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Preface

The Faculty of Artificial Intelligence in Groningen does research on the technical
aspects of cognition: reasoning, navigation, communication and learning. A
technical approach requires its representations and algorithms to be robust and
easy to use. It adds a crucial constraint to its domain of research: that of
complexity. But complexity is more than a prominent constraint on real world
applications. In recent years complexity theory has developed into an exciting
area of mathematical research. It is a powerful mathematical tool that can
lead to surprising solutions where conventional methods come to a dead end.
Any theory of cognition that dismisses complexity constraints for the sake of
theoretical freedom misses a powerful mathematical ally. This is why I have
chosen complexity theory as the theme of my master’s thesis, and specifically
the experimental evaluation of an application of complexity theory on learning
algorithms.

Applied sciences like medicine, physics or chemistry spend immense sums of
money on technologies that visualize the objects of their research. Progress
is published in all the media formats available. First of all this is done to
get a better grip on the complicated problems of the science. But with such a
wealth of information even a lay person finds it relatively easy to understand the
synthesis of a virus, a special type of brain damage or the problem of bundling
plasma streams in nuclear fusion. In statistics and complexity theory tools for
visualization are rare and multi media publications are unheard of. This is
not without consequences as the general public has almost no idea of statistics
and complexity theory. The Nobel prize economy 2002 was shared by Daniel
Kahneman for his findings on the sort of statistical awareness that actually
governs our stock markets [KST82]. Though the rules of thumb that real-world
decision-makers use are strong, they do not reflect statistical insight. To help
the individual, whether scientist or not, to understand the theory in question I
have tried to fit it into a modern graphical user interface.

My internal supervisor at the Faculty of Artificial Intelligence at the university of
Groningen was Rineke Verbrugge. My external supervisor was Peter Grünwald
from the Quantum Computing and Advanced Systems Research Group at the
Centrum voor Wiskunde en Informatica, the National Research Institute for
Mathematics and Computer Science in the Netherlands, situated in Amsterdam.

This document is written in pdf-LATEX. It contains colored images and hyper-
links that can best be accessed with a pdf-viewer like acroread. Together with
the application and other information it is online available at

http://volker.nannen.com/work/mdl
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Notations

The following conventions are used throughout this thesis:

σ2 the mean squared distance or the variance of a distribution
c a constant

C(·) plain Kolmogorov complexity

D(·||·) relative entropy or Kullback Leibler distance

f , g functions

H(·) entropy

i, j, m, n natural number

J(·) Fisher information

K(·) prefix Kolmogorov complexity

K(·|·) conditional prefix Kolmogorov complexity

k degree, number of parameters

L learning algorithm

m a model

mp a model that defines a probability distribution

mk∈N a model that defines a probability distribution with k parameters

N (·, ·) normal or Gaussian distribution

p, q probabilistic distributions

s a binary string or code

|s| the length of a binary string in bits

s∗ a shortest program that computes s

S a set of strings

|S| the cardinality of a set

x, y real numbers

vii





1 Introduction

The aim of this master’s thesis is the experimental verification of Minimum De-
scription Length (MDL) as a method to effectively minimize the generalization
error in data prediction. An application was developed to map the strength
of the theory in a large number of controlled experiments: the Statistical Data
Viewer . This application is primarily intended for scientists. Nevertheless, great
care was taken to keep the interface simple enough to allow uninitiated students
and interested outsiders to playfully explore and discover the complex laws and
mathematics of the theory.

This first chapter will introduce you to model selection and the theory of Mini-
mum Description Length. Chapter Two deals with the problems of experimental
verification. To make you familiar with the Statistical Data Viewer and to give
you an idea of the practical problems involved in model selection, it will also
lead you through all the steps of a basic experiments. Chapter Three describes
some selected experiments on two dimensional regression problems. Chapter
Four discusses the results and Chapter Five gives a short summary of all the
thesis. The appendix elaborates some of the algorithms that were used for the
experiments.

It is not necessary to actually use the application in order to understand the
experiments that are described in this thesis. They were selected for diversity
and are intended to give you an optimal view on the problem. But they cannot
cover all aspects of model selection. If you like to understand the problems of
model selection even better you might want to conduct some experiments of
your own.

1.1 The paradox of overfitting

Machine learning is the branch of Artificial Intelligence that deals with learning
algorithms. Learning is a figurative description of what in ordinary science
is also known as model selection and generalization. In computer science a model
model is a set of binary encoded values or strings, often the parameters of a
function or statistical distribution. Models that parameterize the same function
or distribution are called a family. Models of the same family are usually indexed
by the number of parameters involved. This number of parameters is also called
the degree or the dimension of the model.

To learn some real world phenomenon means to take some examples of the
phenomenon and to select a model that describes them well. When such a model
can also be used to describe instances of the same phenomenon that it was not
trained on we say that it generalizes well or that it has a small generalization
error. The task of a learning algorithm is to minimize this generalization error.

Classical learning algorithms did not allow for logical dependencies [MP69] and
were not very interesting to Artificial Intelligence. The advance of techniques
like neural networks with back-propagation in the 1980’s and Bayesian networks
in the 1990’s has changed this profoundly. With such techniques it is possible
to learn very complex relations. Learning algorithms are now extensively used
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1.2 An example of overfitting

in applications like expert systems, computer vision and language recognition.
Machine learning has earned itself a central position in Artificial Intelligence.

A serious problem of most of the common learning algorithms is overfitting.
Overfitting occurs when the models describe the examples better and better
but get worse and worse on other instances of the same phenomenon. This can
make the whole learning process worthless. A good way to observe overfitting
is to split a number of examples in two, a training set, and a test set and
to train the models on the training set. Clearly, the higher the degree of the
model, the more information the model will contain about the training set. But
when we look at the generalization error of the models on the test set, we will
usually see that after an initial phase of improvement the generalization error
suddenly becomes catastrophically bad. To the uninitiated student this takes
some effort to accept since it apparently contradicts the basic empirical truth
that more information will not lead to worse predictions. We may well call this
the paradox of overfitting and hence the title of this thesis.

It might seem at first that overfitting is a problem specific to machine learning
with its use of very complex models. And as some model families suffer less
from overfitting than others the ultimate answer might be a model family that
is entirely free from overfitting. But overfitting is a very general problem that
has been known to statistics for a long time. And as overfitting is not the only
constraint on models it will not be solved by searching for model families that
are entirely free of it. Many families of models are essential to their field because
of speed, accuracy, easy to teach mathematically, and other properties that are
unlikely to be matched by an equivalent family that is free from overfitting.
As an example, polynomials are used widely throughout all of science because
of their many algorithmic advantages. They suffer very badly from overfitting.
ARMA models are essential to signal processing and are often used to model
time series. They also suffer badly from overfitting. If we want to use the model
with the best algorithmic properties for our application we need a theory that
can select the best model from any arbitrary family.

1.2 An example of overfitting

Figure 1 on page 3 gives a good example of overfitting. The upper graph shows
two curves in the two-dimensional plane. One of the curves is a segment of the
Lorenz attractor, the other a 43-degree polynomial. A Lorenz attractor is a com-
plicated self similar object1important because it is definitely not a polynomial
and because its curve is relatively smooth. Such a curve can be approximated
well by a polynomial.

1 Appendix 5 on page 61 has more information on the Lorenz attractor
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1 INTRODUCTION

Figure 1: An example of overfitting

Lorenz attractor and the optimum 43-degree polynomial (the curve with smaller
oscillations). The points are the 300 point training sample and the 3,000 point test
sample. Both samples are independently identically distributed. The distribution
over the x-axis is uniform over the support interval [0, 10]. Along the y-axis, the
deviation from the Lorenz attractor is Gaussian with variance σ2 = 1.

Generalization (mean squared error on the test set) analysis for polynomials of
degree 0–60. The x-axis shows the degree of the polynomial. The y-axis shows the
generalization error on the test sample. It has logarithmic scale.

The first value on the left is the 0-degree polynomial. It has a mean squared error
of σ2 = 18 on the test sample. To the right of it the generalization error slowly
decreases until it reaches a global minimum of σ2 = 2.7 at 43 degrees. After this
the error shows a number of steep inclines and declines with local maxima that soon
are much worse than the initial σ2 = 18.
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1.3 The definition of a good model

An n-degree polynomial is a function of the form

f(x) = a0 + a1x + a2x
2 + · · ·+ anxn , x ∈ R (1)

with an n + 1-dimensional parameter space (a0 . . . an) ∈ Rn+1. A polynomial is
very easy to work with and polynomials are used throughout science to model
(or approximate) other functions. If the other function has to be inferred from
a sample of points that witness that function, the problem is called a regression
problem.

Based on a small training sample that witnesses our Lorenz attractor we search
for a polynomial that optimally predicts future points that follow the same
distribution as the training sample—they witness the same Lorenz attractor,
the same noise along the y-axis and the same distribution over the x-axis. Such
a sample is called i.i.d., independently identically distributed. In this thesis
the i.i.d.assumption will be the only assumption about training samples and
samples that have to be predicted.

The Lorenz attractor in the graph is witnessed by 3,300 points. To simulate
the noise that is almost always polluting our measurements, the points deviate
from the curve of the attractor by a small distance along the y-axis. They are
uniformly distributed over the interval [0, 10] of the x-axis and are randomly
divided into a 300 point training set and a 3,000 point test set. The interval
[0, 10] of the x-axis is called the support.

The generalization analysis in the lower graph of Figure 1 shows what happens
if we approximate the 300 point training set by polynomials of rising degree
and measure the generalization error of these polynomials on the 3,000 point
test set. Of course, the more parameters we choose, the better the polynomial
will approximate the training set until it eventually goes through every single
point of the training set. This is not shown in the graph. What is shown is the
generalization error on the 3,000 points of the i.i.d. test set. The x-axis shows
the degrees of the polynomial and the y-axis shows the generalization error.

Starting on the left with a 0-degree polynomial (which is nothing but the mean
of the training set) we see that a polynomial that approximates the training set
well will also approximate the test set. Slowly but surely, the more parameters
the polynomial uses the smaller the generalization error becomes. In the center
of the graph, at 43 degrees, the generalization error becomes almost zero. But
then something unexpected happens, at least in the eyes of the uninitiated
student. For polynomials of 44 degrees and higher the error on the test set
rises very fast and soon becomes much bigger than the generalization error of
even the 0-degree polynomial. Though these high degree polynomials continue
to improve on the training set, they definitely do not approximate our Lorenz
attractor any more. They overfit.

1.3 The definition of a good model

Before we can proceed with a more detailed analysis of model selection we need
to answer one important question: what exactly is a good model. And one
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1 INTRODUCTION

popular belief which is persistent even among professional statisticians has to
be dismissed right from the beginning: the model that will achieve the lowest
generalization error does not have to have the same degree or even be of the
same family as the model that originally produced the data.

To drive this idea home we use a simple 4-degree polynomial as a source func-
tion. This polynomial is witnessed by a 100 point training sample and a 3,000
point test sample. To simulate noise, the points are polluted by a Gaussian
distribution of variance σ2 = 1 along the y-axis. Along the x-axis they are
uniformly distributed over the support interval [0, 10]. The graph of this ex-
ample and the analysis of the generalization error are shown in Figure 2. The
generalization error shows that a 4-degree polynomial has a comparatively high
generalization error. When trained on a sample of this size and noise there is
only a very low probability that a 4-degree polynomial will ever show a satisfac-
tory generalization error. Depending on the actual training sample the lowest
generalization error is achieved for polynomials from 6 to 8 degrees.

This discrepancy is not biased by inaccurate algorithms. Neither can it be dis-
missed as the result of an unfortunate selection of sample size, noise and model
family. The same phenomenon can be witnessed for ARMA models and many
others under many different circumstances but especially for small sample sizes.
In [Rue89] a number of striking examples are given of rather innocent functions
the output of which cannot reasonably be approximated by any function of the
same family. Usually this happens when the output is very sensitive to minimal
changes in the parameters. Still, the attractor of such a function can often be
parameterized surprisingly well by a very different family of functions2.

For most practical purposes a good model is a model that minimizes the gener-
alization error on future output of the process in question. But in the absence
of further output even this is a weak definition. We might want to filter useful
information from noise or to compress an overly redundant file into a more con-
venient format, as is often the case in video and audio applications. In this case
we need to select a model for which the data is most typical in the sense that
the data is a truly random member of the model and virtually indistinguishable
from all its other members, except for the noise. It implies that all information
that has been lost during filtering or lossy compression was noise of a truly
random nature. This definition of a good model is entirely independent from a
source and is known as minimum randomness deficiency. It will be discussed in
more detail on page 12.

We now have three definitions of a good model :

1. identifying family and degree of the original model for reconstruction
purposes

2. minimum generalization error for data prediction

3. randomness deficiency for filters and lossy compression

2 To add to the confusion, a function that accurately describes an attractor is often advocated
as the original function. This can be compared to confusing a fingerprint with a DNA string.
Both are unique identifiers of their bearer but only one contains his blueprint.
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1.3 The definition of a good model

Figure 2: Defining a good model

Original 4-degree polynomial (green), 100 point training sample, 3,000 point test
sample and 8-degree polynomial trained on the training sample (blue). In case you
are reading a black and white print: the 8-degree polynomial lies above the 4-degree
polynomial at the left peak and the middle valley and below the 4-degree polynomial
at the right peak.

The analysis of the generalization error σ2. A 0-degree polynomial achieves σ2 = 14
and a 4-degree polynomial σ2 = 3.4 on the test sample. All polynomials in the range
6–18 degrees achieve σ2 < 1.3 with a global minimum of σ2 = 1.04 at 8 degrees.
From 18 degrees onwards we witness overfitting. Different training samples of the
same size might witness global minima for polynomials ranging from 6 to 8 degrees
and overfitting may start from 10 degrees onwards. 4 degrees are always far worse
than 6 degrees. The y-axis has logarithmic scale.
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1 INTRODUCTION

We have already seen that a model of the same family and degree as the original
model does not necessarily minimize the generalization error.

