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Introduction

1

1.1

1.2

Introduction

Introduction of the terms are found in the right margin. The paragraph next
to it will introduce and explain the terms.

Digital signal processing

Digital signal processing is concerned with the numerical manipulation of
signals and data in sampled form. Using elementary operations like digital
storage and delay, addition, subtraction, and multiplication by constants, a
wide variety of useful functions can be produced.

Discrete time signal, a signal which is defined only for a particular set of in-
stants in time, or sampling instants. A discrete time signal can be subdivided
into two categories: sampled-data signals, which display a continuous range
of amplitude values, and digital signals, in which the amplitude values are
quantized in a series of finite steps.

A typical DSP scheme:
Lo (G
Analog Analog
input output
— pp|Analogl— | ADC — p| DSP | ! DAC | p| Analog|—pm
filter filter
[ (|

Four reasons for converting signals into digital form and back again:

1. Signals and data of many types are increasingly stored in digital comput-
ers, and transmitted in digital form from place to place. In many cases it
makes sense to process them digitally as well

2. Digital processing is inherently stable and reliable. It also offers certain
technical possibilities not available with analog methods

3. Rapid advances in integrated circuit design and manufacture are produc-
ing ever more powerful DSP devices at decreasing cost

4. In many cases DSP is used to process a number of signals simultaneously

Properties of DSP’s

All the DSP’s in this book are linear. A linear system, or processor, may be
defined as one which obeys the Principle of Superposition:

If an input consisting of the weighted sum of a number of signals
is applied to a linear system, then the output is the weighted sum,
or superposition, of the systems responses to each signal considered
separately.

A major property of linear systems, which is closely relate to the Principle
of Superposition, is known as frequency-preservation. It means that if an in-

Digital signal processing

Digital Signal Processing

discrete time signal
sampling instant
sampled-data signal
digital signal

DSP scheme

Figure 1
The signal flows from the
left to the right. It will
pass the filter so the
AnalogToDigitalConver-
tor will work properly.
Then some processing is
done on the signal, it is
converted back to a ana-
log signal and will pass
the last filter.
The two filters are neces-
sary to reduce or avoid ar-
tifacts due to ADC and
DAC. What these are will
become apparent in the
following chapters

linear

Definition 1

Principle of Superposition

frequency-preservation
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1.3

put signal containing certain frequencies is applied to a linear system, the
output can contain only the same frequencies and no others.

yq[n] = x.[n], y,[n] = X,[Nn] = ax;[n] + bx,[n] = ay;[n] + by,[n]

All the DSP’s in this book are not only linear but also time-invariant, which
means that the system doesn’t vary with time. The only effect of a time-shift
in the input signal to the system is a corresponding time-shift in its output.

y[n] =x[n] = y[n—N] = x[n—N]

The systems in this book are so-called linear time-invariant (LTI) systems,
which involve the following types of operations on input and/or output
samples:

 storage/delay

* addition/subtraction

* multiplication by constants

Other properties are, see Example 1.3 (pg. 28):

* Causality: the output signal depends only on present and/or previous
values of the input
y[n] = 2x[n]

* Stability: in response to a bounded input a bounded output is produced
(see Figure 2)

 Invertibility: if input x/n/ gives an output y/n/, then there is an inverse
which would produce x/n/ if given input y/n/

* Memory: the present output y/n/ depends upon one or more previous
(but a finite number of) input values x/n-1], x/n-2], .., x/0]
y[n] = x[n] +x[n-1]

Stable
system

Bounds on input Bounds on output

Bounds on input No bounds on output

Unstable
system

Sampling

Sampling a analog signal causes the original spectrum to repeat around mul-
tiples of the sampling frequency. If the sampling frequency is chosen to
small, the successive spectral repetitions overlap, this is called aliasing. In
these cases the original signal cannot be fully reconstructed.

A analog signal containing components up to some maximum fre-
quency f; Hz may be completely represented by regularly-spaced
samples, provided the sampling rate is at least 2f; samples per sec-
ond.

The maximum frequency f; contained in an analog signal is widely referred
to as the Nyquist frequency. The minimum sampling rate (2/; samples per
second) is known as the Nyquist rate. And the so-called, folding frequency,
which equals half the sampling frequency actually used, is the highest fre-
quency which can be adequately represented according to the Sampling the-

Sampling

Eq. 1.1

linear system

time-invariant

Eq. 1.2

time invariant system

linear time-invariant
LTI

causality

stability
invertibility
memory
Figure 2

Bounded input, bounded
output stability

aliasing

Theorem 1
Sampling theorem

Nyquist frequency
Nyquist rate
folding frequency
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1.3.1

1.4

orem. When the theorem is obeyed justly, the Nyquist and folding
frequencies are equal.

Quantization

A digital signal is represented by binary numbers. If the binary is of length
N it will allow 2N separate numbers. So if an analog number, which has a
continuous range of amplitudes, is sampled errors are introduced. The total
range of possible amplitudes is divided into quantization levels (or slots). A
3-bit code has therefore 23 = 8 quantization levels.When more bits are used,
a greater precision can be reached. The noise introduced by this coding proc-
ess is called quantization noise and has a maxima of plus or minus half a
quantization level. This noise can not be removed from the new digital sig-
nal (e.g. the analog signal cannot be reconstructed).

Lo (@

n -

Samplevalues 3 4 7 6 4 4 4 5 5 2 0 2 3
Binary codes 001 100 111 110 100 100 100 101 101 010 000 010 011
Errors e ? 0 e 'Y )

® e ¥

Basic types of digital signals

The three types of digital signals are the unit impulse, unit step and unit
ramp function. These are defined as follows:

u[n] =0,n<0
uln] =1,n=0
o[n] =0,nz0
o[n] =1,n=0

The relationship between these two can be written formally, using linearity,
as:

ufn =y 3m
o[n] = u[n]—u[n-1]
r[n] = nu[n]

Other simple digital signals may be built up by summation of these basic
functions, see Example 1.1 (pg. 15).

(D) (@
un] &n/ nn]
n= n=0 n=0
[ |

Basic types of digital signals

quantization levels
quantization noise

Figure 3
Converting an analog sig-
nal into a binary code.

Eq. 1.3

unit step function

Eq. 1.4

unit impulse function

Eq. 1.5

Eq. 1.6

unit ramp function

Figure 4
From the left to the right:
unit step, unit impulse
and unit ramp
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The exponential:

x[n] = AePn

where A and [ are constants.

If B is purely imaginary the sine and cosine signals can be generated.

Suppose

then

Suppose

then

Using

gives

Using

gives

1.5 Filters

* low-pass filter, a smoothing, or averaging, filter used for removing
unwanted interference or noise, from a relatively slowly varying signal
* bandstop or notch filter, a filter that rejects a narrow band of frequen-

cles

* bandpass filter, a filter that passes a particular band of frequencies rela-

B=ijQ
x,[n] = Ad"? = Acog(nQ) +jAsin(nQ)
B=-Q

x,[n] = Aed"? = Acog(—nQ) +jAsin(-nQ)
cos(—nQ) = cog(nQ)
sin(-nQ) = —sin(nQ)

X¢[N] +%,[n] = 2AcoqnQ)

Acog(nQ) = 2ein + Sering
2 2

X[N] =X%,[n] = 2jAsin(nQ)

Asin(nQ) = %ej“Q - %e‘jnﬂ

tively strongly

* anti-aliasing filter, a filter with low-pass characteristics, which is
. . 1
designed to ensure that the maximum frequency f; = =

exceeded
A widely used technique for smoothing is the moving average, where each
smoothed value is computed as the average of a number of preceding raw-
data values, and the process is repeated sample-by-sample through the

record.

Filters

Eq. 1.7

exponential

Eq. 1.8

Eq. 1.9

Eq. 1.10

Eq. 1.11

Eq. 1.12

Eq. 1.13

Eq. 1.14

Eq. 1.15

low-pass filter

bandstop or notch filter

bandpass filter

anti-aliasing filter

smoothing
moving average
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2

2.1

Time-domain analysis

Basic techniques are developed for describing digital signals and digital proc-
essors in the time domain. Foremost among them is the convolution proc-
ess, which allows us to compute the output signal from a LTI processor in
response to an arbitrary input signal.

