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Abstract

We present the design of a linguistic postprocessor for character recognizers. The central
module of our system is a trainable variable memory length Markov model (VLMM)
which predicts the next character given a variable length window of past characters. The
overall system is composed of several finite state automata, including the main VLMM
and a proper noun VLMM. The best model reported in the literature (Brown et al
1992) achieves 1.75 bits per character on the Brown corpus. On that same corpus, our
model, trained on 10 times less data, reaches 2.19 bits per character and is 200 times
smaller (~ 160,000 parameters). The model was designed for handwriting recognition
applications but can be used for other OCR problems and speech recognition.
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1 Introduction

In a communication process, if the receiver has a powerful model of the information
source, the sender needs only to transmit the information which cannot be predicted by
the model (residuals). Some people exploit naturally this result of information theory
when they communicate with each other with a cryptic handwriting. They rely on the
fact that they are exchanging information with people who use the same language and
share much of the same background knowledge, that is, who have a good “model” of the
information source.

At AT&T Bell Laboratories, we are actively investigating the use of handwriting as
a means of human-machine communication. However, handwriting recognition without
contextual information is similar to trying to decode an encrypted message without a
proper decoder. If machines had a language model that approximated that of humans,
the odds of successful decoding might be better.

We present initial results on a statistical model of English trained on a large text cor-
pus. Our model is an extension of the variable-memory-length Markov models (VLMMs)
of Ron, Singer and Tishby [1]. Its basic components are probabilistic finite state au-
tomata equivalent to Markov models of “variable order.” These automata are built from
a set of prefizes which are variable length character strings appearing frequently in the
training corpus and having a good predictive power for the next character. To avoid the
overfitting problem, the capacity of the model is controlled with the method of structural
risk minimization (SRM) [2, 3].

We take advantage of a modular decomposition of the model into cascaded probabilis-
tic automata. To train the main module, we factor out capitalization, number strings,
symbols and proper nouns. This allows us to use standard English corpora to train the
main module while keeping the flexibility to modify the models for capitalization, num-
bers, symbols and proper nouns models, according to the needs of particular applications.
The modules defined and composed use a special case of the approach of Pereira et al[4].
This allows us to use graph search techniques, including beam search, without having to
build explicitly the whole composed automaton.

The classical measure of performance of language models is the cross-entropy on a test
set, which estimates the per character average length of the shortest encoding of the test
set, for an encoder-decoder pair with access to the model’s probability estimates. Using
cross-entropy as a performance measure allows us to make comparisons with the code
lengths obtained with various coding schemes. For instance, the ISO-1 code requires 8
bits per character. On the Brown corpus [5], classical coding schemes like Huffman coding
or Lempel-Ziv coding use between 4 and 4.5 bits/character. In the 50’s, Shannon used
human subjects and estimated the entropy of English to be between 0.6 and 1.3 bits per
character.

Trained on 200 million characters from the AP news, our model, tested on the 6 million
characters of the Brown corpus, reaches 2.19 bits/character, using a state machine with
approximately 160,000 parameters. The performance achieved by the best model reported
in the literature (Brown et al. 1992) is 1.75 bits per character on the Brown corpus. This
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Figure 1: Intrinsic ambiguity of handwriting: The same symbols may have dif-
ferent meanings and symbol components may be grouped in different ways. Language
constraints are needed to disambiguate handwriting.

model uses word trigrams with 27 million parameters estimated with a training set of
400 million words (approximately 2 billion characters). Therefore, our model, almost 200
times smaller and trained on 10 times less data, appears to have competitive performance.

2 Statement of the problem

A handwriting recognizer produces, for a given handwritten observation (figure 1), mis-
cellaneous candidate interpretations: “IZ O’CCOCK”, “12 0’CCOCK”, “12 O’CLOCIC”,
“12 O’CLOCK”, “I2 O’CCOCIC”, “1201 CLOCK?”, etc.

In the absence of language knowledge, these interpretations are almost all equally
likely. By querying a language model about the linguistic probability of each string, we
can pick up the interpretation that is most consistent with the language: “12 O’CLOCK”.