The important question is: can the randomness deficiency
and the generalization error be minimized by the same model
selection method?

Such a general purpose method would simplify teaching and would enable many
more people to deal with the problems of model selection. A general purpose
method would also be very attractive to the embedded systems industry. Em-
bedded systems often hardwire algorithms and cannot adapt them to specific
needs. They have to be very economic with time, space and energy consump-
tion. An algorithm that can effectively filter, compress and predict future data
all at the same time would indeed be very useful. But before this question can
be answered we have to introduce some mathematical theory.

1.4 Information & complexity theory

This section gives only a raw overview of the concepts that are essential to
this thesis. The interested reader is referred to the literature, especially the
textbooks

Elements of Information Theory

by Thomas M. Cover and Joy A. Thomas, [CT91]

Introduction to Kolmogorov Complexity and Its Applications

by Ming Li and Paul Vitányi, [LV97]

which cover the fields of information theory and Kolmogorov complexity in
depth and with all the necessary rigor. They are well to read and require only
a minimum of prior knowledge.

Kolmogorov complexity. The concept of Kolmogorov complexity was de-
veloped independently and with different motivation by Andrei N. Kolmogorov
[Kol65], Ray Solomonoff [Sol64] and Gregory Chaitin [Cha66], [Cha69].3

The Kolmogorov complexity C(s) of any binary string s ∈ {0, 1}n is the length of C(·)
the shortest computer program s∗ that can produce this string on the Universal
Turing Machine UTM and then halt. In other words, on the UTM C(s) bits of UTM
information are needed to encode s. The UTM is not a real computer but an
imaginary reference machine. We don’t need the specific details of the UTM.
As every Turing machine can be implemented on every other one, the minimum
length of a program on one machine will only add a constant to the minimum
3 Kolmogorov complexity is sometimes also called algorithmic complexity and Turing com-

plexity. Though Kolmogorov was not the first one to formulate the idea, he played the
dominant role in the consolidation of the theory.
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1.4 Information & complexity theory

length of the program on every other machine. This constant is the length of the
implementation of the first machine on the other machine and is independent
of the string in question. This was first observed in 1964 by Ray Solomonoff.

Experience has shown that every attempt to construct a theoretical model of
computation that is more powerful than the Turing machine has come up with
something that is at the most just as strong as the Turing machine. This has
been codified in 1936 by Alonzo Church as Church’s Thesis: the class of algo-
rithmically computable numerical functions coincides with the class of partial
recursive functions. Everything we can compute we can compute by a Turing
machine and what we cannot compute by a Turing machine we cannot compute
at all. This said, we can use Kolmogorov complexity as a universal measure
that will assign the same value to any sequence of bits regardless of the model
of computation, within the bounds of an additive constant.

Incomputability of Kolmogorov complexity. Kolmogorov complexity is
not computable. It is nevertheless essential for proving existence and bounds
for weaker notions of complexity. The fact that Kolmogorov complexity cannot
be computed stems from the fact that we cannot compute the output of every
program. More fundamentally, no algorithm is possible that can predict of every
program if it will ever halt, as has been shown by Alan Turing in his famous
work on the halting problem [Tur36]. No computer program is possible that,
when given any other computer program as input, will always output true if
that program will eventually halt and false if it will not. Even if we have a
short program that outputs our string and that seems to be a good candidate for
being the shortest such program, there is always a number of shorter programs
of which we do not know if they will ever halt and with what output.

Plain versus prefix complexity. Turing’s original model of computation
included special delimiters that marked the end of an input string. This has
resulted in two brands of Kolmogorov complexity:

plain Kolmogorov complexity: the length C(s) of the shortest binaryC(·)
string that is delimited by special marks and that can compute x on
the UTM and then halt.

prefix Kolmogorov complexity: the length K(s) of the shortest binaryK(·)
string that is self-delimiting [LV97] and that can compute x on the
UTM and then halt.

The difference between the two is logarithmic in C(s): the number of extra bits
that are needed to delimit the input string. While plain Kolmogorov complexity
integrates neatly with the Turing model of computation, prefix Kolmogorov
complexity has a number of desirable mathematical characteristics that make
it a more coherent theory. The individual advantages and disadvantages are
described in [LV97]. Which one is actually used is a matter of convenience. We
will mostly use the prefix complexity K(s).

Individual randomness. A. N. Kolmogorov was interested in Kolmogorov
complexity to define the individual randomness of an object. When s has no
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1 INTRODUCTION

computable regularity it cannot be encoded by a program shorter than s. Such
a string is truly random and its Kolmogorov complexity is the length of the
string itself plus the commando print4. And indeed, strings with a Kolmogorov
complexity close to their actual length satisfy all known tests of randomness. A
regular string, on the other hand, can be computed by a program much shorter
than the string itself. But the overwhelming majority of all strings of any length
are random and for a string picked at random chances are exponentially small
that its Kolmogorov complexity will be significantly smaller than its actual
length.

This can easily be shown. For any given integer n there are exactly 2n binary
strings of that length and 2n − 1 strings that are shorter than n: one empty
string, 21 strings of length one, 22 of length two and so forth. Even if all strings
shorter than n would produce a string of length n on the UTM we would still
be one string short of assigning a C(s) < n to every single one of our 2n strings.
And if we want to assign a C(s) < n− 1 we can maximally do so for 2n−1 − 1
strings. And for C(s) < n − 10 we can only do so for 2n−10 − 1 strings which
is less than 0.1% of all our strings. Even under optimal circumstances we will
never find a C(s) < n− c for more than 1

2c of our strings.

Conditional Kolmogorov complexity. The conditional Kolmogorov com-
plexity K(s|a) is defined as the shortest program that can output s on the UTM K(·|·)
if the input string a is given on an auxiliary tape. K(s) is the special case K(s|ε)
where the auxiliary tape is empty.

The universal distribution. When Ray Solomonoff first developed Kol-
mogorov complexity in 1964 he intended it to define a universal distribution
over all possible objects. His original approach dealt with a specific problem of
Bayes’ rule, the unknown prior distribution. Bayes’ rule can be used to cal-
culate P (m|s), the probability for a probabilistic model to have generated the
sample s, given s. It is very simple. P (s|m), the probability that the sample will
occur given the model, is multiplied by the unconditional probability that the
model will apply at all, P (m). This is divided by the unconditional probability
of the sample P (s). The unconditional probability of the model is called the
prior distribution and the probability that the model will have generated the
data is called the posterior distribution.

P (m|s) =
P (s|m) P (m)

P (s)
(2)

Bayes’ rule can easily be derived from the definition of conditional probability:

P (m|s) =
P (m, s)
P (s)

(3)

and

P (s|m) =
P (m, s)
P (m)

(4)

4 Plus a logarithmic term if we use prefix complexity
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1.4 Information & complexity theory

The big and obvious problem with Bayes’ rule is that we usually have no idea
what the prior distribution P (m) should be. Solomonoff suggested that if the
true prior distribution is unknown the best assumption would be the universal
distribution 2−K(m) where K(m) is the prefix Kolmogorov complexity of the
model5. This is nothing but a modern codification of the age old principle that
is wildly known under the name of Occam’s razor: the simplest explanation is
the most likely one to be true.

Entropy. Claude Shannon [Sha48] developed information theory in the late
1940’s. He was concerned with the optimum code length that could be given to
different binary words w of a source string s. Obviously, assigning a short code
length to low frequency words or a long code length to high frequency words
is a waste of resources. Suppose we draw a word w from our source string s
uniformly at random. Then the probability p(w) is equal to the frequency of w
in s. Shannon found that the optimum overall code length for s was achieved
when assigning to each word w a code of length − log p(w). Shannon attributed
the original idea to R.M. Fano and hence this code is called the Shannon-Fano
code. When using such an optimal code, the average code length of the words
of s can be reduced to

H(s) = −
∑
w∈s

p(w) log p(w) (5)

where H(s) is called the entropy of the set s. When s is finite and we assign aH(·)
code of length − log p(w) to each of the n words of s, the total code length is

−
∑
w∈s

log p(w) = n H(s) (6)

Let s be the outcome of some random process W that produces the words
w ∈ s sequentially and independently, each with some known probability
p(W = w) > 0. K(s|W ) is the Kolmogorov complexity of s given W . Because
the Shannon-Fano code is optimal, the probability that K(s|W ) is significantly
less than nH(W ) is exponentially small. This makes the negative log likelihood
of s given W a good estimator of K(s|W ):

K(s|W ) ≈ n H(W )

≈
∑
w∈s

log p(w|W )

= − log p(s|W )

(7)

Relative entropy. The relative entropy D(p||q) tells us what happens whenD(·||·)
we use the wrong probability to encode our source string s. If p(w) is the true
5 Originally Solomonoff used the plain Kolmogorov complexity C(·). This resulted in an

improper distribution 2−C(m) that tends to infinity. Only in 1974 L.A. Levin introduced
prefix complexity to solve this particular problem, and thereby many other problems as
well [Lev74].
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1 INTRODUCTION

distribution over the words of s but we use q(w) to encode them, we end up
with an average of H(p) + D(p||q) bits per word. D(p||q) is also called the
Kullback Leibler distance between the two probability mass functions p and q.
It is defined as

D(p||q) =
∑
w∈s

p(w) log
p(w)
q(w)

(8)

Fisher information. Fisher information was introduced into statistics some
20 years before C. Shannon introduced information theory [Fis25]. But it was
not well understood without it. Fisher information is the variance of the score
V of the continuous parameter space of our models mk. This needs some expla-
nation. At the beginning of this thesis we defined models as binary strings that
discretize the parameter space of some function or probability distribution. For
the purpose of Fisher information we have to temporarily treat a model mk as a
vector in Rk. And we only consider models where for all samples s the mapping
fs(mk) defined by fs(mk) = p(s|mk) is differentiable. Then the score V can be
defined as

V =
∂

∂ mk
ln p(s|mk)

=
∂

∂ mk
p(s|mk)

p(s|mk)

(9)

The score V is the partial derivative of ln p(s|mk), a term we are already familiar
with. The Fisher information J(mk) is J(·)

J(mk) = Emk

[
∂

∂ mk
ln p(s|mk)

]2

(10)

Intuitively, a high Fisher information means that slight changes to the param-
eters will have a great effect on p(s|mk). If J(mk) is high we must calculate
p(s|mk) to a high precision. Conversely, if J(mk) is low, we may round p(s|mk)
to a low precision.

Kolmogorov complexity of sets. The Kolmogorov complexity of a set of
strings S is the length of the shortest program that can output the members
of S on the UTM and then halt. If one is to approximate some string s with
α < K(s) bits then the best one can do is to compute the smallest set S with
K(S) ≤ α that includes s. Once we have some S 3 s we need at most log |S|
additional bits to compute s. This set S is defined by the Kolmogorov structure
function hs(·)

hs(α) = min
S

[
log |S| : S 3 s, K(S) ≤ α

]
(11)

11



1.4 Information & complexity theory

which has many interesting features. The function hs(α) + α is non increasing
and never falls below the line K(s)+O(1) but can assume any form within these
constraints. It should be evident that

hs(α) ≥ K(s)−K(S) (12)

Kolmogorov complexity of distributions. The Kolmogorov structure func-
tion is not confined to finite sets. If we generalize hs(α) to probabilistic models
mp that define distributions over R and if we let s describe a real number, we
obtain

hs(α) = min
mp

[
− log p(s|mp) : p(s|mp) > 0, K(mp) ≤ α

]
(13)

where − log p(s|mp) is the number of bits we need to encode s with a code that
is optimal for the distribution defined by mp. Henceforth we will write mp when
the model defines a probability distribution and mk with k ∈ N when the model
defines a probability distribution that has k parameters. A set S can be viewed
as a special case of mp, a uniform distribution with

p(s|mp) =


1
|S| if s ∈ S

0 if s 6∈ S
(14)

Minimum randomness deficiency. The randomness deficiency of a string s
with regard to a model mp is defined asδ(·|mp)

δ(s|mp) = − log p(s|mp)−K( s|mp, K(mp) ) (15)

for p(s) > 0, and ∞ otherwise. This is a generalization of the definition given
in [VV02] where models are finite sets. If δ(s|mp) is small, then s may be
considered a typical or low profile instance of the distribution. s satisfies all
properties of low Kolmogorov complexity that hold with high probability for the
support set of mp. This would not be the case if s would be exactly identical
to the mean, first momentum or any other special characteristic of mp.

Randomness deficiency is a key concept to any application of Kolmogorov com-
plexity. As we saw earlier, Kolmogorov complexity and conditional Kolmogorov
complexity are not computable. We can never claim that a particular string s
does have a conditional Kolmogorov complexity

K(s|mp) ≈ − log p(s|mp) (16)

The technical term that defines all those strings that do satisfy this approxima-
tion is typicality, defined as a small randomness deficiency δ(s|mp).typicality

Minimum randomness deficiency turns out to be important for lossy data com-
pression. A compressed string of minimum randomness deficiency is the most
difficult one to distinguish from the original string. The best lossy compression

12
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that uses a maximum of α bits is defined by the minimum randomness deficiency
functionβs(·)

βs(α) = min
mp

[
δ(s|mp) : p(s|mp) > 0, K(mp) ≤ α

]
(17)

Minimum Description Length. The Minimum Description Length or short
MDL of a string s is the length of the shortest two-part code for s that uses MDL
less than α bits. It consists of the number of bits needed to encode the model
mp that defines a distribution and the negative log likelihood of s under this
distribution. λs(·)

λs(α) = min
mp

[
− log p(s|mp) + K(mp) : p(s|mp) > 0, K(mp) ≤ α] (18)

It has recently been shown by Nikolai Vereshchagin and Paul Vitányi in [VV02]
that a model that minimizes the description length also minimizes the random-
ness deficiency, though the reverse may not be true. The most fundamental
result of that paper is the equality

βs(α) = hs(α) + α−K(s) = λs(α)−K(s) (19)

where the mutual relations between the Kolmogorov structure function, the
minimum randomness deficiency and the minimum description length are pinned
down, up to logarithmic additive terms in argument and value.