Convolution

Every signal x/n] can be written as the superposition, or summation of the
more basic impulse signal, weighted with the appropriate value of x/n/ and
shifted by a number of sampling intervals.

00

x[n] = Z X[K]8[n—K]

k= -0

A very important role in linear DSP is played by the impulse response 4/n].
If the input to a linear processor is 8/n], the output must be 4/n]. The impulse
response can have a wide variety of different forms, depending upon the
processing, or filtering, action of the system. See Example 2.1 (pg. 36).

Just as the unit step function is the running sum of the unit impulse &7/, so

is the output of a LTI processor the running sum of its impulse response. See
Example 2.2 (pg. 39).

s[n = Z h[ m]

Alternatively h[n] = s[n]-s[n-1].

It is shown how digital signals are described as sets of impulse functions, and
how to characterize LTI processors by their impulse or step responses.
These properties enable the description of a LTI systems response to any
nontrivial input. This is done by the convolution sum:

0
yinl = % x[Kh[n-K
Kk = —o0

Thus because the input signal is a superposition of impulses, the output can
be described as the superposition of the impulse response.
The process of convolution is often denoted by an asterisk or a U, and is
commutative:

X[n] O h[n] = h[n] O x[n]
Two further basic aspects of convolution are its associative and distributive
properties.
The associative property may be summarised as:

x[n] O (hq[n] O hy[n]) = x[n] O hy[n] O h,[n]

It implies that a cascaded combination of two or more LTI systems can be
condensed into a single LTI system. Where the associative property has im-
portant implication for cascaded LTI systems, the distributive property has
important implication for LTI systems in parallel. The property can be sum-
marised as:

x[n] O (hy[n] +hy[n]) = (x[n] O hy[n]) + (x[n] O hy[n])

Convolution

Eq. 2.1

impulse response A/n]

step response s/n/

Eq. 2.2

Eq. 2.3

convolution sum

Eq. 2.4

commutative property

Eq. 2.5

associative property

Eq. 2.6
distributive property



Time-domain analysis Transients in LTI processors

This means that two (or more) parallel systems are equivalent to a single sys-
tem whose impulse response equals the sum of the individual impulse re-

sponses.
2.2 Transients in LTI processors
No real-life signal continues forever. Hence practical DSP is concerned with start-up transient
signals which are effectively ‘switched on’ at one instant, and ‘switched of’ stop transient

again later. When an input signal is first switched on, and applied to a digital
processor with memory, it generates a start-up transient. When the signal is
switched off again, a stop transient is produced. These transient should not
be regarded as unnecessary, avoidable nuisance.

Transients are important for several reasons:

* A start-up transient may mask the initial portion of an output signal,
preventing us from seeing the desired response

* We often assume that the output signal of a digital processor is initially
zero. But this will only be true if it has ‘settled’ following any previous
input, in other words, any stop transient must have died away

* Transients are closely related to the ‘natural’ response of a system, and
to impulse responses. The give further valuable insights into the behav-
iour of linear processors

In between start-up and stop transients a system shows its steady-state re- steady-state response
sponse.

2.3 Difference equations
The operation of a digital processor in the time-domain can be described as difference equation

a difference equation. The most general form of this equation is given by:

N M
Z ay[n-K = Z b x[n-K Eq. 2.7

k=0 k=0 difference equation
The complexity of an LTI processor depends on the number of terms on
each side of the equation. The value of N, which indicates the highest-order
difference of the output signal, is generally referred to as the order of the sys-

tem.

In order to solve this equation, however, some auxiliary conditions, also auxiliary conditions
called boundary conditions, are needed.

The output signal can be obtained by separation of the equation into an ho- homogeneous solution
mogeneous and particular solution. The homogeneous solution accounts for particular solution

any nonzero auxiliary conditions, and for transients caused by switching an
input signal on and off. The particular solution represents the steady-state re-
sponse of the system to a continuing input signal.

This particular solution is the solution of the difference equation with all the
auxiliary conditions put to zero.

The homogeneous solution is the solution of the difference equation using
the auxiliary conditions and under the additional condition of zero input.
See Example 2.4 (pg. 57).

The superposition of this homogeneous and particular solution will give the
complete output of the system.
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3

3.1

Frequency Domain Analysis

Three reasons why a frequency-domain approach is needed:

* Sinusoidal and exponential signals occur in the natural world, and in the
world of technology. Even when a signal is not of this type, it can be
analysed into component frequencies. The response of an LTI processor
to each such component is quit simple. It can only alter the amplitude
and the phase, not the frequency. The overall output signal can then be
calculated by superposition

 If an input signal is described by its frequency spectrum, and an LTI
processor by its frequency response, then the output signal spectrum is
found by multiplication. This is generally simpler to perform, and to
visualise, then the equivalent time-domain convolution

* The design of DSP algorithms and systems often starts with a frequency
domain specification. In other words, it specifies which frequency
ranges in an input signal are to be enhanced, and which suppressed

The discrete Fourier series

A vector can always be described by the sum of a number of linearly inde-
pendent vectors. For example: the most obvious description of a vector x in
08 is:

. a 1 0 0
X = |p| =alo|+b|1| +c|o
c 0 0 1

Before we can use this, some linear algebra is introduced. The definitions and
theorems should be known to the students, so no proof is given.

A subset S of vector space V is said to be linearly dependent if there
exist a finite number of distinct vectors Xy, X, ..., ¥n in S and sca-
lars a, ay ..., &, not all zero, such that
aX1 + A% + ...aXn = 0. In this case we will also say that the el-
ements of S are linearly dependent.

This gives the following definition of linearly independent:

A subset S of a vector space that is not linearly dependent is said to
be linearly independent. As before, we will also say that the ele-
ments of S are linearly independent in this case.

A subset S of a vector space V that is linearly independent and generates 1/
possesses a very useful property: every element of 1/ can be expressed in one
and only one way as a linear combination of elements of §. It is this result
that makes linearly independent generating sets the building blocks of vector
spaces.

A basis B for a vector space V is a linearly independent subset of V

that generates V. (If B is a basis for V, we also say that the elements
of B form a basis for V.)

The following theorem shows the most significant property of a basis:

Let V be a vector space and B = {Xy...Xn} be a subset of V. Then
B is a basis for V if and only if each vector y in V can be uniquely
expressed as a linear combination of vectors in B, i.e., can be ex-
pressed in the form y = aXi+..axX, for unique scalars

ag, ..., a,.

The discrete Fourier series

Eq. 3.1

Basevectors of 03

Definition 2
Linearly dependent

Definition 3
Linearly independent

Definition 4
Vector space basis

Theorem 2

10



Frequency Domain Analysis

3.1.1

Trigonometric form of the Fourier series

Now why go through all this trouble? Well, maybe this algebra helps us to
find a better way of describing periodic signals. It is important to see that a
periodic digital signal can be seen as a vector in ON. Harmonic sinuses and
cosinuses are linearly independent (e.g. the set of functions sinnw,t and
cosnwyt for n = 0,1, 2 3 ... are orthogonal over any time interval equal to
one complete period of the fundamental frequency wy), so if we create a basis
consisting of an infinite number of harmonic sinuses and cosinuses it can be
shown (Fouriers Theorem) that any periodic signal can be described as the
weighted sum of these sinuses and cosinuses (the Fourier series):

x[n] = %0+ a,coswn + ... +a,coskwn + ... +b;sinwn + ... + b, sinkwn +...
Or, as a sum: o o
dy .
—+ a, coskwn + b, sinkwn
2 2 & >
k=1 k=1

x[n =

where: N-1
a, = % Z X[ n] coskwn

n=0
N-1
b, = 2 ink
k=R Z X[ n] sinkwn
n=0
and:
_2n
N

Thus the Fourier series are the linearly independent basis that generates the
vector space ON . Any periodic signal of length N can be described using this
basis by an unique set of scalars (Fourier Coefficients).

In Eq. 3.2 kw is called the kth harmonic with 44 (or &) its amplitude.

