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Generalized Hidden Markov Models—Part I:
Theoretical Frameworks
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Abstract—This is the first paper in a series of two papers de-
scribing a novel generalization of classical hidden Markov models
using fuzzy measures and fuzzy integrals. In this paper, we present
the theoretical framework for the generalization and, in the
second paper, we describe an application of the generalized hidden
Markov models to handwritten word recognition. The main
characteristic of the generalization is the relaxation of the usual
additivity constraint of probability measures. Fuzzy integrals are
defined with respect to fuzzy measures, whose key property is
monotonicity with respect to set inclusion. This property is far
weaker than the usual additivity property of probability measures.
As a result of the new formulation, the statistical independence
assumption of the classical hidden Markov models is relaxed. An
attractive property of this generalization is that the generalized
hidden Markov model reduces to the classical hidden Markov
model if we used the Choquet fuzzy integral and probability
measures. Another interesting property of the generalization is
the establishment of a relation between the generalized hidden
Markov model and the classical nonstationary hidden Markov
model in which the transitional parameters vary with time.

Index Terms—Fuzzy integral, fuzzy measures, handwriting
recognition, Markov models.

I. INTRODUCTION

H IDDEN Markov model (HMM) is a statistical method that
uses probability measures to model sequential data rep-

resented by sequence of observation vectors. In this paper, we
describe a novel generalization of the classical hidden Markov
models that utilizes fuzzy sets, fuzzy measures, and fuzzy inte-
grals. Fuzzy integrals are defined with respect to fuzzy measures
whose key property is monotonicity with respect to set inclu-
sion. This property is far weaker than the usual additivity prop-
erty of probability measures. As a result of the monotonicity of
the fuzzy measures, the statistical independence assumption of
the classical model is relaxed in the generalized (fuzzy) model.
An attractive property of this generalization is that the gener-
alized hidden Markov model (GHMM) reduces to the classical
hidden Markov model if we used the Choquet fuzzy integral and
probability measures. This property implies that the generalized
models include the classical one as a special case.

The classical hidden Markov models have been found to be
extremely useful for a wide spectrum of applications in ecology,
cryptanalysis, image understanding, speech, and handwriting
recognition [1]–[3]. The proposed generalized hidden Markov
model shares the ability to model sequential processes with the
classical one and, therefore, can be used for similar applications.
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This proper generalization, which is based on the strong theo-
retical foundations of fuzzy measures and fuzzy integrals [4],
provides more freedom and flexibility to aggregate the sequen-
tial information obtained from the observation sequences.

One significant contribution of our research is the estab-
lishment of a relation between the generalized hidden Markov
model and the classical nonstationary hidden Markov model
in which the transitional parameters are allowed to vary with
time. The main advantage of our proposed generalized model
over the classical nonstationary model is that this nonstationary
behavior, which is an extremely desirable property, is achieved
naturally and dynamically as a byproduct of the nonlinear
aggregation of information using the fuzzy integral. Moreover,
the fuzzy model does not require fixing the lengths of the
observation sequences and the availability of large training sets
in order to learn a large number of transition parameters as for
the classical nonstationary model.

Constructing a mathematical framework for generalizing the
classical hidden Markov model requires thoughtful application
of tools from different disciplines and difficult nonlinear opti-
mization issues. The main factor that makes the classical hidden
Markov model a versatile pattern recognition tool is the formu-
lation of the forward and backward variables under statistical
independence assumptions to compute the matching scores effi-
ciently. By properly defining fuzzy forward and backward vari-
ables, we gain increased flexibility and meaningful matching
scores with relaxed assumptions.

The concept of an optimal state sequence is used by many
researchers in the field of classical hidden Markov models to
design appropriate training and classification techniques. Given
a sequence of observation vectors, the difficulty for finding a
meaningful optimal state sequence lies with the definition of
the optimal state sequence since there are several possible opti-
mality criterion functions. Here, again, we utilize the proper def-
initions of the fuzzy forward and backward variables to formu-
late the corresponding nonlinear optimality criterion function
and use a fuzzy modification of the classical Viterbi algorithm
to determine the fuzzy optimal state sequence. We call this se-
quence a fuzzy optimal state sequence because its computation
involves new parameters that are thought to serve as consistency
measures (or robustness factors) that take into account the confi-
dence scores from other states to identify the final optimal state
sequence in an appropriate manner.