For a given observation o, the probability of an interpretation w is proportional to
the product of the observation likelihood P(o|w) and the linguistic probability P(w):

P(o|w)P(w)

P(wlo) = =5 (1)

An estimate of P(o|w) is provided by the recognizer and an estimate of P(w) is provided
by the language model.

The literature offers a choice of statistical language models [6, 7] of various levels
of complexity. Probabilistic finite state automata (PFSA) are the simplest statistical
language models, the most widely used and, up to now, the most successful ones [§]. They
include lexicon trees (or “tries”), n-grams and other Markov models. PFSAs are easily
combined with any recognizer, including neural networks and hidden Markov models.

Our design addresses not only the problem of getting high prediction accuracy, but also
that of flexibility and that of computational resources. Our modular approach provides
flexibility to tailor the system to specific applications, and allows us to weigh the speed-
accuracy tradeoffs using beam search techniques. Our use of variable-memory-length
Markov models allows us to trade modeling accuracy for memory by varying a single
complexity parameter.

Our goal is to approach and eventually outperform the best reported language models,
while keeping our model to a practical size. For that reason, we report our results with
respect to a widely available evaluation resource, the Brown corpus [5].



h(0.5)
(z0)e

Figure 2: Example of PFSAs with deterministic graph: a - Cyclic
graph of a tri-gram model predicting the next character given the two previ-
ous ones. Let to evolve from a random initial state, the machine produces:

ah'halhalah!ahalahahalhah!ahah!halahlah!hah!hah!haha etc. b - Acyclic graph a lexicon

tree containing the words {ah, aah,aa!, hha, ha!, hah}.

3 Overview of the design

3.1 Probabilistic Finite State Automata

Our system is a combination of several probabilistic finite state automata (PFSA). A
PFSA M is conveniently represented by a graph. It has a finite number of states, rep-
resented by the nodes of the graph. Transitions between states, the arcs of the graph,
are associated with the emission (or acceptance) of a character for a given finite alphabet
with a certain probability

Py(s',ols) = Pu(s'|o,s) Pu(ols) . (2)

where s and s’ are states and o the character emitted (accepted). The probabilities of
all the outgoing arcs of a given node s sum up to one: }_. , Py(s',0ls) = 1.

In the simplest case, two outgoing arcs from the same node cannot emit (or accept) the
same character. A graph with such property is called deterministic because Pp(s'|o,s) =
1 and thus the transition from one node to another is uniquely determined by the character
which is emitted (or accepted), i. e. Pp(s',0(s) = Pum(o|s) . Given a starting state and a
sequence of characters generated by the machine, it is possible to trace without ambiguity
the full sequence of states that generated it. Markov models (or n-grams) and lexicon
trees are examples of deterministic automata (see figure 2).

In this paper, our linguistic models have deterministic graphs. The probability of
a string of characters is simply the product of the transition probabilities along the
corresponding path:

Pu(o103...0¢) = HPM(JZ-|32'_1) , (3)

with the convention Pa(o1]so) = Pum(o1).
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Figure 3: Example of substitution: We use a model A with an alphabet of three

characters {a, h,!}, and a model B to substitute the character “a” produced by A: a -

PFSA A. b - PFSA B. ¢ - Composed graph.

In the most general case, several outgoing arcs from the same node can emit (or
accept) the same character. Discrete Hidden Markov Models (HMM), such as the ones
used as speech or handwriting recognizers, correspond to this second kind of PFSA [7].

PFSA language models combine particularly easily with recognizers based on finite
state automata, including recognizers of chains of presegmented characters and recogniz-
ers of unsegmented data based on dynamic time warping or hidden Markov models (see
for instance examples in [7] and [9]). The probability of the best interpretation, given the
recognizer scores and the language model (equation (1)), is given by the probability of
the best path in the product graph of the two corresponding automata. The best path in
the product graph is searched dynamically without actually building the product graph.
We use a beam search to process “on-line” the characters to be recognized (see examples
in [7]). At each step, a small number of candidate successor states are kept, those corre-
sponding to the most probable interpretation up to then. The tradeoff between quality
of the approximation, speed of calculation and memory allocation is monitored by the
number of candidate paths kept at each step.

