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Summary

A study has been done on the reading of handwriting by machines and humans. In studying
the reading of isolated handwritten words by the stroke-based script recognizer, developed at
NICI, it was found that with combining different lexical post-processing methods for machine
reading, the performance of a handwriting recognizer becomes significantly better. Especially
the top five list of possible solutions will more often contain the correct word.

In studying the reading of isolated handwritten words by humans, we propose a new
method which helps to identify and map the features which humans use in reading. With this
new method, the subjects themselves can point out which parts of the word are considered
important for recognition in a simple point and click setup. Independent variables as global
luminance of the word trace can be manipulated.

In comparing machine and human reading, we found that the major difference between
machine and human reading is the fact that the computer can not come up with a non-
word, which makes the resulting solutions sometimes far from intuitive from the human point
of view. This is also the reason why the distance between computer wrong answers and
the correct answer is much larger than the distance between human wrong answers and the
correct answers. Finally, some suggestions are made in the area of the ergonomics of a pen-
based computer. If the first and last letter of a word are correctly recognized, an incorrect
solution would be better accepted by the user. Also, if the humans would understand why
the computer makes some errors, this would help in the acceptance of computer handwriting
recognition.
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Chapter 1

Machine and human reading

1.1 Introduction

When we want to communicate with a computer we currently use a keyboard or a mouse or
track ball as a medium. It is expected that in the near future speech and handwriting will
also be commonly used for human-computer interaction.

Speech recognition as a medium between humans and computers is very natural, but in an
office environment, for example, this may cause difficulties since everybody would be talking
to their computers. The use of a pen is also more natural than the use of a mouse or track-ball
[30], because we learned this at a young age. An advantage of using a pen is that it is easy to
point at something specific on the screen. Using speech for pointing or object selection would
be more complex in such a situation.

This thesis concerns handwriting recognition. Many difficulties which are encountered
in speech recognition research are the same for handwriting recognition research. Just like
among human speakers, there is a great variability between human writers. Everyone has
their own personal style, which makes it very difficult to develop a universal handwriting
recognizer. Especially when people write in cursive script there are many problems to make
the right segmentations [21]. The letters within a word consist of different numbers of strokes
and often are connected to each other with an extra stroke. An example is the difference
between <cl> and <d>, which can be very small. This causes words like <clump> and <dump>
to be confused (see figure 1.1). If a computer starts reading a word, already at the first few

Figure 1.1: The difference between <cl> and <d> can be very small. This causes words like
<clump> and <dump> to be confused.

strokes there are many letter possibilities.

The major distinction which can be made in handwriting recognizers is between off-line
recognizers and on-line recognizers. In the next two sections these approaches will be described
in more detail.
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1.2 Off-line handwriting recognition

In off-line handwriting recognition, the recognizer recognises handwriting presented on a piece
of paper (Optical Character Recognition, OCR). This type of recognizer can be used in the
reading of bank cheques, or can be used as a part of automatic mail-sorting machines. Prob-
lems of off-line handwriting recognition are: vagaries of different pen types, wide strokes which
frequently overlap and a lack of order information [31] (although some stroke-order informa-
tion can be determined off-line [1], overlap of stroke and connected letters may pose serious
problems). A typical OCR-system consists of the following components [5]:

1. Optical scanning: a digital image of the original document is made. A disadvantage is
that this cannot be done real-time, at the time of handwriting production.

2. Document segmentation: the text has to be found in the scanned image. Problems are
that images or backgrounds have to be distinguished from text and that the different
regions have to be segmented.

3. Word segmentation: problems in finding where one word ends and the next begins.

4. Stroke or letter segmentation. A stroke is defined as each ink-segment between two pen
lift-ups. There are problems in finding the different strokes or letters.

After this stage the ‘ink’ object selection has been done. Subsequent stages are focussed
on processing a selected ink object (i.e., either characters or words).

5. Preprocessing: smoothing the digitized objects and normalizing size, slant and rotation.
6. Feature extraction: capture the essential geometrical characteristics of the objects.

7. Classification: identifying the object as being a member of a shape class. This can be
done with the help of neural network models, statistical models, etc.

8. Post-processing: transforming classified ink objects into words and sentences, making
use of a dictionary, syntax, or other forms of high-level context.

Existing OCR-systems have a high recognition percentage in reading machine fonts and
reading digits. The performance in reading isolated handwritten characters is reasonable, but
reading cursive script is still very difficult [34].

1.3 On-line handwriting recognition

On-line handwriting is a different area in handwriting recognition. A pen-based computer
only consists of a flat display which records and displays the movements of the pen tip in time
[18]. The advantage of on-line handwriting recognition is that it can be used for interaction
with the computer. Recognition is done immediately, in contrast to off-line recognition where
the handwriting first has to be scanned (which is time-consuming). On-line handwriting
recognition makes it possible to have very small, wireless, portable computers, without a
keyboard (Personal Digital Assistent, PDA). Disadvantages are that the user has to adapt to
writing on a liquid crystal display (LCD) and that the recognizer has problems when users
make corrections in their handwriting, since it uses the time of writing as a parameter.

At the NICI (Nijmegen Institute for Cognition and Information) in Nijmegen, research is
being done to develop an on-line handwriting recognition system. This system contains eight
major modules or stages [29]:

Master’s Thesis P.C.J. Segers July 1996



1.3. On-line handwriting recognition 3

o Stage 1: On-line recording of handwriting. The writing is done on ‘electronic paper’
consisting of a liquid crystal display plus integrated digitizer.

o Stage 2: Word-based pre-processing consisting of low-pass filtering (to remove the noise
from the digitizing tablet and physiological and (bio)mechanical sources) and differen-
tiation.

e Stage 3: Segmentation into intended movement units (‘strokes’ - in on-line handwriting
recognition a different definition is used than OCR -). This segmentation is based on
the writing speed. At the start and end of a stroke, the writing speed is very low, while
in the middle of a stroke the speed is high. So if the pen-tip velocity reaches a minimum,
this point in time marks a boundary of a velocity-based stroke (VBS). Next to VBSs,
white spaces, dots and t-bar crossings are to be found.

e Stage 4: Normalization of various motorical degrees of freedom (slant, size, etc.).

e Stage 5: Computation of feature values (‘feature vector’) per stroke which are motor
invariants or salient to the human perceptual system, followed by the quantization of
stroke shapes using a self-organising Kohonen [16] network. Figure 1.2 displays a picture
of a Kohonen net. Each stroke which is written is matched to the prototypical stroke in
this network. The identity (i,j) of the best-matching cell is used as a basic stroke code.
Thus, the Kohonen network is used as a form of feature vector quantization. Before the
recognizer goes to the next step, the original handwriting is ‘rewritten’ with help of the
Kohonen net.
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Figure 1.2: Kohonen network with stroke lexicon from 40 writers.

e Stage 6: Construction of allographic (i.e. letter-shape) hypotheses from sequences of
quantized strokes. Figure 1.3 shows an example of this for the word ‘breakdown’. For
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4 Chapter 1. Machine and human reading

h--]Jela--]h--]1r-] h--] n-] n-]r
llr]le-Ju-]1l]lsln-]d--] olr]jo]lw——]
b-]Jo-]loa-le? a--]cl]l] i w——]r]o]
t-—-]11-?c t—--]r] ele? v-] o-] r]
k—=—-la--]d--] alrlslb-Julu-] r-]
b--11]elelt] c] t—-—] r-] rr]
tls]c] o] k—=]i-]1 k--] a-]r] v]
h-] d--] h-]lo]d-—-] u-Jlrls] i
t-]JoJu-112t-11 c¢c-] h-] d-? u-]
flrr a-] d-]s-—] d-] o-1 v]i 1]
1 i d-? a-?z-] e-]tln-]r uls e?
ez]d——] 1if-1s] 1-?b——]r] iz—-]
e] u-] o-] b-]Jo-lo-lk-]s] jn-]
t]le-]slr] k-] a-J]t-]i-] a—]
1-2 clcflz] s=]1lrlz——]r-]1c]
k=]rli] 1 s d-2f] v]i x—1]
a-]c] e d-Je z—]s-]ul
d-? n-] t] a-?t-] s i-]

b-] old-] c f-?r-] r—]
t-] n-] o—] s—] olr
f-2t-1z d] x—]

t] c i av o]

o—-]1i

V]

Z

Figure 1.3: The written word ‘breakdown’ and the allograph hypotheses from the recognizer.

this stage a transition network is being used which contains probabilities that two con-
secutive and consistent stroke interpretations of an allograph follow each other up in an
n-stroke allograph (so for example the first stroke of a three-stroke <a> is followed by
the second stroke of the same three stroke <a>, which is followed by the last stroke of
the same <a>: al/3 — a2/3 — a3/3 | ax/3). In principle, when the allograph is known,
the letter-code is known. Confusion can be caused for example between <0>, <O> and
<o0>, which can have equal allographs.

o Stage 7: Construction of word hypotheses from sequences of allographic hypotheses. For
this step, a large dictionary is being used.

o Stage 8: Presentation of most likely word hypotheses to the user.

A separate mode of operation of this system is the supervised learning of the relation
between stroke-vector sequences and allographs. Here, at system design time or at the moment
of actual system use, human intervention is needed to manually attach letter labels to stroke-
vector sequences.

The average performance of this handwriting recognition system is about 75% for hand-
written words of handwritings it is familiar with and a bit lower for unfamiliar handwritings.
The system is writer-independent and recognizes cursive, mixed-cursive and hand-printed
words. Compared to other on-line recognizers the system has an average performance.

This thesis concentrates on the seventh and eighth stage: (1) How to get from letter
(allograph) hypotheses to word hypotheses, and (2) how much confusion between words is ac-
ceptable for the human users? The basic tenet is, that users will like a handwriting recognizer
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1.4. Research on human reading 5

better, if the (unavoidable) classification errors are ‘intuitive’, as opposed to the often bizarre
misclassifications of current systems. What we want is the computer to act more humanlike.
To achieve this, we have to look at both sides: human reading and machine reading.

1.4 Research on human reading

We first take a brief look at human reading. In psychology there is much research being done
on this topic. In 1969, Morton [20] proposed the logogen model. Logogens are representations
of words in our brains. When a representation is activated enough and a certain threshold is
reached, the word is recognized.

McClelland and Rumelhart [17, 25] propose a parallel model of word recognition: the
interactive activation model. The letters in a word are processed in parallel and lead to
identification of the word.

The activation-verification model of Paap et al. [22] has a lot in common with the interac-
tive activation model. In their article, Paap et al. dedicate a section to the comparison of the
two models. Both models can predict and explain the effects of lexicality, orthography, word
frequency and priming, although the mechanisms used for these predictions can be different.

Fleming [6] deals with the question whether or not phonology contributes to the activation
of the meaning of a word during printed-word recognition in the same matter as it does
during spoken-word recognition. His experiments show that phonology does not play the same
mediating role during printed-word recognition as it does during spoken-word recognition.

Some investigations show that word shape information is used to facilitate lexical access
[19, 10]. Paap et al.[23] on the other hand found evidence that information about visual form is
lost early in the process of word recognition, but that word recognition is highly dependent on
the identification of abstract letter units. All this research has been done on well segmented,
machine printed words.

Handwriting, and especially cursive script contains fused characters. At the NICI, Brassé
[2] found that the global contour (see figure 1.4) of words can help in the recognition of
handwritten words. A frequent word with a unique word contour (with ascenders and

wordshqge

Figure 1.4: The global contour of a word can help in the recognition of handwritten words.

descenders) is recognized better than either a less frequent word, a word with a commonly
occuring contour, or a contour without ascenders and descenders.

1.5 Use of within-word context in machine reading

Several machine-reading algorithms are based on the above described hypotheses from psy-
chology. In going from letter to word hypotheses, machine reading can roughly be divided in
left-to-right reading and parallel reading lexical post-processing methods.

o Left-to-right machine reading methods are methods which are letter-based. The com-
puter reads the word beginning at the first and ending at the last letter, without ‘looking’
at the whole word. Examples of left-to-right reading methods are:

Master’s Thesis P.C.J. Segers July 1996



6 Chapter 1. Machine and human reading

— Tree-search. Wells [38] discusses a 26-way tree, with a route for each letter at every
node. To reduce the needed amount of memory, non-existing letter combinations
in the recognizer output can be pruned. The tree becomes a representation of the
dictionary (see figure 1.5). This method of lexical presentation is called a ‘trie’

o

O—L OO
o
\@@g@—o

o -0

Figure 1.5: Small tree for the dictionary: dog, doggy, dogged, day, days. A circle with a dot
indicates the end of a word.

[4]. The advantage of this method is that searching is simple, efficient and fast. A
disadvantage is that it costs a lot of memory.

— N-grams for pruning. The data structure is a letter graph representing the whole
word, where nodes are the possible letters [39]. N-grams (bigram, trigram, etc.) are
being used to delete non-allowable combinations of nodes (pruning). In a language
as [talian there are a limited number of bigrams and trigrams, so this would be a
good method. In a language like Dutch, the number of bigrams and trigrams is
much larger, which reduces the effectiveness of the method.

— Markov models. Guyon and Pereira [9] describe a Variable Length Markov Model
(VLMM) as an alternative for the use of n-grams. VLMMs predict the next char-
acter given a window of past characters. Unlike n-grams which use a fixed window,
VLMMs optimize locally the size of the window. This way, a better performance
is achieved, with fewer parameters.

e Parallel machine reading methods are word based. The whole word is considered by
looking for example at it’s outline shape. Examples of parallel machine reading methods
are:

— Word-image features. By making use of the outline shape of the word , the size of
the dictionary is reduced considerably [13]. The outline shape of a word is a global
feature (every word has an outline shape). Local features (features which are not
always present) can also be used, for example crossings, edges etc. Simon refers
to these features as singularities [32]. An example of a crossing-feature is given in
figure 1.6.

— Logogen model. Higgins and Bramall [14] describe an on-line cursive script recogni-
tion system in which the logogen model has been of guiding influence. The system
uses a blackboard model in which values are given to candidate words.

Master’s Thesis P.C.J. Segers July 1996



1.6. Description of the research project 7

Figure 1.6: A crossing is a local feature.
— N-grams using word-scores. Words in the dictionary get scores if there is a matching

n-gram. The parallel part of this method is the computation of the word-scores.