MDL minimizes randomness deficiency. With this important
result established, we are very keen to learn whether MDL
can minimize the generalization error as well.

1.5 Practical MDL

From 1978 on Jorma Rissanen developed the idea to minimize the generalization
error of a model by penalizing it according to its description length [Ris78].
At that time the only other method that successfully prevented overfitting by
penalization was the Akaike Information Criterion (AIC). The AIC selects the
model mk according to LAIC(·)

LAIC(s) = min
k

[
n log σ2

k + 2k
]

(20)

where σ2
k is the mean squared error of the model mk on the training sample s,

n the size of s and k the number of parameters used. H. Akaike introduced the
term 2k in his 1973 paper [Aka73] as a penalty on the complexity of the model.

Compare this to Rissanen’s original MDL criterion: LRis(·)
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1.5 Practical MDL

LRis(s) = min
k

[
− log p(s|mk) + k log

√
n

]
(21)

Rissanen replaced Akaike’s modified error n log(σ2
k) by the information theoret-

ically more correct term − log p(s|mk). This is the length of the Shannon-Fano
code for s which is a good approximation of K(s|mk), the complexity of the data
given the k-parameter distribution model mk, typicality assumed6. Further, he
penalized the model complexity not only according to the number of parame-
ters but according to both parameters and precision. Since statisticians at that
time treated parameters usually as of infinite precision he had to come up with
a reasonable figure for the precision any given model needed and postulated it
to be log

√
n per parameter. This was quite a bold assumption but it showed

reasonable results. He now weighted the complexity of the encoded data against
the complexity of the model. The result he rightly called Minimum Descrip-
tion Length because the winning model was the one with the lowest combined
complexity or description length.

Rissanen’s use of model complexity to minimize the generalization error comes
very close to what Ray Solomonoff originally had in mind when he first developed
Kolmogorov complexity. The maximum a posteriori model according to Bayes’
rule, supplied with Solomonoff’s universal distribution, will favor the Minimum
Description Length model, since

max
m

[P (m|s)] = max
m

[
P (s|m) P (m)

P (s)

]
= max

m

[
P (s|m) 2−K(m)

]
= min

m

[
− log P (s|m) + K(m)

]
(22)

Though Rissanen’s simple approximation of K(m) ≈ k log
√

n could compete
with the AIC in minimizing the generalization error, the results on small samples
were rather poor. But especially the small samples are the ones which are most
in need of a reliable method to minimize the generalization error. Most methods
converge with the optimum results as the sample size grows, mainly due to the
law of large numbers which forces the statistics of a sample to converge with the
statistics of the source. But small samples can have very different statistics and
the big problem of model selection is to estimate how far they can be trusted.

In general, two-part MDL makes a strict distinction between the theoretical
complexity of a model and the length of the implementation actually used. All
versions of two-part MDL follow a three stage approach:

1. the complexity − log p(s|mk) of the sample according to each model mk

is calculated at a high precision of mk.
6 For this approximation to hold, s has to be typical for the model mk. See Section 1.4 on

page 12 for a discussion of typicality and minimum randomness deficiency.
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2. the minimum complexity K(mk) which would theoretically be needed to
achieve this likelihood is estimated.

3. this theoretical estimate E
[
K(mk)

]
minus the previous log p(s|mk) ap-

proximates the overall complexity of data and model.

Mixture MDL. More recent versions of MDL look deeper into the complexity
of the model involved. Solomonoff and Rissanen in their original approaches
minimized a two-part code, one code for the model and one code for the sample
given the model. Mixture MDL leaves this approach. We do no longer search
for a particular model but for the number of parameters k that minimizes the
total code length − log p(s|k) + log(k). To do this, we average − log p(s|mk)
over all possible models mk for every number of parameters k, as will be defined
further below. Lmix(·)

Lmix(s) = min
k

[
− log p(s|k) + log k

]
(23)

Since the model complexity is reduced to log k which is almost constant and
has little influence on the results, it is not appropriate anymore to speak of a
mixture code as a two-part code.

Let Mk be the k-dimensional parameter space of a given family of models and
let p(Mk = mk) be a prior distribution over the models in Mk

7. Provided this
prior distribution is defined in a proper way we can calculate the probability
that the data was generated by a k-parameter model as

p(s|k) =
∫

mk∈Mk

p(mk) p(s|mk) dmk (24)

Once the best number of parameters k is found we calculate our model mk in
the conventional way. This approach is not without problems and the various
versions of mixture MDL differ in how they address them:

• The binary models mk form only a discrete subset of the continuous pa-
rameter space Mk. How are they distributed over this parameter space
and how does this effect the results?

• what is a reasonable prior distribution over Mk?

• for most priors the integral goes to zero or infinity. How do we normalize
it?

• the calculations become too complex to be carried out in practice.

7 For the moment, treat models as vectors in Rk so that integration is possible. See the
discussion on Fisher information in Section 1.4 on page 11 for a similar problem.
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1.6 Error minimization

Minimax MDL. Another important extension of MDL is the minimax strat-
egy. Let mk be the k-parameter model that can best predict n future values
from some i.i.d.training values. Because mk is unknown, every model m̂k that
achieves a least square error on the training values will inflict an extra cost when
predicting the n future values. This extra cost is the Kullback Leibler distance

D(mk||m̂k) =
∑

xn∈Xn

p(xn|mk) log
p(xn|mk)
p(xn|m̂k)

. (25)

The minimax strategy favors the model mk that minimizes the maximum of
this extra cost.Lmm(·)

Lmm = min
k

max
mk∈Mk

D(mk||m̂k) (26)

1.6 Error minimization

Any discussion of information theory and complexity would be incomplete with-
out mentioning the work of Carl Friedrich Gauss (1777–1855). Working on as-
tronomy and geodesy, Gauss spend a great amount of research on how to extract
accurate information from physical measurements. Our modern ideas of error
minimization are largely due to his work.

Euclidean distance and mean squared error. To indicate how well a partic-
ular function f(x) can approximate another function g(x) we use the Euclidean
distance or the mean squared error. Minimizing one of them will minimize the
other so which one is used is a matter of convenience. We use the mean squared
error. For the interval x ∈ [a, b] it is defined as

σ2
f =

1
b− a

∫ b

a

(
f(x)− g(x)

)2
dx (27)

This formula can be extended to multi-dimensional space.

Often the function that we want to approximate is unknown to us and is only
witnessed by a sample that is virtually always polluted by some noise. This
noise includes measurement noise, rounding errors and disturbances during the
execution of the original function. When noise is involved it is more difficult to
approximate the original function. The model has to take account of the distri-
bution of the noise as well. To our great convenience a mean squared error σ2

can also be interpreted as the variance of a Gaussian or normal distribution. The
Gaussian distribution is a very common distribution in nature. It is also akin to
the concept of Euclidean distance, bridging the gap between statistics and ge-
ometry. For sufficiently many points drawn from the distribution N

(
f(x), σ2

)
N (·, ·)

the mean squared error between these points and f(x) will approach σ2 and
approximating a function that is witnessed by a sample polluted by Gaussian
noise becomes the same as approximating the function itself.

Let a and b be two points and let l be the Euclidean distance between them. A
Gaussian distribution p(l) around a will assign the maximum probability to b
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if the distribution has a variance that is equal to l2. To prove this, we take the
first derivative of p(l) and equal it to zero:

d
dσ

p(l) =
d

dσ

1
σ
√

2π
e−l2/2σ2

=
−1

σ2
√

2π
e−l2/2σ2

+
1

σ
√

2π
e−l2/2σ2

(
2 l2

2 σ3

)

=
1

σ2
√

2π
e−l2/2σ2

(
l2

σ2
− 1

)
= 0

(28)

which leaves us with

σ2 = l2. (29)

Selecting the function f that minimizes the Euclidean distance between f(x)
and g(x) over the interval [a, b] is the same as selecting the maximum likelihood
distribution, the distribution N

(
f(x), σ2

)
that gives the highest probability to

the values of g(x).

Maximum entropy distribution. Of particular interest to us is the entropy
of the Gaussian distribution. The optimal code for a value that was drawn
according to a Gaussian distribution p(x) with variance σ2 has a mean code
length or entropy of

H(P ) = −
∫ ∞

−∞
p(x) log p(x) dx

=
1
2

log
(
2πeσ2

) (30)

To always assume a Gaussian distribution for the noise may draw some criti-
cism as the noise may actually have a very different distribution. Here another
advantage of the Gaussian distribution comes in handy: for a given variance
the Gaussian distribution is the maximum entropy distribution. It gives the
lowest log likelihood to all its members of high probability. That means that
the Gaussian distribution is the safest assumption if the true distribution is
unknown. Even if it is plain wrong, it promises the lowest cost of a wrong
prediction regardless of the true distribution [Grü00].
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2 Experimental verification

As an expert on statistics and machine learning you are asked to supply a
method for model selection to some new problems:

A number of deep sea mining robots have been lost due to system
failure. Given the immense cost of the robots, the mining company
wants you to predict the risk of a loss as accurate as possible. Up to
now about a hundred of the machines have been lost, under very dif-
ferent conditions. Decennia of experience with deep sea mining have
taught the mining company to use some sophisticated risk evaluation
models that you have to apply. Can you recommend MDL?

A deep sea mining robot has got stuck between some rocks. The
standard behaviors that were supposed to free the robot have failed.
Some of the movements it made have won it partial freedom, oth-
ers have made the situation only worse. So far, about a hundred
movements have been tried and the outcomes have been carefully
recorded. To choose the next action sequence, can you recommend
MDL?

Before we are going to use MDL on problems that are new to us, we want
to be sure that it is indeed a strong theory, valid even without the need of any
preprocessing of the data or other optimizations that are common if a method is
repeatedly applied to the same domain. In the case of MDL there are countless
ways of expanding and compressing data and sooner or later we will find one
that matches good models to short descriptions in a specific domain. But this
does not convince us that it can be universally applied.

To experimentally verify that MDL would be a good choice to solve the problems
above, we want to

1. test it on a broad variety of problems

2. prove that we use the shortest description possible

2.1 The Statistical Data Viewer

There are two factors that limit the type of data that is usually used for statis-
tical experiments: availability and programming constraints.

Data availability. A major problem in machine learning and in statistics in
general is the availability of appropriate data. One of the basic principles of
statistics says that a sample that has been used to verify one hypothesis cannot
be used to verify another one. And one and the same sample can never be used
to both select and to prove a hypothesis. If we would do so, we would simply
optimize on the sample in question.

This applies to model selection as well. Not only are the individual models
hypotheses in the statistical sense, a general method for model selection can

18



2 EXPERIMENTAL VERIFICATION

itself be viewed as a hypothesis. If we want to experimentally verify methods
for model selection we need a large supply of unspoiled problems and data.

Mathematical programming. A major obstacle to an objective diversity of
the data is the way the common mathematical packages work. They are based
on scripting languages that make heavy use of predefined function calls. This
integrates nicely with most mathematical concepts, which are usually defined
as functions. But it is not the preferred way to handle complex data structures
or to conduct sophisticated experiments. It also severely reduces the quality of
the outcome of an experiment. It is quite difficult and tiring to manipulate the
graphical representations of data by using function calls.

Another problem of a function oriented approach is that it is the responsibility
of the user to keep the definitions and the results of an experiment together.
Users are often reluctant to play with the settings of complex experiments as
that requires an extensive version control of scripts and respective results. And
instead of spending a lot of time on writing a lot of different scripts for a
lot of different experiments, researchers tend to do only minor changes to an
experiment once it works correctly, and repeat it on large amounts of similar
data. It is easier to try a method ten thousand times on the same problem space
than to try it a few times on two different problem spaces.

A visual approach. To overcome the limitations of mathematic scripting and
to guarantee diversity of the learning problems in an objective way we developed
the Statistical Data Viewer : an arbitrary precision math application with a
modular graphical user interface that can visualize all the abstract difficulties
of model selection. It is well documented and can be downloaded for free at

http://volker.nannen.com/work/dataviewer

The Statistical Data Viewer makes all the definitions and results of an experi-
ment available through a sophisticated editor. Experiments can be set up in a
fast and efficient way. Problems can visually be selected for diversity. The per-
formance of selection methods can be analyzed in a number of interactive plots.
All graphical representations are fully integrated into the control structure of
the application, allowing the user to change views and to select and manipulate
anything they show.

To develop a working application within reasonable limits of time, the first
version of the application is limited to the model family of polynomials and to
two-dimensional regression problems, which are easier to visualize. Polynomials
are used widely throughout science and their mathematics are well understood.
They suffer badly from overfitting.

Great care was taken to give uninitiated students and interested lay persons
access to the theory as well. No scripting language is needed to actually set
up an experiment. The predefined mathematical objects—problems, samples,
models and selection methods—are all available as visible objects. They can be
specified and combined through the interactive editor which is extremely easy to
use. The essential versions of MDL are implemented. They can be analyzed and
compared with another independent and successful method for model selection,
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cross-validation. In addition, the user can try his or her own penalization term
for two-part MDL.

The progress of an experiment is observable and the execution can be disrupted
at any moment. If possible, the graphs in the plots show the state of an ex-
periment during its execution. It is possible to reproduce everything with little
effort. All the data are saved in a standardized well documented format that
allows for verification and further processing by other programs. The graphs
are of scientific quality and available for print.

Available learning problems. To provide the user with a broad range of
interesting learning problems, a number of random processes are available. They
include

• smooth functions which can be approximated well by polynomials, e.g.the
sinus function

• functions that are particularly hard to approximate like the step function

• fractals

• polynomials

When taking a sample from a process it can be distorted by noise from differ-
ent distributions: Gaussian, uniform, exponential and Cauchy, which generates
extreme outliers. Section 3.4 will explain them in more detail and will use them
for a number of experiments. The distribution over the support of a process
can also be manipulated. It can be the uniform distribution or a number of
overlapping Gaussian distributions, to simulate local concentrations and gaps.
This option is explained and used in Sections 3.2 and 3.3.