3.2 Modular Architecture

We split our language model into several independent modules, all of which are PF-
SAs. Two modules use the new technique of variable memory length Markov models
(VLMM) [1] which allows training fairly compact probabilistic finite state machine with



Code or model | Code length or cross-entropy (bit/character)
150-1 8

Huffman 4

Lempel Ziv 4.5

Brown et al [5] 1.75

Humans ~ 1.25

Table 1: Comparison of code length and cross-entropies on the Brown corpus.
All entropies are calculated on the Brown corpus, except for the last one which comes
from the 1951 Shannon experiments on human subjects, using a book of D. Malone.

high predictive power.

The main module is a VLMM. It has an alphabet of only lowercase characters plus
a few metacharacters which encompass broad categories of strings: C for proper nouns,
N for numbers and M for symbols, etc. We have several sub-models, including a proper
noun model (also a VLMM) and models for numbers, symbols, punctation, etc. When
using the model, metacharacters are substituted by their corresponding sub-model. An
example of model substitution is shown in figure 3.

Modularity is desirable for several reasons:

e sub-models can be modified depending on the application without having to retrain
the main model;

e training is faster (smaller machines need to be trained);
e overfitting is avoided (fewer weights need to be estimated);

e less memory is required (fewer states and weights need to be stored);

When using the model, it is not necessary to actually build the graph of the composed
automaton; beam search can be performed by querying the sub-models associated to
metacharacters as needed.

3.3 Error measures, entropy

Consider a language source £ that produces character strings w according to a probability
distribution Pz(w), and a model M of £, with underlying probability distribution Pa(w).
The predictive power of model M is measured by its cross-entropy with respect to the
actual distribution Pg(w), HY = — 3, Pe(w) log Py(w). The intrinsic entropy Hy =
— > Pe(w) log Pr(w) is a lower bound of HE,.

Upper bounds on the intrinsic entropy of English have ranged from 1.3 bits/character,
obtained by Shannon from human subjects’ guesses of the next letter given a prefix in
literary text [10] to Cover and King’s gambling estimate of 1.25 bits/character [11]. In
table 1 we compare these results with average code lengths per character for well-known
compression schemes [12] and the cross-entropy of the best published model, all measured
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Figure 4: Laughing finite state machine: This finite state machine is a Markov model
of order 2 (trigram model). We use it in our examples as language source.

on the same test set (Brown corpus) [5]. We use these values as points of reference for
the performance of our language model.

If M is a stationary ergodic Markov process with states s which emits characters o,
the following expression for the per character entropy rate is valid [12]:

HY, (per char) = —> P(s,0) log Pp(ols) (4)

8,0

To measure the cross-entropy on a finite corpus of n characters, we use the following

empirical estimate, where o, is the t* character in the corpus:
Ifff,l (per char) = —(1/n) > _log Pm(oy|si—1) - (5)
t=1

For a discussion on the validity of this estimate, see [12].

To train our language models, we follow the paradigm of structural risk minimization
(SRM) [2, 3] with cross-validation. The available corpora are divided into 3 disjoint sets:
a training set, a validation set and a test set. The model class is organized into nested
subsets of models &,,:

& Cc&C..CcéE,C (6)

For example, in the model class of Markov models, a structure is obtained by organizing
the models in nested subsets of increasing Markov order. This guarantees that we vary
the capacity monotonically, without having to actually calculate it:

c1<c<..<¢,<.. (7)

Within each subset, the model with minimum cross-entropy on the training set is
selected. Among the models thus retained, the model with smallest cross-entropy on the
validation set is finally chosen. The quality of the chosen model is then evaluated by its
test-set cross-entropy.



haha'hal'ha'ah!haha'ha'ha'hahal'hat'hal!ah!'hah!'hahaha'!aha'ha'ahah'hal'ah'hah
hal'ah'haha'!ah'!ah'ha'ah'!ah!'ha'ha'hal!ah!'haha'hal'ha'hahal!ahal!ahahal'hah'ha!
laha'ha'ah!ha'ah!hah'ha'ah!ha'hal!ahahal'ha'aha'ah!'hahahah!hah'hah!ahal'ah
h'ha'ahaha'!ah!ahal!aha'!aha'hal'ha'!ahah!ah!ah'!ah!ha'!ahal'ha'aha'halah!ah!ha
hal'ah'ha'ah!hah!'hah!'ha'ha'hah!ha'hal!ah'halah'hal!ahal'aha'hal'aha'haha'ha!
ha'hahal'ha'aha'aha'ha'!ah!hah!ahaha!ahaha!ah!haha'hal'hal'ah!ha'halaha'ha!