As for the classical hidden Markov model, there is a computa-
tional difficulty for the generalized model. Fortunately, we can
overcome this difficulty for certain choices of the fuzzy mea-
sure, fuzzy integral, and fuzzy intersection operator by using a
scaling procedure similar to that used for the classical model.
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The most difficult aspect of the generalization is the deriva-
tion of reestimation formulas used inside the training algorithms
as updating rules. We accomplish this difficult task under cer-
tain relaxed constraints; the general case remains unsolved. Our
generalization opens new future directions for research in mod-
eling sequential processes. There are many aspects that require
more study.

The remainder of this paper is devoted to a detailed descrip-
tion of both the existing mathematical frameworks and our gen-
eralized hidden Markov model. We provide necessary back-
ground material to make the motivation for the generalization
clear and to make the paper self-contained. In Section II, we pro-
vide a review of the classical hidden Markov models. We also
discuss the implementation issues required for the application
of interest. Section III provides a description of fuzzy measures
and fuzzy integrals. This material is essential for generalizing
the classical hidden Markov models. In Section IV, we formulate
proper definitions for the fuzzy forward and backward variables
using the notions of fuzzy measures and fuzzy integrals. We also
describe our approach for solving the optimization problems re-
quired for training the fuzzy models and other implementation
issues. Finally, Section V is dedicated to a summary of this study
and suggestions for future outlooks.

II. HIDDEN MARKOV MODELS

HMM’s are statistical methods (stochastic networks) that
have been extremely useful for modeling sequentially changing
behavior as in speech and handwriting recognition applications.
This technique was applied to speech recognition problems
with great success [1]. Since the recognition of handwritten
words has many similarities with that of speech, researchers
tried to apply this technique to handwritten word recognition.

Formally, a hidden Markov model, as defined by Rabiner
in [1], “is a doubly embedded stochastic process with an un-
derlying process that is not observable (it is hidden), but can
only be observed through another set of stochastic processes
that produce the sequence of observations.” This means that a
probabilistic function of a hidden Markov chain is a stochastic
process generated by two interrelated mechanisms, an under-
lying Markov chain having a finite number of states, and a set
of random functions, one of which is associated with each state.
At discrete instants of time, the process is assumed to be in
some state and an observation is generated by the random func-
tion corresponding to the current state. The underlying Markov
chain then changes states according to its transition probability
matrix. The observer sees only the output of the random func-
tions associated with each state and cannot directly observe the
states of the underlying Markov chain; hence, the term hidden
Markov model.

In principle, the underlying Markov chain may be of any
order and the outputs from its states may be multivariate
random processes having some continuous joint probability
density function [5]. We will restrict ourselves in this paper
to consideration of Markov chains of order one, i.e., those of
which the probability of transition to any state depends only
upon that state and its predecessor.

A. Elements of a Discrete HMM

Most of the material and notation presented in this section
are adapted from Rabiner [1]. There are a finite number, say

, of states in the model. At each time step, a new state is
entered based upon a transition probability distribution which
depends on the previous state (the Markovian property). If the
transition parameters are held constant with respect to time the
model is called stationary, otherwise it is called nonstationary.
After each transition is made, an observation output symbol is
produced according to a probability distribution, which depends
on the current state. The probability distribution is held fixed for
the state regardless of when and how the state is entered. This
means that the properties of the process are held steady, except
for minor fluctuations, for a certain period of time and then, at
certain instances, a gradual change to another set of properties
occurs. We now formally define the following model notation
for a first-order discrete observation HMM:

Length of observation sequence (total number of time
steps).
Number of states in the model.
Number of observation symbols.

, states.
, state sequence.

discrete set of possible observa-
tions.
State visited at time.

, , state transition
probability distribution.

, at , observation
symbol probability distribution in state.

, , initial state distribution.
We use the compact notation to indicate the
complete parameter set of the model. Given the form of the
hidden Markov model , there are three key prob-
lems of interest that must be solved for the model to be useful
in real-world applications. These problems are the following.

B. The Classification Problem

The probability of an observation sequence
given a model , can be used

to perform classification. The straightforward way of com-
puting is by enumerating every possible state sequence.
Assuming statistical independence of observations, it follows
that:

(1)

This method of computing requires compu-
tations. A method called the forward–backward procedure takes

computations. Consider the forward variable de-
fined as

(2)
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Fig. 1. Forward and backward variables computations.

