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Abstract— This paper proposes a method for constrained
motion planning using vision and the kinematics of the arm,
given a start and destination points. No prior knowledge of
the surface shape, but observes it from a noisy point cloud
is assumed. We address the multi-optimisation problem of
finding trajectories which maximises the robot’s manipulabil-
ity throughout the motion while minimising surface-distance
travelled between the points. We show how detours in the cut
path can be leveraged, to increase the manipulability of the
robot at all points along the path. We show how a sampling-
based planner can be projected onto the Riemannian manifold
of a curved surface, and extended to include a term which
maximises manipulability. We present results on two different
surfaces shapes. Our planner enables successful task completion
while avoiding singularities and ensuring significantly greater
manipulability when compared against a conventional RRT*
planner.

I. INTRODUCTION

Robotic cutting operations rise an interest problem of
motion-planning for a serial arm. The robot must touch the
cutting surface with the end-effector and apply forces to
split into pieces the original object. The surface, where the
interaction lies, can be regarded as a manifold upon which
the tool must follow a trajectory between a point A and a
point B, while a forces are applied throughout the motion.

Our work addresses the issues of application such as
the cleanup of legacy nuclear waste [1], and emergency
operations such as bomb-disposal, fire-fighting and disaster-
response [2]. In these scenarios, the main concern is the
cutting of containers for inspection. Therefore, an exact
cutting path is not important as long as the robot successfully
cut open the barrel. However, the hazardous environments
where such applications are performed introduce significant
perturbations that might compromise the task. Vision noise,
uncertain properties on the material to cut, and robot model
inaccuracies are only a few examples of problems to face
during the operations. Many works research how to plan
paths in either constrained and uncostrained scenarios [3],
[4]. However, a little body of literature investigate the
problem using the kinematic of the robot [5]. Tackling
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Fig. 1. The image shows the results of RRT* (red) and RRT*-RMM (blue)
on a helment. Fig.1(b) depicts the manipulability of the two paths. A little
discrepancy between paths and pointcloud is due to visualisation purposes.

the uncertainties considering the kinematic allows the path
to be more robust to unforeseen problems throughout the
execution. By this means, we would like the robot to have
sufficient manipulability to provide capacity for responding
compliantly to such perturbations, while following a desired
cutting path. We introduce a modified cost which is the
sum of a ”manipulability” cost along the path scaled by the
number of the elements in the path and a cost of ”distance”
from the starting point.

II. PROBLEM FORMULATION

We use RRT* to implement the proposed metric and
generate a path from point A to point B. The cost function
accounts for the manipulability of the robot throughout the
motion and the distance upon the surface between A and
B. Moreover, we incorporate Riemannian manifold mapping
into our approach to generate samples that lie on the point
cloud of the object. As such, our approach is called “RRT*-
RMM” which stands for RRT* with added Riemannian
Manifold mapping and added Manipulability cost.

Rapidly-exploring Random Tree*: Rapidly-exploring Ran-
dom Tree (RRT) is arguably one of the most common
sampling-based path planners, [4]. RRT samples points
within a region of interest and adds them in a tree structure
based on a distance metric. Every iteration, the algorithm
generates a new point based on some motion constraints and,
then, connects it to the closest node in the tree. RRT* is an
extension to the classical RRT proposed in [6], which allows
the re-evaluation of nodes already in the tree when a new
point is available.

Manipulability: The manipulability of the robot measures
the remaining capability of the robot of making a movement
- or applying forces - given a specific configuration, q ∈ Rn

with n number of degrees of freedom (dof) of the robot.
Constraining the joints’ velocities to be unitary, we obtain



Fig. 2. Box plot of the manipulability values obtained by RRT* and RRT*-
RMM for all four objects. Left) helment, Right) curved surface.

|q̇| = ṙT Γ†ṙ = 1, where r is robot description in the
Cartesian space, J is the Jacobian of the robot, and † is the
pseudoinverse (or inverse if J is square) of the Jacobian. The
matrix Γ embeds the information about the manipulability of
the robot as a function of a configuration q. The conventional
approach to measure the manipulability, [7], is defined as the
square root of the determinant of Γ.

Riemannian Manifold: Computing distances between
points is not straightforward on curved surfaces. A Rie-
mannian Manifold is a smooth manifold equipped with an
inner product on the tangent space of each point p onto the
manifold, which changes smoothly from point to point and
its vector spaces are differentiable. The spaces endowed with
a Riemanian manifold can map the points on the manifold
with a tangential plane using two maps called logaritmic
L = logp(∆), and exponential map ∆ = expp(L), with L
onto the tangent plane and ∆ onto the manifold.

Proposed method RRT*-RMM: Our algorithm performs
a multi-optimisation between length and manipulability
throughout the path as per Eq. (1).

C(p) = (1− α)Cd(p,pS) + αCM (qp) (1)

where Cd is the distance cost for reaching p from pS (start-
ing point) and CM is cost for the manipulability along the
path with last configuration qp (it is computed with Inverse
Kinematic by p). The manipulability cost is computed over
the path, we sum the manipulability index presented by
Yoshikawa [7] from the starting point to the current one and
we weigh the sum with the number of step in the path. We
implement the cost into the sample based RRT* framework.
We want the path to lie on a surface, which is given using
a point cloud and we sample points from it to build the
tree. Points sampled onto the tangent space of p onto the
manifold can be projected onto the original manifold thanks
to the exponential map.

III. EXPERIMENTAL RESULTS

We test our approach on two different surface shapes
a helmet and curved object. In our experiment, we use a
simulated 7-dof Sawyer robot and we task the algorithm to
find paths onto the objects with the best compromise between
overall manipulability and length. Fig.1(a) shows the result
for the experiment on the helmet. The graph in 1(b) shows
the manipulability attained with our method in comparison
with a naive RRT* which looks for the shortest path between
the points A and B. Because the RRT* is a sample-based
approach, we need to run many times the same algorithm

Fig. 3. This figure shows the path length found for the same objects. Left)
helmet, Right) curved surface.

to check whether the results are consistent over iterations or
just by serendipity. We collect the results for 100 iterations of
the algorithms for the four objects and we show the outcome
in Fig.?? and Fig. 3. As we expected, the RRT*-RMM takes
a departure from the shortest path and requires to travel a
long distance to connect the points, on the contrary RRT*
performs better in term of length. As per the manipulability
cost, the RRT*-RMM drastically improves the manipulability
along the path in a very consistent manner no matter the
objects. Moreover, the boxplot shows a reduced variance over
the trials for the RRT*-RMM in comparison with the RRT*.
This is due to the knowledge that RRT*-RMM has and RRT*
has not.

IV. CONCLUSION

This paper addresses the problem of the motion planning
from vision, which enables a robot to perform a cutting
task under uncertainties thanks to the kinematic-awareness.
We find robot trajectories which maximise the robot’s ma-
nipulability throughout the motion. The obtained path is
the result of a compromise between travelling distance and
manipulability throughout the motion of the robot. Also,
we use the Riemannian manifold concept to project random
samples onto the surface and vice versa. Thus, a pointcloud
of the surface is sufficient for the algorithm (no need of a 3D
model of the object). This work has application in industrial
problems of robotic rough cutting. RRT*-RMM attains an
increased manipulation capability at the cost of an increased
path length, however, in the cutting problem of interest,
avoiding kinematic issues, i.e., singularity, is acceptable.
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