None of these techniques however produce errors which are ‘intuitive’ or understandable
from the point of view of a human user. For example, <showman> can be ‘recognized’ as
<lieutenant>.

At the NICI in Nijmegen, the above described ideas have been used to implement four
post-processing methods, which need to be evaluated. Also the idea of local features is very
interesting, because it has not yet been investigated if humans also make use of these features.
In the next section will be described what kind of research will be done in this project.

1.6 Description of the research project

This thesis can be divided into two major parts:
1. Research on machine reading (chapter 2).
2. Research on human reading (chapter 3).

In chapter 4, a comparison is made between machine and human reading.

1.6.1 Machine reading

The next chapter starts with an introduction of several post-processing methods. We want to
compare these methods of machine reading, and contrast the errors which are produced with
human reading errors. At the NICI currently four different methods are being developed and
need to be investigated:

1. Tree-search: a method which makes use of binary search to test if a word exists.
2. Fuzzy word matching: a method which uses word scores.
3. Trigram matching: a method which also uses word scores.

4. Word contour: a method which makes use of lexical subsets.

Word contour for example reduces the dictionary to a list of most probable words by
making use of the ascender and descender information in the global word contour. The
methods will be described in more detail in the next chapter.

Master’s Thesis P.C.J. Segers July 1996



8 Chapter 1. Machine and human reading

For the case of isolated characters it has been shown that combining methods gives better
results [12]. Powalka, Sherkat and Whitrow [24] performed experiments which proved that
combining recognition results at the word level also improves the recognition rate. We think it
could be very useful to combine left-to-right machine reading methods with parallel methods.
The brittleness of a left-to-right method is after all that if one letter in the word is not recog-
nized, the correct solution can not be found anymore. Combination with a parallel method
may help to solve this problem. Combination algorithms are currently under development.

A test environment will be prepared in which these four methods can be compared. There
is enough test material at hand at the NICI, but a suitable test set has to be composed.

After the preparation, we can run the tests. First, every method will be tested separately.
Special attention will be paid to what kind of errors every method makes. It is not useful
to combine methods which make the same errors, but it will be tried to combine the right
methods to get an optimal recognition percentage. If all the tests are done, the results can
be evaluated. An in-between evaluation may be necessary when all the methods have been
tested separately.

1.6.2 Human reading

This part of the project starts with a literature study. Findings concerning the different
psychological hypotheses will be discussed in chapter 3.

In order to make a comparison with the machine results, an experiment with human
subjects will be prepared, viewing the human reader as ‘one of the recognizers’. The test
material will be the same as for the machine reading experiment. This means that the
humans have to read the words from a computer screen, since the words were written on
a LCD-integrated digitizing tablet ( recorded at 100 samples per second).

From results of an experiment on human recognition rates of handwritten words on paper
(see table 1) [28], it can be expected that even humans will not have a perfect recognition score
on this material, so enough errors will be made to compare with the errors made with machine
reading. With the experiment we want to find out which and how many errors humans make
in reading the same test set of isolated words as the computer had to read.

Table 1.1: Human recognition rates of handwritten words on paper. Fxperiment A: single-word
recognition, B-D: three-word sequences, middle word recognition [28].

FEzp. | Context Style Writers | Target words | Readers | Words, recognized

A frequently-used Dutch words handprint 1 30 12 360 98%
frequently-used Dutch words neat cursive 1 30 12 360 88%

B sentence fragments, same writer cursive 3 15 12 180 85%

C sentence fragments, same writer cursive 4 13 20 260 85%
unrelated words, same writer cursive 4 13 20 260 7%

D unrelated words, same writer fast cursive 12 12 15 180 72%
unrelated words, different writers | fast cursive 12 12 15 180 54%

Also we want to find out in the same experiment, which features humans need/use to
recognize a word. There has been done a lot of research on feature detection, we will present
a new method which uses the subject’s point of view instead of that of the researcher.

The words will be hardly legible when presented to the subjects. They have to indicate
themselves which part of the word they need to be able to recognize it.

Master’s Thesis P.C.J. Segers July 1996



1.6. Description of the research project 9

In chapter 4, the differences between the results of the human recognition and the computer
recognition will be discussed. If the integrated computer method would make the same errors
that humans make, we have a device which would be more acceptable for humans, because
the errors would be ‘understandable’.

1.6.3 Research questions

With the results from the experiments the following research questions can be answered:

o What combination of machine reading methods has the best results?
e Which features do humans use/need to recognize a word?

e Do the errors which the computer makes relate to the errors humans make?

The results of this study may help to improve the quality of the interface of a handwriting
recognizer. In practical interfaces, we observed the interesting phenomenon that the human
user does not accept counter-intuitive word hypotheses coming from the recognizer. If we can
produce a lexical post-processing method which produces an order of word hypotheses which
is comparable to the word confusion matrix for humans, the prediction is that users will also
consider the system as ‘more usable’.
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Chapter 2

Experiments on lexical
post-processing in machine reading

2.1 Introduction

As has been described in the first chapter, this chapter starts with a description of four lex-
ical post-processing methods. These methods are the connection between letter and word
hypotheses in the recognition of handwritten words.. The methods described are being devel-
oped at the NICI and up till now, not much research has been done to compare the different
methods and to see how a combination of the methods can lead to better recognition results.

In section 2.2 the four lexical post-processing methods will be explained. In section 2.3 the
data-set which is used to test the methods is described. Section 2.4 describes which method is
used to obtain results and sections 2.5, 2.6, 2.7 and 2.8 show the results of comparing different
methods. The final sections of this chapter give a discussion and summary of the results and
a conclusion.

2.2 Description of four lexical post processing methods

2.2.1 The whole word method: hard matching

Hard matching is a deterministic tree-search method. It is a left-to-right machine reading
procedure, which uses a best first strategy to match the word to be read with a word in the
lexicon. First, a letter hypotheses graph is being made (see figure 2.1). The nodes in the
graph represent the letter hypotheses, the arcs represent the letter transitions. Subsequently
the letter hypotheses graph, a (partial) word-existence test is being performed, with use of
binary search to scan the lexicon.

2.2.2 The partial string approach: trigram matching

This method is partly left-to-right and partly parallel. Based on the number of strokes, the
word is divided into three zones (see figure 2.2). Trigrams are constructed from the letter
hypotheses. Every word in the lexicon which has one of these trigrams in the expected zone
gets a score. Also word contour information is used. This means that if the trigram contains
an ascender or descender which it should have, based on the ascender-descender pattern, it
gets a bonus score which is now set at 1.3 times the normal score.

11



12 Chapter 2. Ezperiments on lexical post-processing in machine reading

Figure 2.1: Letter hypotheses graph from the first few lines of the tree from figure 1.3 [11].

zone 1 zone 2 zone 3

Figure 2.2: The word is divided in three zones, based on the number of strokes.

The pseudo-code of trigram matching is as follows:

forall trigrams klm in lethyp space {
j = zone-of-trigram-in-input
forall words in lexicon{

wordscore[w] := wordscorex(Min(Ne,Nlex)/Max(Ne,Nlex))
i = zone-of-trigram-in-current-word
d = abs(i-j)

wordscore[w]+ = triqual[klm] * (1/(1+d))

}

Triqualis the combined quality of letter hypotheses, this trigram. The letter combination
klm is letter triplet k,I,m. Ne is the number of expected letters from the amount of input
strokes. Nlex is the number of letters of the word in this lexicon.

The weighting of the wordscore is done in order to compensate for the difference between
estimated number of letters in the input and in the current word of the lexicon.

2.2.3 Individual letter presence: fuzzy matching

Fuzzy matching is a method which looks at the whole word. The word is divided in zones
(number of zones is number of letters). The zones do overlap eachother, because it is not
known where one letter ends and the next begins (see figure 2.3). For every word in the
lexicon which has one of the letter hypotheses in the expected zone, the score is incremented.
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word

(TTTTTITTTTITTITTIT 16 strokes

expected letter zones

Figure 2.3: The word is divided in zones (number of zones is number of letters). The zones
overlap because it is not known where one letter ends and the next begins.

The pseudo-code of fuzzy matching is as follows:

forall letters 1 in lethyp space {
j = zone-of-letter-in-input
forall words in lexicon{
wordscorel[w] := wordscorex(Min(Ne,Nlex)/Max(Ne,Nlex))
i = zone-of-letter-in-current-word
d = abs(i-j)
wordscorel[w]+ = fuzqual[l] * (1/(1+d))

}
Fuzqual is the combined quality of letter hypotheses.

2.2.4 Usage of word contour information: the ascordesc method (trained
and guessed)

Ascordesc (an abbreviation which combines ‘ascender’, ‘corpus’ and ‘descender’) is a method
which comes before hard, trigram or fuzzy matching. Word contour information is used
to generate a subset of the lexicon which is sent to (one or a combination of) these three
matching methods. The symbolic ascordesc pattern is derived on the basis of stroke heights
and vertical positions of the input word. The ascordesc method comes in two variants:
ascordesc-trained and ascordesc-guessed.

The difference between ascordesc-trained and ascordesc-guessed is that in ascordesc-
trained, the generated ascordesc code is compared with the ascordesc (or contour) codes of
lexical subsets which contain the names of words which have been actually written by writers
contributing to a training set. In these lexical subsets is stored, for example, that <dog>,
<clog>, <day> etc. can be of the form <zlzj> (z for corpus-strokes, [ for ascender strokes and j
for descender strokes).

Ascordesc-guessed, on the contrary, makes use of a grammar (see table 2.1) by which ev-
ery word in the lexicon gets his or her own ascordesc-guess-patterns. For example <handwriting>
has among others the pattern <lzzzzlzzzlzzz;>. This pattern is compressed to <lzlxlx)>.
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14 Chapter 2. Ezperiments on lexical post-processing in machine reading

Table 2.1: A grammar for word contour information. © = corpus, | = ascender, j = descender.
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Figure 2.4 shows a schematic overview of the difference between the ascordesc-trained

and ascordesc-guessed methodes.

2.3 Data collection

The above described four methods (hard, trigram, fuzzy and ascordesc) are going to be
compared. The dataset which is used for this comparison was already available at the NICIL.
It was collected in a collaboration between Hewlett Packard (HP) and the NICI. This section
describes what the dataset looks like and how it is recorded. A version of this text already

appeared in papers of a workshop [27].

2.3.1 The dataset
Criteria

The data set to be collected:

e Had to capture style variation among writers,

e Had to capture style variability within a writer, as measured at occasions sufficiently

spaced apart in time,

e Had to be large enough to allow for a number of large-scale training/testing experiments,
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P.C.J. Segers

July 1996



2.3. Data collection 15

Stage 1:
xyz-coordinates Stage 7:
of the word. LEXICAL POST-PROCESSING

Hard matching

Stage 2: Stages 3,
PRE_PROCESSING 4,5 and 6.

Stage 8:
ASCII
word out

Trigram matching

Fuzzy matching

Pre-processed
data coordinates

ASCORDESC PATTERN DETECTOR

Derive symbolic ascodesc
pattern ("x1j") on the basis
of the stroke heights and
vertical positions.

Lexical Subset for
recognition matching.

v Wordlabel . "x1lj"-codes
: B ; LEXICAL SUBSET GENERATOR
L - - ol Selects lexical subset for Grammar with
! L. recognition matching. contour rules
, Training
Whole lexicon:
N ASCII word list
~ Applying
rules
Whole lexicon: list
of words with their
"x1lj"-code.
ASCORDESC OR ASCORDESC
TRAINED GUESSED

Figure 2.4: The difference between ascordesc-trained and ascordesc-guessed is in the origin
of the whole contour-based lexicon, which is trained by the user (left side of the figure) or
inferred via a grammar (right side of the figure). Stages 1 to 8 of the recognizer refer to
paragraph 1.3.

e Had to be of high quality as regards the signal properties, since deteriorated signal
conditions can easily be imposed post hoc.

Additional constraints: input unit

The data collection is word-oriented, since recognizers at both HP and NICI are based on
isolated scribble or word recognition. Also, this is the input chunk size currently handled by
most free style or connected cursive recognition systems. The letter level is only suited for
isolated handprint and digit data. The sentence level and higher (paragraphs, pages) impose
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16 Chapter 2. Ezperiments on lexical post-processing in machine reading

additional word segmentation problems which are difficult to handle at the moment. It is
not completely possible to compute word segmentation on the basis of bottom-up features
like white space or ink clustering: often lexical or even syntactical top-down information
would be necessary to disambiguate here. In many applications, however, the word-based
input is already useful, especially if recognition speed can be fast enough to not disturb the
human word production process (‘train of thought’) [33]. The words will consist of lower case
characters.

Additional constraints: word lexicon

The elements of a word list in handwriting collection setups is usually a subject of hot debate
due to the large number of possible criteria for inclusion (size, word length, character content,
digram content, trigram content, linguistic frequency of usage, etc.). In the collection setup,
two basic constraints were chosen, sacrificing some other criteria:

1. Bilinguality: the list must be bilingual in the sense that the same list can be written by
Dutch and English writers. This allows for the incremental collection of words in both
Nijmegen and Bristol. It will ensure that the Dutch writers will not feel uneasy writing
a foreign language.

2. Mazimum Digram Coverage: in connected-cursive and mixed-cursive handwriting, the
current character shape is determined by both predecessor and successor. The connect-
ing strokes come from a previous character, retaining effects from the starting position
and the angular velocity (clockwise, sharp, counter-clockwise), and may exert an effect
on the first strokes of the current character itself. Similarly, the anticipation of the
next character may lead to distortions of the final stroke(s) of the current character. To
obtain a reliable overview on character production strategies, as much digrams from the
26x26 transition matrix must be present in the word list. Actually, there are 27 symbols,
including the space symbol (identifying Begin-Of-Word and End-Of-Word conditions).