We can solve for inductively as follows:

Initialization: For all

(3)

Induction: For all and

(4)

Termination: (5)

Equation (4) relies on assuming statistical independence. To
show that, let us denote the left- and right-hand side of (4) by
LHS and RHS, respectively. The derivation proceeds as follows:

RHS

(6)

Assuming is independent of , then

RHS

(7)

Assuming is independent of , then

RHS

LHS (8)

In a similar manner, we consider a backward variable de-
fined as

(9)

and again we can solve for inductively as follows.

Initialization for all

(10)

Induction for all and

(11)

Termination fFor any such that

(12)

Fig. 1 illustrates the operations required to compute the for-
ward and backward variables.
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Fig. 2. Viterbi algorithm.

C. The Optimal-State Sequence Problem

There are several possible ways of finding the optimal state
sequence associated with the given observation sequence. The
difficulty lies with the definition of the optimal state sequence,
i.e., there are several possible optimality criteria. One possible
optimality criterion is to choose the states which are individually
most likely. This optimality criterion maximizes the expected
number of correct individual states. To implement the solution
we define the variable

(13)

can be computed as

(14)

Using , we can solve for the individually most likely state
at time , , as

(15)

The major problem with the above criterion and solution occurs
when there are disallowed transitions. In this case, the obtained
optimal state sequence may, in fact, be an impossible state se-
quence. This drawback points to the necessity of global con-
straints on the derived optimal-state sequence. An optimality
criterion of this type is to find the state sequence with the highest
probability, i.e., to maximize . A formal technique
for finding this solution exists and is called the Viterbi algo-
rithm. This algorithm defines a quantity

(16)

Similarly can be computed inductively and the proce-
dure can be stated as follows:

Initialization for

(17)

(18)

Recursion for and

(19)

(20)

Termination

(21)

(22)

Backtracking for all

(23)

Fig. 2 below illustrates the sequence of operations required
for the Viterbi algorithm.

D. The Training Problem

Given any finite observation sequence as training data, we
cannot optimally train the model. We can, however, choose

and such that is locally maximized. The
Baum–Welch method is an iterative algorithm that uses the
forward and backward probabilities to solve the problem of
training by parameter estimation. To implement the solution we
first define the variable the probability of being in state

at time and then define the probability of being in
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state at time and state at time , given the model
and the observation sequence, i.e.

(24)

(25)

Now we have

expected number of transitions made

from to (26)

expected number of transitions from

(27)

The Baum–Welch reestimation formulas for and are

(28)

(29)

(30)

Iterative application of these formulas will converge to a local
maxima of .

E. Continuous Observation Densities in HMM

For most applications, the observations are continuous sig-
nals (or vectors). Vector quantization of these continuous sig-
nals can degrade performance significantly. Moreover, the code-
books generated by the quantization process are constructed
using training data from all classes. When a new class of shapes
is added, we need to reconstruct the codebook and retrain all
system modules. On the other hand, for HMM’s with continuous
observation densities we do not need to train the system from the
beginning since there is no codebook to be constructed. We only
need to train the newly added class. Hence, HMM’s with contin-
uous observation densities offer some advantages over discrete
HMM’s.

The class of densities we consider is the class
of mixtures of the form

(31)

where is a multivariate
Gaussian density with mean and covariance matrix .
The mixture gains satisfy the stochastic constraint

(32)

where , and .
The reestimation formulas [6], [7] for the coefficients

(33)

(34)

The reestimation formulas [1] for the coefficients of the mixture
densities can also be rewritten as [see, also, (35) at the bottom
of the page]

(36)

(37)

(38)

(35)
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(39)

where is the probability of being in state at time
with the th mixture component accounting for .

F. Initial Estimates of HMM Parameters

Rabiner described a procedure for providing good initial es-
timates of the model parameters called the segmental-means
algorithm [1], [8], [9]: An initial model estimate can be chosen
randomly, uniformly, or on the basis of any available model that
is appropriate to the data. Following model initialization, the set
of training observation sequences is segmented into states based
on the current model. This segmentation is achieved by finding
the optimal state sequence via the Viterbi algorithm. In the case
where we are using discrete symbol densities, each of the ob-
servation vectors within a state is coded using the-codeword
codebook and is updated as the number of vectors with
codebook index in state divided by the number of vectors in
state .