Exponential form of the Fourier Series
It is now obvious that the trigonometric form of the Fourier Series can be

written in the exponential form: w
x[n] = Z d,elken
Kk = —o0
in which N-1
-1 —jkon
dy = N Z X[ n] e
n=0

Properties of the Fourier Series
A double arrow is used to denote the relationship between a signal x/n/and
its spectrum a;, (x/n] « ap).
¢ linearity:

if x;[n] « a, and x,[n] - by

then Ax[n] + Bx,[n] - Aa +Bb,
 time-shifting:

if x[n] - a

2jTkng
then x[n-ny] - ae N

+ differentiation:
if x[n] - a
_2jmk
then x[n] -x[n—1] - ak%l—e N B

The discrete Fourier series

Fourier Theorem
Fourier Series

Eq. 3.2

Fourier Series

Eq. 3.3

Eq. 3.4

Eq. 3.5

Fourier Coefficients

harmonic

Eq. 3.6

Exponential Fourier Series

Eq. 3.7

linearity

time-shifting

differentiation

11



Frequency Domain Analysis The Fourier Transform

3.2

3.24

* integration: integration
if x[n] - a
n 2k -1
then Z X[K ak%l—e N B
k= —o
e convolution: convolution

if x;[n] and x,[n] have the same period
and if x;[n] - a, and x,[n] - b,
N-1
then > xalmixpln—ml  Nab,
m=0
Convolution in the time-domain is equivalent to multiplication in the
frequency-domain.
*  modulation: modulation

if x;[n] & a, and x,[n] ~ by
N-1

then xy[n]x,[n] = % apb,_p,
m=0

Multiplication in the time-domain is equivalent to convolution in the
frequency-domain

The Fourier Transform

Most practical digital signals are a-periodic, that is they are not strictly repet-
itive. In practise, signals are of finite length therefore the FT’s of these signals
are approximations. To obtain the spectrum of an a-periodic signal the Fou-
rier Transform is to be used:

00

X = > njedan Eq. 3.8
Nz o Fourier transform
The inverse transform is:
-1 « iQ
x[n] = 2—].L|'2ﬂ)§'(9)eJ ndQ Eq. 3.9

inverse Fourier transform

The Fourier Transform is much like the Fourier Series. The only difference
is that the Fourier Transform has an infinite long basis and thus contains the

Block 1: The Fourier Transform for basic signals

* unit impulse d/n],

X(©) = Z d[n]e'®n = 3[0]e° = 1

n=—oo

basis an infinite number of vectors.

Properties of the Fourier Transform
¢ linearity: linearity

if x;[n] o X3(Q) and x,[n] - XHQ)
then ax;[n] + bx,[n] - aX;(Q) +bXy(Q)

12



Frequency Domain Analysis

3.3

 time-shifting:

if x[n] - X(Q)

then x[n—ny] - X(Q)e7%M
¢ convolution:

if x;[n] « X}(Q) and x,[n] « XH(Q)
then x,[n] O x,[n] « X3(Q) XxQ)

Frequency Response

In the time domain, the input signal x/7/ is convolved with the impulse re-
sponse hfn] to produce the output signal y/n]. The convolution property of
the transform dictates that the equivalent in the frequency-domain must be
a multiplication. The output signal spectrum ¥/Q) is simply the product of
the input spectrum X{Q) and a function #/Q) representing the system.

Yo) = X HQ)

H/Q) is known as the frequency response:

M
/ Y belk?
Y
ﬂ = = k=0
Q) X0 N
> a ek
k=0

Frequency Response

time-shifting

convolution

Eq. 3.10

output signal spectrum

Eq. 3.11

frequency response

13



The Z-Transform

4

4.1

The Z-Transform

The z-transform offers a valuable set of techniques for the frequency analysis
of digital signals and processors. It is also very useful in design.

The Z-Transform

The Z-transform is defined as:

X = > x[njz"
n=0

This is the unilateral version, which is normally adequate. The bilateral ver-
sion with summation limits of +e is only needed occasionally and has very
strict convergence conditions.

The z-transform is quite easy to visualise. X{z) is essentially a power series in
71, with coefficients equal to successive values of the time-domain signal x/7/.
See example 4.1 (pg. 99).

A very simple way of thinking of z is as a time-shift operator. Multiplication
by z is equivalent to a time advance by one sampling interval. Division by z
is equivalent to a time delay by the same amount.

Block 2: The z-transform on basic signals

* unit impulse:
X@ = 3[njlz" =1
* unit step:

00

X =Y 1z =1+4z7t47%+.. = = =

n=0
* unit ramp:
0

X@ = S nz"

n=0

The equivalent of the frequency response function Q) is the, so called,

transfer function Hz), where Y2 = X2 H2) .

Properties of the z-transform
¢ linearity:
if x;[n] « Xj(@) and x,[n] - X2
then ax;[n] +bx,[n] - aX;(2) + bX,(2)
* time-shifting:
if x[n] - X2
then x[n—-ny] ~ X(@z ™
¢ convolution:
if x;[n] » Xj(2) and x,[n] « Xx2)
then x,[n] O x,[n] « X3(2 X5(2)

The Z-Transform

Eq. 4.1

z-transform

unilateral

time-shift operator

transfer function

linearity

time-shifting

convolution

14



The Z-Transform

* final-value theorem:
if x[n] - X2
then lim x[n] = lim 2=2H)
n- o z-1 Z
With the final-value theorem the final, steady-state, response of a system to
a step input can be calculated (see page 106 of the book).

Z-plane poles and zeros

A z-transform used to describe a real digital signal or an LTI system is always
a rational function of the frequency variable z. In other words it can always
be written as the ratio of numerator and denominator polynomials in z:

The Z-Transform

final-value theorem

rational function

X = M2 Eq. 4.2
D) rational description of X{(z)
This is apart from a gain factor K| the transform can be completely specified
by the roots of Mz) and D).
X = Mz  K(z-2z)(z-2)(z-2z)(z-7z)... Eq. 4.3

Do (Z—p)(z-p)(z-p)(z—py)-

The constants z;, 25, 23, ... are called zeros of X{z), because they are the values
of z for which X(z) is zero. Conversely p;, pa, 3, .- are known as the poles
of X{z), giving values of z for which X{z) tends to infinity.

A very useful representation of a z-transform is obtained by plotting its poles
and zeros in the complex plane (Argand diagram). Zeros are shown as an
open circular symbol, and a pole as a cross or asterisk.

» A circle of unit radius centred at the z-plane origin is drawn, as this indi-
cates the stability of a system.

* A system or signal is only stable if all the poles lie inside the unit circle.

» Zeros or poles at the origin of the z-plane produce a pure time advance
(or delay), but have no other effect of the characteristics of the processor
or signal.

* Usually a minimum-delay system is preferred, which can be achieved by
ensuring that there is an equal number of poles and zeros.

About the frequency variable z can be noted that it is equivalent to €9 in

Fourier notation. Therefore if we put z = d2, where Q is real, effectively

converting a z-transform to the exponentials (or sines and cosines) of Fourier

analysis.

As € always has unit magnitude, irrespective of the value of Q, it always
lies on the unit circle. The actual place on this circle depends on the frequen-
cy (as Q increases, the point moves anti-clockwise around the unit circle, the
angle made with the positive real axis equals the value of Q).

This representation can also provide information about the magnitude and
phase of the spectral function. A vector has to be drawn form each pole-vec-
tor and zero-vector to the point on the unit circle representing the sinusoidal
frequency of interest.

* The magnitude of the spectral function equals the product of all zero-
vector lengths, divided by the product of all pole-vector lengths. (An
additional gain vector may have to be taken into account, but this only
alters the scale of the function, not the shape)

» The phase equals the sum of all zero-vector phases, minus the sum of all
pole-vector phases

See Example 4.4 on page 113 of the book.

zeros and poles

zeros
poles

stability

magnitude

phase

15



The Z-Transform

4.2.3

4.2.4

Lo

First- and second-order LTI systems

First- and second-order LTI systems

Q=0,Tm2m, ...

]

The transfer function of a high-order system in terms of its poles and zeros

1s written as:

H) =

Y K@z-2z)(z-2)(z-2)...

X2 (Z-p)(E-p)(z-py)

H[z) may in principle be built up by cascading a number of first and second-

order subsystems defined by:

(z-2)(z- %)
(z-p)(z—P3)

If we consider only first and second-order systems with their zeros at the or-
igin, the location of a first-order real pole is then written as z = a; and of a
complex-conjugate pole-pair as z = rg® and z = red®, so

th(z) =

First-order systems.

