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Abstract— The ability to manipulate objects is a key aspect
for future service robots. While autonomous manipulation has
been accomplished in industrial settings, the uncertainty and
inherent open-ended nature of unstructured environments like
the home make for a challenging problem. One of the key areas
in manipulation research is grasp affordance detection. CNNs
have proven successful in predicting grasp candidates and the
state of the art is capable of generalizing to unforeseen objects.
However, the process to finetuning and optimizing the archi-
tecture for these networks is still manual and tedious. In this
work we show how by formulating architecture optimization
as a search problem it is possible to improve the performance
by up to 5% on the state of the art GG-CNN architecture
increasing its number of parameters by just 8%.

I. INTRODUCTION

The classic approach to Grasp Pose Detection has been
matching the object to be grasped to a database of known
geometries, and adopting one of the previously defined poses
according to some physics-related metric. The problem with
this approach is its lack of scalability and generalization.
Motivated by this limitation, an interest for open-ended,
few-shots classification learning has risen. The goal is to
develop algorithms that can extend the number of object
classes throughout time, when representation of an object lies
too far from the known categories. The new classes can be
bootstrapped by the existing ones, and only a few additional
grasp examples are needed to fully learn the new poses.

An alternative to dynamically extending the number of
classes in a model is detaching object classification from
grasp prediction. Pose generation can be formulated as a
regression on geometric features, independently of the object
class. For this type of problems, the use of CNNs has been
particularly successful. However, the problem with optimally
constructing this kind of models is that the number of
possible combinations of layer hyperparameters is too big
to be tested manually or exhaustively.

II. PROPOSED SOLUTION

Net2Net is a knowledge transfer technique proposed in
[1] to accelerate and optimize the training of models.
It introduces two transfer operators: Net2WiderNet and
Net2DeeperNet. In the context of CNNs, the first operator
adds filters to a convolutional layer, and the second adds
convolutional layers to the model. The transfer of knowledge
is achieved by initializing the added weights s.t. the output
of the extended network equals the original one.

Fig. 1. (Left) Simulation environment with a free-floating 6DoF parallel-
jaw gripper. A grasp is considered successful if the CoM of the object is
dropped within the target bin. (Right) Pixelwise prediction of extended GG-
CNN. Upper left is the normalized grasp quality distribution. Upper right is
the −π/2, π/2 normalized orientation. Bottom left is the gripper width in
pixels. Bottom right is the resulting oriented box for the absolute maxima
in the quality distribution.

In [2] the Net2Net framework is used to automate model
fine tuning for a 3D shape recognition task. They formulate
the architecture optimization problem as a beam search in
model space. The root node of the search is an initial
simplified model and the offspring is generated by applying
the transfer operators to the teacher network. The branching
factor at a given depth is a function of the number of
layers compatible with a transfer operator and the number
of operators (2), and is limited by the size of the beam.

GG-CNN [3] is a small (64K parameters) fully-
convolutional network that can yield a pixelwise prediction
(fig. 1) of grasp quality, rotation and width of a parallel jaw
gripper in real-time (19ms). In this work we employ a beam
search exploration algorithm to either:

1) Increase the performance by adding a small number of
parameters to the model.

2) Optimize the network by reducing the number of
parameters while keeping the performance rate.

III. EXPERIMENTS AND RESULTS

To evaluate the performance of the new models we im-
plement a custom simulation using pybullet. Our benchmark
consists on picking 40 objects from the ShapeNetSem dataset
[4] and dropping them within a target bin (see figure 1).
Each task is repeated 5 times with a random initial pose of
the object. Training is conducted over the Cornell Grasping
Dataset [5]. As a heuristic to guide the search we use the
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Fig. 2. Experiments extending the original GG-CNN architecture: e denotes
the number of training epochs after applying a transfer operator; r is the
number of epochs we train the selected candidate after a full lookahead step;
transpose implies that the transposed-convolutional layers are expanded as
well

rate of IOU > 0.25 between the predicted oriented box with
highest robustness and the ground truth.

A. Extending the Architecture

To improve the overall performance of GG-CNN we took
the published Keras model and grew it using beam search
with a beam size of 3 and a depth of 5. The original beam
search algorithm uses lookahead to increase the robustness
of the exploration, however it adds a considerable overhead.
We ran tests with and without lookahead. We also explored
the impact of training epochs. In order to achieve a balance
between exploration time and performance for the search
with lookahead, we did one experiment where the offspring
was trained for only 2 epochs but the selected candidate after
each lookahead was retrained for an additional 8 epochs.

Figure 2 shows the results for these experiments. IOU
success rates are directly optimized by the search and SIM
performance reflects the generalization potential of the net-
work in our simulation benchmark. In our experience, the
best performance was obtained when training the offspring
by only 2 epochs, with lookahead and extending only the
feature extraction layers. Longer training times would overfit
the model, which is reflected on the trial where the best
candidate at each depth is retrained for 8 epochs. The
convolutional layers of our final extended architecture are
shaped 9 × 9 × 32, 5 × 5 × 16, 3 × 3 × 16, 3 × 3 × 16, 3 ×
3×8, 3×3×8 which is the result of consecutively applying
the operations deeper(3), deeper(4), wider(3),
deeper(3) (where deeper/wider denotes the transfer
operator and the digit is the index of the layer starting at 1).

B. Optimizing the Architecture

In order to find a smaller architecture with similar capabil-
ities we constructed and trained two simplified networks: one
narrow sized C9×9×8C5×5×4C3×3×2T3×3×2T5×5×4T9×9×8
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Fig. 3. Optimization experiments. Narrow starts with the same number
of layers as the original model but less filters per convolution. Shallow
is an extremely reduced version of the model with only 4 layers, shaped
5×5×4 and 3×3×2 respectively for both convolutional and transposed-
convolutional layers.

GG-CNN Accuracy Parameters
Original 0.785 62420
Extended 0.835 67644
Optimized 0.715 16104

TABLE I
COMPARISON OF ACCURACY AND SIZE OF THE MODELS

and one shallow sized C5×5×4C3×3×2T3×3×2T5×5×4 where
C and T denote convolutional and transposed-convolutional
respectively. We used the same hyperparameters as for the
previous experiments, but since these are smaller models we
chose to expand both types of layers. Unsurprisingly, the
shallow architecture is too underpowered to get anywhere
close to the baseline performance (fig. 3) however the narrow
model reaches an accuracy of 0.715 after 5 modifications.
Something to be noted is the relatively high simulation
performance of the initial networks. This can be explained by
the fact that even if an end-effector is not perfectly aligned,
when closing the fingers the object can get shifted towards
a more robust grip.

IV. CONCLUSIONS
We were able to improve the accuracy of the state of

the art GG-CNN architecture in 5% while only increasing
its size by an 8% (see Table I). The shape of the filters
in the extended architecture are a good example of why
automated exploration is relevant, since this combination of
layers is unlikely to be manually chosen. While we found
an architecture 4× smaller, it performs a 7% worse and we
disregard it, considering that the original model is already
lightweight enough to run in real time.
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