and robots [23, 24, 25, 26]. Visual
reconstruction of contact areas suffers from occlusions by the
manipulator at the contact areas [27]. Better inferring the
geometry, mass, contact and force physics of manipulated
objects is possible when touch information is available.
Tactile sensing thus can provide essential information for
manual interaction and grasping, making it one of key
components for better generalization. Tactile information
also allows training of gentle manipulation of fragile objects.
It is a challenging objective to tap the potential of touch for
dexterous robot hands. This requires to combine hardware
and software developments for robot hand touch sensing.

In this work, we concatenated tactile, proprioceptive, and
visual information at the input level of a neural network.
A possible further extension of this work is a multi-modal
sensor fusion. The multi-modal sensor fusion [10] allows
end-to-end training of Bayesian information fusion on raw
data for all subsets of a sensor setup. It can potentially deliver
better performance and more sample efficient training with
model-free deep reinforcement learning approaches.

V. CONCLUSIONS

In this work, we introduce the touch-sensors extensions
to OpenAI-Gym [16] robotics Shadow-Dexterous-Hand en-
vironments [4] modeled after our touch sensor developments
[1, 2]. We find that adding tactile information substantially
increases sample efficiency for training (by 97% on average,
Table V) and performance (by 21% on average, Table IV)
in the environments, when training with deep reinforcement
learning techniques [21]. To examine the role of tactile-
sensor parameters in these improvements, we conducted
experiments (Fig. 3) with varied sensor-measurement accu-
racy (Boolean vs. float values), and varied spatial resolution
of the tactile sensors (92 sensors vs. 16 sensors on the
hand). We conclude that accurate sensory readings as well
as dense tactile resolution do not substantially improve
performance and sample efficiency when training with deep
reinforcement learning techniques, in comparison to Boolean
sensor readings and sparse sensor localization (one sensor
per phalanx). The performance and sample efficiency for
training are similar in these case. These experiments provide
beneficial knowledge for those looking to build robots with
tactile sensors for manipulation.
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