H( = Z_

(z—rd®)(z—red®  22—2rzcosd +r2

The single real pole must be inside the unit circle to ensure stability. If it is
on the positive real axis, we get an elementary recursive low-pass filter with
a peak response at Q = 0 (see Eq. 4.7). If the pole is on the negative real axis,
the equivalent high-pass filter is obtained with a peak response at Q = m.
The pole-zero configuration, frequency response (magnitude and phase), and
impulse response of typical low-pass and high-pass systems are illustrated in

the book on pg. 116).

Second-order systems

There is a second-order zero at the origin and a complex-conjugate pole pair
at z = retl® (see Eq. 4.8). The frequency at which the peak gain occurs (the

Figure 5
The effect of poles and ze-
ros close to the unit circle
can be visualized. As the
frequency varies, and we
move around the unit cir-
cle, the spectral magni-
tude function peaks
whenever we pass close to
a pole. It goes through a
minimum whenever we
pass close to a zero. Note
that zeros can occur actu-
ally on the unit circle, giv-
ing rise to true nulls at the
corresponding  frequen-
cies. However, the poles
of a stable system are al-
ways inside the unit cir-
cle, so its response must
be finite at all frequencies.

Eq. 4.4

transfer function

Eq. 4.5

first-order system

Eq. 4.6

second-order system

Eq. 4.7

Eq. 4.8

low-pass filter
high-pass filter

center frequency

bandwidth
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The Z-Transform Nonzero auxiliary conditions

4.3

center-frequency) is determined by the parameter 6; and the selectivity, or
bandwidth, of the system by the parameter 7.

Some general observations:

* when 6 = 0, it is a typical low-pass filter

* when r is moving towards 1 (the poles are moving towards the unit cir-
cle), this gives a very selective frequency-domain characteristic

e when 6 = m, it is a typical high-pass filter

Nonzero auxiliary conditions

The unilateral z-transform can also cope with nonzero auxiliary conditions.
From the DSP point of view this is useful in two closely-related situations:

* A processor may not have settled following application of a previous
input signal. In other words the stop transient has not died away

* The input signal was in fact applied prior to n = 0 and we need to assess
its subsequent effects on the output

The transform cannot take detailed account of past history, but it can sum-

marise its effects by incorporating nonzero initial conditions. A first-order

processors past history can be summarized in terms of a single initial condi-

tion. In the case of a second-order system, two initial condition terms y/-1]

and y/-2] are needed.

However an LTT systems response to a unit impulse is only its ‘true’ impulse
response h/n] if the initial conditions are zero. And likewise, the ratio of out-
put to input z-transforms only equals the transfer function #z) for zero in-
itial conditions.

17



Non-recursive digital filters

5

5.1

5.2

Non-recursive digital filters

General design information

General remark: almost any DSP algorithm or processor can reasonably be
described as a filter’. However, the term is most commonly used for systems
that transmit (or reject) well-defined frequency ranges.

The general form of difference equation for a causal LTI processor is given
by:
N M

Z ay[n-K = Z bx[n—K

k=0 k=0
In a nonrecursive filter the output depends only on present and previous in-
puts, so the difference equation may be written in the form:

M
y[n] = Z b x[n—K|
k=0

The transfer function and frequency response function of a nonrecursive fil-
ter are given by respectively:

M
Hpz) = > b,z X
k=0
M
HQ) = > b, ek
k=0

Such a filter directly implements the convolution sum, and the coefficient &,
are simply equal to successive terms in its impulse response. As the number
of coefficients must be finite, a practical nonrecursive filter is often referred
to as FIR (finite impulse response). The art of designing a nonrecursive filter
is to achieve an acceptable performance using as few coefficients &, as possi-
ble. Practical filters typically need between (say) 10 and 150 coefficients.

Nonrecursive filters are slower in operation that most recursive designs but
there are two major compensating advantages:

* A nonrecursive filter is inherently stable. Its transfer functions is speci-
fied in terms of z-plane zeros only, so there is no danger that inaccura-
cies in the coefficients may lead to instability

* Since a nonrecursive filter has a finite impulse response (FIR), the latter
can be made symmetrical in form. This produces an ideal linear-phase
characteristic, equivalent to a pure time-delay of all frequency compo-
nents passing through the filter. There is said to be no phase-distortion

* A FIR leads to finite start-up and stop transients

High-pass and band-pass designs can be readily derived from a low-pass pro-

totype.

The Fourier Transform method

Eq. 3.8 descripes the Fourier transform and Eq. 3.9 the inverse Fourier trans-
form. Only the second equation is relevant here. If we rewrite this equation
to descibe a LTI processor rather than a signal, we have:

hn] = ZiTJZHﬂ(Q)eJQndQ

General design information

Eq. 5.1

causal LTI processor

Eq. 5.2

nonrecursive filter

Eq.5.3

transfer function

Eq. 5.4

frequency response

Finite Impulse Response
FIR

stability

phase distortion

Eq. 5.5

impulse response filter
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Non-recursive digital filters The Fourier Transform method

If we start with a desired frequency response H/Q), Eq. 5.5 shows how to de-

rive the corresponding impulse response A/n]. The sample values of h/n/ give

the required multiplier coefficients &y, for out nonrecursive filter.

The approach is conceptually straightforward, but there are two main prac-

tical difficulties:

1. The integral in Eq. 5.5 can be hard to solve, therefore we will assume
linear phase responses and use a computer to estimate the values of 4/n/

2. The choice of H/Q) may result in an impulse response with a large

number of terms, giving a very uneconomic filter, so a comprise has to
be settled between time-domain and frequency-domain performance

See Example 5.1 in the book: an infinitely sharp cut-off filter is designed, giv-
ing an infinite time-domain response.
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Recursive Digital Filters

6

6.1

6.2

Recursive Digital Filters

General design information

A recursive filter depends on one or more previous outputs and on inputs:
feedback. It has great computational advantages: in contrast to a nonrecur-
sive filter a recursive filter requires just a few coefficients. This approach has
also two distinct disadvantages:

* arecursive filter may become unstable if the coefficients are chosen
badly

* arecursive design cannot provide a linear-phase response

A recursive filter usually has a infinite impulse response (IIR). This means

the impulse response h/n] decays to zero as n — o . hence theoretically it con-

tinues forever.

Recursive filter design not only focuses on z-plane zeros, but also on z-plane
poles:
_ K(z-2z)(z-2)(z-z)...

2 = e

Hence giving a frequency response as:

_ K(e92-2)) (612 - 2,) (2~ 2)...
(d2-p,)(2—p,)(¢2—py)...

HQ)

which can be readily computed. Eq. 6.2 gives separate control over numera-
tor and denominator.

A fast way of designing recursive filters is by making calculated guesses for
the value of the coefficients: a pole close to the unit circle gives a response
peak; a zero close to or on the unit circle produces a trough (or null). See fig-
ure 6.1 (page 170) and figure 6.2 (page 171) for some examples.

Usually only the magnitude of H/Q) is of interest. It is therefore convenient
to produce a decibel plot of |H{(Q)| against frequency. Suppose we specify a
real pole at z = a . It contributes the following factor to the denominator of
HQ):

HQ) = 29—a = cosQ —a +jsinQ

with magnitude:
|FQ)| = J1-2acosQ +a?

A real zero at z = a would give an identical contribution to the numerator
of |H(Q)| . An nth-order pole or zero would give a contribution |FQ)|".