Figure 5: Extract from the 100,000 character long training sequence generated by the
automaton of figure 4.

4 Variable Memory Length Markov Models

4.1 Principle of the method
Optimizing the length of the prefixes and capacity control

All Markov models determine the probability of the next character from a window of
past characters or prefiz. Standard Markov models of order (n — 1), or n-gram models,
use a fixed size prefix of (n — 1) characters, while variable memory length Markov models
(VLMM) use variable length prefixes. Training a Markov model of order (n — 1) simply
amounts to computing the frequencies of all strings of length n. In the framework of
structural risk minimization, varying n is a capacity control mechanism (see section 3.3).
In the present section, we explain the principle of the method used to train VLMMs and
its capacity control mechanism.

Assume that w 1s a preﬁx of length (n — 1) used to predict the next character o', ac-
cording to an estimate P(o'|w) of P(o'|w). If P(o'|ow) differs significantly from P(o'|w),
adding one character ¢ in the past helps predicting better ¢’. A possible decision crite-
rion [1] is the Kullback-Leibler divergence between the next-character distributions for
different prefixes, weighted by the prior distribution of ow:

P(o'jow)

P(o'|w)

If AH(ow,w) exceeds a given threshold e, then the longer prefix ow is accepted. Other-

AH(ow,w) = P(ow ZP "low)log (8)

wise the prefix w is retained.

It is easily shown that the expression AH(ow,w) is nothing but the training cross-
entropy increase AH(M’, M) incurred by going from a model M’ using a prefix s = ow
to a simpler model M using s = w.

To perform structural risk minimization, one can use ¢ to induce a structure in the

class £ of VLM Ms:



€ # states || Hum Hf,l[tmm] Hf,l[tesﬂ Randomly generated text

0.5 1 1.574 | 1.574 1.576 hha!'hhhhahah!!'aa'h!ahaaa!'ah!
0.1 4 0.933 | 0.933 0.939 ahaha'ha'ahaha'!a'h'haha'aha'a'h
0.05 | 6 0.732 | 0.752 0.756 haha'aha'ha'ha'ha!ahahahahaha'h
0.01 | 8 0.685 | 0.684 0.683 ha'ha'aha'ha'hah'ha'aha'ha'ha'h
0 10 0.666 | 0.668 0.666 ha'!ah'ha'ha'ha'haha'aha'ha'aha!

Table 2: Entropies of the models of figure 6. To estimate Ha, the intrinsic en-
tropy of model M, we generated a sequence of 200,000 characters from model M. Huy
assymptotically reaches H; for ¢ = 0, in the limit of very large training sets. We use, a
training set of size 100,000 and a test set of size 10,000, both generated independently
by the reference model £ of figure 4. The best model is obtained for ¢ = 0. It does not
show any significant difference between Huy, Hﬁtmm] and Hﬁtm], therefore suggesting
that the training set size is large enough to avoid overlearning.

S Cc&o...cEC..Ccé (9)

g1 >€e1>...>8 > .. (10)

—loge; < —loge; < ... < —loge; < ... (11)
<< ... .<q<... (12)

Varying ¢ is a capacity control mechanism which is superior to varying the order n of
regular Markov models (see section 4.2). For a given number of parameters of the model,
better performance is achieved; for a given performance, fewer parameters are needed.

Example

We illustrate the principle of the method in figures 4, 5 and 6.

In Figure 4, we show the automaton £ which is used as a reference language to generate
training and test data. State 0 (the one depicted with a square box) is the initial state
of each PF'SA. The dashed-line arcs correspond to the initial transient where not enough
context is available, while the solid-line transitions correspond to the stationary part of
the PFSA. We show in Figure 5 the beginning of the sequence of 100,000 characters
generated by £ that we used for training. In figure 6, we show the automata M obtained
for various values of ¢. In table 2, we show the corresponding entropies and a small
sequence of character they produced.