In the case that we are using continuous observation densi-
ties, the segmental -means procedure is used to cluster the
observation vectors within each state into a set of clus-
ters, where each cluster represents one of themixtures of the

density. From the clustering, an updated set of model pa-
rameters is derived as follows:

number of vectors classified in cluster of

state divided by the number of vectors in

state

sample mean of the vectors classified in cluster

of state

sample covariance matrix of the vectors classified

in cluster of state

Updated estimates of the coefficients can be obtained by
counting the number of transitions from stateto and dividing
it by the number of transitions from stateto any state. An up-
dated model is obtained from the new model parameters and the
formal reestimation procedure is used to reestimate all model
parameters. The resulting model is then compared to the pre-
vious model by computing a distance score that reflects the sta-
tistical similarity of the two HMM’s. If the model distance score
exceeds a threshold, then the old model is replaced by the new
reestimated model and the overall training loop is repeated, oth-
erwise convergence is assumed and the final model parameters
are saved.

G. Implementation Issues for HMM’s

For a sufficiently long observation sequence, the dynamic
range of computation will exceed the precision range of
any computer. There exists a scaling procedure which is used

to multiply by a scaling coefficient that is independent of
. A similar scaling is done to the coefficients since these

also tend to approach zero. At the end of the computation, the
scaling coefficients are canceled out [1]. When using the Viterbi
algorithm to determine the optimal state sequence, no scaling is
required if use logarithms.

Another implementation issue is related to the modification
of the reestimation procedure to handle multiple observation se-
quences. Let the set of the training observation sequences be

, where is
the th observation sequence. Assuming that each observation
sequence is independent of every other, the goal is to adjust the
parameters of the modelto maximize

(40)

The modified reestimation formula for the transition probabili-
ties is

(41)

using the scaled forward and backward variables. Similar results
are obtained for the other parameters.

III. FUZZY INTEGRALS

Fuzzy integrals are nonlinear functionals that can be used to
combine multiple sources of uncertain information. The inte-
grals are evaluated over a set of information sources. The func-
tion being integrated supplies a confidence value for a particular
hypothesis from the standpoint of each individual source of in-
formation. A distinguishing characteristic of fuzzy integrals is
that they utilize information concerning not only the worth or
importance of the individual sources but also information con-
cerning the worth or importance of subsets of these sources to
arrive at a reasonable numeric confidence value for the partic-
ular hypothesis or decision under consideration. Recently, fuzzy
integrals have been proven to be quite useful in many pattern
recognition applications such as automatic target recognition
(ATR), handwriting recognition, nonlinear image filtering, and
multiple classifier fusion [10]–[14].

Fuzzy integrals are defined with respect to fuzzy measures
[4]. The key property of fuzzy measures is monotonicity with re-
spect to set inclusion. This property is far weaker than the usual
additivity property of probability measures. A probability mea-
sure is a particular case of a fuzzy measure since the additivity
property is a special case of the monotonicity property. Other
examples of fuzzy measures are the belief and plausibility mea-
sures defined in Dempster–Shafer belief theory.

In the following sections, we describe fuzzy measures, the
formulation of fuzzy integrals, and the basic components re-
quired for our generalization of the classical HMM’s.
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A. Fuzzy Measures

The additivity hypothesis of the probability measure is not
well-suited for modeling systems that manifest a high degree of
interdependencies among sources of information. Sugeno [13]
introduced the concept of a fuzzy measure as a more flexible
model.

Let be an arbitrary set and a algebra of subsets of
. A set function defined on , which has the

following properties is called a fuzzy measure.

Boundary Conditions

(42)

Monotonicity

If and then (43)

Continuity

If for and the sequence is

monotone (in the sense of inclusion), then

(44)

By the nature of the definition of a fuzzy measure, the mea-
sure of the union of two disjoint subsets cannot be directly com-
puted from the component measures. In light of this, Sugeno in-
troduced the so-called-fuzzy measure satisfying the following
additional property for all with :

for some

(45)

Let be a finite set and let
. The values are referred to as the densities of the

-fuzzy measure. The value of can be found from the equa-
tion , which is equivalent to solving

(46)

B. Sugeno Integral

The Sugeno fuzzy integral combines objective evidence for a
hypothesis with the prior expectation of the importance of that
evidence to the hypothesis. Using the notion of fuzzy measures,
Sugeno originally defined the concept of fuzzy integrals as fol-
lows.