In order to build a word list that fulfills the aforementioned criteria, the following approach
was taken:

e Word List 1: 50k Dutch words.
o Word List 2: 50k English words.

e These two word lists were ran through the Unix comm command, yielding a list with
3251 words common to both languages.

o As the resulting list was too large for the data collection process, it condensed with a
dedicated program in C which created a subset of words with the criterion of maximum
digram coverage. This means that all (27x27) digrams present in the input list will be
present in the output list. The program is based on stochastic optimization, iteratively
picking a word from the input list with a low probability, and only adding it to the
output list if it contains new unseen digrams. This was done several times, choosing a
final list which was acceptable (decency, not too difficult to spell, etc.). The resulting
word list contained 210 words. Due to the selection algorithm, the words are slightly
longer than average English words.
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2.3. Data collection 17

e A number of words was manually added because of their interesting (but low frequent)
digrams. An example is the <z-y> digram in ‘xylophone’. For this word, the English
spelling was used which is more acceptable to Dutch writers than ‘xylofoon’ would be
for English writers. The final list consists of 210 words (Appendix I).

The word list contains many international concepts (e.g., ‘algebra’), geographical names,
technical terms, Latin-origin words, French-origin words, as well as words which happen to be
spelled the same in both languages, but may have a different meaning (‘trekking’). After the
writing sessions, the subjects were asked from which (unmentioned) language they thought
the word list was, and also they were asked to mark words which they thought were difficult
to write. The list appears to be of medium difficulty, and there were no specific complaints
by the subjects.

2.3.2 Recording setup
Session

Since a representative ‘real-life” application does not yet exist, it was decided to collect words
in a visually prompted word setup with a provision for rewriting words the subject considers
badly legible him/herself. Words are randomized on each session. Writers sat at a table in a
room with dimly lit fluorescent lamps to prevent glare from the Wacom PL-100V LCD screen.
The Wacom was placed on a normal desktop in an orientation preferred by the subject. A
separation panel was placed between experimenter and subject to prevent additional stress
or performance pressure which often develops in experimental setups. Subjects are eager
to please experimenters, and sometimes weary of hidden motives (intelligence or personality
tests). For our purpose it was important that writers used their own, i.e., their mostly-used
handwriting, rather than a style they thought was acceptable. There was an introductory
text on a sheet of paper, and writers were allowed to get accustomed to the setup by writing
20 habituation words.

Session schedule

The subject came to the lab three times (Sessions), spaced two weeks apart. At each Session,
two Sets of the 210 words were produced, yielding six Sets (totalling 1260 words written per
writer). Within a Set, the writer was allowed to pause after about 100 words.

Session 1:
Set 1
Set 2
(at least two weeks)
Session 2:
Set 3
Set 4
(at least two weeks)
Session 3:
Set 5
Set 6

Recording hardware

o PC: IBM 486SLC2-66 MHz motherboard, 4 MB.
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18 Chapter 2. Ezperiments on lexical post-processing in machine reading

e Tablet: PL-100V

e 3COM 3C5H09 Ethernet adaptor.

Tablet details are contained in the UNIPEN files.

Subject group

In this data collection setup, at first we tried to avoid the usual population of co-researchers
and students. The target group was older than 20 years, and a number of professions in
which writing is a usual activity was included. This was done by recruiting people through
a newspaper advertisement in a medium-sized Dutch paper. The population was completed
to 42 subjects with students and researchers. The average age is about 29 years (varying
from 20 to 61). The group consisted of 24 male subjects and 18 female subjects. Handedness
L/R is distributed proportional to the whole population (approx 1 in 8 is left handed). 17
of the subjects have finished university, 14 are students, the rest has various backgrounds.
The majority of the subject wrote mixed cursive (26), according to their own judgment. The
others claimed to write cursive (12) or hand print (4). (They were shown four words samples
from the categories Handprint, Mixed cursive, and Cursive).

2.3.3 Data for training and testing

Five of the six sets of each of the 42 writers were used to train the Kohonen stroke network.
A sixth set was used for testing. It was taken care that the sets used for training consisted of
an equal amount of sets written in different sessions of the collection process.

In training the Kohonen network, the data of the 42 writers was combined with handwrit-
ings (about 30 writers) which were collected earlier in the Esprit IT Papyrus project at NICIL.
The handwriting recognizer which is used for the experiments is named VHS V11.3.

2.4 A method for testing different post-processing methods

2.4.1 What is the difference between the post-processing methods?

There are four post-processing methods which need to be investigated: hard, trigram, fuzzy
and ascordesc (guessed and trained) matching. Hard matching can be seen as a basic
method. On it’s own it has fair results. Trigram and fuzzy matching use ‘tricks’ to get
results, but on their own their recognition is not very well. In combination with other methods
they can probably help to improve recognition. Ascordesc is of another category, since it
is a method which does a preselection on the lexicon and then uses hard, trigram and/or
fuzzy matching.

2.4.2 A description of the experiments

In the first experiment, hard, trigram and fuzzy matching will be compared. Recognition
results of each method separately will be obtained and also combinations of the methods will
be investigated. The results of this experiment are described in section 2.5. The second exper-
iment compares hard matching to ascordesc-trained and ascordesc-guessed. The results
are printed in sections 2.6 and 2.7. A final experiment combines the first two experiments to
see if this helps to improve the recognition rate. This experiment is described in section 2.8.

Master’s Thesis P.C.J. Segers July 1996



2.4. A method for testing different post-processing methods 19

All the different methods and strategies will be put together in a summary, to get a general
view. The final sections of this chapter give a discussion and conclusion.

2.4.3 Three methods for combining post-processing methods

For the combination of the post-processing methods, three different combination methods are
used:

1. Rank-sort combination

The first combination technique which is used is not very complicated. For every word,
every method has produced a rank number from 1 to 30 in the list of possible solutions.
We now attribute 30 points to a word with rank 1, 29 points to a word with rank 2, etc.
A word which is not recognized at all (solution ‘?7?7?’) gets null points. This means for
example that if a word <bobby> is correctly recognized by hard, it gets 30 points. But
if that word <bobby> is recognized as <lolly> by fuzzy and trigram at places three and
four, <lolly> gets (284-27)=55 points. So <bobby> would be ‘recognized’ as <lolly>. The
advantage of this combiner is that there is a kind of majority voting. In this method,
use can be made of the knowledge that some recognizers are better than others. That is,
the method is order dependent. In case of a tie, words are entered in an order from best
to worst recognizer origin. In this thesis, the symbol % will be used for this combination
method.

2. Rank-sort with weighting
Another combination technique adds a weighting to the above described combiner. The
scores for the best performing method will be multiplied by 3 and the scores for the
second-best method will be multiplied by 2. In this thesis, the symbol * will be used for
this method.

3. Stand-in or ‘defaultory’
Stand-in is a very simple method. There are cases where hard matching does not have
any solution. If in those cases trigram, fuzzy or ascordesc are used as a stand-in, the
results can only improve, or in the worst case, remain the same.

2.4.4 Statistical analysis

On the NICI handwriting recognition home page, Schomaker explains which method to use
and why, to compare the results from two versions of a recognizer
(http://www.nici.kun.nl/clbinom.html):

“When using the same test set samples in testing two recognizers, the ob-
tained recognition rates are not statistically independent. This raises the question
whether a test for dependent data, such as Chi-square test for correlated (de-
pendent) data must be used. This issue can be solved by realizing what is the
goal of the statistical test. If one is (pragmatically) interested in the recognition
rate levels of recognizer A vs B as such, then the underlying differences between
recognizers may be ignored, and a test for independent data (binomial, normal
or Chi-square) is suitable. On the other hand, if one is (scientifically) interested
whether the recognizers can be considered as two versions of the same signal gener-
ator or are in fact different signal sources, then a test for dependent data must be
used. Consider for example the extremal case were two recognizers have a recog-
nition rate of 50%. Applying a statistical test for independent data clearly yields
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20 Chapter 2. Ezperiments on lexical post-processing in machine reading

a non-significant difference. However, such a test misses the fact that each recog-
nizer may have recognized a distinct subset of 50% of the characters (or words) in
that test set. In such a case, we cannot consider the recognizers as having ”similar
performance”. The combination of these recognizers would have yielded a highly
desirable 100% recognition rate.”

It was found that there is no interaction between writers and different versions of the recog-
nizer. This means that a Chi-square test for independent data can be used if we want to see
if there are statistically significant differences between the obtained results. For all the tests
an « of 0.01 is used, the number of degrees of freedom (df) is 1, which means that the critical
value of x? is 6.64 for a bi-directional test.

2.5 Experiment I: comparison of hard, trigram and fuzzy
matching

2.5.1 Recognition results of each method

The first test consisted of testing each method apart. The results of this first test are plotted
in figure 2.5 (for exact numbers, see table 2.2). On the horizontal axis of the figure, we see the
position of the recognized words. If this position is one, the percentages refer to the top-word
recognition of the method. If, for example this position is five, it means that the correct word
has to be on position five or lower (position four, three, two or one) in the list of possible
solutions. The vertical axis represents the recognition percentage. From this figure we can
learn several things:

e Hard matching seems to have reached its top in the top 10 recognition. If a top 20
recognition would be used, the results would not get much better. The line is almost
horizontal.

o Fuzzy matching has a very low top-word recognition percentage, but the line keeps
climbing.

e The same goes for trigram matching. The top-word recognition percentage is higher
though, and the results do not increase as much as for fuzzy.

e Trigram and fuzzy match have not reached their maximum. At the tenth position,
the results are still climbing. Fuzzy is climbing harder than trigram in the end. The
results give an indication that if enough hypotheses would be made, fuzzy and trigram
will eventually have the correct word in their list, if no thresholding in word hypotheses
quality is performed.

In the histogram in figure 2.6 is shown how the recognition rates for hard matching are
divided between the 42 writers. Ten writers have a score between 160 and 165 recognized
words out of 210. Three writers are below 100 recognized words, and only two writers are
above 185 recognized words out of 210. We learn from this histogram that there are 7 out of
42 writers from which the results are much worse than for the rest. These writers suppress
the recognition rate considerably.
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Figure 2.5: Comparison between hard, trigram and fuzzy matching.

Table 2.2: Recognition results (percentages and standard deviation) for hard, trigram
and fuzzy matching. Pos.rec.wrd.=position of the recognized word, H=hard, T=trigram,
F=fuzzy matching.

Pos.recwrd. | H% (s.d.) | T % (s.d.) | F% (s.d.)
72.7 (14.4) | 30.9 (10.0) | 15.5 (07.6)
76.9 (14.1) | 38.0 (11.4) | 22.0 (09.3)
78.7 (14.0) | 42.9 (12.1) | 26.6 (10.6)
79.5 (14.0) | 46.3 (12.3) | 30.4 (11.1)
80.0 (13.9) | 48.8 (12.6) | 33.8 (11.7)
80.5 (13.8) | 51.3 (12.8) | 36.7 (12.1)
80.8 (13.8) | 53.1 (13.0) | 39.8 (12.2)
81.1 (13.7) | 54.7 (13.1) | 43.1 (12.4)
81.2 (13.6) | 56.1 (13.4) | 46.6 (12.6)
81.4 (13.6) | 57.4 (13.3) | 50.1 (12.5)

S © %D GiAs G ote N

2.5.2 Relation between the methods

In figure 2.7 we see how the three methods relate to each other both for top-word recognition
and top-five recognition. Neighbouring grey areas in the picture indicate that the methods
have equal solutions. Trigram has the most in common with hard matching and also rec-
ognizes some words which hard did not recognize. Fuzzy has some solutions in common
with both hard and trigram, some with only hard and some with only trigram. A few
solutions are recognized by fuzzy uniquely. For the top-five recognition, we see that the shape
of the figure is still the same, but that the areas do overlap each other more. The recognition
percentages rise, so also the number of words which the methods recognize in common rises.

Notice that the surplus value of trigram and fuzzy over hard are small, but if they could
be added up with the hard recognition, this would yield a considerable improvement.

For the exact results: see tables 2.3, 2.4 and 2.5. Table 2.3 shows the total number of
recognized words out of 210 for each method, including standard deviation and recognition

Master’s Thesis P.C.J. Segers July 1996



22 Chapter 2. Ezperiments on lexical post-processing in machine reading

L |

T T T T T 1
<100 100 110 120 130 140 150 160 170 180 190 210

o N W s oo d o ©

Figure 2.6: Histogram of the results of the hard recognition method for 42 writers. Horizontal
axis: number of recognized words out of 210, vertical axis: number of writers.
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Figure 2.7: Relation between hard, trigram and fuzzy matching. The overlap and the
differences between the three methods can be seen. Horizontal axis: H=hard, T=trigram,
F=fuzzy. Vertical azis: lexicon of 210 words, average recognition results over 42 writers.

percentage. Table 2.4 and 2.5 show successively the amount of overlap and the uniqueness of
each method.

2.5.3 Results of the combination methods

The results from the two combining methods (rank-sort and rank-sort with weighting) are
printed in table 2.6. At the results of the rank-sort combination (%), it can be seen that
the top-five recognition is better than the top-five recognition of hard matching (x% = 8.59,
p < 0.01, df = 1), but that the top-word recognition is much worse (x? = 244.6, p < 0.01,
df = 1). This means that the results from trigram and fuzzy have a negative influence if
used in this way. For the top-word recognition the results for the rank-sort with weighting
method (*) are worse (x? = 24.8, p < 0.01, df = 1) than if only hard matching was used.
For the top-five recognition the results are 4.4% better than the results from hard matching
(x? =50.1,p < 0.01, df = 1).

The results from the third combining method, stand-in, are printed in table 2.7. H??T
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Table 2.3: Recognition results for hard, trigram and fuzzy matching. The total num-
ber of recognized words out of 210 with the standard deviation and the recognition percent-
age are printed in the table both for top-word recognition and top-five recognition. H=hard,
T=trigram, F=fuzzy matching.

H T F
# (s.d.) % # (s.d.) % # (s.d.) %
Top-word | 152.6 (30.2) | 72.7 | 64.9 (21.1) | 30.9 | 32.6 (16.0) | 15.5
Top-five | 168.1 (29.2) | 80.0 | 102.5 (26.6) | 48.8 | 71.1 (24.6) | 33.8

Table 2.4: Recognition results for hard, trigram and fuzzy matching. The number of over-
lap in the results from table 2.3 with the standard deviation and the recognition percentage
are printed in the table both for top-word recognition and top-five recognition. H=hard,
T=trigram, F=fuzzy matching.