The automaton which achieves best performance to predict new sequences produced
by L is the largest one, that is the one with smallest ¢, i.e. with largest capacity. This
demonstrates that our training sequence is long enough to avoid the overlearning problem.
For short training sequences, smaller models work better because it is not possible to
obtain accurate probability estimates for unfrequent prefixes.
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Figure 6: VLMMs learned from data: The machines are obtained by training on the
data of figure 5, for various values of ¢.
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P(a)=.37
P(h)=.35

P(a)=.73
P(h)=0

P(a)=21
P(h)=.79

Figure 7: Example of a prefix tree and its corresponding prediction suffiz tree
(PST): a - Prefix tree of depth d, = 3 built from the training data of figure 5. In the
process of training, strings of length 3 are entered in the tree from the root to the leaves.
New branches are grown when needed. The word “ha!” is highlighted. b - PST of depth
ds; = 2 is built from the prefix tree with ¢, = 0. The prefix “ha” is highlighted. It is
entered backwards in the PST. The probabilities shown at node 4 of the PST correspond
to the prefix tree probabilities of figure 7-a: P(11,!|10) = 0.7, P(11,4|10) = 0.3 and
P(11,a|10) = 0.

A few words about training

In this section we briefly outline the training algorithm. Further details can be found
in [1].

The transition probabilities of the VLMM Py,(o|s) and the decision criterion AH (ocw, w)
are derived from estimates of P(0,|0103...0,-1) and P(c103...0,) calculated for various
values of n. The simplest such estimates are given by:

S v(o109...04,
Plonloros...on1) = V(i'1;'2.2..0' _3) (13)
and
Ploros...on) = M (14)
0

where v(0103...0,) is the number of times string 0,05...0,, appears in the training data
and g 1s the total length of the training sequence.
To count strings of length n (n = 1,2,...d,), we grow a so-called prefiz tree of depth
d,, similar to a lexicon tree (or trie). A example of such a tree is shown in figure 7-a.
To build the tree, a window of fixed length d, is slid along the text of the training

corpus. Strings o109, ...04, appearing in the window are added to the tree, from the root

P
to the leaves. Every time a given branch is attained, by entering a given string oy03...0,,
the counter v(oy03...0,,) associated to that branch is incremented.

The memory limitations of the computer are eventually reached when training on

large corpora of natural language. This imposes to the tree a maximum number of

11
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Figure 8: Example of VLMM PFSA: This PFSA is obtained from the PST of fig-
ure 7-b. It is identical to the original finite state machine of figure 4, except for the
transient states. These states are useful when stationarity cannot be assumed.

nodes. When that number is reached, the branches which have been least visited need to
be pruned. Branch ¢ will be pruned if:

Vi/VO < € (15)

where v; is the counter of branch 7, 14 1s the root counter and ¢, is a threshold value.

The prefix tree contains all the information necessary to build a VLMM. However,
the VLMM training is facilitated by building first an intermediate structure called a pre-
diction suffiz tree (PST) [1]. In a PST (figure 7-b), strings are entered in reverse order.
But one should emphasize that a PST is not a prefix tree which would be trained with
a text read backwards. No weights are associated to the branches of the tree. The node
reached by accepting string o,_10,_3...01 1s associated with the prefix tree probability
P(an |o1,02...0,-1). Thus for a string of any given length o_,...000102...0,_1, it is possible
to walk “backwards” through the suffix tree to get its longest suffix Suffiz(sigma_o...000103...0,-1) =
0103...0,_1 which provides the best available probability estimates for the next character
O

In our example of figure 7-b, assume that we want to predict probabilities for the
character which follows the string “ah!haha”. The highlighted path is the longuest suffix
“ha” of “ahlhaha” found by the tree. It corresponds to the highlighted path in figure 7-a
which provides probabilities for the next character.