Samples can also be loaded from a file or drawn by hand on a canvas, to pinpoint
particular problems.

Objective generalization analysis. To map the performance in minimizing
the generalization error in an objective way it is possible to check every model
against a test sample drawn from the same source as the training sample. This
has drawn some criticism from experts as the conventional way to measure the
generalization error seems to be to check a model against the original source if
it is known. I opted against this because:

• When speaking of generalization error the check against a test sample
gives a more intuitive picture of the real world performance.

• For data drawn by hand or loaded from a file the original distribution
might be unknown. In this case all we can do is to set aside part of the
data as a test sample for evaluation. Depending on whether the source
is known or unknown we now would have two different standards, the
original function for known sources and a test set for unknown sources.
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• If the source is known the test sample can be made big enough to faithfully
portray the original distribution (by the law of large numbers) and give
as fair a picture of the generalization error as a check against the original
process.

• When using the original source the correlation between model and source
has to be weighted against the distribution over the support set of the
source. Especially in the case of multiple Gaussian distributions over the
support this can be extremely difficult to compute.

• Although we concentrate on i.i.d.samples, this method allows us also to
train a model on a sample with Gaussian noise and to measure the general-
ization error on a test sample that was polluted by Cauchy noise (extreme
outliers) and vice versa or to use different distributions over the support
set.

An independent method to compare. Comparing the predictions of MDL
with the generalization analysis on an i.i.d.test set does not show whether MDL
is a better method for model selection than any other method. For this reason
the application includes an implementation of cross-validation. Cross-validation
is a successful method for model selection that is not based on complexity theory.
It can be seen as a randomized algorithm where we select the model that is most
likely to have a low generalization error. The method divides the training sample
a couple of times into a training set and a test set. For each partition it fits the
model on the training set and evaluates the result against the respective test set
in the same way as the generalization analysis uses an independent test sample.
The results of all partitions are combined to select the best model.

2.2 Technical details of the experiments

We are primarily concerned with two versions of MDL: Rissanen’s original ver-
sion of two-part MDL and the modern mixture MDL. We compare the perfor-
mance of these methods with an objective analysis of the generalization error
and with another successful method for data prediction that is independent of
the MDL theory: cross-validation. To keep the computations feasible we limit
the polynomials in the experiments to 150 degrees or less.

Rissanen’s original two-part MDL. The implementation of Rissanen’s orig-
inal version is strait forward. Rissanen calculated the combined complexity of
model and data to model as

− log p(s|mk) + k log
√

n (31)

Let s = {(x1, y1) . . . (xn, yn)} be a two-dimensional training sample and let
our models be polynomials with a Gaussian deviation. For each number of
parameters k we first calculate the polynomial fk(x) that has the least squared
error from s. The precise algorithm is described in Appendix B on page 64.
The model that defines our probability distribution is

mk = N
(
fk(x), σ2

k

)
(32)
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The calculation of the code length − log p(s|mk) is quite simple8. The optimal
code length for s is the sum of the optimal code length of the n values. Since
the expected code length of each value is H(mk), the expected code length of
− log p(s|mk) is

− log p(s|mk) = nH(mk)

=
n

2
log

(
2πeσ2

k

)
=

n

2
log σ2

k +
n

2
(2πe)

(34)

which lets us implement Rissanen’s original version of MDL as

LRis(s) = min
k

[n

2
log σ2

k +
n

2
log (2πe) + k log

√
n
]

= min
k

[
n log σ2

k + k log n
] (35)

This, in fact, is very similar to the AIC.

Mixture MDL. In an as yet unpublished paper [BL02], Andrew Barron and
Feng Liang base a novel implementation of mixture MDL on the minimax strat-
egy. We will not reproduce their paper here. Instead, we will outline the practi-
cal consequences of their approach. They assume the prior distribution over the
k-dimensional parameter space Mk to be uniform. Unfortunately, a uniform
distribution over an infinite parameter space is not a proper distribution—it
does not have measure one. For any uniform distribution with p(mk) > 0 the
integral will tend to infinity. To normalize, we would have to divide by infinity,
which makes no sense.

To make the distribution proper, Barron and Liang condition it on a small ini-
tial subset s′ ⊂ s of the training set s. First, they calculate the probability
p(s′|k) with an improper prior distribution over mk. Then they divide by the
probability p(s|k), according to the same improper prior distribution. What-
ever impossible term would have normalized the two probabilities, the division
cancels it out. The result of the division is sufficient to find the minimax model.
(36) gives the complete minimax equation for mixture MDL according to Barron
and Liang. The individual terms will be explained below. Because we calculate
the code length, we take the negative logarithm of the probabilities and the
division becomes an inverted subtraction:LBF (·)
8 To calculate the probability of the actual Euclidean distance

√
nσ2 between fk(x) and

any s of size n would not get us anywhere. The distribution over the normalized squared

distance nσ′2

σ2 is chi-square with n degrees of freedom. For σ′2 = σ2 we get a constant

value that depends on n but not on σ2:

χ2
n(n) =

1

n!!
√

2π

“ n

e

”n/2
(33)
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LBF(s) = min
k

[
n− k

2
log

(
nσ2

n

)
+

1
2

log |Sn| − log Γ
(

n− k

2

)

−
[
m− d

2
log

(
nσ2

m

)
+

1
2

log |Sm| − log Γ
(

m− k

2

) ] ] (36)

n is the size of the sample s and m is the size of the small initial subset s′ ⊂ s,
much smaller than n but bigger than k. nσ2

n is the squared Euclidean dis-
tance between the training sample {(x1, y1) . . . (xn, yn)} and the least square
polynomial:

nσ2
i = min

fk

n∑
i=1

(
yi − fk(x)

)2 (37)

|Sn| is the determinant of the Vandermonde matrix
n

∑
x

∑
x2 . . .

∑
xk∑

x
∑

x2
∑

x3 . . .
∑

xk+1

...
...

...
. . .

...∑
xk

∑
xk+1

∑
xk+2 . . .

∑
x2k

 (38)

where
∑

x stands for
∑n

i=1 xi. The calculation of a Vandermonde matrix and
its determinant are discussed in Appendix 5 on page 64. The determinant of
the Vandermonde matrix is the Fisher information of Section 1.4 on page 11. It
estimates the variance of the rate of change of ln p(mk).

To prevent the Vandermonde matrix from becoming singular, the algorithm
used in the experiments uses a subset s′ ⊂ s of size m = 1.5k. To keep m still
smaller than n, the maximum number of parameters that is accepted is k = 1

2n.

Γ(x) is the gamma-function, an extension of the factorial to complex and real
number arguments. It is a rest term of the calculations in [BL02] and will not
be elaborated on here. For half integer arguments the gamma-function takes
the special form

Γ
(n

2

)
=

(n− 2)!!
√

π

2(n−1)/2
(39)

where n!! is the double factorial

n!! =

n · (n− 2)!! n > 1

1 n ∈ {0, 1}
(40)

Generalization analysis. The analysis of the generalization error is straight-
forward. For reasons explained in Section 2.1 on page 20 it is based on a
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2.2 Technical details of the experiments

test sample t = {(x1, y1) . . . (xm, ym)} that follows the same distribution as the
training sample. For a reliable analysis the size m of the test set has to be
big, usually several thousand points. For each parameter size k the least square
polynomial fk(x) is calculated from the training set. The generalization error
ek is the mean squared error fk(x)t on the m points of the test set

ek =
1
m

m∑
i=1

(
yi − f(xi)

)2 (41)

Taking the mean squared error of the polynomial on the test set is not the only
relevant aspect of generalization behaviour. The cost of a wrong prediction may
instead be linear in the error, as is often the case in finances where we have to
pay interest on lended money. It can be exponential as is often the case when
we estimate computer running time. And it can have an absolute threshold as
in the case of electric circuits that will burn when overloaded. The probabilistic
model mk provides us with a normal distribution over the error according to
N

(
f(x), σ2

k

)
. As we saw earlier, the normal distribution lines up best with a

quadratic cost function. But ultimately we want to be able to find the best
model for any arbitrary cost function, and this is material for future research.

Cross-validation. To compare MDL with another successful method for data
prediction we use cross-validation. Cross-validation is not based on complexity
theory. It is basically a randomized algorithm that accepts a model if it has
performed well on a sufficient number of independent trials. The version we use
in the experiments splits the training sample randomly into 10 small partitions of
equal size. If the training set contains 300 points then each partition will contain
30 points. For each of these 30 points we fit the polynomials on the remaining
270 points and then take the mean squared error of such a polynomial on our
30 points. This is similar to what we do in the generalization analysis, only
that in this case the test sample is much smaller and the result is much more
unreliable. But when we take the average generalization error on all of the 10
small partitions we get a good approximation of the real generalization analysis.

We could approximate the generalization analysis even better if we would use
more than 10 partitions. But the algorithm will become much slower and the
slight increase in performance does not justify this. 10 partitions give a result
that is generally very good. The only problem with 10 partitions is that they
show a tendency to randomly accept single models while rejecting all its neigh-
bors. These single models depend on the particular distribution of the points
over the partitions and do not reflect the facts. It can be cured by taking the
average over adjacent models in the graph. This is called smoothing and is a
very common practice in signal processing. The smoothing algorithm used in
the experiments takes the average over only three adjacent models which seems
to be quite enough. The complete algorithm isLcv(·)

Lcv(s) = min
k

[
1
3

k+1∑
i=k−1

v(i)

]
(42)

which calculates the moving average of v(k), the average of the generalization
error ei of the individual partitions i. To allow smoothing over all values of k
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2 EXPERIMENTAL VERIFICATION

the algorithm is modified for k = 0 and k = max to take the moving average
over only two values. v(k) is the average over the ten partitions

v(k) =
1
10

10∑
i=1

ei (43)

ei is defined in the same way as for the generalization analysis. Figures 3 gives
an example of cross-validation.

Figure 3: Cross-validation

The x-axis shows the number of parameters. The y-axis shows the predicted gen-
eralization error. The predictions of each of the ten partitions are visible in shades
of green. The smoothed average is visible in red. If you are reading a black and
white print the red line should be darker than the green lines. It is the second line
from above.

2.3 A simple experiment

To make you familiar with the Statistical Data Viewer and to introduce you to
some of the basic problems of model selection, this section will take you through
all the steps of a simple experiment.

The sinus wave is very common in nature and comparatively easy to model by
a polynomial. To find out whether MDL is a useful method for data prediction
we conduct our first experiment on a sinus wave of a single frequency.
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2.3 A simple experiment

Experiment 1: validity of MDL

Hypothesis: MDL can minimize the generalization error.

Source: a sinus wave with frequency f = 0.5 and amplitude 1.

Noise: normal (Gaussian) with variance σ2 = 1.

Support: uniform over the interval [0, 10].

Sample: three samples of 50, 150 and 300 points.

Test set: i.i.d., 3,000 points.

Figure 4 shows how the source signal is created in the application and Figure 5
shows how the samples are drawn from the source and how an experiment for
model selection is started.

50 points. A sinus wave with f = 0.5 shows 10 alternating peaks and valleys
over the interval [0, 10]. An n-degree polynomial can have at the most n− 1
alternating peaks and valleys. We therefore expect polynomials with a low
generalization error to be of at least 11 degrees.

Figure 6 shows that a training set of 50 points is too small to capture this
threshold. 11 degrees do not show a local decrease in generalization error. On
the contrary, from this point on the generalization error starts to get really bad.
The best generalization error is achieved for the 0-degree polynomial, which is
nothing but the mean of the training sample. For degree 0–10 the generalization
error is almost as good and never worse than two times the optimum. But for
11 degrees the expected error rises to ten times the optimum and then increases
so fast that the log-log scale is needed to make the result readable.

All three methods agree that the 0-degree polynomial is optimal. Cross-
validation even predicts correctly that exactly from 11 degrees onwards the
generalization error will get very bad.

150 points. With 150 points the generalization analysis shows that the op-
timum lies at 17 degrees. The error between 14 and 18 degrees is less than
half way between the optimum and the error of the 0-degree polynomial. From
21 degrees onwards the generalization error is never again lower than that of a
0-degree polynomial. After that it increases so rapidly that the log-log scale
has to be used again.

Mixture MDL and Rissanen’s original version give a good picture of the situa-
tion. Both choose 15 degrees as the optimum and predict a low generalization
error for models between 14 and 18 degrees. Cross-validation is a disappoint-
ment. It shows essentially the same picture as with 50 points: almost constant
generalization error for 0–10 degrees, optimum for 0 degrees and a very high
generalization error beyond 10 degrees.
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2 EXPERIMENTAL VERIFICATION

Figure 4: Creating the source signal

Clicking on the new project icon has created a new project. The project name
can be defined and the attributes of the main plot can be set, e.g. range, size,
scale, color and the origin of the rulers. The list view makes it possible to organize
the attributes into a comprehensive hierarchy and to access them easily.

Clicking on the process icon has loaded a new process into the editor. From the
available processes the sinus wave has been selected and the attributes were set:
one frequency of f = 0.5 and support interval [0, 10]. A click on the make button
in the editor has created the signal.
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2.3 A simple experiment

Figure 5: Creating the samples and starting an experiment

Clicking on the sample icon loads a new sample into the editor. A sample of 50
points has already been created and is visible on the main plot. Now the test sample
is being defined: source and noise are specified and the size is entered. Clicking on
the take button in the editor will draw the sample.