HNnTnF HnN T Hn F TN F
# (s.d.) % # (s.d.) % # (s.d.) % # (s.d.) %
Top-word | 17.0 (10.4) | 8.1 | 41.0 (17.0) | 19.5 | 11.0 (6.6) | 5.2 | 1.7 (2.1) | 0.8
Top-five | 45.9 (20.1) | 21.9 | 46.5 (18.7) | 22.1 | 155 (7.2) | 7.4 | 4.8 (4.4) | 2.3

is used to indicate that this method is used. H stands for hard matching and ??T stand
for the use of trigram if hard has no solution. The top-word recognition percentage is now
74.5%, which are the best results for top-word recognition so far. For the statistical analysis,
we can use a directional (one-tailed) test since the H??T recognizer can never be worse than
the recognizer which uses only hard matching. It turns out that we have to reject the null
hypothesis that the two recognizers are the same (x? = 7.18, p < 0.01, df = 1).

2.6 Experiment Ila: comparison of hard and ascordesc-trained
matching

2.6.1 Rank-sort combination of hard matching and ascordesc-trained

For this experiment the ascordesc-trained method is used which first does hard matching on
the reduced lexicon and then adds fuzzy recognized words to the tail of the word hypotheses

Table 2.5: The number of words out of 210 which are uniquely recognized by one of the three
methods with the standard deviation and the recognition percentage are printed in the table.
H=hard, T=trigram, F=fuzzy matching.

H unique T unique F unique
# (s.d.) % # (s.d.) % # (s.d.) %
Top-word | 83.6 (14.9) | 39.8 | 5.1 (3.2) | 2.4 | 2.9 (2.6) | 1.4
Top-five | 60.2 (16.6) | 28.7 | 5.3 4.5) | 2.5 | 4.8 (5.3) | 2.3
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Table 2.6: Results of combination techniques for hard, trigram and fuzzy matching. The
number of words out of 210 which are recognized by these techniques with the standard de-
viations and the recognition percentages are printed in the table, both for top-word and top-
five recognition. Also the overlap and unique scores of the two are printed. Abbreviations:
J%=rank-sort combination (no weighting), *=rank-sort with weighting, H=hard, T=trigram,
F=fuzzy.

H-T-F% H-T-F* H-T-F% N H-T-F* | H-T-F% unique H-T-F* unique

# (s.d.) % # (s.d.) % # (s.d.) % # (s.d.) % # (s.d.) %
Top-word | 123.9 (30.2) | 59.0 | 146.4 (27.2) | 69.7 | 120.5 (30.4) | 57.4 | 3.4 (2.3) | 1.6 | 25.9 (9.6) | 12.3
Top-five | 171.7 (25.6) | 81.8 | 177.3 (25.0) | 84.4 | 169.0 (27.0) | 80.5 | 2.7 2.7) | 1.3 | 8.3 (4.7) | 4.0

Table 2.7: Results from combining hard with trigram when hard does not have a solution.
Abbreviations: H??=average number of words out of 210 and percentage where hard matching
does not have a solution, ?¢T=number of words and percentage where trigram has a good
solution if hard does not have a solution, H??T=use hard matching until there is no solution,
then use trigram as stand-in.

H?? 22T H??T
# (s.d.) % # (s.d.) % | # (s.d.) %
Top-word | 15.2 (13.7) | 7.2 | 3.7 (3.6) | 1.8 | 156.3 | 74.4

list. Only the hard and ascordesc-trained rank-sort combination (no weighting) was tested,
because ascordesc-trained already makes use of hard matching, putting an extra weight
would only give a method which looks more like hard matching. If more methods are involved,
weighting becomes interesting, but not for two methods which already have that much in
common. The top-word recognition of the combination method is significantly worse than
the results from hard matching alone (x? = 21.16, p < 0.01, df = 1), whereas the top-five
recognition is significantly better (x? = 94.4, p < 0.01, df = 1). The results from hard,
ascordesc-trained and the combination are printed in table 2.8.

Table 2.8: Results from hard, ascordesc-trained and the combination of the two using rank-
sort combination (no weighting). The number of words which are recognized with the standard
deviation and the recognition percentage are printed in the table, both for top-word and top-
five recognition. Notation: H=hard, At=ascordesc-trained, % rank-sort combination (no
weighting).

H At H-At%
# (s.d.) % # (s.d.) % # (s.d.) %
Top-word | 152.6 (30.2) | 72.7 | 138.5 (35.5) | 66.0 | 146.0 (31.8) | 69.5
Top-five | 168.1 (29.2) | 80.0 | 154.4 (35.2) | 73.5 | 179.7 23.5) | 85.6
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2.6.2 Ascordesc-trained as stand-in for hard matching

Just like trigram was used as stand-in in one of the former sections, now ascordesc-trained
is used as stand-in when hard does not have a solution. Note that the part of hard matching
within ascordesc-guessed is not relevant in the stand-in method since hard did not have a
solution. The effects are due to the fuzzy matching method within ascordesc-trained.

The results from this stand-in method are printed in table 2.9. The top-word recognition
percentage is now 74.4%, which are the best results for top-word recognition so far. For the
statistical analysis, we can use a directional (one-tailed) test since the H??At recognizer can
never be worse than the recognizer which uses only hard matching. It turns out that we have

to reject the null hypotheses that the two recognizers have the same performance (x? = 8.44,
p<0.01,df =1).

Table 2.9: Results from combining hard with ascordesc-trained when hard does not have a
solution. Abbreviations: H??=average number of words out of 210 and percentage where hard
matching does not have a solution, ??At=number of words and percentage where ascordesc-
trained has a good solution if hard does not have a solution, H??At=use hard matching until
there is no solution, then use ascordesc-trained as stand-in.

H?? 22AL H?2At
# (s.d.) % # (s.d.) % # (s.d.) %
Top-word | 15.2 (13.7) | 7.2 | 4.0 (4.2) | 1.9 | 156.6 (28.4) | 74.4

2.7 Experiment IIb: comparison of hard and ascordesc-guessed
matching

As has been described in section 2.2, the difference between ascordesc-trained and ascordesc-
guessed is in the use of different lexical subsets. Ascordesc-guessed makes use of a grammar.
The grammar which has been used for these experiments is printed in table 2.1. From several
pretests, this grammar turned out to give the best results, though this has not been investi-
gated thoroughly. The recognition percentages of ascordesc-guessed and ascordesc-guessed
as stand-in for hard matching are printed in table 2.10. Note again that the part of hard
matching within ascordesc-trained is not relevant in the stand-in method since hard did
not have a solution. The effects are due to the fuzzy matching method within ascordesc-
guessed. The results from the H??Ag recognizer are significantly better than the results from
the H recognizer, both for top-word (x? = 15.2, p < 0.01, df = 1) and top-five recognition
(x* =20.6, p<0.01,df =1).

The next experiment uses ascordesc-trained in stead of ascordesc-guessed in combina-
tion with hard, trigram and fuzzy, because ascordesc-trained in combination with hard
had better results. The difference between ascordesc-guessed and ascordesc-trained is that
ascordesc-guessed makes use of a grammar by which every word in the lexicon gets a contour-
based pattern. Ascordesc-trained compares the generated countour-code with contour-codes
of lexical subsets which contain the names of words which have been actually written by writ-
ers. The advantage of ascordesc-guessed is that works also for words which have not been
written before.
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26 Chapter 2. Ezperiments on lexical post-processing in machine reading

Table 2.10: Results from combining hard with ascordesc-guessed when hard does not have
a solution. Abbreviations: H??Ag=use hard matching until there is no solution, then use
ascordesc-guessed as stand-in.

7] g H?74g
# (s.d.) % # (s.d.) % # (s.d.) %

Top-word | 152.6 (30.2) | 72.7 | 126.5 (34.2) | 60.3 | 158.0 (28.5) | 75.2
Top-five | 168.1 (29.2) | 80.0 | 151.3 (36.2) | 72.1 | 175.9 (25.0) | 83.8

2.8 Experiment III: combination of hard, trigram, fuzzy and
ascordesc-trained matching

In this test hard, trigram and fuzzy are going to be combined with ascordesc-trained. The
best combination of hard, trigram and fuzzy (H-T-F*) is combined with the combination
of hard and ascordesc-trained (H-At%), without making use of weighting: ((H-T-F*)(H-
At%))%. The results are printed in table 2.11. Again no weighting was done, for the same
reasons as in the combination of hard and ascordesc-guessed.

The top-word recognition is not significantly different from hard recognition (x% = 1.03,
p > 0.01, df = 1), but the top-five recognition is much better (x* = 137.8, p < 0.01, df = 1)

Table 2.11: Results from rank-sorting hard, trigram and fuzzy rank-sort with hard and as-
cordesc rank-sort with weighting. H=hard, T=trigram, F'=fuzzy, At=ascordesc-trained,
% =rank-sort combination, *=rank-sort with weighting.

((H-T-F*)(H-AL%))%
# (s.d.) %
Top-word | 154.0 (27.5) | 73.3
Top-five | 181.9 (22.0) | 86.6

2.9 Summary of the results

In the previous paragraphs many results are put in many tables which may cause some con-
fusion. In figure 2.8 all the experiments with the recognition percentages are put together in
one picture. We see that the best top-word recognition percentage that is reached is 75.2%
and the best top five recognition percentage is 86.6%. The best top-word results come from
using ascordesc-guessed as stand-in when hard does not have a solution. The best top-five
results come from combining hard and ascordesc rank-sort with hard, trigram and fuzzy
rank-sort with weighting. The results from two of the stand-in methods do not have a top
five recognition result, because this option was not available at the time of measuring. It is
not possible to run the same tests again, since the recognizer is constantly being improved.

We realize that figure 2.8 is by far not complete. Different combinations can be used and
different weights can be tested. Still these results show that there are interesting possibilities
in this area.
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H??7Ag H??At H??T
hf hf
75.2% 74.6% 74.4%
83.8%
Stand-in methods

Ag At H T F
hf hf
Basics
60.3% 66.0% 72.2% 30.9% 15.5%
72.1% 73.5% 80.0% 48.8% 33.8%

\

H-At % H-T-F * H-T-F %
69.5% 69.7% 59.0%
85.6% 84.4% 81.8%

Combination methods
((H-At o %) (H-T-F *))%

73.3%
86.6%

Figure 2.8: Fverything in one picture. The top-word recognition percentage is printed on top,
the top-five recognition percentage below. Ag=ascordesc-guessed, At=ascordesc-trained,
H=hard, T=trigram, F=fuzzy, hf=hard completed with fuzzy. %=rank-sort ranking,
*=rank-sort plus weighting, ??=stand-in.

We could think of other ways to use the combination methods. For example, in the
previous paragraphs the stand-in combination method has been used as a stand-in if hard
matching did not have a solution. In two cases, ascordesc has been used as stand-in. One
time ascordesc-guessed and one time ascordesc-trained. Both the ascordesc methods first
used hard and then fuzzy. The fact that hard was used first is unnecessary since hard did
not have a solution to begin with. A better method would have been to use an ascordesc
method which uses trigram and if that method does not have enough solutions then again
use an ascordesc method which uses fuzzy.

A final point which has to be made is that the methods which were combined were not
extremely different from eachother. Trigram and fuzzy for example did not recognize many
words which hard did not recognize. If there would have been a method available which
would have been more different, the question can be raised if the combination techniques
which we now have used would still be adequate. The rank-sort techniques may not give
such good top-word results anymore, because if one method is not better than the other, but
complementary, the techniques cannot decide which word is the correct word. The top-two
recognition percentage of the rank-sort combination of two complementary methods would be
100% though. The stand-in method will always give equal or higher recognition percentages
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28 Chapter 2. Ezperiments on lexical post-processing in machine reading

than one method in isolation, since one method is used as a stand-in for the other.

2.10 Discussion

In several experiments it was found that the combination of different methods led to worse
top-word recognition results and better top-five recognition results, when compared to the
standard left-to-right machine reading method (hard). This can be explained as follows. The
standard left-to-right machine reading methods has the best results of all tested methods in
isolation. If such a method is combined with a less well performing method, the combina-
tion method is not ‘smart’ enough to always put the correct word on the top-position. So
sometimes, the correct word from the left-to-right reading method is pushed away from the
top-position, but is still in the top-five. This way, the top-word recognition can decrease,
while the top-five increases. Because of the combination techniques, the top-five of combined
methods was always better than the top-five of the left-to-right method in isolation.

The combination techniques made smart use of the fact that the left-to-right reading
method’s top-five recognition is not much higher than it’s top-ten recognition results. In
left-to-right reading methods, if one letter cannot be recognized, the whole word cannot be
recognized. Parallel methods on the other hand can overcome such problems. As we found,
their performance is much worse than the left-to-right reading method, but eventually they
will find the right solution. A method which uses trigrams (trigram) has also problems if one
letter cannot be recognized, because this one letter causes the loss of three trigrams which
cannot be used for recognition. A method which looks at individual letter presence (fuzzy),
does not have this problem. That is why the recognition percentages of such a method
will eventually (if many possible solutions are considered) be higher than the recognition
percentages of other methods. This phenomenon can partly be seen in figure 2.5.

The performance of contour-based recognition methods (ascordesc) was also worse than
the performance of the left-to-right reading method in isolation. It turned out that a contour-
based method which makes use of a training set (which contains words -which have been
actually written- with their contour-codes) performs better than a contour-based method
which makes use of a contour-grammar. The foreknowledge of the former (ascordesc-trained)
is better than the foreknowledge of the latter (ascordesc-guessed). An advantage of using
a grammar is that no training is necessary, which makes it a more universal method. A
disadvantage is that a contour-grammar can not predict how a particular word will be written,
while a training-set has foreknowledge about different ways to write a word, so it is able to
make useful predictions.

2.11 Conclusion

The conclusion that can be drawn from the experiments is that combining different post-
processing methods in a smart way leads to significantly better recognition results. Especially
the results from the top-five recognition are much better. These are important findings to
increase the usability of the recognizer. If a pop up window with five alternatives does include
the right solution, even though it is not on the top position, the recognizer is still user friendly.
In the future we also want to do research on a post-processing method which focuses
on the first letters of the word. If these are correctly recognized, the results will be more
understandable for the user and cause less irritation, even if the correct word is not found.

The next chapter enters the second part of this thesis: research on human reading.
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Chapter 3

Experiment on human reading

3.1 Background of the experiment

3.1.1 Reading handwriting is different from reading printed text.

The vast majority of research in the area of human reading is focused on printed text. Un-
fortunately there has not been much attention to the reading of handwritten material, even
though several experiments show that there is a difference between the two.