The following algorithm [1] is used to train the PST:

e Initialize the PST and the candidate strings W: the PST is a single root node and
W ={olo € £ and P(0) > &,}.

e While W # 0, do:

1. Pick any w € W and remove it from W.

2. If AH(w,suffiz(w)) > e, then add w to the PST by growing all the necessary
nodes.

3. If |w| < ds then, for every o € &, if P(aw) > ¢, add ow to W.

12



Corpus number of
characters
AP news (training set) 215,320,418
Brown (test set) 6,044,101
AP news (train0, subset of training) 771,529
Alice in Wonderland (valid1) 138,463
Email (valid2) 182,762
Uniz manl (valid3) 689,702
Uniz man3 (valid4) 578,027
Tex files (valid) 389,590

Table 3: Text corpora used for training and testing. The Associated Press (AP)
news corpus is used for training and the Brown corpus for testing. A subset of the
AP corpus (train0) is used to estimate the performance on the training set. Sets validl
through valid5 are used as validation sets.

where, for string w = 0103, ...0,, suffiz(w) = o3, ...0,, |w| is the length of w, ds < d, — 1
is the PST depth, d, is the prefix tree depth, €, 1s PST pruning threshold, ¢, is prefix
tree pruning threshold and ¥ is the alphabet.

Notice that the tree is grown from the root to the leaves. If a string w does not meet
the criterion AH (w, suffiz(w)) > ¢, it is not definitively ruled out, since its descendents
ocw are added to W in step 3. With this precaution, we keep a provision for future
descendents of w which might meet the selection criterion.

Although it is possible to emulate a VLMM with a PST, it is important in practice to
actually build the corresponding PFSA to gain processing speed. In a PFSA| the longest
matching suffixes are precomputed into the states, whereas in a PST the longest suffixes
must be dynamically determined.

In figure 8, we show a VLMM built from the PST of figure 7-b. Each node in the
VLMM corresponds to a node in the PST. States in the PFSA are labeled by a string,
or prefiz, which is read backwards, from the corresponding PST node, to the root. For
example, the shaded state in figure 8 corresponds to the highlighted path in figure 7-b. An
outgoing arc from a state w which emits a character ¢’ with probability P(U’|w) ends up
in a state labeled by the longuest suffix of wo’ found in the PST (e.g. Suffiz(hah) = ah).

If the VLMM has a state w which emits a character ¢’ with probability zero, we do
not build the connection from state w to the state labeled by the longuest suffix of wo’
found in the PST. When matching against an input text, if the character ¢’ is presented
to the machine when it is in state w, we return to the initial state, loose all the past
context and predict ¢’ with the prior probability P(a'). Better backoft techniques may
be worth exploring in this situation [13, 14].

4.2 Experimental results

In this section, we present a detailed study of the training of the main VLMM module in
our system.

13



Number of
characters | 1 | 10 | 10 | 103 104 10° 108 107 103 2 108
Number of
nodes 7 | 58 | 494 | 3432 | 21082 | 102896 | 319215 | 139127 | 198653 | 195890

Table 4: Prefix trees trained on the AP news corpus for various sizes of the training
set (in number of characters), with d, = 6 and ¢, = 107°.

The corpora used for training and testing are listed in table 3. They have been chosen
to illustrate a wide range of difficulties.
The data is preprocessed to substitute some strings by metacharacters:
= { 2 }
;1)

|
|

Il
N TN
—

Y

2

NN

{ 7
{ 1
{ }
{ )

¢

Y

=

N = strings of contiguous characters containing at least one number,
M = strings of contiguous characters containing symbols (not from the above sets), but
no numbers,
C = proper nouns.

After substitution, the remaining uppercase characters are turned to lowercase. The
resulting alphabet has 37 characters, including space: {abcdefghijklmnopqr
stuvwxyz“space”-1.,()”NM C}.

Leaning curves

A prefix tree of depth d,, = 6 was trained on the entire training set and a pruning threshold
g, = 1075, Results are summarized in table 4.

For ¢, = 52’”” = 0 and d, = dJ'*" = 5, we varied the size of the training set to obtain
the learning curves shown in figure 9. Model performance is given by cross-entropy in
bits/character. The intrinsic entropy of the automaton is approximated by the cross-
entropy on a text of 200,000 characters generated at random by the automaton itself, let
to evolve according to its own dynamics. “Validation” refers to the average cross-entropy
on the validation sets (see table 3) and the grey shading indicates the standard deviation.