Clicking on the polynomial icon has loaded a new polynomial into the editor. The
training and the test sample are already specified and now the method for model
selection is chosen from the pull-down menu. After the maximum order for the
selection process is entered, a click on the fit button in the editor will start the
experiment.
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2 EXPERIMENTAL VERIFICATION

Figure 6: Sinus wave, witnessed by 50 points

The generalization analysis is started: all polynomials in the range 0–40 degrees are
fitted to the 50 training points and then checked against the 3,000 test points. The
results are immediately plotted. The progress dialog allows to cancel the execution
if it takes too long or if the early results call for a different design of the experiment.

4 experiments have been conducted on the 50 point sample and the results were
plotted into separate plots. The generalization analysis in the upper right shows
that the 0-degree polynomial is the best choice. In the lower part from left to right
are the three results from cross-validation, mixture MDL and Rissanen’s original
two-part MDL. All agree with the analysis that zero degrees is the best choice.
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2.3 A simple experiment

Figure 7: Sinus wave, witnessed by 150 and 300 points

150 point training sample. The generalization analysis shows 17 degrees as
the optimum. Mixture MDL and Rissanen’s original version slightly underfit and
choose 15 as the optimum.

Cross-validation shows essentially the same picture as with 50 points. Anything
from 0 to 10 degrees is good but 0 degrees is best.

300 point training sample. The generalization analysis now shows 18 degrees
as optimal. 15-25 degrees are less than 5 percent worse than the optimum error.
From 40 degrees on the generalization error increases rapidly.

All methods now generalize well. Rissanen’s original version and mixture MDL
choose 15 degrees, cross-validation 20 degrees.
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2 EXPERIMENTAL VERIFICATION

300 points. With 300 points we see all methods generalizing well. The gener-
alization analysis now shows 18 degrees as optimal. 13–33 degrees are less than
half way between a 0-degree polynomial and the optimum. From 40 degrees on
the generalization error increases rapidly. Rissanen’s version chooses 17 degrees,
mixture MDL 15 degrees and cross-validation 20 degrees, all of which are less
than 10 percent worse than the optimum.

The three methods not only make a good choice, they also capture the general
outline of the generalization analysis. Polynomials of degree 15–25 are shown as
good candidates by all the three methods. They also show that anything from
35 onward is worse than taking the 0-degree polynomial.

Conclusion. Our simple experiment has shown that both our versions of MDL
are good methods for data prediction and error minimization. When compared
to cross-validation they can be called at least of equal strength.

2.4 Critical points

Concluding that a method does or does not select a model close to the optimum
is not enough for evaluating that method. It may be that the selected model
is many degrees away from the real optimum but still has a low generaliza-
tion error. Or it can be very close to the optimum but only one degree away
from overfitting, making it a risky choice. A good method should have a low
generalization error and be a save distance away from the models that overfit.

How a method evaluates models other than the optimum model is also impor-
tant. To safeguard against any chance of overfitting we may want to be on the
safe side and choose the lowest degree model that has an acceptable generaliza-
tion error. This requires an accurate estimate of the per model performance.
We may also combine several methods for model selection and select the model
that is best on average. This too requires reliable per model estimates. And not
only the generalization error can play a role in model selection. Speed of compu-
tation and memory consumption may also constrain the model complexity. To
calculate the best trade off between algorithmic advantages and generalization
error we also need accurate per model performance.

When looking at the example we observe a number of critical points that can
help us to evaluate a method:

the origin: the generalization error when choosing the simplest model pos-
sible. When speaking of polynomials this is the expected mean of y
ignoring x.

the initial region: it may contain a local maximum slightly worse than
the origin or a plateau where the generalization error is almost con-
stant.

the region of good generalization: the region that surrounds the opti-
mum and where models perform better than half way between origin
and optimum.
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2.4 Critical points

Often the region of good generalization is visible in the generalization
analysis as a basin with sharp increase and decrease at its borders
and a flat plateau in the center where a number of competing minima
are located.

the optimum model: the minimum within the region of good general-
ization.

false minima: models that show a single low generalization error but lie
outside or at the very edge of the region of good generalization.

overfitting: from a certain number of degrees on all models have a gener-
alization error worse than the origin. This is where overfitting really
starts.

Let us give some more details about three important features:

Region of good generalization. The definition of the region of good gen-
eralization as better than half way between origin and optimum needs some
explanation. Taking an absolute measure is useless as the error can be of any
magnitude. A relative measure is also useless because while in one case origin
and optimum differ only by 5 percent with many models in between, in another
case even the immediate neighbors might show an error two times worse than
the optimum but still much better than the origin.

Better than half way between origin and optimum may seem a rather weak
constraint. With big enough samples all methods might eventually agree on
this region and it may become obsolete. But we are primarily concerned with
small samples. And as a rule of thumb, a method that cannot fulfill a weak
constraint will be bad on stronger constraints as well.

False minima. Another point that deserves attention are the false minima.
Both analysis plots in Figure 7 feature them and they are very prominent in
Figure 1 on page 3. While different samples of the same size will generally
agree on the generalization error at the origin, the initial region, the region
of good generalization and the region of real overfitting, the false minima will
change place, disappear and pop up again at varying amplitudes. They can
even outperform the real optimum. The reason for this can lie in rounding
errors during calculations and in the random selection of points for the training
set. And even though the training sample might miss important features of the
source due to its restricted size, the model might hit on them by sheer luck,
thus producing an exceptional minimum.

Cross-validation particularly suffers from false minima and has to be smoothed
before being useful. Taking the mean over three adjacent values has shown to
be a sufficient cure. Both versions of MDL seem to be rather free of it.

Point of real overfitting. The point where overfitting starts also needs some
explanation. It is tempting to define every model larger than the optimum
model as overfitted and indeed, this is often done. But such a definition cre-
ates a number of problems. First, the global optimum is often contained in a
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2 EXPERIMENTAL VERIFICATION

large basin with several other local optima of almost equal generalization error.
Although we assume that the training sample carries reliable information on
the general outline of generalization error, we have no evidence that it carries
information on the exact quality of each individual model. It would be wrong
to judge a method as overfitting because it selected a model 20 degrees too
high but of a low generalization error if we have no indication that the training
sample actually contained that information. On the other hand, at the point
on the x-axis where the generalization becomes forever worse than at the origin
the generalization error usually shows a sharp increase. From this point on dif-
ferences are measured in orders of magnitude and not in percent which makes
it a much clearer boundary. Also, if smoothing is applied, different forms of
smoothing will favor different models within the region of good generalization
while they have little effect on the location of the point where the generalization
error gets forever worse. And finally, even if a method systematically misses the
real optimum, as long as it consistently selects a model well within the region
of good generalization of the generalization analysis it will lead to good results.
But selecting or even encouraging a model beyond the point where the error
gets forever worse than at the origin is definitely unacceptable.
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3 Selected experiments

This section takes you through some selected experiments on two dimensional
regression problems. They were selected for broadness, not for completeness. It
is impossible to cover the whole range of possible experiments on a few pages. If
you are interested, you can download the application and do some experiments
of your own.

3.1 A hard problem: the step function

While the sinus wave is easy to model by a polynomial, the step function is
particularly hard. Due to its nature, the step function is hard to model by any
smooth function as everyone can tell who has ever built a filter for radio or
sound signals. No polynomial can exactly match it and convergence for high
degree models is very slow. With slow convergence we mean that over all the
models in the range k ∈ [0,max] the mean squared error σ2 on the training
set improves only slowly. But even though slow convergence requires a high
complexity of the model to get a somewhat acceptable generalization error, it
does not justify a method to overfit. See Appendix 5 on page 62 for details on
the step function in use.

Experiment 2: the step function

Hypothesis: MDL can minimize the generalization error even when
the source is hard to model.

Source: a step function with 10 random alternations within the in-
terval [0, 10] and amplitude 10.

Noise: normal with variance σ2 = 1.

Support: uniform over the interval [0, 10].

Sample: two samples of 100 and 400 points.

Test set: i.i.d., 3,000 points.

100 points. In Figure 8 our three methods are tried on a training sample of 100
points. Given the 10 alternations in the step function this is extremely small
and we do not expect any method to come close to the optimum. Nevertheless,
selecting a model from the region of overfitting is unacceptable and must be
called a failure.

The generalization analysis shows that the 19-degree polynomial achieves the
best generalization error on the 3,000 point test sample. Overfitting starts at 26
degrees and good generalization (better than half way between the origin and
the optimum) is achieved for degree 7–20. Cross-validation predicts an 11-degree
polynomial which is well within this region. Its region of good generalization is

34



3 SELECTED EXPERIMENTS

Figure 8: Step function, witnessed by 100 points

Step function with 10 alternations, 100 point training sample, 3,000 point test
sample and the correct 19-degree polynomial.

Left: analysis for degree 0–70, trained on the 100 point training sample and checked
against the 3,000 point i.i.d. test sample. The y-axis has log-log scale. The op-
timum is found at 19 degrees, good generalization in the range 7–20 and overfitting
from 26 degrees onwards.

Right: cross-validation predicts the optimum at 11, good generalization in the range
4–15 and overfitting from 18 degrees onwards.

Left: mixture MDL. Predicts optimum at 18 degrees, good generalization in the
range 8–25 and overfitting from 34 degrees onward.

Right: Rissanen’s original version predicts the optimum at 18 degrees although
another minimum at 38 degrees is only marginally weaker. The global minimum at
78 degrees is a false minimum. Predicts good generalization for the range 9–48 and
overfitting from 79 degrees onwards.

35



3.1 A hard problem: the step function

4–15 degrees which is a good approximation of the generalization analysis. It
does not include points that overfit.

Both versions of MDL predict the optimum at 18 degrees, though Rissanen’s
original version was very close to predicting a 38 degree model. Rissanen’s
region of good performance is 9–48 and includes many models that actually
overfit. The point were it itself predicts overfitting is ridiculously high: 79
degrees. The reason for this might be the slow convergence rate. For many
degrees the polynomials make slow but continuous progress in minimizing the
empirical error, almost in direct proportion with the number of parameters.
Rissanen’s original penalty term is linear in the number of parameters and
therefore cannot counter such a steady improvement.

Mixture MDL predicts good generalization for degree 8–25 and overfitting from
24 degrees onwards. This comes remarkably close to the results of the general-
ization analysis. Repeated execution of the same experiment shows that mixture
MDL generally gives a good copy of the generalization analysis but occasionally
falls prey to false minima. On one occasion it selected a model of degree 3,
another time one of degree 28. The graph in Figure 8 shows a local minimum
at degree 9, well within the region of good generalization. In the range between
origin and optimum it misses the optimum only by 8 percent and could easily
have outperformed it.

400 points. Figure 9 shows our three methods on a training sample of 400
points. It basically confirms the previous findings.

The generalization analysis promotes 44 degrees as the correct model, a high
degree given the sample size, which reflects the slow convergence of the models
with the step function. Cross-validation shows that the sample contains most of
the essential information. It predicts an optimum that is only marginally worse
than the correct model and which lies well within the region of good generaliza-
tion. Its region of good generalization is bigger than that of the generalization
analysis but does not include points that overfit.

Rissanen’s original version gives a very bad prediction for the optimum: 89
degrees. And anything from 17 to 150 degrees is a good model. For high
degrees it does not even show a tendency to the worse. If MDL is a valid
theory for data prediction than Rissanen’s original assumptions must be wrong.
Clearly, the number of parameters and the log sample size alone are not enough
to calculate model complexity.

Mixture MDL shows that MDL is indeed capable of predicting a good model
even under adverse conditions. Over a number of experiments on samples of the
same size it consistently predicts models that perform even better than those
predicted by cross-validation. It also consistently includes points that overfit
in its region of good generalization. Nevertheless, the improvement against
Rissanen’s original version is remarkable and vindicates MDL as a valid method
for data prediction.

Conclusion. Rissanen’s original version evidently is not capable to cope with
slow convergence. Of course, letting the penalty term rise faster than linearly in
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Figure 9: Step function, witnessed by 400 points

Step function with 10 alternations, 400 point training sample and the correct 44-
degree polynomial. The error on the test sample now is less than half that of the
19-degree model, which was the correct model for the 100 point training sample.
As the models converge very slowly, even with such a high degree polynomial there
is evidently still much room for improvement.

Left: generalization analysis for degree 0–80. Predicts the optimum at 44 degrees,
good generalization in the range 9–37 and overfitting from 54 degrees onwards. A
false minimum at 53 degrees slightly outperforms the optimal model.

Right: cross-validation for the same problem. Predicts the optimum at 36, good
generalization in the range 9–45 and overfitting from 52 degrees onwards.

Left: mixture MDL predicts the optimum at 40 degrees, good generalization in the
range 16–69 and overfitting from 87 degrees onwards.

Right: Rissanen’s original version for the range 0–150 predicts good generalization
anywhere from 17 degrees onwards and 89 degrees as the optimum. No prediction
of overfitting.

37



3.1 A hard problem: the step function

Figure 10: Fine details of Figure 8

generalization analysis for 0–40 degrees

mixture MDL for 0–40 degrees

cross-validation for 0–40 degrees

All plots are magnifications from Figure 8 on page 35 for the range 0–40 degrees.
Especially mixture MDL gives a detailed copy of the generalization analysis.

Experiments over a wide range of samples and sources show that if the sample
contains detailed information on the source, it is more likely that mixture MDL will
reproduce it than cross-validation. Also, the quality of the mixture MDL reproduc-
tions is usually better.
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the number of parameters will improve it and we are free to fine tune the penalty
term on the problem. But the optimal penalty on one family of problems might
prove to be a catastrophe on the next one. The application allows the user
to enter his own penalty term and we strongly encourage you to try to find a
penalty term that performs well on all sorts of problems. You will not succeed.

Mixture MDL shows that a theoretically sound estimate of the needed model
complexity is a better strategy than finding the proper penalty term by trial
and error. Its performance on this difficult problem almost equals that of cross-
validation, especially when the training sample is very small, and we cannot
reasonably expect more.