Corcoran and Rouse [3] conclude from their experiments in which they present handwrit-
ten words, typed words, or a mixture, that the processes which occur in the perception of
handwritten words may well be different from those underlying the recognition of printed let-
ters, since in the mixed condition the subject first takes time to decide whether (s)he is reading
a printed or a handwritten word. Grossly different handwritings may even require different
‘sub-routines’. Ford and Banks [7] examined if the different subroutines are truly perceptual
mechanisms of analysis or whether they reflect strategies of inspection that depend on memory
retrieval and ‘educated guesses’. They found the former to be true. Zuniga, Humphreys and
Evett [40] did a follow-up experiment in which it was found that unique mental procedures
exist for the normalization of handwriting after which processing proceeds in the same way for
hand- and typewritten stimuli. Van Jaarsveld [15] criticized the results from Ford and Banks.
From his research he concluded that also top-down information can influence the perceptual
processes during reading of handwriting. He claims that the distinction between handwrit-
ing and print may only be one manifestation of more fundamental distinctions like legibility.
Brassé [2] puts question-marks at the way the research on printed text is used to generalize
a model used for both printed and handwritten text. He searches for features which do play
a role in the processing of reading handwriting and not in the processing of reading printed
text. His experiment showed that people make use of ascender and descender information in
handwriting. It was found that the presence of ascenders and descenders may enhance human
recognition of isolated words written in cursive script.

3.1.2 Determination of features

In the history of research on reading, there was always a large interest in the geometrical
features that humans use in reading handwriting. Suen [36, 37] tried to determine important
features by manipulating the stimulus material by masking parts of the text image with a
pattern or by leaving out parts (rectangles) of the bitmap (see figure 3.1).

The disadvantage of masking methods is that such methods severely influence the percep-
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30 Chapter 3. FEzperiment on human reading

Figure 3.1: Masking is done by making a rectangle of the bitmap black, so part of the letter
‘A’ can not be seen anymore.

tual process. Since it is not known in advance where the features are located, the masks will
usually only partly overlap the ‘actual’ features used by the human reader.

Masking is not a good method when cursive script is used, because all letters are connected
so subjects cannot tell the different letters anymore when a part of the word is masked. Also,
masking is a method in which the researcher works from his/her own hypotheses and does
not let the subject determine which parts of the word can/should be masked.

We propose a method in which the subjects themselves can point out which parts of the
word are important for recognition. With this method we hope to be able map the important
letter features.

3.1.3 A new method

In our reading experiment, we present a method which allows the reader to indicate points of
interest in the deciphering of handwriting patterns, without a pre-imposed manipulation of
the handwriting image. The words that the subject has to read are barely visible, because
the color of the ink will be only one shade of grey lighter than the color of the background.
By clicking with the mouse, the subject can make the part of the words (s)he clicks on more
visible, since the color of the ink becomes lighter. The subject has to try to read the word
with as little clicks as possible.

We assume that the position of the clicks indicate points of interest. The amount of clicks
on a certain position is a measure to determine the relevance of this position. Since subjects
have to click as little as possible, it is safe to assume that they will not click on every letter
of a word for reassurance. The clicks which are made are necessary for the recognition of the
word.

3.2 Variables and expectations

In this section will be described why certain variables were chosen to be measured during the
experiment. Also our expectations will be summed up and explained.

3.2.1 Variables

Since we assume that the position of the clicks indicate points of interest, the X Y-coordinates
of the clicks have to be recorded. The number of clicks (Nclicks) on a position are important
to determine if this position is a relevant feature.

To be able to reconstruct the clicking-behaviour of each subject, the time of clicking was
measured. With these measurement, we could even make a sort of film in which the word
becomes more and more visible, just as the subject saw it as a result of his/her clicking.
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The number of letters from every word (Nletters) are necessary information to determine
if the letter position has influence on the number of clicks and if the length of the word is
relevant.

The different writing qualities also have to be taken into consideration. We have seen in
the previous chapter that some writers suppress the recognition rate of the computer reading
considerably. The same can be true for the human reading.

3.2.2 Expectations

We have the following expectations:

1. The number of clicks (Nclicks) in the upper part of the word is higher than the number
of clicks (Nclicks) in the lower part of the word. This expectation is based on the well-
known fact that most of the information is in the top of the word. An example is given
in figure 3.2.

Ei) [V W

b) AR O

c) rose

Figure 3.2: If the lower half of the word is eliminated, the word ‘rose’ can still be read. If
the upper part of the word is eliminated, there are already more possibilities at the first letter,
which could be an ‘f’ or a ‘p’ or an r’ etc.

2. The number of clicks (Nclicks) on the first half of the word is higher than the number
of clicks (Nclicks) in the second half of the word. This expectation is deduced from
the logogen model which indicates that for reading, the beginning of the word is more
important than the end of the word.

3. The average number of clicks on a letter of a long word is lower than the average number
of clicks on a letter of a short word: Nclicks / Nletters decreases when the length of
the word gets higher. The reason for this expectation is that a long word contains more
information for the reader than a short word. Not all the letters have to be readable
to be able to read a longer word. Missing letters can be easily filled in on the basis of
context.

4. There is a large difference in the recognition of different handwritings. A sloppy hand-
writing probably needs more clicks than a neat handwriting. The computer also had a
large difference in recognition percentages of different handwritings.

5. The fifth expectation is that if the average number of clicks on a letter increases, the
word should be better recognized: when Nclicks / Nletters increases, Nrecognized should
also increase. If a subject makes the word more clear by clicking on the trace, (s)he
should also be better able to read the word.
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6. The average number of clicks on a letter decreases if a word is more common: Nclicks /
Nletters lessens when the word frequency gets higher. If a word is frequent in a language,
it is more easily recognized, because it has a lower threshold, according to the logogen
model. This means that the subject should need less information (clicks) to be able to
recognize the word.

7. The final, and very important expectation is that subjects will especially click close
to what Simon calls singularities [32]. We expect subjects to click on features which
are important to distinguish one letter from the other, for example a crossing, a sharp
stroke ending, a cusp etc. This expectation is based on the assumption that the clicking
behaviour of the subject is focussed on reading the word as quick and with as little clicks
as possible. The subject will not click on every part of every letter just for reassurance.
The number of clicks on a certain position are a measure for the relevance of this position.

3.2.3 Purpose of the experiment

The purpose of the experiment is to get more information on which elements are important for
letter- and word recognition by humans. With these materials a better and more ‘human-like’
recognizer may be build, whose solutions are better understandable for the user.

If for example, subjects do click more in the beginning of the word, then it would be
interesting to build an extra routine in the handwriting recognizer, which focuses on the
begin (i.e. left) part of the written word. If a recognizer correctly recognizes the begin part
of the word, but fails in the end, this presumably is more acceptable for the user then if it
recognizes only the end part correctly.

3.3 Method

3.3.1 Materials

From the data used in the previous chapters the handwritings of ten subjects were selected.
We chose to only use cursive script since that is a better follow-up for Brassé’s [2] research.
Also, Suen [36] found that the reading of cursive letters produces more errors than the reading
of printed letters. We wanted the task to be not too easy.

The word list consisted of 210 words (see Appendix A.1). It was divided randomly in ten
sets of 21 words. Each set was assigned to one of the ten writers. It was checked that no
misspelled or completely unreadable words were included in the dataset.

The length of the words was between 3 and 13 letters. In table 3.1 the distribution is
shown.

In a pilot experiment it was found that it takes a subject about 45 minutes to read one-
fifth of the word list. Since subjects voluntary joined in the experiment, we did not want to
take more than one hour of their time. That is why it was decided to split up the word list in
five different datasets. Fach set contained an equally amount of the handwritings of all ten
writers (the 21 words from every writer were randomly divided in five sets. One set contained
six words, the other four sets contained five words.)

3.3.2 Subjects

35 subjects (10 female, 25 male), mainly students in Cognitive Science, voluntarily joined the
experiment. They were not paid for their contribution. Their age was between 19 and 37 (av-
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Table 3.1: Distribution of lengths of the words in the dataset. Nlett=number of letters in a
word, Nwords=number of words.

Nlett | Nwords
3 3
4 11
5 28
6 30
7 47
8 36
9 36

10 13
11 3
12 2
13 1

erage 23.3). The subjects all had good vision during the experiment (10 wore contact-lenses,
5 glasses). The subjects were not familiar with the handwritings used in the experiment.

3.3.3 Procedure

The subjects were seated in a dimly lit room (equal conditions for every subject). First the
instructions (see Appendix A.2) were read to them.

During the experiment each time a handwritten word appeared on the screen. The word
was hardly visible, because the ink was only one shade of grey lighter than the background.
By clicking on a location on the screen with the mouse pointer, the area was lighted up with
a luminance curve which radially tapered off towards the grey background level. The effect
is a tri-angular shaped function of luminance which only affects the handwritten trace, not
the background. In table 3.2 the RGB-values and luminances of the gray colors are given, in
figure 3.3 the luminance is plotted for a click.

Table 3.2: RGB-values and luminance (in cd/m?) of the gray colors used in the experiment.
Grayb0 is the color of the background, Graydl1 the initial color of the ink, Gray53 .. Gray71
are the colors around the click (where Gray71 is the center of the click).

Color-name | R G B cd/m?
Gray50 116 113 112 | 06.35
Gray51 120 116 115 | 06.85
Gray53 124 121 121 | 07.64
Gray56 133 131 129 | 09.22
Gray59 141 139 137 | 10.75
Gray62 149 148 146 | 12.69
Gray65 158 156 155 | 14.57
Gray68 165 164 163 | 16.59
Gray71 174 173 172 | 18.93

The subjects were told to try to correctly recognize each word using as little clicks as
possible. There was a string stretched below eye-height at the border of the table the subjects
seated on, to prevent them from going too close to the screen. The distance between string
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Figure 3.3: The luminance in the center of the click is highest and gradually decreases to the
initial color at the sides. One click has a view angle of about 0.6°.

and screen was about 50 centimetres. The maximum width of a word on the screen was 16
centimetres. The corpus height was, dependent on the writer, between 0.5 and 1 centimetre.
The words which appear on the screen are relatively large. For some handwritings, one click
is enough to clear up a whole letter, for another handwriting this takes several clicks. This
may influence the results.

It was stressed that the subjects directly when the word appeared on the screen had to
click on the first thing they saw. This was primarily done to prevent that the subjects would
start to gaze at the screen until they recognized the word.

The subjects had to operate under time pressure to prevent conscious reasoning. In the
pilot it was found that six seconds per letter gave a reasonable pressure. If the pressure was
too high (time too short), the subjects start clicking too quick, without carefully watching.
The subjects saw how much time they had for each word. A time bar was running on the left
of the screen.

There was one button on the screen The subjects could click on it to get a new word. If
the word appeared on the screen, it was accompanied by a beep. If the subjects recognized
the word, they could click on the button again, to stop the time from running and write down
the word on the fill-in paper (see Appendix A.3) without any time-pressure. On this paper
they also indicated if they were familiar with the word or not. A next click on the button
caused the next word to appear on the screen.

After the instructions the subjects first trained with five words from a writer who was not
in the real experiment. After this training session the real experiment began. At this point of
time about ten minutes had gone by, so the subjects were adapted to the relative darkness of
the room. The words were presented randomly to each subject. There were 35 subjects and
five datasets, so each dataset was seen by seven subjects.

In figure 3.4 a picture of the screen (Hewlett Packard A2094A, Model no. GDM-1934,
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Color Graphic Display) in the experimental environment is included.

Exparitustit

Figure 3.4: Fzperimental environment. On the left of the screen is a time-bar running from
bottom to top. In the middle is a window (width 16 centimetres, view angle 18°) in which
the word appears. Below this window is a button which either says ‘antwoord’ (answer) or
‘volgend woord’ (next word).

Figure 3.5 shows a word which appears in the central window of the screen. The word
which is written is popcorn and a few clicks have already been made.

Figure 3.5: A word in the central wibndow of the experimental environment: popcorn. A few
clicks have been made, to make the word more visible.

After the experiment, the lights were turned on and the same words were randomly pre-
sented to the subject, this time in a clear condition. The subjects had to read the words aloud.
This way we could see how well subjects are in reading cursive script. It has to be noted,
however, that the subjects at this stage were familiar with the handwritings and already had
seen the words before.
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3.4 Results and discussion

3.4.1 Vertical click position

We expected the subjects to click more on the upper part of the word than on the lower
part. The average vertical click-position turned out to be almost equal to the average vertical
pen-trace position. So subjects did not click more on the upper part of the word. Figure 3.6
shows the average vertical position Y of the clicks on lower case letters, taking the handwriting
baseline as zero. The values are sorted in order of increasing Y, yielding the given distribution
of letters on the x-axis. As can be seen, the letters with descenders are on the left, the small,
corpus-sized letters are in the middle, whereas the letters containing an ascender are on the
right of the distribution. The <f>, which in most cursive writers has both a descender and an
ascender stroke in cursive handwriting is located between corpus-sized letters.

2 T T T T T T T T T T T T T T T T T T T T T T T T T T

L5 1

05 1

Yposition click (mm)

_1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

gyjgpmnfsawuroiezxcvdklhtb
Letters, sorted on yclick

Figure 3.6: Average vertical click position. Notice that the descenders are concentrated on the
left, the ascenders on the right and the non-scenders in the middle.

These findings are contrary to our expectations. The subjects follow the shapes of the letter
instead of clicking only at the upper part of the words. Ascender and descender information
thus seems important for the recognition of the word. It is difficult to tell whether the subjects
use this shape-information for reassurance of a letter hypotheses they already had in mind,
or if they actually need this information to decide which letter it is. Since the subjects
were instructed to use as little clicks as possible, we believe that the ascender and descender
information is important for recognition.

3.4.2 Clicks per letter

Figure 3.7 shows the distribution of average number of clicks on a letter for the lower case
letters of the alphabet. Notice that he number of clicks on each letter have been normalized,
which means that the number of clicks on a letter ¢ have been divided by the number of times
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this letter ¢ appears in the word list. This normalization is necessary, because otherwise no
comparison can be made between the clicks per letter.