Digital integrators

Integration, like differentiation, is a common signal processing operation
and can be considered as a special kind of recursive filter. Several different
approaches to calculate the integration of signal exist, three of them are:

* running sum: this process simply adds up the samples of a digital
(y[n] = y[n—1] +x[n] ) and has the following transfer function and fre-
quency response:

o= X0 . 1. o

X 1-z71 z-1

ﬂ(Q):—l 1 _ &9

_e—jQ eiQ_l

General design information

feedback

infinite impulse response
IIR

Eq. 6.1

Eq. 6.2

Eq. 6.3

Eq. 6.4

running sum

Eq. 6.5

running sum transfer function

Eq. 6.6

running sum frequency response
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Recursive Digital Filters Digital integrators

* trapezoid rule: the output is updated by the average of the two adjacent trapezoid rule

inputs (y[n] = y[n-1] + x[n]+—>2<[n—11)

He) = 2 Eq. 6.7
(z-1) trapezoid transfer function
_ elQ+1
HQ) = 5@9-1) . Eq. 6.8
trapezoid frequency response
. , ) — uin_ o1 X[N] +4x[n—1] +X[n-2] Simpson’s rule
Simpson’s rule: y[n] = y[n-2] + 3
_Z2+4z+1
o = S5 L Eq. 6.9
Simpson’s transfer function
_ e+ 469+
HQ) = @D . ’ Eq. 6.10
Simpson’s frequency response

21



Discrete and Fast Fourier Transforms The discrete Fourier transform

/7

7.1

Discrete and Fast Fourier Transforms

The Discrete Fourier Transform (DFT) is one of the most important signal- discrete Fourier trans-
operations used in DSP. When implemented using a Fast Fourier Transform f;r r;
(FFT) algorithm the DFT offers a rapid frequency-domain analysis and F

. . . . . L . fast Fourier transform
processing of digital signals and investigations of LTI systems. This chapter FFT

will explain the fundaments of the DFT, its computational problems and
how these are solved by implementing a FFT.

The discrete Fourier transform

The DFT of an aperiodic signal x/n/, with a finite number of non-zero sam-

ples, defined over a range 0<sn< N-1 is given by:
N-1

_j2mkn
X[K] = Z x[nje N
',ﬁ Eq. 7.1
N Discrete Fourier Transform
= Z X[ n] WK
d2n n=0
where W = e N, and the spectral coefficients Afk/ are evaluated for inverse DFT
0<k< N-1. To recover the original signal the inverse DFT (IDFT) is used, IDFT
which is given by:
1N_l j2mkn
-1 “ N
X[ = % Z X[k]e
;:2 Eq. 7.2
1 N X ) Inverse DFT
- = ‘ —kn
PR
k=0

Eq. 7.1 has no limitations on k. If we use this equation to calculate X/k] for
value of k outside the range 0<k< N—1, we find that XJk/ is periodic. The
same phenomenon occurs when the IDFT is used to recalculate x/n/ from
XJk]. Additional values of x/n/ outside 0< n< N—1 yields a periodic version
of x/n]. This means the DFT and IDFT consider the signal to be periodic.

The number of samples required for a reliable DFT-computation needs a
theoretical foundation. The frequency-domain version of the Sampling the-
orem provides a good base to start from. Because of the symmetry of the
Fourier transformation the frequency-equivalent of this theorem is stated as
follows:

The continuous spectrum of a signal with limited duration T sec- Theorem 3
onds may be completely represented by regularly-spaced frequency- Fourier-Sampling theorem
domain samples, provided the samples are spaced not more than

TotHz apart.

With N finite samples and with T as the sampling interval the spectrum can
be represented with samples spaced (NT)'Hz or 2m(NT)~! radians per sec-
ond apart. Hence with Q = wT the samples in Q must be taking at intervals
of 2nN-Lor less.

Properties of the DFT

» periodicity: with ranges 0<n<N-1 and 0<k< N-1 for respectively periodicity
x/n]and A[k]
x[n] = x[n+ N] and X[k] = X[k+ N]
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Discrete and Fast Fourier Transforms

7.2

linearity:

o Xj[K] and x,[n] « X5[K]

if x,[n]

then Ax[n] + Bx,[n] « AX][K] + BX,[K]
time-shifting:
if x[n] o X[K]
j2mkng
then x[n—ny] - X[Kle N = X[KJW{®

convolution:

o Xi[K] and x,[n] « X5[K]
XK X[k

if x,[n]
then x,[n] O x,[Nn] «
modulation:

o Xi[K] and x,[n] « X5[K]
o X[k O X5[K]

symmetry table:

if x,[n]

then x;[n]x,[n]

The Fast Fourier Transform (FFT)

linearity

time-shifting

convolution

modulation

symmetry table

x[n] XJk]
a a a a
even 0 even 0
odd 0 0 odd
0 even 0 even
0 odd odd 0
Computing the DFT

A major practical consideration when computing the DFT is its speed. It
may seem obvious to use Eq. 7.1 and Eq. 7.2, but these are relatively slow to
compute on normal computers. By expressing the equations in terms of sines
and cosines we have:

X[k = x[ n] B:osu—kr-]u—j smgb;\lkm

n=0

Eq.7.3

DFT using sin and cos

N—l
x[n == Z X[K] %:osmznknuﬂsm%?)’(\lkm Eq. 7.4
m=0 IDFT using sin and cos

Except for the scaling factor and the sign, the calculations are the same. By redundancy
making use of symmetry properties, calculations can be speed up even more.
But even then the number of floating point calculations range from 4N?2
(worst case) to N2 (even/odd real signal). It is also a very inefficient algo-
rithm: many calculations are done many times, thus consuming computer
time with redundant work. FFT-algorithms try to minimise the amount of

redundancy, thus speeding up the process.

The Fast Fourier Transform (FFT)

Due to the periodic nature of W§" and the limited number of distinct values
it has, much of the redundancy can be eliminated. Take for example a short
DFT (N = 8). Both % and 7 vary between 0 and 7 inclusive so the product
kn varies between 0 and 49. However, there are only eight distinct values for
WEKN (see Figure 6). The table forms a matrix with diagonal symmetry and
many of the values are +1 implying simple additions and substractions. All
these feature contribute to the redundancy of the standard DFT.
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Discrete and Fast Fourier Transforms The Fast Fourier Transform (FFT)

Lo (@ Figure 6
Tabulation of W'én
Value of
0 1 2 3 4 5 6 7
01 1 1 1 1 1 1 1
111 | (1)) o S ) I e T B S D (1+))
2 J2 J2 2
value 2 |1 _i -1 i 1 _i -1 i
of b ] J ] J
311 | _(A+)) | ] a-j) |1 | @+ph |49 A=)
J2 2 2 J2
4 11 -1 1 -1 1 -1 1 -1
501 | _(1-) |4 |@+) |-t [@=) |i |1+
J2 J2 2 J2
6 |1 j -1 —j 1 j -1 -
701 | (1+)) ] S ) e T A S D I I N T )
2 2 J2 2
[ ] aa
7.2.3 Decimation-in-time

In this section we will show how the DFT can be expressed in terms of short-  conventional decomposi-
er, simpler, DFT’s by dividing the signal into subsequences.The method is ton
known as conventional decomposition.

The conventional decomposition which will be explained in this section is decimation-in-time
called decimation-in-time. Suppose we have a signal with N sample values,

where N is an integer power of 2. We first separate x[n] into two subsequenc-

es, each with N/2 samples. The first subsequence consists of the even-num-

bered points in x/n], and the second consists of the odd-numbered points.

Writing n = 2r when niseven, and n = 2r + 1when 7 is odd, the DFT may

be recast as: N-1

> x[wW,  0<ks<N-1

n=0
N

5-1

=y x[2r [ WEk + > x[2r + L] WE" + Dk Eq.7.5
r=0 r=0

N N
~_1 >

2
= 3 x2r](WR)*+ S x[2r + 1 (W)™
r=0 r=0

X[K]

NIz

-1

-1

We note that: 2j2n

wg=e N =w, Eq.7.6

and we may therefore write:
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Discrete and Fast Fourier Transforms The Fast Fourier Transform (FFT)

Xl = 5 x2rIWl, + Wi S x(2r + LW, Eq.7.7
r=0 r=0
= @Gk + WK K]

We have now expressed the original N-point DFT in terms of two N/2-point
DFTs, Gjk] and Hk]. Gfk] is the transform of the even-numbered points in
x/n], and HJk] is the transform of the odd-numbered points. Note that we
must multiply #k/ by an additional term WY before adding it to Gfk/.