Let be a measurable space and let
be an -measurable function. The Sugeno fuzzy integral over

of the function with respect to a fuzzy measureis
defined by

(47)

where . The calculation of the Sugeno
fuzzy integral when is a finite set is easily given [10], [14].

Suppose , (if not, is rear-
ranged so that this relation holds). Then a Sugeno fuzzy integral

with respect to a fuzzy measureover can be computed by

(48)

where .
When is the -fuzzy measure, the values of can be

computed recursively as

(49)

for (50)

Thus, the calculation of the fuzzy integral with respect to a
-fuzzy measure only requires the knowledge of the fuzzy den-

sities.
A fuzzy integral over a fuzzy set is defined by

(51)

where is the membership function of the fuzzy set.

C. Choquet Integral

The original definition given by Sugeno [13] for the fuzzy in-
tegral is not a proper extension of the usual (Lebesgue) integral,
in the sense that the Lebesgue integral is not recovered when
the measure is additive. To avoid this drawback, Murofushi and
Sugeno [15] proposed the so-called Choquet integral, referring
to a functional defined by Choquet in a different context. In ad-
dition to this property, Grabisch [16], [17] showed that the Cho-
quet integral shares many important properties with the Sugeno
integral.

Let and be defined as for the Sugeno integral. The Cho-
quet integral is defined by

(52)

where .
If is a discrete set, the Choquet integral can be computed

as follows:

(53)

where

and

otherwise.

Since is a monotonic nonincreasing function of, it is
also possible to redefine Choquet integral as

(54)
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Fig. 3. Computation of Sugeno and Choquet integrals.

with the same assumptions as before. Define .
Then the computation for the finite set case is given by

(55)

If is a probability measure, then and the ex-
pectation is a weighted sum that is independent of the ordering
of the ’s. In this sense the Lebesgue integral is recovered from
the Choquet integral when the measure is additive (probability
measure). Fig. 3 illustrates graphically the computation of the
Sugeno and the Choquet integrals

(56)

(57)

(58)

(59)

D. Conditional Fuzzy Measures

Conditional fuzzy measures are similar to conditional proba-
bilities [13]. Let and be two universes. A conditional fuzzy
measure on with respect to is a fuzzy measure on

for any fixed . A fuzzy measure on is induced
by and a fuzzy measure as follows.

For ,

(60)

Now, corresponds to ana priori probability and to
a conditional probability. For this reason, may be called ana
priori fuzzy measure. Note that measures the grade of
fuzziness of the statement, “One of the elements ofresults be-
cause of ” [13]. Fig. 4 below illustrates the computation graph-
ically.

Fig. 4. Conditional fuzzy measures.

E. Other Fuzzy Measures

The basic notion of a fuzzy integral using the Sugeno measure
has been demonstrated to be a useful tool. It can be improved by
using more general measures or by using different fuzzy aggre-
gation operators in the definition of the fuzzy integral. Recently,
Keller and Tahani have extended the fuzzy integral information
fusion approach to a large family of measures called-decom-
posable measures [10], [14]. Given a triangular conorm, an

-decomposable measurehas the property: IF ,
THEN

(61)

Possibility measures are simple examples of such-decompos-
able measures where is the maximum operator. An impor-
tant property of this class is that the measure of an arbitrary
set of information sources can be computed if the densities are
known, as with the Sugeno measures. Many other-decompos-
able measures can actually be constructed by the definition from
a set of density values for a given-conorm if the boundary
conditions hold, i.e., one must guarantee that . This
will clearly happen if one of the densities has the value one. This
follows simply from the fact that

(62)

and is the density value for .
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IV. FUZZY INTEGRAL EXTENSIONS OFHIDDEN MARKOV

MODELS

Since the definition of the Markov property is a statement
about conditional expectations, our generalization relies heavily
on the use of the conditional fuzzy measure, which is one of
the many things the measure-theoretic framework provides [18],
[19]. Let us formally define the model notation for our extension
to a fuzzy HMM, as follows:

, and Same as for the standard HMM.
Space of observation vectors.
States at time, i.e., nodes at time
slot in the lattice structure re-
sulting from folding the states of
the model through time.
States at time .
Fuzzy measure on, we refer to
this measure as the initial state
fuzzy measure.
Initial state fuzzy density.
Vector of initial state fuzzy densi-
ties.
Conditional fuzzy measure on
with respect to state , we refer
to this as the symbol fuzzy mea-
sure for state .
Symbol fuzzy density.
Matrix of symbol densities.
Conditional fuzzy measure on
with respect to , we refer
to this measure as the transition
fuzzy measure.
Transition fuzzy density.
Matrix of the transition fuzzy den-
sities.