This list in the figure is sorted in increasing number of clicks, resulting in the given order of
letters on the x-axis. The average number of clicks on corpus-sized letters (aceimnorsuvwzz)
is 10.6, whereas the average number of clicks on ’-scender’ letters bdf ghjkipqty is 12.8, which
is statistically significant (t test, p < 0.05).
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eoiarlnskzgdcuxvfwthmpbyq]j
Letters, sorted on Nclick

Figure 3.7: Normalized number of clicks on each letter. Notice the concentration of vowels on

the left.

We can draw two conclusions from these results. The first one is a confirmation of the
conclusion that shape information is important for recognition. Letters with ascenders or
descenders are more clicked on than corpus-sized letters. The second conclusion is that vowels
seem less important for recognition than consonants. The vowels concentrate on the left of the
figure. There can be several reasons why vowels are letters on which subjects click less. One
is that vowels contain few important features which are necessary for recognition. Another
reason is that a word can often be read if the vowels are left out, but not if the consonants
are left out. The vowels can be added based on letter context.

3.4.3 Click distribution in words

We also wanted to find out if the subjects click more on the initial, leftmost part than on the
final, rightmost of the word. Figure 3.8 shows the distribution of clicks over the word pattern,
from letter —N/2 to N/2, where different curves are shown for words of 4 up to 10 characters.
Words with length 3, 11, 12 and 13 letters are left out this figure, since they appear less than
10 times in the dataset. Most ‘clicks’ are on the first and last letters of the word. There is
no significant difference in the distribution of clicks on the first and second half of the word
(number of clicks first half word: 8783, on second half word: 7414).

We can conclude that the first and last letter of a word are of great importance. It has to
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relative clicking frequency
[\®]
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Figure 3.8: Relative clicking frequency per letter position in words, for words of 4 to 10 letters.

be checked now if the last letter was more clicked on because of ‘clicking-strategies’. Maybe
subjects only click on the first and last letter to determine the beginning and end of a word.
This is why it was important to also have measured the time of clicking.

If we look at the distribution of clicks on the word in time, figure 3.9 shows clear evidence
that the subjects click on the words from left to right. For the different word lengths (4 to 10
letters), the clicks on the letters were rank ordered in time. This way, an average rank order
of the clicks per letter position was obtained.

With help of figure 3.9 we can conclude that the last letter does not receive so many clicks
because the subjects first want to determine the beginning and ending of a word. The subjects
may have this strategy, but it takes only one click on the last letter to determine the end of
the word. On average, the clicks on the last letter are at the end of the session per word.
This means that the subjects need the last letter to determine which word they are reading.
This is a positive argument for the parallel reading model from McClelland and Rumelhart,
and a negative argument for Morton’s logogen model. If the logogen model was completely
followed, the subject by the end of the word would already have decided which word they
were reading. On the other hand, the fact that the subjects click on the word from left to
right is a negative argument for the parallel reading model.

We also had the expectation that Nclicks/Nletters decreases when the length of the word
gets higher. We determined for each word the average number of clicks on a letter. A
regression-analysis was done on this data, but the results turned out not to be significant (R-
Squared: 0.0667). There is no significant evidence that the length of the word has influence
on the number of clicks on each letter. This can be explained by the fact that the subjects
often did not have the word to be recognized in their mental lexicon. This makes it difficult
to fill in missing letters if only some letters of the word have been recognized. The subjects
had to click on almost every letter before they could read an unknown word.
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Figure 3.9: The clicks on each word are rank ordered in time. We see that the subjects click
on the words from left to right.

3.4.4 Recognition percentages of human reading

Table 3.3 shows that the average recognition percentage of human reading is 62.3%. The
kind of writer has influence on this percentage. It is clear that some handwritings are better
recognized than others. If a handwriting has a high recognition percentage, the number of
clicks is low. The lower the recognition percentage of a handwriting, the higher the total
number of clicks on this handwriting.

Table 3.3: Recognitions results for each writer. Fach writer wrote 21 words. The dataset of
210 words was divided in § subsets. Fvery subset was read by seven different subjects.

Writer | Nclicks | % correct
1 1184 85.7
2 1106 81.6
3 1382 76.9
4 1492 76.9
5 1757 62.0
6 1796 56.5
7 1849 55.1
8 1713 44.9
9 2042 44.9
10 1876 38.8
all 16197 62.3

These results are contrary to the expectation that if the number of clicks increases, the
recognition percentage also increases. If we check the expectation (when Nelicks/Nletters gets
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higher, Nrecognized should also get higher) with a regression analysis, this turns out to be
not significant (R-Squared: 0.3295), there is no linear relationship. The explanation for this
results is that a bad handwriting can often not even be read if the word is completely clear.
Subjects keep clicking on a word they cannot read, this increases the number of clicks, but
not the recognition percentage.

In clear conditions (no clicking necessary, since the pen-trace is distinctly legible), the
subjects recognized 87.9% of the words. It should be noted here that this percentage is
positively biased, since the subjects were now used to the handwritings and had seen the
words before.

There is also no relationship between Nclicks/Nletters and word frequency (R-Squared:
0.0016) nor between the number of times a word is correctly recognized by the subjects (N=7)
and the word frequency (R-Squared: 0.0123).

Word frequency was determined with help of the CELEX database:

“All lexical data are stored in three separate databases, all of which are open
to external users. The Dutch database, version N3.1, was released in March 1990
and contains information on 381,292 present-day Dutch word forms, corresponding
to 124,136 lemmata. The latest release of the English database (E2.5), completed
in June 1993, contains 52,446 lemmata representing 160,594 word forms. Apart
from orthographic features, the CELEX database comprises representations of the
phonological, morphological, syntactic and frequency properties of lemmata. For
Dutch and English lemma homographs, frequencies have been disambiguated on
the basis of the 42.4 m. Dutch INL and the 17.9 m. English Collins/COBUILD
text corpora. Furthermore, information is being collected on syntactic and seman-
tic sub-categorisations for Dutch. ”

(This text is copied from : http://www.cis.upenn.edu/ ldc/readme_files/celex.readme.html)

The fact that word frequency does not influence the results is contrary to our expectations.
In Morton’s [20] logogen model, word frequency has the effect of reducing the criterial evidence
necessary for word recognition. The fact that frequency does not have an effect in this
experiment could be explained because many words have frequency zero.

3.5 Click-density in allographs

This section describes the next step in the experiment: finding out where on the letters the
subjects clicked. Our seventh expectation was that they will click close to singularities. To
find this out, we had to take all the letters of one type together, make an average letter out
of it and project all the clicks on this letter type in that picture. Another word for a type of
letter is an allograph. The <a> for example can be written as an ’a’, or as an ‘a’, these are
both allographs of the letter ‘a’.

The making of an average allograph (a prototype) is done as follows:

e Every letter in the dataset is labeled by hand. If there are three types of the letter ‘a’,
these are labeled ‘al’, ‘all’ and ‘alll’.

e Each allograph is temporally re-sampled to 30 samples.

e The X and Y-coordinates of every sample per allograph are averaged over a number of
instances of this allograph.
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e A prototype allograph of 30 average samples can be plotted.

Then in every prototype the click-density’s had to be projected. As has been described
earlier, every click is a two-dimensional Gaussian function. If there are clicks on a prototype
where these Gaussians overlapped, the values were added. This way the center of attention
on every prototype is displayed. In the displaying of the figures, the allograph with the most
clicks got more weight than an allograph with less clicks. This was done to get the clicks
closest to the lines of the prototype. A disadvantage is that this sometimes can deform the
prototype (for example xI in Appendix B.2). If there is a concentration of clicks on a certain
position, this position in the prototype could be an important feature.

Simon & Baret [32] classify features in two broad classes: the regular class and the singular
class. They define the singular class as made of features which are the complements of the
features of the regular class: extremities, crossings, cusps, etc. A feature from the singular
class is called singularity. This corresponds to the term structural feature. A structural
feature is complementary to a metrical feature, which is a feature such as the size of a letter.
Every letter has a size, but not every letter has to have a crossing, or a sharp edge, etc.

In figure 3.5 are five examples of the kind of results we obtained. The allographs jI, II
and yl all three have comparable loop shapes, yet we see in the figure that the subjects have
indicated different points of interest. For jI and [, the crossing seems most important, but
for yI the sharp edge is more important (more clicked on) than the crossing. An explanation
could be that for yI the subjects click especially on the sharp edge, because that is the point
where they can see if they are reading one or two letters. If that is decided, and they know
this sharp edge is connected to a descender, the only letter decision that can be made is the
y. Allographs al and alll are both examples of clear features coming out. Allograph al shows
the importance of vertical strokes, alll the importance of a flaw curve on the end of a stroke.

In Appendix B.2 the results of all allographs can be seen.

The results show that our method of determining features by letting the subject decide
turned out well, since they confirm known phenomena, such as the importance of vertical
strokes [24] (for example allograph al) and crossings (for example allographs jI and II). We
also have found new features which subjects seem to use for recognition. A curve for example
attracts attention (dII, dIII, oll, rll, sl etc.). The most important part of the curve seems
to be where the writing speed has reached a minimum. Also a round ending of an end-stroke
often gets many clicks (alll, kII, tIV, etc.). Again, this is a point of low writing speed.
Both these features indicate that maybe for humans, just as has been implemented in the
handwriting recognizer, points of low writing speed are important.

3.6 Critical remarks about the experiment

3.6.1 Allographs

Some readers may wonder if the results we showed on letters are the same as for allographs.
In Appendix B.1 figures 3.6 and 3.7 are reprinted, this time for allographs. We see that the
results are grossly the same.

3.6.2 Normalization

In the results the number of clicks each subject made were not normalized. We wanted to
show these raw results, since even they show everything clearly. We did check if there are
much differences if the results are normalized, but this hardly had influence. There can be a
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(d) al (e) alIl

Figure 3.10: Click distribution in allographs. FEven though the loop shapes of j, | and y are
comparable, different features do approach. The two a’s are good examples of clear features
coming out.

lot of discussion about the choice between presenting normalized or raw results. The former
may give too much weight to the clicks of a subject which makes few clicks and overlook the
importance of clicks of a subject which uses many clicks. The latter on the other hand might
have the opposite effect.

3.6.3 First click

As has been described, the subjects were told to directly click on the first thing they saw
when the word appeared on the screen. This first click is of course contaminates the data
since it is not a click on a point the subjects wanted to see.

3.7 Conclusions

We have conducted an experiment on human reading in which the subjects themselves could
point out which parts of the word they needed for recognition. The results of the experiment
proved the value of this method, because already known phenomena have been confirmed.
We found for example that vertical strokes are important for recognition. Powalka, Sherkat
and Whitrow [24] did experiments which also indicated the importance of vertical strokes. In
our experiment subjects often have a concentration of clicks on vertical strokes.

Another phenomenon that has been confirmed is the fact that subjects in reading hand-
written script make use of the shape of ascender and descender information [2]. The average
vertical click position turned out to be almost equal to the average vertical pen-trace posi-
tion. Subjects follow the shape of the word in their clicking-behaviour. Presence of ascenders
and/or descenders does not improve recognition results, but subjects use their information for
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recognition. We saw that in average, letters with an ascender or descender receive more clicks
than corpus-sized letters. For the corpus-sized letters we found that consonants receive more
clicks than vowels. This is also a result which agrees with the well-known fact that vowels are
not as important for recognition as consonants. In a language like Arabic, vowels are even
left out of the written text.

The method also made it possible to determine new features which are used for recog-
nizing handwritten words. The subjects showed a preference for obtuse or blunt endings in
down-strokes. They appear to be more important than expected. In improving handwriting
recognition, this feature should be taken into consideration. It was also found that both the
first and the last letter of the word seem to contain needed information. We did not expect
the last letter of the word to be that important. This result shows that a module in a hand-
writing recognizer which concentrates both on the first and last letter would help to make the
recognition results of the computer more human-like.

We want to stress that with this experiment we do not pretend to mimic the reading-
process. It is initially an experiment to serve technical goals: improving handwriting recog-
nition by determining features which humans use in reading. We think we have succeeded in
that. In the fundamental research on reading, this experiment could best be seen as a pilot
experiment on reading handwriting.

The next chapter gives a comparison of the human and machine reading of the same word
list. We will try to find an answer to the question why computer results often seem counter
intuitive from the point of view of the human user.
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Chapter 4

Human and machine reading
compared

4.1 Introduction

We now have answered the first two research questions from the introductory chapter (‘What
combination of computer methods has the best results in reading handwritten words?’ and
‘What features do humans need/use to recognize a word?’). The third and last question was
if the word-classification errors which the computer makes, are in any way related to the
errors which humans make. To answer this question, we will used the combined handwriting
recognition method which gave the best results in chapter 2 to process the same word list
which humans read in the reading experiment which is described in chapter 3. These machine
results will be compared to the human results.

4.2 Which combined handwriting recognition method gave
the best results?

In chapter 2 we studied a script recognizer which has been developed at NICI (i.e. VHS V11.3)
[29]. We tried to find a combination of post-processing methods with a high recognition
performance. The method which gave a high top-word recognition and the highest top-five
recognition was a method which combined the list of possible solutions of four post-processing
methods (hard (H), trigram (T), fuzzy (F) and ascordesc-trained (At)) in the following
way: a rank-order combination of a) hard and ascordesc-trained rank-order combined and
b) hard, trigram and fuzzy combined with the rank-sort plus weighting method. The
abbreviation for this combined recognizer which we used in chapter 2 was ((HA%)(HTF*))%.
We found two combined methods with a higher top-word recognition, but since their top-five
performance is not known, we chose for the above described method to use for comparison
with human reading, because this method has the best results we found.

4.3 Questions about machine and human readfing

As has been described in chapter 3, the wordlist of 210 words was divided in five sublists.
Every sublist was presented to seven different subjects.

We have several questions about the relation and difference between the computer and
human performance in reading this wordlist.
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1. The first question to be answered is: What are the recognition rates of machine and
human reading? For machine reading, we need the top-word and top-five recognition
rates. For the humans, we have the results from the experimental condition and the
post-experimental condition. In the experimental condition, the words were hardly
visible, and the subjects had to click with the mouse to make part of the word more
legible. In the post-experimental condition, the same words as during the experiment
were presented to the subjects again, this time clearly visible.