If we assume that the transform length N is an integer power of 2, it follows radix-2
that N/2 is even. Therefore we can take the decomposition further, by

breaking each N/2-point susequence down into two shorter, N/4-point sub-

sequences. The process can continue until, in the limit, we are left with a se-

ries of 2-point subsequences, each of which requires a very simple 2-point

DFT. A complete decomposition of this type gives rise to one of the com-

monly-used radix-2, decimation-in-time, FFT algorithms.
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FFT Processing

8

8.1

FFT Processing

In this chapter we will focus on two of the main application areas of FFT
processing:

1. Digital spectral analyse. The use of the FFT to explore the properties
of digital signals and systems

2. Digital filtering by fast convolution. This application offers a fre-
quency-domain alternative to the time-domain filtering techniques dis-
cussed in chapter 5 and chapter 6

In chapter 5 and chapter 6 the time-domain methods of signal filtering are
descibed. An alternative approach, based on the FFT, can be summarized as
follows. First, the input signal is transformed into the frequency-domain.
The various spectral coefficients are then modified in magnitude and phase
according to the desired filter characteristics. This means that filtering is ac-
complished by frequency-domain multiplication rather than time-domain
convolution. The approach is very flexible and may in principle be used to
implement any desired frequency response specification.

The effectiveness of this method relies on the speed of the FFT algorithms.
We should be careful not to assume that it is necessarily superior to time-do-
main filtering. Its flexibility is not always required. Futhermore a time-do-
main filter with a few recursive coefficients may well be faster an FFT
implementation. In practice the choice between them depends not only on
speed, but also on the amount of storage needed, and whether or not true
on-line working is required. If a filtered output sample is required to be gen-
erated every time a new input sample becomes available, then a time-domain
filter has to be specified, because effective use of the FFT demands that data
is stored and processed in substantial blocks.

Spectral analysis

Digital spectral analysis is, unlike digital filtering, investigative: it is not nec-
essarily concerned with modifying the signal. Spectral analysis is used in two
different sets of applications:

1. Naturally-occuring signals. Examples arise in the analysis of speech,
biomedic signals

2. Complete systems. A system is disturbed with a suitable input and the
output is analysed. Examples arise in the analysis of electronic circuits
and filters, vibrations in buildings, radar, sonar

An FFT algorithm yields a set of spectral coeffients which may be regarded
as samples of the underlying continous spectral function (or as harmonics of
a periodic version of the same signal). Just as a digital signal x/n] is sampled
in the time domain, so its DFT is sampled in the frequency domain.

If all frequency components of a signal have a integral number of periods
within the transform length no discontinuities arise with end-to-end repet-
ion. Each component then occupies a definite harmonic frequency, corre-
sponding to a single spectral coefficient. If this is not the case, the
discontinuities in the time domain will lead to spectral spreading or leakage
in the frequency domain. This effects is of much significance! (see Figure 7)

Spectral analysis

digital spectral analysis

spectral function

spectral spreading
spectral leakage
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Lo (@ Figure 7

Fourier transformation
of (a) a signal containing
three exact Fourier har-
monics and (b) a signal
containing both harmon-
ic and non-harmonic

COmPOnentS.
| X1k
k -
y[nl = x[n] O h[n]
x[n]
| X[k
i 1 |
k -
[ (|
In Figure 7, the following two signals are plotted:
= 0.1sinE2M1 60+ 0.25inEM530 (2101 40
X[n] = 0.1st51216D+ 0.$|nE51253D+ 0.15005,D512211D . o Eq. 8.1
Signal in Figure 7 (a)
= 0.1sin 2™ 604 . 25in 2T EALY
Xl = 0.1sinETo167+ 0.25mE51253.%+ 0.15(:03[512211.2% Eq. 8.2

Signal in Figure 7 (b)

The smear around the peaks is called spectral leakage. The two waveforms
that don’t fit within the frame can not be described by two distinct harmon-
ics and the DFT-algorithm tries to estimate the two waveforms by adding
several harmonics with different amplitudes.

The longer the signal we transform, the greater the value of N and therefore frequency resolution
the longer the bage (see chagter 3) for the signal. The frequency resolution is
defined as: Af = =& oras: .
N N
8.1.1 Windowing
To reduce the effect of spectral leakage, a window is applied to the signal. windowing
The common function of such a window is to taper the edges of the signal, tapering

thus reducing the size of the discontinuities. See Figure 8.7 in the book for
some examples.

A window changes the signal and thus its spectrum. To minimize the overal
effect of a window for example only the first and last 15 % of the signal is
tapered. This can only be done if the signal is lengthy.

Spectral analysis and the choice of window to be used on the signal is not an
easy task. A wrong window can hamper your data and thus your conclu-
sions but usually no proper conclusions can be made without the use of
some sort of window.
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8.2

Digital filtering by fast convolution

A convolution in the time domain is equivalent to multiplication in the fre-
quency domain. Thus instead of filtering in the time domain using convolu-
tion a much faster result is archieved when filtering in the frequency
domain, using multiplication. The complete process is called fast convolu-
tion and is depicted in Figure 8.

Lo (@

Input Xik
signal FET A[K]

Output
signal

! Multiply T IFFT | —p»

X[ n|

Impulse
response

FFT
h[n] K]

Yik = X[k Ak

[ -
It is important to see that a linear convolution is needed here, and not a cir-
cular one. That is, the convolution of an aperiodic input signal and impulse
response produces an aperiodic output. Fortunately, it turns out one period
of the output signal derived by circular convolution gives the correct result,
providing the lengths of the transforms are extended using an appropriate
amount of zero-filling. See Figure 8.11 and 8.12 in the book for an example.

Digital filtering by fast convolution

fast convolution

Figure 8

Fast convolution.

zero-filling
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9

9.1

Random Digital Signals

In this and the next chapter we turn our attention to the description and
processing of random signals. The signals thusfar are generally referred to as
deterministic, e.g. they have defined, known values at each sampling instant.
The individual values of random sigals are not defined, nor can we predict
their future values with certainty.

Amplitude distribution

Usually a probability density function is used to descibe a continuous ran-
dom variable. With DSP this is inappropriate, given the fact that a digital sig-
nal can only take a finite number of different amplitudes, limited by the
wordlength of the processing unit. Instead a probability mass function p, is

defined:
py = probability{  nl = x,} Eq. 9.1
" Probability mass function

Thus p, simply tells us the probability associated with each of the allowed
values of the sequence. An associated function, the probability distribution

function, is: Xq
P, = probability{ { nsx,} = pr Eq. 9.2
" - " Probability distribution function
Lo (@ Figure 9
1.0 Probability functions for
Py 1 Py - a die-tossing experiment
6
123456 123456
D [ |
The probability function in Figure 9 is uniform or even. Another type of uniform distribution

distribution which is very common in DSP is called the Gaussian distribu- Gaussian distribution

tion. Because of its large number of applications in different fields it is also
known as the normal distribution. (x= %)
PR = ——e 20 Eq.9.3
0.2 Gaussian probability density

As far as DSP is concerned, any random sequence which is produced by su-
perposition of many contributing processes is likely to have a gaussian form
of amplitude distribution. For example, noise arising in digital communica-
tion and computer systems is often of this type.
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9.2

9.3

() -
no. of
0 Sample value 300
_>

no. of
scores

Sample value 300
_>

Mean, mean-square and variance

The use of a probability mass function is in most practical applications some-
what overdone. It is usually enough to get the mean value and the average
size of fluctuations about the mean of the signal.

The mean of a random digital sequence is defined as:

00

m= E XM} = Txp,

where E denotes mathematical expectation. It is the same as the average value
of the sequence and in electronic engineering is also widely referred to as the
d.c. value.

The mean of a signal has some useful properties:

 If every value of a signal is multiplied by a constant, the mean is also
multiplied by the same constant

* If two or more random signals are added together, then the mean of
their sum equals the sum of their means

The mean-square, or average power, is defined as follows:

00

m? = E{x{rl%} = ¥ xZp,

—00

The variance refers to fluctuations about the mean and is given the symbol
2.
02: w

a% = E{(x[n-m)%} =y (%, —m)%p

Or: variance = mean-square - (mean)?. The variance is also refered to as the
fluctuation power or a.c. power.

Ensemble averages, time averages

Formally, a random or stochastic digital signal is one giving rise to an infi-
nite set of random variables, of which a particular sample sequence x/n] is
one realisation.The set of all sequences which could be generated by the
process is known as an infinite ensemble, and it is this to which the proba-
bility functions and expected values defined by Eq. 9.4, Eq. 9.5 and Eq. 9.6
strictly refer. Such measures are therefore known as ensemble averages.