Our interpretation for the initial state fuzzy density is that
measures the grade of certainty of the statement that the initial
state is , i.e., . An extension of this interpretation
could be given for the initial state fuzzy measure as follows:
for any , measures the grade of certainty of the
statement that the initial state is contained in, i.e., .

The interpretation for the symbol fuzzy density is that
measures the grade of certainty of the statement that we ob-
served given that we are visiting state . An extension of
this interpretation could be given for the symbol fuzzy measure
as follows: for a set , measures the grade of cer-
tainty of the statement that any of the vectors contained inis
observed given that we are visiting state.

For each state , we have a symbol fuzzy measure on
the space of observation vectors. At a given time slot ,

, the values of the symbol fuzzy densities

define a fuzzy set over the set of states. Therefore, we can
construct a total of different fuzzy sets over the set ofstates.
In this sense, can also be interpreted as the membership
value of observation in state .

The interpretation for the transition fuzzy density is that
measures the grade of certainty of the statement that visiting
(state at time results because of visiting (state at
time . An extension of this interpretation could be given for the
transition fuzzy measure as follows: for any and ,

, measures the grade of certainty of the statement that
visiting one of the elements of results because of visiting
(one of the states at time.

A. Fuzzy Formulation of the Forward Variables

Let denote the space of observation sequence from time
slot 1 to time slot . Let denote the Carte-
sian product of and (recall that denotes the states at time
). Let be a fuzzy measure on the space

where for any , mea-
sures the grade of certainty of the statement that we observed

and we are visiting a state that is contained in.
For a given observation sequence and a state
(state at time we let be
the fuzzy density for this measure. We will refer to this density
as the forward fuzzy variable and denote it by . The for-
ward fuzzy variable measures the grade of certainty of the
statement that we observed and we are visiting
(state at time .

Initially, at , the forward fuzzy variables can be com-
puted from the initial state densities and the membership func-
tions by

(63)

where “ ” is a fuzzy intersection operator [20].
At any time, a fuzzy measure on can

be constructed from its constituent forward fuzzy variables.
The forward fuzzy variables are computed recursively as

(64)

The above expression offers a more flexible method of com-
puting forward variables than for the standard HMM. Recall
that in the derivation of (4) for computing forward variables in
the standard HMM there are two assumptions of conditional
statistical independence: that the observation at time,
is independent of the previous observations
and that the states at time are independent of the same
observations . The latter statistical indepen-
dence assumption is an assumption that the joint measure

can be written as the product
.

In the fuzzy model, the corresponding assumption is be that
the joint measure can be written as a
combination of two measures defined on and
on the states, respectively. However, we make no assumption
that the measures can be decomposed. It is in this sense that the
assumption of statistical independence is relaxed.
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Fig. 5. A sample three-state left-to-right model.

To illustrate the above claimed advantage of our proposed for-
mulation, consider a discrete left-to-right model shown in Fig. 5
and defined as follows:

where the training observation sequences are assumed to repre-
sent the nonincreasing binary signals given by

If the symbol probabilities are estimated (initially) according
to how many times the symbol appears at time slot 1, 2, and 3,
assuming that each time slot may correspond to one of the three
states then

Given the above set of parameters, we would like to compare
the behavior of the HMM and GHMM in terms of and

when is:

1) a training sequence such as ;
2) a nonmonotonic sequence such as .
If we use HMM (that assumes statistical independence when

computing the forward variables)

The difference between the above two scores is

The value of is high compared to the ideal value
that is supposed to be close to zero. This result is mainly due to
the statistical independence assumed to simplify computations.

Now, if we use the GHMM with the possibility measure (the
Choquet integral) and multiplication as the intersection operator

the difference between the above two scores is

This illustrates that the fuzzy model can have better perfor-
mance than the classical model. It is worth noting that here we
used the same values for the corresponding classical and fuzzy
parameters and the most pessimistic fuzzy measure (possibility
measure). In the second paper, we compare the classical and
fuzzy models using real data.