Additional findings. A close look at the different graphs shows that for models
of complexity lower than the optimum both mixture MDL and cross-validation
can give a very detailed copy of the structure of the generalization analysis.
Figure 10 magnifies the graphs of the generalization analysis, mixture MDL
and cross-validation each in the range 0–40 degrees. Although at this time we
are primarily concerned with the performance of MDL at the critical values, it is
very interesting to observe how much information the sample actually contains
about the source and how much of this information can be revealed by MDL.
As a general finding over many different trials, mixture MDL gives the most
detailed copy of the generalization analysis.

3.2 Sparse support

To further explore the performance of MDL we consider a problem that is par-
ticularly disastrous to polynomials: sparse representation of the support set.
Experience teaches that the sample mean is the best estimate for regions of the
support set which are sparsely represented in the training sample, regardless
of the problem at hand. Polynomials tend to do the opposite, at least at the
far ends of the support set: they go to extreme values as soon as the function
has passed the last point in the training sample. And the higher the degree of
the polynomial the faster it goes to extreme values. This behavior leads to a
very large generalization error on any test point that might show up beyond the
extreme points of the training sample.

To provide non-uniform distributions over the support set the application allows
to concentrate the data around a number of points on the x-axis. In the appli-
cation they are called grains. The distribution around these points is normal.
When there is one grain, most points will be in the center of the support set
and the far ends will be represented very sparsely. If more than one grain is
used they are positioned equally far from each other and from the edges of the
support set such that there are sparse regions both at the edges and between
the grains. The test sample will be subjected to the same distribution over the
support as the training sample.
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3.2 Sparse support

Experiment 3: bad support

Hypothesis: MDL can deal with non-uniform distributions over the
support interval.

Source: Lorenz attractor

Noise: normal (Gaussian) with variance σ2 = 1.

Support: Within the total support interval [0, 10] the distribution is
normal around 3 centers with σ2 = 0.83. They are situated at
x = {2.5, 5, 7.5}.

Sample: one sample of 300 points.

Test set: i.i.d., 3,000 points.

The source will be a time series that is generated by a Lorenz attractor. The
Lorenz attractor as a function has nothing in common with polynomials. Never-
theless, unlike the step function, the resulting graph is remarkably smooth and
can be approximated reasonably well by a polynomial of high degree. Experi-
ments with a uniform distribution over the support show that for a 300 point
training sample the correct model for the attractor used in the experiment is
about 35 degrees. This does not increase much with larger training samples.

The analysis in Figure 11 shows that with a non-uniform support the correct
model is only a fraction of that of a uniform support: 10 degrees instead of
35 degrees. Cross-validation continues to give excellent predictions and proves
that the sample contains all the relevant information. Both versions of MDL
fail completely. While the analysis shows that overfitting starts at 19 degrees,
mixture MDL predicts 24–54 degrees as good, 35 degrees as the optimum and
lets overfitting start at 72 degrees. Rissanen’s version is even worse, predicting
39 as the optimum, 20–138 as good and does not show any sign of overfitting
lower than 150 degrees, which was the maximum degree looked at.

To be fair, in a similar experiment conducted on the easier sinus wave but with
the same non-uniform distribution over the support, mixture MDL gave correct
predictions. But the Lorenz attractor cannot be considered an exceptionally
hard problem and cross-validation proves that all relevant information is present.
MDL never gave correct predictions on this problem, even with training samples
as large as 1,000 points.

Conclusion. Bad support is a particular hard problem for polynomial models.
Nevertheless, cross-validation shows us that the training sample contains all
necessary information to correctly minimize the generalization error. MDL fails
completely. When presented with the same Lorenz attractor but a uniform
distribution over the support, mixture MDL predicts essentially the same as
when the support is non-uniform. For uniform distributions the predictions
turn out to be correct. This shows that mixture MDL has a structural deficit
in recognizing differences in the distribution over the support set.
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Figure 11: Lorenz attractor with sparse support

Left: Lorenz attractor, 300 point training sample, 3,000 point test sample and the
correct 10-degree polynomial. The 3 concentrations of points are clearly visible.

Right: Lorenz attractor and the wrong 35 degree model predicted by mixture MDL.
The model completely misses the test points at the two edges.

Left: analysis for degree 0–50, optimum at 10 degrees, good generalization in the
range 4–13 and overfitting from 20 degrees onwards. There is a single false minimum
at 19 degrees which outperforms the optimum by 30 percent.

Right: cross-validation for the same problem. Predicts the optimum at 11, good
generalization in the range 4–11 and overfitting from 12 degrees onwards.

Left: mixture MDL predicts the optimum at 35 degrees, good generalization in the
range 24–54 and overfitting from 72 degrees onwards.

Right: Rissanen’s original version for degree 0–150, predicts the optimum at 39,
good generalization in the range 20–138 and no overfitting.
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3.3 Normalization

3.3 Normalization

It is sometimes suggested to normalize the sample before applying the learning
algorithm. The polynomial should not immediately grow to large values around
the edges of a sample when the sample is normalized to the interval [−1, 1].
This should benefit our learning algorithm when the support is sparse at the
edges of the support, says the suggestion.

Experiment 4: Normalization

Hypothesis: Normalizing the sample will improve the performance
of MDL when the distribution over the support is non-uniform.

Source: Lorenz attractor

Noise: normal (Gaussian) with variance σ2 = 1.

Support: The interval of the support is [−1, 1]. As in Experiment 3,
the distribution is normal around 3 centers with σ2 = 0.83. They
are situated at x = {−0.667, 0, 0.667}.

Sample: one sample of 300 points.

Test set: i.i.d., 3,000 points.

The conditions are the same as in Experiment 3 except for the support interval
which is now normalized to [−1, 1]. The graphs in Figure 12 show only small
changes when compared with Experiment 3 which resemble the usual small
changes in the graphs due to the random choice of the points. These changes
cannot be attributed to the normalization. All 3 methods predict about the
same optima, the same regions of good generalization and the same points of
overfitting as they did in Experiment 3. MDL in particular shows no improve-
ment whatsoever.

Conclusion. Normalization does not improve the performance of MDL. It
does not influence the generalization error at all. Polynomials are completely
indifferent to normalization.

3.4 Different types of noise

Not only the distribution over the support is part of a problem but also the
noise that pollutes the signal. If the true distribution of the noise is unknown
it is common practice to assume a Gaussian distribution. As explained in Sec-
tion 1.5 on page 13, the mean squared error between the sample and the least
square polynomial is taken as the variance of the distribution. The Gaussian
distribution is the maximum entropy distribution for a given variance. It gives
the lowest log likelihood to all its members of high probability and minimizes
the effects of a wrong prediction.
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3 SELECTED EXPERIMENTS

Figure 12: Normalized Lorenz attractor with sparse support

Lorenz attractor, 300 point training sample and 3,000 point test sample concen-
trated around 3 centers and the correct 10-degree polynomial. The points on the
x-axis lie in the interval [−1, 1].

Left: analysis for degree 0–50, optimum at 10 degrees, good generalization in the
range 4–11 and overfitting from 14 degrees onwards.

Right: cross-validation for the same problem. Predicts the optimum at 11, good
generalization in the range 6–22 and overfitting from 23 degrees onwards.

Left: mixture MDL predicts the optimum at 37 degrees, good generalization in the
range 16–56 and overfitting from 79 degrees onwards.

Right: Rissanen’s original version for degree 0–150, predicts the optimum at 50,
good generalization in the range 21–130 and no of overfitting.
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3.4 Different types of noise

How will MDL perform if the noise has a distribution around the source function
that is not Gaussian? And what if the distribution of the noise has no calculable
variance? Is is still safe to assume a Gaussian distribution over the noise? To
test this, the application provides for a number of different distributions over
the noise—the Gaussian (normal) distribution, the uniform distribution, the ex-
ponential distribution and the Cauchy distribution. Like the other distributionsCauchy

disribution the Cauchy distribution is symmetric around the mean and non-increasing. But
it has no calculable variance. Its density function is

P (x) =
s

π ((x− µ)2 + s2)
, (44)

where µ is the mean and s the distance between the mean and the point that
has half the probability of the mean.

The Cauchy distribution is very helpful in studying the problem of far outliers,
single points that show an exceptional large deviation from the sample mean. It
is common practice to eliminate such outliers from the sample before applying
other statistical methods. They usually do not contribute to the results but
rather hinder the analysis. But in a multi-dimensional problem space where
points are concentrated around an unknown attractor it might be impossible to
detect the far outliers and we want a method for model selection to be able to
take account of them.

Experiment 5: different types of noise

Hypothesis: MDL gives good predictions under different types of
noise but might have problems with the Cauchy distribution
which has no calculable variance.

Source: Thom map, which itself contains extreme values.

Noise: Normal, uniform and exponential with σ2 = 1. Cauchy with
s = 0.03 and s = 0.1.

Support: uniform over the interval [0, 10].

Sample: four samples of 300 points each.

Test set: one i.i.d.test set for every training sample, 3,000 points each.

To make the problem realistic we will use a source that itself contains strong
deviations from the mean: the Thom map9. The Thom map used in the ex-
periments has 5 different regions that go to extreme values, four of which are
9 See appendix 5 on page 63 for further details on this process.
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3 SELECTED EXPERIMENTS

Figure 13: Thom map and Gaussian noise

Thom map, 300 point training, 3,000 point test sample and the correct 35-degree
polynomial. The points are drawn with Gaussian noise of σ2 = 1,

Left: the analysis for degree 0–100 shows the optimum at 35 degrees, good gen-
eralization in the range 2–39 and overfitting from 57 degrees onwards. There is a
significant global minimum at 49 degrees, outside of the region of good generaliza-
tion.

Right: cross-validation, optimum at 22, good generalization in the range 2–29 and
overfitting from 35 degrees onwards.

Left: mixture MDL predicts the optimum at 21, good generalization in the range
5–64 and overfitting from 78 degrees onwards.

Right: Rissanen’s original version predicts the optimum at 84 degrees, good gener-
alization anywhere from 6 degrees onwards and no overfitting.
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3.4 Different types of noise

Figure 14: Thom map and uniform noise

Thom map, 300 point training sample, 3,000 point test sample and the correct
25-degree polynomial. The noise is uniform with variance σ2 = 1,

Left: analysis for degree 0–100, optimum at 25 degrees, good generalization in the
range 2–29 and overfitting from 51 degrees onwards. Compared to the situation
with Gaussian noise of the same variance the critical points are lowered by about
10 degrees.

Right: cross-validation, optimum at 24, good generalization in the range 2–27 and
overfitting from 30 degrees onwards.

Left: mixture MDL predicts the optimum at 38 degrees, good generalization in the
range 6–66 and overfitting from 80 degrees onwards.

Right: Rissanen’s original version predicts an optimum at 91 degrees, good gener-
alization anywhere from 6 degrees onwards and no overfitting.
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3 SELECTED EXPERIMENTS

Figure 15: Thom map and exponential noise

Thom map, 300 point training and 3,000 point test sample and the correct 30-degree
polynomial. The noise is exponential with variance σ2 = 1,

Left: analysis for degree 0–100, optimum at 30 degrees, good generalization in the
range 2–30 and overfitting from 43 degrees onwards, very similar to the uniform
distribution.

Right: cross-validation, optimum at 17 degrees, good generalization in the range
2–29 and overfitting from 30 degrees onwards.

Left: mixture MDL predicts the optimum at 38 degrees, good generalization in the
range 2–85 and overfitting from 93 degrees onwards.

Right: Rissanen’s original version predicts the optimum at 75 degrees, good gener-
alization from 2 degrees onwards and not overfitting.
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3.4 Different types of noise

Figure 16: Thom map and Cauchy noise of s = 0.03

Thom map, 300 point training, 3,000 point test sample and the correct 38-degrees
polynomial. The noise is Cauchy with s = 0.03,

Left: analysis for degree 0–100, optimum at 38 degrees, good generalization in the
range 2–26 and overfitting from 47 degrees onwards.

Right: cross-validation, optimum at 18 degrees, good performance in the range
3–22 and overfitting from degree 24 onwards.

Left: mixture MDL predicts the optimum at 38 degrees, good generalization in the
range 3–79 and overfitting from 94 degrees onwards.

Right: Rissanen’s original version predicts the optimum at 86 degrees, good gener-
alization from 16 degrees onwards and no overfitting.
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3 SELECTED EXPERIMENTS

Figure 17: Thom map and Cauchy noise of s = 0.1

Thom map, 300 point training, 3,000 point test sample and the correct 13-degree
polynomial. The noise is Cauchy with s = 0.1,

While in all the other figures all samples were completely visible, in this case there
are some points that lie far outside the plotted area. The most extreme point has
a value of 3935 which is 250 times larger than the upper limit of the plot.

Left: analysis for degree 0–100, optimum at 13 degrees, good generalization in the
range 2–17 and overfitting from 20 degrees onwards.

Right: magnification of the range 0–20 of the analysis

Left: cross-validation, optimum at 27 degrees, good generalization in the range
2–34 and overfitting from 39 degrees onwards.

Right: mixture MDL, optimum at 38 degrees, good generalization in the range 2–85
and overfitting from 93 degrees onwards. This is not much different from the result
on samples drawn with s = 0.1.

Rissanen’s original version is not shown. It predicts the optimum at 74 degrees,
good generalization from 2 degrees onwards and no overfitting.
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3.5 Disturbance by foreign signals

very narrow. Polynomials converge fast with this source and it can be described
well by polynomials of 50 degrees and more, catching all its alternations. Small
samples might witness the extreme regions only with a single point, if at all. A
method that simply ignores outliers will be in the disadvantage.

The experiments in Figure 13–16 show the performance of cross-validation and
MDL on the different types of noise. Rissanen’s original version cannot give
meaningful predictions on this source. It consistently overfits by many degrees
and never predicts any overfitting in the range for which it was tested.

Mixture MDL is not much influenced by the type of noise. It gives essentially
the same predictions throughout. Cross-validation gives different results for
different types of noise but that does not result in overall better predictions. For
the one distribution where mixture MDL really overfits, Cauchy with s = 0.1,
cross-validation fails as well. For the same distribution but with a training
sample of 700 points (not shown in the figures) both methods give excellent
predictions. But even in this case the predictions of mixture MDL are not
really different from those for the other types of noise.