Mean, mean-square and variance

Figure 10
Estimates of the probabil-
ity mass function for an
uniform distribution and
a gaussian distribution.

mean
Eq. 9.4
Mean

mathematical expectation
d.c. value

mean-square
average power

Eq. 9.5

Mean-square

variance

Eq. 9.6

Variance

fluctuation power
a.c. power

infinite ensemble
ensemble average
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9.4

In practise, we generally deal with single sequences. Each sample represens a
single value of one of the variables described by the underlying stochastic
process. We must therefore make a connection between the properties of an
ensemble and those of an indivudual sequence existing over a period of time.
This connection can be found in terms of time averages (only if the signal is
stationary):

N
_ _ 1
m, = X[n]O= N"T«,ZN+1 Z X[ n]
n=-N
N
. 1
2 = — 2= —_ _ 2
o X[ n] —m,)<0] '\llquan’\H_1 Z (X[n] —m,)
n=-N

Autocorrelation

Autocorrelation (‘in relation to itself’) is one of the most important tech-
niques for exploring properties of a random digital signal. It is essentially a
time-domain measure and we shall see later that it is related to the spectral
properties of a sequence in the frequency domain.

Knowledge of the sequence’s recent history could help us predict the next
value. In other words the sequence may have a time-domain structure, and
there are many practical situations in which such a structure must be char-
acterized. The most widely used measures for this purpose are the autocor-
relation function and the autocovariance function:

OIm] = X[n] X[+ m|O
N
= Nlimoo2N1+1 S X[l K[n+
- n=-N
yxx[m] = (X[ n] _mx)(x[n+ ni _mx)
N
= lim s Y I -m)(dn+ M -m,)
n=-N

And the relation between autocorrelation and autocovariance is given as:
yxx[ m] = (pxx[m] _m)%

Because the defintion of mean, variance, autocorrelation and autocovariance
are based of infinitely long time sequences, and in practise we only have fi-
nite sequence length, these quantities have to be estimated. The estimates
will always possess statistical variability, and will only tend towards the true
functions as the sequence length tend toward infinity. Interpreting these re-
sults most therefore be done with a little caution.

Example 9.4 in the book illustrates a number of important points and Figure
11 gives five sequences and their estimated autocorrelation functions.

Autocorrelation

time average

Eq. 9.7

Time-averaged mean

Eq. 9.8

Time variance

autocorrelation

autocovariance

Eq. 9.9

Autocorrelation

Eq. 9.10

Autocovariance

Eq. 9.11
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9.5

(D)
X[n] I I ® I I @y [m] |
I

(b)

x[n]l | I I | | @l m |
©

x[n] Oy Ml

x[n] | @ Oy Ml

n =
>

The number of cross-products decreases as the shifted sequence ‘slides over’
the unshifted one. This implies that estimates in the tails of the computed
autocorrelation function are somewhat less reliable than those in the center.
For this reason, it is usual to restrict shift values to no more than about 15-

20% of the available sequence length.

Power spectrum

The frequency-domain counterpart of the autocorrelation function is called

the power spectral density, or more simply the power spectrum:

P@) = 5 g lmelam

The inverse will (of course) result in the autocorrelation function:
1 ] i
Qulml = 5[ P Q)eMmdQ

Note that by putting m = 0 we obtain the total power of the sequence:

9101 = o, Pol@)d0

Power spectrum

Figure 11
Five digital sequences and
their estimated autocorre-
lation functions. The cen-
tral  value of the
autocorrelation is always
the maximum value, but
parts (2) and (b) illustrate
that it need not be the
only one with this value.
Part (c) is a uniformly-dis-
tributed completely ran-
dom sequence (white
noise). It has a maximum
at zero and (nearly) zero
values at either side. Part
(d) is the sequence of part
(c) after a bandpass filter.
Notice the immense im-
pact of the filter on the se-
quence in the
autocorrelation function!
Part (¢) is also white
noise, only now after a
low-pass filter. After the
filter a repetitive impuls
train is added to the sig-
nal. This impulse train
cannot be seen directly in
the sequence, but comes
out nicely in the autocor-
relation function.

power spectral density
power spectrum

Eq. 9.12

Power spectrum

Eq. 9.13

Inverse power spectrum

Eq.9.14

Total power
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9.6

9.7

Cross-correlation

We have seen how autocorrelation may be used to characterize a sequence’s
time-domain structure, revealing statistical relationships between successive
sample values. Cross-correlation is an essentially similar process, but instead
of comparing a sequence with a shifted version of itself, it compares two dif-
ferent sequences. It gives us statistical information about the time-domain re-
lationships between them.

The cross-correlation function and the cross-covariance function of two se-
quences x/n] and y/n] may be defined in terms of time averages:

X[n]y[n+ mj0
N

@y, [m]

1
= am sNer 2 nvin+m
n=-N

Yiylm] = OX[n] =m)(y[n+ m| —m )0

N
N"_rTIooZN1+ 1 2 K-moGin+ m-m,)
n=-N

Just as the form of an autocorrelation function reflects the various frequency
components in the underlying sequence, so the form of a cross-correlation
function reflects components held in common between x/n/ and y/n/.

Cross-spectrum

The frequency-domain counterpart of a cross-correlation function is known
as a cross-spectral density or cross-spectrum. It gives valuable information
about frequencies held in common between x/n/and y/n].

If two sequences x/n] and y/n] have no shared frequencies or frequency rang-
es, their cross-spectrum is zero. They are said to be linearly independent.

Py = 3 @ylmledon

m=—o

9 lm] = zi [, Po@eimdo

Cross-correlation

cross-correlation

cross-covariance

Eq. 9.15

Cross-correlation

Eq. 9.16

Cross-covariance

cross-spectral density
cross-spectrum

Eq.9.17

Cross-spectrum

Eq. 9.18

Inverse cross-spectrum
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1 O Random DSP

10.1

DSP is concerned primarily with processing signals, rather than merely de-
scribing them. With processing signals and system responses, questions may
arise. How are the statistical measures of random signals and noise which we
developed in the previous chapter affected by processing? If we know such
measures at the input of a given filter or processor, can we predict what they
will be at the output? How do we design an optimum processor for enhanc-
ing a signal contaminated by noise?

The effects of processing can be readily described and predicted, as will be
shown in this chapter. You may be confident that a clear understanding of
this chapter will stand you in good stead for further reading of the DSP lit-
erature and for tackling more advanced topics in random signal processing.

Response of linear processors

In chapter 2 it was shown that the output of a system is the convolution of
the input and the impulse response of the system (Eq. 2.3). The difference is,
that the input signal is now random.

The convolution (Eq. 2.3) deals with individual sample values, and is there-
fore not of direct use to us as it stands. However, the equation can be modi-
fied to handle time-averaged statistics. Thus the mean value of the output
sequence may be derived as follows:

m, = E{y{n]}

00

> E{Xn-K}h[K

k= —o0

00

m. Y hik

k= -0

This result uses the fact that the expectation of a sum equals the sum of ex-
pectations. It shows that the mean of the output is equal to the mean of the
input multiplied by the sum of all impulse response terms. In other words,
the d.c. value of the output must equal that of the the input multiplied by
the zero-frequency response of the processor:

m, = m,#(0)

Response of linear processors

Eq. 10.1

Output mean

Eq. 10.2

Output mean in freq. dom.

Before the effects on variance are descibed, first the autocorrelation func-
tions of the input and output are given (again using Eq. 2.3):

Eq. 10.3

Autocorrelation with time av.

@ymg = E{YINlY[n+ m}
g > i 0
= E — Kh[K —1h
0y An-KAK 3 xn+ m-qhlr]C
[k =— r=—o O
= Z h[ K] Z E{x[n— Kx[n+ m— 1} h[r]
K= -0 r=—o
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10.2

The expectation of this last expression equals the value of the input autocor-
relation relevant to the time shift (m+ k—r). Hence:

Bypm = > Ky @(m+ k=1h(r] Eq. 10.4
k= —o0 r=—o

It is now helpful to substitute g for (r —k), giving:

Byim = Y WK 5 @dm—dlhlr]
A Eq. 10.5
= S @om-d Y hKn[k+d
q=- k= —o0
If we now write: w
ifal = Z h[KIh[k+ d] Eq. 10.6
N Autocorrelation of impulse response
we obtain: w
Qplml = 5 @m—dila] Eq. 10.7
q=-o

The result can be summarized as follows:

The autocorrelation function of the output sequence of a linear
processor may be found by convolving the autocorrelation func-
tion of its input sequence with a function representing the autocor-
relation function of the processors’s impulse response.