B. Fuzzy Formulation of the Backward Variable

Let be a conditional fuzzy measure on
with respect to , where for any subsequence ,

measures the fuzziness of the statement that ob-
serving results because of visiting (state

at time ).
A conditional fuzzy measure can be computed

from the conditional fuzzy measure and the tran-
sition fuzzy measure as follows:

(65)

where is the fuzzy subset of given by

(66)

We refer to as the backward fuzzy variable and de-
note it by . Fig. 6 illustrates the computations of the fuzzy
forward and backward variables.

These formulas define a class of generalizations of classical
HMM’s, one for each type of fuzzy measure, fuzzy integral, and
fuzzy intersection operator. If the Choquet integral is chosen
with respect to a probability measure and multiplication is used
as the intersection operator, then these formulas represent the
classical HMM. For any specific choice of measure and integral,
there are many implementation issues to consider, both in the
training and testing phases. In the next section, we consider the
case of the Choquet integral with respect to an arbitrary fuzzy
measure and with multiplication as the intersection operator
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Fig. 6. Fuzzy forward and backward variables computations.

C. GHMM Using the Choquet Integral

As described in Section II, the computation of the Choquet
integral is given by

(67)

Define the variable by

(68)

Assume that is a measure satisfying the property that if
then . This condition is satisfied by a wide class

of fuzzy measures. We define the variableas follows:

if
otherwise.

(69)

Now, the computation for the Choquet integral is given by

(70)

This representation of the discrete Choquet integral is very
useful for manipulating the GHMM equations and for relating
the GHMM to nonstationary HMM’s. The forward fuzzy vari-
ables are computed as

(71)

where represents the difference between the corre-
sponding fuzzy measures and multiplication is used as a fuzzy

intersection operator. With this notation, the variable
is given by

(72)

then the computation for the fuzzy forward variables reduce to

(73)

which is similar to the formula for the classical case except for
the introduction of the variable to be computed from the
fuzzy measures as described above. Each variable is a
nonlinear function of and , .

In order to derive reestimation formulas for the GHMM sim-
ilar to those used for the classical HMM, we redefine the back-
ward fuzzy variable by

(74)

It follows that the summation is indepen-
dent of as for the classical case. Let us call the value of this
summation the possibility of the observation sequence given the
fuzzy model and denote it by . It also
follows that

(75)
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where represents the possibility of the observation
and a state sequence

given the fuzzy model that is computed by

(76)

This formulation is helpful for developing a constructive and
effective training procedure for the fuzzy model by optimizing

in a similar way to that of the classical one.

D. Relation Between Generalized HMM and Classical
Nonstationary HMM

Recall that a nonstationary HMM is one for which
the transition probabilities vary with time. If we define

, then it can be seen that the GHMM can
be viewed as a classical nonstationary HMM for which the
transition probabilities not only vary with time, but which
are dependent upon the observation sequence itself. A major
advantage of the GHMM is that this nonstationary behavior
is achieved naturally and dynamically as a byproduct of the
nonlinear aggregation of information using the fuzzy integral.
Moreover, the fuzzy model does not require fixing the lengths of
the observation sequences and the availability of more training
data in order to learn a large number of transition parameters as
for the classical nonstationary model. The additivity constraint
of the transition parameters required for all classical HMM’s is
relaxed for the fuzzy HMM’s.

E. Reestimation Formulas for the Choquet Integral GHMM

Let in a similar manner to that of the classical
model; it follows that

(77)

Let be the Lagrangian of with respect to the constraint

(78)

(79)

Multiply by and sum over

(80)

is maximized when

(81)

The above expression is similar to the expression for the clas-
sical case except for the derivatives that can be computed as

(82)

If we use a probability measure with the Choquet integral,
then , , and

(83)

which is exactly the expression for the classical case as ex-
pected.

The essential question now is, “What is the value of
?” It is very difficult to derive an expression

for as a function of because is computed
from the fuzzy forward variables that are computed recur-
sively using the Choquet integral. The sorting requirement for
computing the fuzzy forward variables makes the derivation of
such an expression a complicated task. One approach is to ap-
proximate the value by .
The problem with this approximation is that we have to store
previous values of in the training procedure, which
requires significant memory.