2. What is the relation between the errors from the computer and the humans? Do the
same words cause problems in reading, both for the computer and the humans? To
answer this question, the answers of the seven subjects who read a word were combined.
We chose to use majority voting: if more than three of the seven subjects are able to read
the word, we assume that this word is legible for humans. It was decided to compare the
top-word recognition of the computer with the results from the experimental condition
of the humans, and to compare the top-five results of the computer with the post-
experimental results of the humans. We realize that comparing these results in this
way is not completely correct, but it will give some insight in the differences between
machine and human reading.

3. What are the differences between incorrect readings of a word by the computer or by
humans? To answer this question, we measured the Wagner-Fischer string distances
between incorrect readings (of computer and humans) and the correct words. The
computation of the Wagner-Fischer string distance will be described in section 4.5. The
number of incorrect readings from the computer, is different from the number of incorrect
readings from the humans. To statistically analyze the results of the measurements, a
non-parametrical test is necessary, the Mann-Whitney U test. The null-hypotheses of
this test is that the population distributions from which the samples are drawn are
identical.

A major difference between machine and human reading is that the computer is forced to
come up with a real word from a finite word list, as opposed to the strategy which humans
use. Humans can invent pseudo-words or leave out part of the correct word in their answer, if
they can not read the actual word. To get a better understanding of the ‘human recognizer’
we also have to examine the incorrect readings of the humans. If they can not read a word, do
they take another, real word, which resembles the correct word? Or do they invent a pseudo-
word or letter string? We want to find out how many times an incorrect reading of humans is
another existing word. To see if they use uncommon letter strings, we took all the trigrams
from the incorrect human reading and compared these to trigrams from a Dutch and English
dictionary. We chose to use trigrams, because the computer also has a trigram-method.

Section 4.4 answers the first two questions about the difference between machine and
human results in reading the word list. Section 4.5 first gives a theoretical introduction
about Wagner-Fischer string distances and then describes the results from answering the third
question about differences between machine and human reading. In section 4.6, the human
incorrect readings are further examined. The final sections give a discussion and conclusion
of the results.
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4.4 Results of human and machine reading of the word list

In Appendix C the results from the combined handwriting recognition method are put next
to the human results. The computer has a top word recognition of 71.4% and a top five
recognition of 88.1%. The human results were 62.3% in experimental condition and 87.9% in
clear condition (see figure 4.1).

88.6% 88.1%
71.4%
62.2%
top top 5 exp clear
machine humans

Figure 4.1: Word recognition results (percentage correctly classified words) of machine and
human reading of a word list of 210 words, cursively written by 10 different writers.

The second question to be answered was if the same words cause problems in reading
both for the computer and the humans. We see in the table in Appendix C, thet the machine
results sometimes relate to the human results. A beautiful example is the word ‘masker’ which
is being recognized as ‘master’ both by the computer and by the subjects. Table 4.1 shows
the number of times the computer does not have the correct word in the top-position and in
the top-five position and the number of times the majority of the humans can not read the
word in the experimental and in the post-experimental (clear) condition. The third column
of the table shows how many times the computer and the humans agree about not being able
to read a word. From these results, we conclude that mostly, there is not much agreement
between humans and computer about which words are legible and which are not.

Table 4.1: Column 1: number of times that the computer does not have the correct word in
top-position and top five-position, column 2: number of times that the majority of the humans
do not have the correct word in the experimental (exp) and post-experimental (clear) condition,
column 3: agreement between computer and humans.

incorrect computer | humans | comp N human
top-word/exp | 60 65 25
top-five/clear | 24 14 4

The next section describes how a distance can be measured between incorrect readings
and the actual words. The differences between human and computer answers are further
examined.
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4.5 Wagner-Fischer string distance between wrong outputs
and actual words

4.5.1 Theoretical introduction and expectations

There are several methods to compute a value for the distance between two strings. One of
these methods is called Wagner-Fischer [35], an algorithm which uses the Levenshtein distance
metric. The Levenshtein distance metric gives the same weight to a substitution, a deletion
and an insertion of a symbol:

wlae) =1 — deletion

w(e,b) =1 — insertion

w(a,b) =1ifa# b — substitution
= 0 otherwise — match

Table 4.2 gives an example of how the Wagner-Fisher algorithm computes the distance
between the strings zeitgeist and preterit. The distance between the strings, i.e. dgg, is equal
to 6. Calculation of d;; is done as follows:

fori=1tom
forj=1ton
dij = min{di—; ; + w(wie), dij—;1 + wleyi), di—sj—1 + w(@i,yi)}

Table 4.2: Demonstration of the calculation procedure of the distance between ‘preterit’ and
‘zeitgeist’. The optimal path is printed bold font.

j|10 1 2 3 4 5 6 7 8 9
? z e 1 t g e 1 s t
0 o 1 2 3 4 5 6 7 8 9
1{p|1 1 2 3 4 5 6 7 8 9
2/r |2 2 2 3 4 5 6 7 8 9
3/e|l3 3 2 3 4 5 5 6 7 8
41t|]4 4 3 3 3 4 5 6 7 7T
5/el5 5 3 4 4 4 4 5 6 7
6|r|6 6 4 5 5 5 5 8 6 7
711 T 7T 5 5 6 6 6 5 6 7
8|t|8 8 6 6 5 6 7 6 6 6

We expect that if we compute the distance from the incorrect computer readings to the
original list and the distance from the incorrect human readings to the original list, that the
average computer distance will be larger. This expectation is deduced from the fact that the
computer is forced to come up with a real word, in opposition to the humans.

4.5.2 Results of measuring Wagner-Fisher distances

From all incorrect computer readings, the distance was measured to what should have been
the answers. The same was done for all incorrect human readings. If more than one subject
could not read a word, the distances were averaged. The results are put in table 4.3.
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Table 4.3: Average Wagner-Fisher distances for all incorrect readings. N = number of times
a word is incorrectly read by one or more subjects , d = average distance, sd = standard

deviation.
N d sd
Computer 60 | 5.5 | 2.5
Humans 169 | 2.9 | 1.4

To statistically analyze these results, a Mann-Whitney U test was performed. The results
turned out to be significantly different (z = 7.25, a = 0.05).

In figure 4.2, all the values of the Wagner-Fischer distances are put in one picture. The
distances from the human wrong answers are the top half of the figure, the distances from
the computer wrong answers are mirrored in the bottom half of the figure. What can be seen
is that the human distances show a curve, which has a top at the distance between two and
three. The curve then quickly drops to almost zero. The machine distances on the other hand
have a top between four and five, but the curve does not drop to zero quickly. The difference
between machine and human distances which was statistically determined, is easy to see in

figure 4.2.
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Figure 4.2: Histograms of the Wagner-Fisher distances for incorrect human and computer
readings. The top half of the figure shows the distances for the human answers, the bottom

half the distances for the computer answers.
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4.6 Human results: non-words and impossible trigrams

We have examined the incorrect readings from the humans, to see if they often come up with
a non-word, or produce, just like the computer, an existing word. The human answers were
compared with a large list of Dutch words (2169872 words) and a list of English words (386117
words). It was found that a rather large percentage of the human wrong answers consists of
words which are not in one of those dictionaries.

We also wanted to see if humans produce only trigrams which are ‘possible’ in a dictionary.
In order to accomplish this, trigrams of every wrong answer were made. All these trigrams
were compared with the trigrams from the two dictionaries. The percentage ‘wrong’ trigrams
is 18.3% of the total number of trigrams in wrong answers. Note that the number of the
wrong trigrams is influenced by the fact that humans often put a dot if they did not knew a
letter. The results of these analyses are put in table 4.4.

Table 4.4: Numbers and percentages of words and trigrams in the human wrong answers which
are not in a Dutch or Fnglish dictionary. The total number of incorrect readings of humans
is 555, the total number of trigrams that can be made out of these incorrect readings is 4019.

Dictionary Not in dictionary
words (555) | trigrams (4019)

Dutch 439 (79.0%) | 388 (09.7%)

(2169872 words)

English dict 444 (80.0%) | 408 (10.2%)

(386117 words)

Dutch & English | 480 (86.5%) | 735 (18.3%)

4.7 Discussion

In examining the differences between computer and human incorrect readings, it was found
that there is not much agreement about which word are hard to read and which are not. This
is an indication that the computer is still using different methods than the humans in reading.
The computer is not acting ‘human-like’.

To measure string distances, the Wagner-Fisher method has been used. This is a very
pure method. The costs for substitution, insertion and deletion are equal. There are no extra
costs for doing worse in the beginning than in the end of a word. The cost for a substitution is
always the same, even though one substitution could be more severe than the other. Still, the
method showed a clear difference between human and machine answers. The Wagner-Fisher
distances for human answers are small and hardly ever are larger than 7. The distances for
the computer answers are larger and more distributed between 0 and 12.

We also have examined the incorrect computer readings, to see if humans often come up
with other existing words, non-words ore unpronounceable letter strings. We checked if the
trigrams in the wrong human answers were existing trigrams or not. We found that almost 20
percent of the trigrams in wrong human answers were trigrams which did not exist in a large
Dutch/English dictionary. This percentage is higher than expected. If we read the wrong
answers, most non-words seemed pronounceable. The experiment showed that humans did
not follow the conventions as much as we thought. Most of the wrong answers were non-words.
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In only 13.5% of the wrong answers, humans produced an existing word, a behaviour which
is more close to that of the computer.

4.8 Conclusions
The following conclusions can be drawn from examining the data from Appendix C:

1. A large amount of the incorrect readings of humans consists of non-words, while the
computer always is forced to take a word out of its dictionary.

2. About 80% of the trigrams which humans produce in incorrect readings are trigrams
which are also present in existing words, which indicates that many incorrect readings
are pronounceable.

3. The average Wagner-Fisher distance from the incorrect readings to the actual words is
larger for the machine than for the human answers. This is also due to the fact that the
computer is forced to present an existing word.

Wrong computer results can be explained, but are often far from intuitive from the human
point of view. A solution is not easy. What seems appropriate is to make an extra post-
processing methods which looks at the beginning and end of the word (just like the subjects in
the reading experiment did). If they are both correct, this reduces the dictionary enormously,
and also gives more intuitive results.

The next and final chapter of this thesis gives a summary of the research described in this
thesis by shortly answering the three research questions and by summing up the conclusions.
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Chapter 5

Conclusion

5.1 Answering the three research questions

This section gives a summary of the research that has been done by answering each of the
three research question that have been posed in the first chapter.

5.1.1 Question 1: What combination of machine reading methods has the
best results?

Several combinations of four post-processing methods (hard, trigram fuzzy and ascordesc
(trained or guessed) have been tried to find an optimal combination. We made use of three
different combination methods: rank-sort combination, rank-sort with weighting and stand-
in. The first method gives scores to the candidate words, based on their position in the list
of possible solutions. The second method adds a weighting to these scores, candidates from
a ‘good’ post-processing method get a higher weight than the candidates from a ‘poor’ post-
processing method. The stand-in method uses post-processing method B if A does not have
a solution.

It turned out that combining post-processing methods especially leads to better top-five
recognitions. The results are almost 7% higher than in the standars left-to-right machine
reading method. The top word recognition improves with about 3% which is a significant
result.

The best top-five recognition result (86.6%) is found with the rank-sort combination of a)
the rank-sort ranking of hard and ascordesc-trained and b) the rank-sort plus weighting
of hard, trigram and fuzzy.

The best top word recognition result (75.2%) is found with ascordesc-guessed as stand-in

for hard.

Combining different post-processing methods thus leads to significantly better results,
especially for the top-five recognition. These findings can be used to try to improve the
results of other handwriting recognizers, and maybe also for example speech recognizers. It
might seem trivial that combining leads to better results, but the fact that it has this big of
an impact was not expected. We haven’t tried all possible combinations. From the results so
far, no valid prediction can be made whether other combinations would come up with even
better results.

If we would have had a post-processing method which would recognize many words which
another does nor recognize, a good combination of the two would give very high scores.
Unfortunately, the post-processing methods which were available did not have much surplus
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value compared to each other. 76.4% was the highest possible top word recognition for hard,
trigram and fuzzy. This result cannot be reached by only using combination methods, since
a combination method does not know when to choose for the result from what method. It
should be noted however, that all post-processing methods share the same information source:
i.e. the stroke-based generation of letter hypotheses. Combining methods which have different
origins probably leads to better results.

5.1.2 Question 2: Which features do humans use/need to recognize a word?

In an experiment handwritten words were presented to the subject in a hardly readable
condition. By clicking with the mouse on a location on the screen, the subjects could make
this part more clear. The subjects had to try to recognize the words as quick as possible with
as less clicks as possible. It is presumed that the parts of the words were the clicks are, are
most important for recognition. It was found that the first and last letter of the word are
very important, that so called singularities [32] are important and that subjects use ascender
and descender information to recognize the word.

The results can be used to implement a new post-processing method, which focuses on
the beginning and end of a word. They can also be used to make other improvements to a
handwriting recognizer if it has to become more human-like. With these results we now have
a better idea of what is important for the human reader. It would be very interesting to try
to find a confirmation for these results by making use of an eye-tracer in a similar experiment.

5.1.3 Question 3: Do the errors which the computer makes relate to the
errors humans make?

The results of the human recognition of a word list of 210 words written cursively by ten
different writers have been compared to the machine results of the best combination method.
It turned out that the results of the top-five recognition of the computer are almost equal to
the results of the humans when they read the words in clear condition (where no clicking was
necessary because the pen trace was good visible). The words which the computer does not
recognize are not the same as the words the humans do not recognize. This is a reason why
the computer behaves not natural from the human point of view. Another major difference
between the human and computer results is that the computer always has to come up with
a word from its lexicon, while humans can think of non-words which are often closer to the
actually written word than the word the computer had to make up.

Ways have to be found to make the computer act more human-like in order to become
more accepted. Somehow humans expect a 100% recognition rate from the computer. This
percentage is probably out of reach. Humans themselves are not able to recognize 100%. It
would only be possible if humans would learn to write with 0% faults.

The best way probably to make handwriting recognition by machines more accepted by
humans is to make sure that people have a good mental model of the system. This way, they
understand why some errors are made and what they can do to make sure the computer does
understand their handwriting. After all, we completely adapt to the computer if we use a
keyboard, so why not adapt a little bit when using a handwriting recognizer?
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5.2 Summary of conclusions

The general conclusions that can be drawn from the research done for this practical assignment
are the following;:

1. It was found that combining different post-processing methods leads to significantly
better recognition percentages of handwritings the recognizer is trained on.