Eq. 10.7 provides a key to the relationship between the output variance and
input variance. If we put m = 0 we obtain the peak central value of the out-
put autocorrelation function. The autocorrelation function is always even,
thus creating: ©
Pl0l = 5 @{mlj[m] Eq. 10.8

m=—o

Using Eq. 9.11, Eq. 10.1 and Eq. 10.8 gives:

, B° oog ° f
Oy = 0 Z (pxx[m]][m]g_ an Z h[n]% Eq_.lo_g
U = —eo 00 h-o O Output variance

The basic notion with the output power spectrum is that the frequency re-
sponse H[Q) of a processor defines its effect, in amplitude and phase, on any
input frequency Q. Since power is propertional to amplitude-squared and in-
volves no phase information, the equivalent power response of the processor
is |H(Q)|? . Hence:

PyQ) = |HQ)?Py@) Eq. 10.10

Output power spectrum

White noise through a filter

White noise creates from a communications theory point of view a paradox:
because it is completely unpredictable in advance it contains the maximum
amount of information. If it is decoded the maximum amount of informa-
tion is retreived. Thus if a white sequences represents unwanted noise it is
the most chaotic possible, but if it represents a signal if carries the greatest
possible amount of information.

To make the distinction between noise and a signal we need to be able to pre-
dict the effects of linear prosessing upon the sequence. Measures as the mean,
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10.3

variance, autocorrelation function and power spectrum are likely to be of
most interest.

A white input sequence has an autocorrelation function consisting of a sin-
gle, isolated, unit impulse at m = 0. Thus the statistical properties of the in-
put are:

m, =
o2=1
Eq. 10.11
@y [m] = o[m]
Py =1
If we pass such a sequence through an LTT filter, the mean value m,, of the
output will also be zero. The output autocorrelation function reduces to:
Oy = Y Odm-dilal = 5 3[m-—djla] = j[m] Eq. 10.12

q

gq=-o
The output variance is (using Eq. 9.11):

03 = (pyy[O] —m§ = (pyy[O] = j[0] Eq. 10.13
When applying a white noise sequence to a LTI processor, any correlation

in the time domain or frequency domain must be due to the processor,
hence the statistics of the output can be summarized as follows:

my:O

o2 = j[0]

. Eq. 10.14
@ylml = j[m] White noise output statistics

PyQ) = |Ho)?

System identification by cross-correlation

The cross-correlation function can be used to indicate the frequencies, or fre-
quency ranges, held in common between two random sequences x/n] and
y[n]. The cross-correlation function also contains information about a proc-
essor if the two sequences are an input-output-pair. Moreover, the statistical
comparison of random input and output signals can yield useful information
about a deterministic system or processor.

When feeding a random (usually white noise) signal to an unknown system,
any non-whiteness in the output signal must be due to the frequency-selec-
tive properties of the system itself. Viewed in this way, we may anticipate
that a white-noise input will give a particular simple and attractive relation-
ship between the input-output cross-correlation function and the properties
of the system under investigation.

We can develop this important idea quantitatively by recalling that the cross-
correlation function of two sequences equals their average cross-product,
thus we may write:

@ ml = E{x[ny[n+ m]} Eq. 10.15
Using system convolution:
O 0
O
Pylm] = Eélx[n]k_z x[n+ m—Kh[K]

[ o o [

Eq. 10.16

00

= Y &uIm-KhK

k= -0
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10.4

10.4.1

This important result shows that the input-output cross-correlation func-
tion equals the convolution of the input autocorrelation function with the
impulse response of the system.

Assume a zero-mean, white noise input of unit variance. Then the input au-
tocorrelation function consists of an unit impulse at m = 0, hence:

00

Glm] = 5 3[m—Kh[K] = h[m]

Kk = —o0

Given a white noise input, the cross-correlation function between input and
output becomes identical to the system’s impulse response. And the impulse
response of any LTI system completely defines it in the time domain.

Because of the convolution relationship of the Fourier transformation, the
cross-spectrum is defined as follows:

PyQ) = P HQ)

In the case of the white noise input with zero mean and unit variance, the
input power spectrum is unity, therefore:

Py0) = He)

In this case the cross-spectrum takes the same form as the frequency response
of the system.

Signals in noise

Signal recovery

One of the most common requirements in signal recovery is to separate a
comparative narrowband signal from wideband noise.

In such situations we are interested in predicting the improvement in signal-
to-noise ratio which can be obtained by linear filtering. As far as the signal
is concerned, it is convenient to specify an ideal bandpass filter covering the
signals bandwidth.

As far as the noise is concerned, we need to know its spectral distribution
and then to assess the reduction in noise level through the filter. This is quite
readily done using results derived earlier in this chapter.

Assuming that the noise has zero mean value then its autocorrelation and au-
tocovariance sequences are identical and the output noise power from the fil-

ter is given by an output version of Eq. 9.14:

9,101 = zi [, P10

Substitution from Eq. 10.10 gives:
-1 2p
0101 = 5of, [HQ|*Fry@)do

If the filter’s squared-magnitude response has a bandwidth of AQ (see Figure
10.10 in the book), the output noise power becomes:

a,10] = 2, o Pul@)d0

A further simplification is possible if the input noise to the filter is assumed
white, with unit variance. Its input power spectrum in then unity (see sec-

tion 10.2), thus:
AQ

1
R e e iy
We see that the reduction in total noise power (or variance) through the fil-
ter is simply given by the ratio of the filter bandwidth to the frequency in-
terval TU Since the signal is assumed to be transmitted unaltered, this (ratio)
Lgives the improvement in signal-to-noise power ratio. The improvement in
amplitude ratio is its square root.

Signals in noise

Eq. 10.17

Eq. 10.18

Eq. 10.19

Eq. 10.20

Eq. 10.21

Eq. 10.22

Eq. 10.23
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10.4.2  Matched filter detection
Detection of a signal in noise noise. A rather different prob- matched filter
by use of a matched filter is one lem arises when we know the
of the most important topics in signal’s waveshape and we
linear DSP. need to establish when, or in-
In the previous section we con- deed if, it occurs. The presents
sidered the problem of recover- of suc'h a signal can b.e detected
ing a signal of unknown by using a matched filter.
waveshape, using prior infor- )
mation about the frequency Figure 12
<[] h[n] v A matched filter.
] (|
Consider the time-limited in- original signal in the sequence
put signal x/n/ in Figure 12, is now easy: the peaks could in-
processed by an LTI filter dicate the start of (a distorted
whose impulse response h/n/ is version of) the original. If the
a reversed version of x/n]. This sequence is only contaminated
filter is by definition the by noise, the matched filter is
matched filter for this particu- an ideal filter for signal detec-
lar shape of input signal. The tion.
output is found b}f convolving The same effect occurs in the
the input 'and impulse re- frequency domain. It turns out
sponse. This means the 1m- that the frequency response of
pulse response function 18 a matched filter bears a simple
reversed henc? tl:le calculation relationship to the spectrum of
of the output is simular to that the signal to which it is
of the autocorrelation function matched.
Ff x[n] ) T.he autocor relation The frequency response in this
unction gives a maximum at .
case will be:
the start of the sequence (see
section 9.4).Thus the output
signal has the samé shape as the
the aut(ﬁ%}}e?ati@ fabopien BF
the input signal- Einding the
e Eq. 10.24
= > A kel Now the spectrum X(Q) of
k= —o any real sequence can be ex-
= X(Q) pressed in the form:
X(©Q) = A©Q) +jBQ) Hence: Eq. 10.25
HQ) = X(-Q) = A(Q) +]B-Q) = H@)onitB@)signA{fctrum is Eq. 10.26
now:
Yo = X@H©@) = XX = [X©)? Eq. 10.27
Index
A a.c. power 30

aliasing 5
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time
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transform 25
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