Conclusion. We can conclude that mixture MDL performs acceptable under
most types of noise, though it does not really take account of them. Its predic-
tions are so general that the nature of a particular distribution doesn’t really
make a difference. But this is exactly why we assume the Gaussian distribu-
tion when the true distribution is unknown: it minimizes the effect of a wrong
assumption.

The Cauchy distribution has no calculable variance and all methods fail on small
samples from this distribution, as expected. But most points that were drawn
by the Cauchy distributions of the experiments lie much closer to the source
function than the points that were drawn by the other distributions of this
experiment. It is hard to believe that a correct prediction should be impossible
under such circumstances and we hope for future improvement.

3.5 Disturbance by foreign signals

The distributions of the noise in Experiment 5 were rather simple. They were
all symmetric around the mean and non increasing on both sides of it. There are
many sorts of noise which do not share these properties. This last experiment
will look at the performance of MDL when the points that witness the target
function were polluted by some other function that we are not interested in.
This is a very common phenomenon in signal processing. Usually the target
signal has to be filtered from a host of foreign signals before it is available for
further analysis. This is similar to denoising [Ris00].

It is almost impossible to filter out all foreign signals. They often leave a weak
trace behind. As MDL was able to deal with the different types of noise of
Experiment 5 we expect that it will also be able to perform well when the points
are polluted by some other function. Appendix 5 on page 62 gives some details
on the noisy pendulum that is used as the source function for this experiment.
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3 SELECTED EXPERIMENTS

Figure 18: Multiple sources

Two pendula (the lower one is the target and the upper one is foreign) 300 point
training sample, 3,000 point test sample and the correct 13-degree polynomial. The
upper pendulum is witnessed by 17% of the points, the lower pendulum by 83%.

Left: analysis for degree 0–100, optimum at 13 degrees, good generalization in the
range 2–39 and overfitting from 44 degrees onwards.

Right: cross-validation predicts the optimum at 7, good generalization in the range
2–39 and overfitting from 40 degrees onwards.

Left: mixture MDL predicts the optimum at 3 degrees, good generalization in the
range 2–46 and overfitting from 62 degrees onwards.

Right: Rissanen’s original version for degree 0–100, predicts the optimum at 2
degrees, good generalization in the range 2–47 and overfitting from 97 degrees
onwards.
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3.5 Disturbance by foreign signals

Experiment 6: Disturbance by foreign signals

Hypothesis: MDL will perform well when the data is disturbed by
an external function.

Source: a time series produced by a noisy pendulum.

Noise: a second pendulum that accounts for 17% of the data. In
addition, the measurements on both pendula are disturbed by a
normal distribution with variance σ2 = 1.

Support: uniform over the interval [0, 10].

Sample: one sample of 300 points.

Test set: i.i.d., 3,000 points.

We admit that the definition of this learning problem is a bit arbitrary. We
could as well have said that we want to learn a source that consists of two
functions or that the distribution around the source function has two maxima
and changes along the x-axis. The setup of this experiment would fulfill any of
those definitions.

The generalization analysis in Figure 18 shows a very clear region of overfitting.
The borders are sharp and the generalization error is almost constant throughout
the basin. Cross-validation reproduces this exactly. Both versions of MDL
predict an optimum that has a low generalization error. They don’t reproduce
the flatness of the basin. Instead, both methods predict a continuing increase in
the generalization error from the optimum onwards. Also, both methods include
degrees that overfit in their region of good generalization.

Conclusion. Cross-validation again proved that the sample contains all the
critical information. MDL did not reproduce it, though both methods made
good predictions on the optimum.

Different setups of the experiment with different sample sizes and different ratios
for the distribution of the noise over the two functions showed similar results.
The basin of the generalization analysis is very flat and cross-validation gives
accurate predictions. Both versions of MDL usually predict a good optimum
but include degrees that overfit in their regions of good generalization.

52



4 Discussions & conclusions

4.1 The results of the experiments

Rissanen’s original two-part version. The only experiments where Rissa-
nen’s original version achieved good results were the simple sinus curve and the
pendulum of the last experiment. On everything else it more or less failed. Of
course, for each problem the penalty term can be changed and two-part MDL
will then give good results. No penalty term is known that shows results as
universally good as those of cross-validation. But that is what we expect from
a reliable prediction method.

Mixture MDL. Liang and Barron’s minimax version of mixture MDL is much
stronger than Rissanen’s original version. It is capable of taking account of a
host of source functions, be it the sinus wave, the step function, the Lorenz
attractor, the Thom map or two instances of a pendulum. It is stable under
different types of measurement noise. But it fails when the distributions over
the support is not uniform.

Liang and Barron’s algorithm makes use of a small subset of the training set to
normalize the otherwise improper prior distribution. The choice of this subset
does have a noticeable effect on the predictions. Especially when the predictions
show a number of competing minima of similar depth, different choices for the
subset will pronounce different minima as global. To stabilize the predictions
even further it is recommended to apply the algorithm several times and to take
the average.

Smoothing. The predictions of mixture MDL for individual models seem to
be more reliable than those of cross-validation. There is not much need for
smoothing or other methods that would stabilize the results. In particular,
false minima are rare. Nevertheless it would be worth while to do additional
research and look whether smoothing can improve the predictions of MDL.

Different types of noise. For mixture MDL we found that different types
of measurement noise all lead to the same predictions. Originally we assumed
the distribution over the noise to be Gaussian and it seems that the maximum
entropy property of this distribution has saved mixed MDL from making bad
predictions.

The independent method (cross-validation). Cross-validation proved as
an independent method that all problems were learnable, including those of
different types of distributions over the support. The training sample contained
all the information that was necessary to give a correct prediction. This shows
that there is still much to be improved before MDL can be proclaimed as a
universal learning method.

The i.i.d.assumption. Remember that our basic and only assumption about
training samples and future samples was that they are identically independently
distributed. This is a very powerful assumption. It implies that membership
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4.2 The structure of the per model predictions

in the training sample and the future test sample is completely random. We
do not believe that a learning algorithm that cannot generalize from a training
sample to an i.i.d.test sample whenever that is possible can rightfully be called
a universal learning algorithm.

But what if we relax even the i.i.d.assumption. Can MDL still give good predic-
tions? What if we allow the measurement noise to change between the training
and the test phase? Experiment 5 has shown that mixture MDL, combined with
the minimax approach, is capable of doing exactly that. The changes in noise
did not really effect its predictions. Whether the noise was Gaussian, uniform,
exponential or Cauchy, the predictions were more or less the same, and they
were also more or less correct. An important conclusion is that MDL is capable
of learning even if we relax the i.i.d.assumption.

4.2 The structure of the per model predictions

The experiments have shown that there is more to say about the quality of a
learning method than only how close it comes to the optimum. A good method
for model selection should give reliable estimates on the generalization error of
individual models.

The structure of the curve of the generalization analysis
in itself contains information on the source that can be
exploited.

This generalization curve looks definitely very different for a sinus wave, for the
step function, or for the Lorenz attractor. Samples that originate from the same
signal share many details in the generalization curve. Especially mixture MDL
captures these details in a way that was not anticipated. It would be interesting
to study how these curves relate to the Kolmogorov structure function of the
samples.

Based on those cases where the minimax version of mixture MDL does
prevent overfitting we can formulate the following hypothesis. Let s =
{(x1, y1) . . . (xn, yn)} be our training sample and let m̂k be the corresponding k
dimensional least square model. We predict that the length of the mixture code
− log p(s|k) + log k is a good approximation of the expected log generalization
error of m̂k on an i.i.d.sample s′ = {(x1, y1) . . . (xm, ym)}, a sample that stems
from the same distribution as our training sample and that is independently
identically distributed.

− log p(s|k) + log(k) ≈ lim
m→∞

log
1
m

m∑
i=1

(
m̂k(xi)− yi

)2 + O(1). (45)

The constant term O(1) should depend on the model family but not on the
samples s and s′. This is a significant extension of the theory. Normally, it is
only predicted that Minimum Description Length minimizes the generalization
error. The structur of individual model predictions is not considered.
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4 DISCUSSIONS & CONCLUSIONS

4.3 The utility of MDL

The experiments of this thesis have shown that mixture MDL is in principle
able to minimize the generalization error, especially when confronted with small
training samples. While this statement is effectively limited to the problem
space that was actually studied—polynomial models and regression in the two-
dimensional plane—the problems within this space were as broad a selection
as possible. And with the fact in mind that polynomial models suffer very
badly from overfitting we may assume that MDL will work well on other mod-
els and learning problems as well. [GLV00] gives examples of other problems
where MDL was successful: modeling a robot arm and recognition of on-line
handwritten characters.

As a general purpose method. We are now in a position to answer the
question from page 5 where we introduced the three definitions of a good model.
Can we minimize the generalization error and randomness deficiency by one
and the same method? The answer is “yes”. MDL can minimize both the
generalization error and randomness deficiency. It can filter, compress and
predict future data. It can predict well even when the training sample is very
small.

As a default learning method. And can we recommend MDL as the method
of choice for the imaginary problems on page 2? At the current state of the
theory the answer must be “no”. Cross-validation does a better job and should
be preferred. The bad performance for non-uniform support effectively ruled
out MDL as a default learning method.

Technical shortcomings. While we are convinced that MDL is a powerful
and universal method, we also acknowledge the fact that it does not bring
with it all the merits that we hoped for. It turns out to be rather difficult to
estimate the complexity of a model. Compared to cross-validation, it requires
considerably more theoretical knowledge to understand and implement mixture
MDL. And while the version of cross-validation that we used in the experiments
can be adapted without difficulty to any type of model, we cannot do so for
Barron and Liang’s algorithm. An extension to ARMA models seems possible,
an extension to neural networks is unlikely. This is not the type of general
prediction method we want to teach to undergraduate students in the applied
sciences or to implement as the default learning method for an autonomous
robot. But it is certainly an option for the embedded system industry. Once an
algorithm has been found that can correctly estimate the complexity of a given
model family it can easily be implemented, provided it is reasonably fast and
efficient.

4.4 Evaluation of the application

The Statistical Data Viewer was first of all intended for scientific research. But
throughout the design great care was taken to give students easy access to the
theory as well. Therefor the application must be evaluated twice, as a research
tool and as a teaching tool. Up to now only a handful of researchers and students
have tried the application and the results are preliminary.
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4.5 Further research

The research tool. As a research tool, the application was a success, beyond
the expectations. The object oriented setup of experiments resulted in an effi-
cient and robust experimental environment. The speed and ease of use of the
interface not only allowed us to conduct the broad range of experiments we had
in mind but uncovered phenomena unknown to us and allowed us to explore
them immediately. It turned an abstract and remote theory into a tangible
object of study.

A particularly nice experience was the use of the application in discussions.
Changes to the setup of an experiment could easily be followed by the discussion
partner, the results are immediate and clear, there are few misunderstandings.
This allows for a rapid and fruitful exchange of ideas.

The teaching tool. As a teaching tool the Statistical Data Viewer was also
successful. The concepts in use are clear, the problems can be easily isolated and
the whole problem space is at once accessible to the student. Little instructions
and no programming is required and it is almost impossible to fail to set up a
meaningful experiment.

Objects vs. functions. The Statistical Data Viewer uses an object ori-
ented approach to mathematics and tries to transfer the control structure to
the graphical representations of the objects. This stands in contrast to the
common mathematical packages. They are function oriented and rely heavily
on scripting. This was never experienced as a draw back. There is no reason
to assume that mathematical packages have to be function oriented simply be-
cause that is the way most mathematical concepts are defined. The function
oriented approach of mathematics is nothing but a notational convention that
can change with the media of communication.

The transfer of control to the graphical representations did also not lead to any
problems. The amount of time needed to understand the application and to
set up the first meaningful experiment can be counted in minutes, not in hours
or days. Even experienced users of the common mathematical packages need
considerable time to setup a meaningful experiment, and due to the complexity
of the scripts there always remains a comparatively high chance of errors in the
definitions of the experiment.

The Statistical Data Viewer does not exclude scripting, though. Any extension
of the functionality will have to be programmed. The important difference is
that the definition of a mathematical function and the use of it in experiments
is strictly separated.

4.5 Further research

The application has indeed proven to give good access to a very abstract theory,
to help researchers gain valuable new insight and to give outsiders easy access
to the complex problems involved. There are concrete plans to extend the
Statistical Data Viewer to more dimensional data and to add other important
families of models: splines, ARMA models, Markov chains, wavelets, neural
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4 DISCUSSIONS & CONCLUSIONS

networks and decision trees. There are variants of MDL and other methods for
model selection that were not discussed in this thesis.

There are also aspects of model selection that want to be made more precise: the
effects of smoothing, the precise nature of the critical points, , research on the
structure of the predictions, and taking account of arbitrary cost functions10.
Especially the structure of the predictions promises to be an area of fruitful
research as little is known about them and as it seems to be very difficult to get
hold on them without an application like the Statistical Data Viewer .

On the application level the graphics need to be further integrated into the
control structure of the application. The XML interfaces need to be improved
and the distribution of calculations over a network of computers should be
supported. The programming interfaces as a whole should be simplified.

But the most challenging task seems to be the acceptance of an experimental
visualization tool by researchers that work on fundamental theory.

4.6 Theory & visualization

The preface mentioned the notorious inaccessibility of statistics and complexity
theory. Part of the problem is the limited use of suitable research tools that give
tangible results. The Statistical Data Viewer proves that this is not a technical
problem. Even a master student can build a reasonable application.