Our estimate of the intrinsic entropy starts at zero and increases rapidly to reach
a maximum around 1000 characters then decreases again. Two factors are competing:
the dominant effect in the first part of the curve is an increase in entropy due to an
increase in the number of states of the machine; in the second part of the curve, the
entropy decreases because better estimates of the PFSA weights are obtained. The cross-
entropy of the validation set begins at infinity and decreases rapidly. It starts leveling
at 10® characters, suggesting that training on more data will not improve the model
substantially, at least for the given prefix tree depth.

In Figure 9, we also show the corresponding evolution of the size of the PFSA. It stops

14
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Figure 9: Variations of the entropy as a function of the number of training
examples: The VLMMs are trained on the AP news data with an alphabet of 37 char-
acters and parameters d, = 6, ¢, = 107%, d, = d™%* = 5 and ¢, = ™" = 0. Training set
and validation sets are those of table 3. The size of the machine is shown on the same
scale, but in different units.

increasing around 10° characters because the maximum number of nodes in the prefix
tree is reached and the pruning algorithm starts eliminating nodes. This does not seem
to affect immediately the test cross-entropy which continues decreasing steadily until 107
characters. Therefore, we are confident that the prefix tree pruning, necessary because
of memory limitations, is not the dominant capacity control mechanism.

Model selection by varying ¢,

In figure 10-b and 10-d, we show the results obtained by varying ;. The depth of the
suffix tree is set to its maximum d; = d, — 1 = 5. “Train0” refers to a fixed size subset
of the training set (see table 3). As previously, “validation” refers to the average cross-
entropy on the validation sets (see table 3) and the grey shading indicates the standard
deviation.

The validation curve does not give a clear indication of overlearning. It starts leveling
for a value of ¢, around 107°. At &, = 107, the cross-entropy on the validation set is
Hp3 = 2.3. The number of states of the PFSA is 14149 and the number of connections
76907.

At the optimum of the cross-entropy on the validation set (i. e. for ¢, = 107°), the
cross-entropy on the test set (Brown corpus) is:

H$t = 2.11 bits/character.
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Figure 10: Comparison of two capacity control methods: The prefix tree is trained
on all the AP news data with an alphabet of 37 characters and parameters d, = 6 and
e, = 107°. Either ¢, or d, are allowed to vary. a - Entropy vs d; for e; = Egnm =0.b-

Entropy vs €, for ds = d7'** = 5. ¢ - Machine sizes vs ds for 5 = 62’”” = 0. d - Machine
sizes vs € for dy = d7*" = 5.
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liferator member of flight since N. a report the managical including from
C all N months after dispute. C and declaracter leaders first to do a lot
of though a ground out and C C pairs due to each planner of the lux said
the C nailed by the defender begin about in N. the spokesman standards of
the arms responded victory the side honored by the accustomers was arrest
two mentalisting the romatory accustomers of ethnic C C. the procedure’.

Figure 11: Text generated by a VLMM trained on the AP news data with parameters
d,=6,e,=107% d, =5 and ¢, = 107°.

In figure 11, we show a text that was generated at random with the machine just
described. Although the text generated is obviously not grammatical English, most
words are actual English words. Some invented words are quite amusing;:

liferator
managical
declaracter
mentalisting
accustomers

If somebody reads the text of figure 11 aloud when you are not quite paying attention,
it really sounds like radio news!

Model selection by varying d;

We performed a control experiment by fixing ¢; and allowing ds to vary. Varying d; is
the classical means of regularization used for n-gram models. The results of varying d;
for e, = 0 are shown in figure 10-a. The validation curve starts leveling for depth d; = 4.
At this point, the validation performance is approximately H#"? = 2.4. The number of
cells of the associated PFSA is 31070 and the number of connections 92427 (Figure 10-¢).

The same value of HX,?M = 2.4 is obtained for d, = 4 in figure 10-a and &, = 107*¢,
in figure 10-b. The corresponding number of states and number of connections are re-

0443 0493 039 and 10*7° in figure 10-d. Therefore,

spectively: 1 and 1 in figure 10-c and 1
for the same performance of H}"? = 2.4, the machine obtained by using ¢, as capacity
control criterion has 3 times less states and almost 2 times less connections than the
machine obtained by using d; as capacity control criterion.