Another approach is to assume a parametric expression that
represents as a monotonic nondecreasing function of

and as follows.
Assume that is the solution of the following differen-

tial equations:

(84)

(85)

where and are positive. These differential equations have
solutions. For example the function

(86)

(where is positive) is a solution ofthe first equation.
We can also make a similar assumption for deriving a symbol

membership estimation formula

(87)

(88)

The second differential equation is needed for the symbol
membership reestimation formula. These assumptions allow us
to substitute the expression for
inside the updating rule. The term cancels out of both
the numerator and denominator of the equation and it follows
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that the reestimation formula (updating rule) for the transition
measure becomes

(89)

which is similar to the classical case, except for the presence of
. Similarly, we can derive the updating rules forand for

the discrete case as

(90)

(91)

For the continuous case, we model the membership functions
as mixture functions of the form

(92)

where are multivariate Gaussian
functions with mean and covariance matrix . The rees-
timation formulae for the coefficients of the mixture functions
are (93)–(95), as shown at the bottom of the page.

F. The Fuzzy Viterbi Algorithm

The quantity provides the basis for defining our mod-
ification of the classical Viterbi algorithm. The modification

uses the additional information made available by since
it is a nonlinear function of and all the transitions ,

. We seek to maximize the function de-
fined by (76). Our modification of the classical Viterbi algo-
rithm is used to perform this maximization. Define a quantity

(96)

Similarly, can be computed inductively using the
fuzzy Viterbi algorithmin the following manner.

Initialization for

(97)

(98)

Recursion for and

(99)

(100)

Termination

(101)

(102)

Backtracking for all

(103)

G. Implementation Issues for the GHMM

As for the classical model, for a sufficiently long observation
sequence, the dynamic range of computation will exceed

(93)

(94)

(95)
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the precision range of any computer. This is because we used
multiplication as the fuzzy intersection operator and the Cho-
quet integral as the fuzzy integral. Multiplication is used be-
cause it is distributive over the summation resulting from using
the Choquet integral. We also used the possibility measure as
the fuzzy measure. The same scaling procedure for the classical
HMM is used for the generalized HMM since we used a pos-
sibility measure with the Choquet integral. When using a pos-
sibility measure, if we scale the fuzzy forward variables at a
certain time the induced forward variables at the next slot will
be scaled by the same scaling factor because of the nature of the
“max” function. This is a desired property for the scaling tech-
nique which is used to multiply by a scaling coefficient
that is independent of. A similar scaling is done to the
coefficients by the same scaling factor used for since these
also tend to approach zero and then at the end of the computa-
tion, the scaling coefficients are canceled out.

Another implementation issue, similar to that for the
classical case, is related to the modification of the fuzzy
reestimation procedure to handle multiple observation se-
quences. Let the set of the training observation sequences be

where
is the th observation sequence. The goal is to adjust the
parameters of the modelto maximize

(104)

The modified reestimation formula for the transition fuzzy
measures is

(105)

using the scaled forward and backward variables. Similar results
are obtained for the other parameters.

V. CONCLUSION

We described a generalization of classical HMM’s using
fuzzy measures and fuzzy integrals resulting in a fuzzy hidden
Markov modeling framework. Since the definition of the
Markov property is a statement about conditional expectations,
our generalization relies heavily on the use of the conditional
fuzzy measure. An attractive property of this generalization is
the fact that if we used Choquet integral as the general fuzzy
integral, multiplication as the fuzzy intersection operator, and
a probability measure as the fuzzy measure then we are back
to the original probabilistic HMM framework. In this sense,
the classical model is one of many models provided by the
generalization.

Another property of our generalization is that statistical inde-
pendence need not be assumed. The expression for computing
the fuzzy forward variables inductively does not require decom-
position of the joint measure of the previous observation se-
quence and the current state as is required for the classical case.

The fuzzy expression reduces the one required by assuming sta-
tistical independence if we use the Choquet integral, probability
measure and multiplication as the fuzzy integral, the fuzzy mea-
sure and the fuzzy intersection operator respectively.

Another interesting property of our approach for the general-
ization is the establishment of the relationship between the fuzzy
HMM and the classical nonstationary HMM in which the tran-
sitional probabilities vary with time. The main advantage of the
fuzzy model is that this nonstationary behavior is achieved nat-
urally and dynamically as a byproduct of the nonlinear aggrega-
tion of information using the fuzzy integral. Moreover, the fuzzy
model does not require fixing the lengths of the observation se-
quences and the availability of more training data in order to
learn a large number of transition parameters as for the classical
nonstationary model. The additivity constraint of the transition
parameters required for all classical HMM’s is not required for
the fuzzy HMM’s.
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