I personally have the feeling that the importance of experimental visualization
tools is not well understood in statistics and complexity theory. For example,
many of the otherwise excellent lecture books that I have seen during my study
of Artificial Intelligence in Groningen missed some basic facts about overfitting
that are immediately revealed by the Statistical Data Viewer . Those same mis-
understandings repeatedly emerged when I discussed the results of my project
with leading experts. They include:

• ignorance of the fact that overfitting can and should be avoided even
when the model family is a bad choice for a given learning problem. Cross-
validation has proven throughout that this is possible and we have already
discussed in Section 1.2 that we cannot always choose a family that is
optimal for a given problem.

• confusion over what a good model is. Many experts firmly believe that
a model of the same family and degree as the original signal will always
minimize the generalization error. This was discussed in Section 1.3.

• confusion over the definition of real overfitting. This was discussed in
Section 2.4.

• the extend to which the original signal and a model that heavily overfits
overlap. In all the experiments conducted during the work on this thesis,
a model that heavily overfits still follows the original signal very closely

10 Currently only the mean squared error is used. See Section 2.2 on page 23 for a discussion
of cost functions.
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4.6 Theory & visualization

for the most part of the support range of the x-axis. In contrast, most
text books that I have seen suggest that the overfitting model and the
original signal should deviate almost everywhere.

Also, the theory group in which I did this research found it difficult to agree that
experimental visualization tools can help theory in many ways. As put by Paul
Vitányi, “If you can see it, it’s not theory.” According to such views, deduction
is the only legitimate tool to navigate the oceans of fundamental theory. For-
tunately, in his fundamental work on undecidability [Göd31], Kurt Gödel has
once and for all shown that you can always make true statements about a the-
ory strong enough to contain arithmetic that cannot be proven in that theory.
There are examples of powerful mathematical hypotheses that sprung up from
experiments and that gained considerable momentum without being proven: the
Riemann hypothesis [Rie59]11, unproven since 1859, and the Shimura-Taniyama
conjecture [Shi71]12 which stayed unproven for forty years. Experimental tools
like the Statistical Data Viewer can reveal important properties of MDL that
can be very difficult or even impossible to deduce from the theory.

We conclude this argument with a scene from Berthold Brecht’s play Life of
Galileo [Bre95]:

Some scholars from the university of Florence visit Galileo Galilei at
his home. He wants them to look through his modern telescope and
see the moons of Jupiter. They are inconsistent with the Ptolemaic
model of the universe. The scholars refuse. If Galilei cannot give
a formal proof for the existence of such moons, why should they
believe his telescope?

11 The Riemann hypothesis states that the complex zeta function

ζ(x) =
1

Γ(x)

Z ∞

0

ux−1

eu − 1
du (46)

has infinitely many nontrivial roots and that all of them have real part 1/2. Among others,
the Prime Number Theorem depends on this.

12 Yutaka Taniyama conjectured in 1960 that every elliptic curve defined over the rational field
is a factor of the Jacobian of a modular function field. The Shimura-Taniyama conjecture
was finally proven in 1994 through a tremendous effort by A.J. Wiles, thereby proving
Fermat’s theorem as well [Wil95].
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5 Summary

Theory. Model selection plays an important part in machine learning and in
artificial intelligence in general. It is used in many advanced applications. A
central problem to model selection is overfitting. It can be measured as the
generalization error on test samples. But minimizing the generalization error is
not the only definition of a good model. Resemblance of the original function
and minimum randomness deficiency are others. While we are not interested in
resemblance of the original function we do want to know if minimum randomness
deficiency and minimizing the generalization error can be combined.

Kolmogorov complexity is a powerful mathematical tool. It is a basic concept
in statistics and computer science. It cannot be computed but it is highly useful
for proving bounds and existence for weaker notions of complexity. One of the
motives that brought about the conception of Kolmogorov complexity was data
prediction. This has finally resulted in the theory of MDL for model selection.
MDL selects a model that minimizes the combined complexity of model and
data, known as the two-part code. It has been proven that MDL minimizes
randomness deficiency [VV02].

Early attempts to reliably estimate model complexity were not very successful.
Mixture MDL abandoned the two-part approach altogether and concentrated on
the complexity of the data given the degree of the model, not a particular model.
In [BL02] A. Barron and F. Liang have combined this version of MDL with the
minimax approach, looking at data complexity from a worst case perspective.

Experimental verification. One of the prominent problems in statistics is the
availability of appropriate data. Another is the limitations that scripting im-
poses on the choice of experiments. To efficiently map the performance of MDL
on as broad a selection of problems as possible we introduced our own appli-
cation, the Statistical Data Viewer . While intended for the advanced scientist,
it has an interface that is easy enough to use to allow uninitiated students to
explore and comprehend the problems of model selection. Its interactive plots
and sophisticated editor allow for a fast and efficient setup and execution of
controlled experiments.

All the relevant aspects of model selection are implemented. The problem space
consists of two-dimensional regression problems and the models are polynomi-
als. To objectively measure the generalization error we use i.i.d.test samples.
To compare MDL to an independent successful method for model selection we
implemented cross-validation. The application can easily be extended to other
problems, models and methods. This thesis includes a manual and some details
of the implementation.

Already in the early experiments a number of critical points emerged that are
essential to the evaluation of a method for model selection: 1) the origin or
0-degree model, 2) the optimum model, 3) the region of good generalization:
better than half way between the origin and the optimum, 4) false minima and
5) the point of real overfitting where the generalization error becomes forever
worse than at the origin.
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The experiments described in this thesis include 1) a single frequency sinus
wave with Gaussian noise, 2) the step function with Gaussian noise, 3) a non-
uniform support for the Lorenz attractor, plus Gaussian noise, 4) normalization
of the same problem to the support interval [−1, 1], 5) the Thom map plus
different types of noise—Gaussian, uniform, exponential, Cauchy—and 6) two
noisy pendula plus Gaussian noise to simulate multiple sources.

Conclusions. The original version of MDL as proposed by Rissanen failed for
almost all problems. Mixture MDL on the other hand proved to be of almost
equal strength with cross-validation. The only problem where it consistently
failed was a non-uniform distribution over the support. Cross-validation proved
that the samples contained enough information for correct predictions and we
attribute the failure to a weakness of the theory that will hopefully be cured.

Another point of concern was smoothing. Cross-validation was of little use
without it. The generalization analysis would also have benefitted from it as it
would have removed the false minima and would have resulted in more reliable
criteria that the other methods would have to fulfill. But it would have obscured
the excellent quality of the per model predictions of mixture MDL for low degree
models. Rissanen’s original version and mixture MDL did not need it.

The minimax version of mixture MDL proved to be very indifferent to various
types of noise. If we assume that the training and the test sample are i.i.d.this
falls short of the optimum. On the other hand, if we relax our assumption
that training and test sample are i.i.d.we are presented with an even stronger
theory: mixture MDL is capable of good prediction even if the distribution over
the measurement noise changes.

Where MDL was able to prevent overfitting we observed that the per model
predictions accurately reflected the per model generalization error. This led us
to formulate the hypothesis that mixture code length is a good approximation of
the expected log generalization error on samples that are i.i.d.distributed with
regard to the training sample.

The experiments of this thesis and some tests by potential users have shown that
applications like the Statistical Data Viewer are a real alternative to the common
mathematical packages. There is a general need in modern tools for statistical
research and there are concrete plans to extend the application. The biggest
challenge is to convince the research community to cooperate. Researchers
working on fundamental theory tend to view such visualization tools as non-
theoretic.
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A The random processes

The Statistical Data Viewer uses a dynamic range of randomized time series to
create interesting two-dimensional learning problems. Most of them are common
in nature. They include sinus waves, fractals and the step function.

In all graphs the x-axis shows the time t and the y-axis shows the value y as a
function of t. When more than one variable changes with time, only the y value
is visualized in the graph and considered for model selection.

Autoregression. Autoregressive time series are particularly common in na-
ture. The value yt at time t of such a series is the weighted sum

yt = a0 +
n∑

i=1

ai yt−i + ε (47)

over n previous values of y. ε is the system noise. The Statistical Data Viewer
allows to specify six different parameters a0–a5 but three parameters is usually
quite enough. Figure 19 shows an example with a1 = 0.5, a2 = 0.5 and the
other parameters equal to zero:

Figure 19: Autoregression

Sinus wave. The sinus wave is also very common. Five frequencies can be
specified, each with an individual offset. The resulting function is

f(x) =
5∑

i=1

sin(fi x + oi) (48)

The example in Figure 20 uses zero offsets and the four frequencies f1 = 1.05,
f2 = 0.8, f3 = 0.55 and f4 = 0.15:

Lorenz attractor. The famous Lorenz attractor is a self similar object. It is
also a time series. E.N. Lorenz discovered it when he was working on models of
the weather [Lor63]. Its evolution is governed by the equations

yt = a (zt−1 − yt−1) + ε

zt = byt−1 − zt−1 wt−1 + ε

wt = yt−1 zt−1 − c yt−1) + ε

(49)
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Figure 20: Sinus wave

z and w are not shown in the graph and are not considered in the experiments.
The default values are a = 10, b = 28, c = 2.667:

Figure 21: Lorenz attractor

Pendulum. The movement of a noisy pendulum with orbit o and frequency f
is defined as

yt = sin
(
yt−2

)
− c yt−1 + f cos

(
o (t− 2)

)
+ ε (50)

The example in Figure 22 has c = 0.2, f = 0.5 and o = 0.67.

Figure 22: Pendulum

Step function. The step function oscillates n times between two values. The
example in Figure figure-step-function has n = 10 and oscillates between minus
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A THE RANDOM PROCESSES

Figure 23: Step function

ten and ten. The points where the function switches between values are chosen
at random. The same non-zero seed will produce the same step function.

Thom map. The Thom map is also a time series. R. Thom [Tho93] discovered
it when he searched for a simple discrete equivalent to the Lorenz equations
which were defined for continous time.

Figure 24: Thom map

yt = a yt−1 + b zt−1

zt = c yt−1 + d zt−1

(51)

z is not shown in the graph and is not considered in the experiments. The
example in Figure 24 has a = 0.5, b = 0.3, c = 0.3 and d = 0.4.
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B Core algorithms

Least square fitting. The method for linear regression used in the Statistical
Data Viewer is least square fitting based on Gaussian elimination. A k-degree
polynomial has k + 1 parameters:

fk(x) = a0 + a1x + · · ·+ akxk (52)

The squared error between such a polynomial and an n points sample
{(x1, y1) . . . (xn, yn)} is

σ2 =
n∑

i=1

(
yi − (a0 + a1xi + · · ·+ akxk

i )
)2

, (53)

the partial derivatives of which are

∂σ2

∂a0
= −2

n∑
i=1

[
yi − (a0 + a1xi + · · ·+ akxk

i )
]

= 0

∂σ2

∂a1
= −2

n∑
i=1

[
yi − (a0 + a1xi + · · ·+ akxk

i )
]
x = 0

∂σ2

∂ak
= −2

n∑
i=1

[
yi − (a0 + a1xi + · · ·+ akxk

i )
]
xk = 0

(54)

which can be rewritten in matrix form as
n

∑
x . . .

∑
xk∑

x
∑

x2 . . .
∑

xk+1

...
...

. . .
...∑

xk
∑

xk+1 . . .
∑

x2k




a0

a1

...
ak

 =


∑

y∑
xy
...∑
xky

 (55)

The left part of (55) is a Vandermonde matrix and it is accessible under this
name in the application. A Vandermonde matrix can be calculated in O(k n)
time while the number of multiplications per term xy does not exceed log y,
minimizing the rounding error [PFTV92].

Actually, since all algorithms are slowed down by higher precision, the time
complexities have to be calculated as a function not of k but of k log d with d
the precision in bits or digits. This is neglected for the sake of readability.

The next step in the algorithm is to put the k × k Vandermonde matrix into
echelon or lower triangular form where all values below the diagonal are zero.
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B CORE ALGORITHMS

During the triangularization all operations on rows of the matrix are applied to
the same rows of the solution vector to keep the them consistent. The result:

1 v0,1 . . . v0,k

0 1 . . . v1,k

...
...

. . .
...

0 0 0 1




a0

a1

...
ak

 =


s0

s1

...
sk

 (56)

with vn,m the values at row n, column m after triangularization and sn the value
of the solution vector after triangularization. Triangularization by Gaussian
elimination can be done in O(k3) time. Once the matrix is in triangular form
we store it to calculate any polynomial of ≤ k degree at any precision in O(k2).
During the process of Gaussian elimination a vector is set aside by which the
determinant of any Vandermonde matrix ≤ k can be obtained in O(k), a time
saving byproduct which is important for mixture MDL.

The parameters of the r-degree polynomial can be read recursively from the
triangular matrix, starting with the highest parameter which is equal to sr of
the right hand solution vector. The recursive formula for parameter pr−s with
s ≤ r is

pr−s = sr−s −
s∑

i=1

[vr−s,r−i × pr−i] (57)

Rounding problems. Computation and triangularization of the Vandermonde
matrix has to be done at a precision high enough to safeguard against obvious
rounding errors but low enough to guarantee a fast performance. As a general
rule, a precision of 2k digits is used for k-degree matrixes, which works well for
every matrix of k ≤ 150. This is way above the 70–100 degrees recommended
for most operations because of slow performance beyond that point.

When we calculate a parameter vector of precision d < 2k it is of great impor-
tance where in the algorithm we round off. The choices are:

Late rounding. The vector is calculated at the 2k digit precision of the
matrix. Only the final result is rounded to d digits.

Early rounding. Each parameter is rounded instantly to d digits and then
used to calculate the other parameters.

Before reading on the interested reader is suggested to answer for him or herself
which method gives the better result.

I asked four experts in statistics and algorithms and all of them gave the wrong
answer. Late rounding does not give the better result. I implemented both
versions and found that early rounding reduces the number of digits needed to
achieve the same performance by a factor of 2. The error of a parameter vector
of d digits precision obtained with late rounding is roughly equal to that of a
vector of d/2 digits obtained with early rounding.

More than anything else, this example should make it clear that the size of an
actual implementation cannot be used to estimate the complexity of a model.
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