The difference between using ds and e, is maybe not as large as one could have had
expected. At first glance, it seems that n-gram models are difficult to use for large values
of n because the number of distinct strings grows exponentially with n. However, the
number of distinct strings whose corpus frequency exceeds ¢, (the pruning threshold of
the prefix tree) is manageable even without limiting n. The principal capacity control

criterion is thus ¢,.
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Metacharacter Corresponding Posterior Test set Test set cross-entropy
(M) characters proba (x10~2%) || prior proba (bits/char.)
(z) P(z|M) P(M) H(M)
. 95.07
! 3.68 0.010 0.32
? 1.25
. , 92.56
(coma) ; 4.37 0.010 0.45
: 3.07
( ( 99.26
{ 0.66 0.0004 0.06
[ 0.08
) ) 99.28
} 0.64 0.0004 0.06
] 0.08
’ ’ 30.95
(quote) 7 30.95 0.005 1.96
‘ 19.05
“ 19.05
S P(M)H (M) 0.017

Table 5: Parameters and performance of the punctuation sub-models.

Metacharacter Test set Test set cross-entropy
(M) prior proba (bits/char.)
P(M) H(M)
N 0.0016 4.01
M 0.00006 5.22
C 0.008 2.09

Table 6: Parameters and performance of the numbers (N), symbols (M) and
proper noun (C) sub-models.

5 Training the sub-models

For each metacharacter of the main model, we trained a sub-model.

The punctuation sub-models are zero order Markov models (or uni-gram models) such
as the one in figure 8-a. Their parameters and performances are reported in table 5.

The number and symbol models are first order Markov models (figures 12-a and 12-b).
Their performances are reported in table 6.

The contribution to the overall entropy of a sub-model corresponding to a metachar-
acter M 1is:

P(M)H(M),

where the cross-entropy ]:[(M) is calculated on the test data restricted to the alphabet of
the sub-model, and P(M) is the frequency of metacharacter M in that same test set. The
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o

x (0.0059)

any char (0.0074)

Figure 12: PFSA model of numbers and symbols. a - Number model: character “#”
represents any numbers, and N represents all the states associated; letter “x” represents
any letter and L represents all the states associated. b - Symbol model: letter “x”

represents numbers, letters or symbols other than {&,/} and C represents all the states
associated.

contributions of all the modules are summarized in table 7. For the capitalization model,

which we have not yet implemented, we take the cross-entropy of the capitalization model
of Brown et al [15].

Thus, we estimate the overall entropy of our models to be:

H$' = 2.19 bits/character.

for a total of ~ 160,000 parameters (weights of connections between states).

We performed a control experiment by training a VLMM on raw text. The cross-
entropy of the model thus obtained is 2.32 bits/character. Therefore, our modular ap-
proach provides increased flexibility without sacrificing performance.

6 Conclusion and future work

Word trigram models have been for many years the leading method for designing efficient
language models. In this paper, we demonstrate that VLMMSs built at the character level
are a viable alternative. They allow building finite state automata of rather modest
sizes, compared to word trigram models, and have competitive performance in terms of
entropy on a reference corpus, the Brown corpus. The use of structural risk minimization
allows us to control the tradeoffs among memory, speed and accuracy by varying a single
continuous parameter. Finite state automata composition allows us to reconfigure flexibly
the language model according to the needs of different applications, without having to
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Model Contribution to the | number of | number of
test set cross-entropy states connections
(bits/char.)
Main model 2.11 14526 77570
Punctuation 0.017 ) 16
N 0.006 96 8685
M 0.0003 86 7225
C 0.017 13043 65560
Capitalization 0.04 - -
Total 2.19 27756 159056

Table 7: Summary of the contributions to the test cross-entropy of all the
modules.

retrain the core of the language model. Our design is targeted towards on-line handwriting
recognition. Combining the model with neural-network handwriting recognizers [16, 17|
is under way. It is possible that the modeling techniques described here may also be
relevant to speech recognition, using phonetic units instead of characters.
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