2. The top-five recognition even increases with almost 7% to a recognition rate which
resembles normal human recognition of isolated words written by different writers in
cursive script.

3. In an experiment on human reading it was found that humans do tend to focus on
features such as down-strokes, obtuse or blunt endings in down-strokes, crossings etc.

4. In the same experiment another experiment has been confirmed in which was stated
that readers make use of ascender and descender information in handwriting.

5. The experiment gave also evidence for the fact that the first and last letter of the word
are important for recognition.

6. If the computer does not read a word correctly, the Wagner-Fisher distance between
its answer and the actual word is generally larger than the distance between a wrong
answer from a human and the actual answer.

7. A major difference between human and computer recognition of written words is that
the computer always comes up with a word from its dictionary, while a human reader
often gives up and invents a non-word. The computer has a finite list of answers, humans
do not.

These conclusions could have several consequences. First of all, the results show that a
pen interface with a pop up menu may be user friendly, since the top-five recognition rate
is almost equal to the human recognition rate. Secondly, since humans seem to use letter-
features in reading, this could help to make the machine reading better and also it confirms
implementations which have already been made (like focussing on t-bar crossings for example).
In the third place, a new post-processing method needs to be developed which focuses on the
first and last letter of the word, in order for the recognizer to become more human-like.
Finally, if the user has more insight in the way the recognizer works, (s)he can also have a
better understanding of the mistakes that are made, so they are better accepted.
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Appendix A

Experiment on human reading

A.1 Word list

abdomen calcium exuberant larynx showman
abstinent charisma fascist lincoln shuttle
adherent checklist feedback lunchroom sightseeing
adjunct chevron finland luxe sleep
advocate chloride fjord macbeth snob
afghanistan  cockpit flipflop magtape society
album cocktail frankfurt major software
aldehyde colonnade fuchsia masker squaw
algebra comfort genre maxwell stanza
alluvium concubine gladiator mazurka stewards
alp conjunct god megahertz stockholm
amanuensis  copywriter guyana mysteries stopwatch
analyst cornwall gymnast native strychnine
anecdote corps halfback newton studio
angst cowboy halve nihilist stuttgart
antecedent crawl hamster object sweatshirt
aorta croquet hoffman ohm symposium
appendix cycle hotdog onyx tableau
aqua czerny hulk optimum teamwork
arcsin darwin huxley oxford tokyo
auschwitz dashboard hyena paperback tomahawk
backup deadline hypotheses papyrus tonic
badminton debugger immigrant partner transfer
bangkok dejeuner inconvenient  persistent trapezium
batik delhi inexact pigment trekking
bauhaus delinquent informant pneumococcus triplet
bazaar deodorant inhumane poet turf
bhagwan diagnose input popcorn turquoise
bijouterie disjunct interviews portfolio update
bladder dixieland israeli potpourri upgrade
bobby dizzy istanbul potsdam vacuum
bodyguard dozen jacques projector virgin
bolster drink jitter prospectus voltmeter
borax edelweiss jujube quota walrus
bouquet entertainment  kafka reflex wonderland
boutique equilibrium kamchatka rembrandt workshop
bradford equipment keyboard revue wyoming
breakdown essay kidnapping rhesus xylophone
brisbane excellent kiwi samovar yoga
budget exodus knowhow sandwich yucca
buffet export kremlin scherzo zigzag
byte extract landcode sheriffs zweil
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A.2 Instruction

INSTRUCTIE

Welkom bij dit experiment!

We willen bij dit experiment meer te weten komen over hoe mensen handgeschreven wo-
orden lezen.

Tijdens het experiment verschijnt er telkens een handgeschreven woord in beeld (aan elkaar
geschreven, dus niet in blokletters). Dit woord is echter nauwelijks leesbaar omdat het bijna
dezelfde kleur heeft als de achtergrond. Door met de linkerknop van de muis te klikken kun
je met elke klik een stukje van het woord helder maken. Als je genoeg helder hebt gemaakt
om te weten welk woord er staat moet je dit opschrijven en kun je door naar het volgende
woord. Het is de bedoeling dat je met zo weinig mogelijk klikken het woord herkent.

De woorden die op het scherm verschijnen zijn engels/nederlands, het zijn woorden die
zowel iemand uit Engeland als iemand uit Nederland begrijpt. Er zitten ook eigennamen en
plaatsnamen tussen, maar die zijn niet met een hoofdletter geschreven. De woorden zijn niet
allemaal door dezelfde schrijver geschreven. Er zijn 10 verschillende handschriften. Misschien
zitten er woorden bij die je niet kent, ook al zijn het allemaal bestaande woorden. Als dat
zo is, is het moeilijker om zo’n woord te lezen. Als je dus hebt opgeschreven welk woord er
staat, moet je ook aangeven of je het woord kent of niet. Je hoeft de betekenis niet te weten,
maar het moet je wel bekend voorkomen.

Tenslotte is er nog één ding wat je moet doen. Telkens als er een woord op het scherm
verschijnt, moet je eerst daar klikken waar je ogen naar toe getrokken worden. Je ziet het
woord op het scherm verschijnen en direct gaan je ogen naar een bepaald punt van het woord.
Dat moet je eerst aanklikken, daarna kun je je aandacht richten op het lezen van het woord.

Voor elk woord heb je een bepaalde maximum tijd tot je beschikking, afhankelijk van de
lengte van het woord. Als deze tijd om is, verdwijnt het woord uit beeld en kun je opschrijven
wat je herkend hebt. Als je al eerder weet wat er staat kun je op een knop drukken en het
woord opschrijven. Dit opschrijven is niet aan tijd gebonden. Als je klaar bent met schrijven
kun je met een druk op een knop het volgende woord in beeld krijgen. Als het nieuwe woord
verschijnt hoor je een piepje.

Véér het echte experiment begint doen we eerst een paar oefenwoorden. Het experiment
zal ongeveer drie kwartier duren.

Als je nog vragen hebt kun je die nu stellen. Succes.
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A.3 Fill-in paper

ANTWOORDVEL

Naam:

De herkende woorden duidelijk (liefst in blokletters) opschrijven en aankruisen of je het

woord wel of niet kent.

Woord Ken je het woord? Woord Ken je het woord?
begin oefenen 6. 0O ja O nee
1. O ja O nee 7. 0] ja O nee
2. 0] ja O nee 8. 0] ja O nee
3. O ja O nee 9. 0] ja O nee
4. O ja O nee 10. 0] ja O nee
5. O ja O nee 11. 0] ja O nee
eind oefenen 12. 0] ja O nee
begin experiment 13. 0] ja O nee
1. O ja O nee 14. 0] ja O nee
2. O ja O nee 15. 0] ja O nee
3. O ja O nee 16. 0] ja O nee
4. O ja O nee 17. 0] ja O nee
5. O ja O nee 18. 0] ja O nee
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Woord Ken je het woord? Woord Ken je het woord?

19. 0 ja O nee 32. 0 ja O nee
20. 0] ja O nee 33. 0] ja O nee
21. 0] ja O nee 34. 0] ja O nee
22. 0] ja O nee 35. 0] ja O nee
23. 0] ja O nee 36. 0] ja O nee
24. 0 ja O nee 37. 0 ja O nee
25. 0] ja O nee 38. 0] ja O nee
26. 0] ja O nee 39. 0] ja O nee
27. 0] ja O nee 40. 0] ja O nee
28. 0] ja O nee 41. 0] ja O nee
29. 0] ja O nee 42. 0] ja O nee
30. 0] ja O nee

31. 0] ja O nee eind experiment

Bedankt voor het meedoen!!
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Appendix B

Results experiment on human
reading

B.1 Allographs

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Figure B.2: Figure 3.7 reprinted for allographs. Same results.
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B.2 Click-density in allographs

(a) al (112, (b) all (3, 172) (¢) alll (14, (d) alV (11, 90)
1276) 121)

Figure B.3: Allographs a, with frequency and number of clicks.

(a) bI (10, 622) (b) bII (35,
479)

Figure B.4: Allographs b, with frequency and number of clicks.

(a) cI (57, 774) (b) eIl (8, 107) (c) clII (1, 18)

Figure B.5: Allographs ¢, with frequency and number of clicks.
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(a) dI (7, 694) (b) dIl (24, (¢c) dII (12, (d) dIV (7, 79)
415) 149)

Figure B.6: Allographs d, with frequency and number of clicks.

B

(a) el (143
1145)

Figure B.7: Allographs e, with frequency and number of clicks.

(a) fI (17, 331) (b) fII (10, 114)

Figure B.8: Allographs f, with frequency and number of clicks.

(a) gI (25, 335) (b) glI (26, 70)

Figure B.9: Allographs g, with frequency and number of clicks.
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(a) kI (45, 586)

Figure B.10: Allographs h, with frequency and number of clicks.

(a) il (45, 789) (b) Il (14, 190) (c) I (2, 19)

Figure B.11: Allographs i, with frequency and number of clicks.

(a) 4I (13, 194)

Figure B.12: Allographs j, with frequency and number of clicks.

(a) kI (24, 837) (b) kIT (8, 126)

Figure B.13: Allographs k, with frequency and number of clicks.
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(a) U (57, 583)

Figure B.14: Allographs [, with frequency and number of clicks.

(a) mI (45, 608)

Figure B.15: Allographs m, with frequency and number of clicks.

(a) nl (66, (b) nIlI (38,
1066) 414)

Figure B.16: Allographs n, with frequency and number of clicks.

(a) of (74, 858) (b) oIl (29,
263)

Figure B.17: Allographs o, with frequency and number of clicks.
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(a) pI (5, 587) (b) pII (8, 363) (¢) pIII (16, (d) pIV (15,
257) 157)

Figure B.18: Allographs p, with frequency and number of clicks.

(a) ¢l (11, 169)

Figure B.19: Allographs ¢, with frequency and number of clicks.

(a) rI (43, 773) (b) rII (12, (c) rIII (7, 62) (@) IV (17,
184) 186)

(e) rV (7, 145)

Figure B.20: Allographs r, with frequency and number of clicks.
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9

(a) sI (40, 769) (b) sII (7, 281) (c) sIII (24, (d) sIV (4, 28)
212)

(e) sV (1, 12)

Figure B.21: Allographs s, with frequency and number of clicks.

(a) tI (65 (b) tIT (9, 212) (¢) tIIT (4, 70) (d) tIV (9, 103)
1058)

(e) tV (17, 351) (f) tVI (8, 123)

Figure B.22: Allographs t, with frequency and number of clicks.
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(a) ul (70, 825)

Figure B.23: Allographs u, with frequency and number of clicks.

(a) vl (12, 147)

Figure B.24: Allographs v, with frequency and number of clicks.

(a) wl (20, 369) (b) wIl (9, 121)

Figure B.25: Allographs w, with frequency and number of clicks.

(a) =I (4, 206) (b)y Il (18,
145)

Figure B.26: Allographs z, with frequency and number of clicks.
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(a) yI (23, 415) (b) yII (3, 108) (c) ylII (3, 65)

Figure B.27: Allographs y, with frequency and number of clicks.

(a) 21 (14, 148)

Figure B.28: Allographs z, with frequency and number of clicks.
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Appendix C

Machine and human answers

Table C.1: Recognition of the wordlist (column 1) by the computer (column 2) and 7 humans
(columns 3-9). For the computer results: if the correct word is not in the top position but is
in the top 30, the position is put between braces behind the top word. An asteriz (*) behind a
human answer means that they could not read the word in clear condition.

Word
abdomen
abstinent
adherent
adjunct
advocate
afghanistan
album
aldehyde
algebra
alluvium
alp
amanuensis
analyst
anecdote
angst
antecedent
aorta
appendix
aqua
arcsin
auschwitz
backup
badminton
bangkok
batik
bauhaus
bazaar
bhagwan
bijouterie
bladder
bobby
bodyguard
bolster
borax
bouquet
boutique
bradford
breakdown
brisbane
budget
buffet
byte

comp
OK
interested
sufficient(4)
OK

OK

OK

OK

OK

OK
afternoon(15)
OK

OK

OK

OK

OK

OK

delete

OK

OK
deden(2)
OK

OK

OK
strangers(14)
takes(14)
OK
bronnen(3)
OK

OK

OK
billy(14)
OK
folder(4)
OK

OK
landscape
OK

OK

OK

OK

OK

lips(4)

ppl
abahnen
gestrinent®
aelcherent
aalganet
advoeante
hampton
OK

OK

OK

OK

OK

OK

OK

OK

OK

OK
aarfra
OK
aguu*
ausin*
OK
turkey*
badmentor
banakot
OK*

OK

OK

OK

OK

OK

OK

OK

OK

OK
bewust
OK

OK
breardown
brisbreine
OK

vaffel

bye

pp2
abobome
gl.stinent®
adherkent
adfanit*
adwoadte
OK
alhum*
OK

OK

OK

OK
aminnen*
OK
anekdote
argyd
arfeciden
aorfre*
OK
OK
ausin
verschuifd
lakuyn
OK

OK

batin

OK

OK
rhagban
bijjouterie
OK

OK

OK

OK

OK
bouget
coubrane
OK

OK
brislreme*
OK

OK

OK

*

*

pp3
abodrmen
glstinent*
OK

adg.

OK

OK
alumi
aldehijde
OK
alluvi...
OK

OK
analyse*
OK

OK
fecedenf
OK

OK

OK

.,.*

OK

OK

OK

OK

OK

OK

OK

OK

OK

OK
lobby
bodygard
OK

OK

OK
houtzage*
OK

OK
brisbene
buaget
OK

OK
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pp4

ab...

OK

OK
adg..st
advoeute
OK

OK

OK

OK
alluminium
OK
amantien*
analyse
OK

OK
feiedent
aarfie*
OK
OK
ausin
OK
OK
OK
OK
balek
OK
OK
OK
OK
OK
OK
OK
bolsten*
OK
bougiet
houtbique
OK

OK

OK
budaget
beiffet
bj...

*

pp5
balomen*
glo.tinent
aelkerent
adgant
achvoerte
OK
alhum

OK

OK
alluvuum
OK
amomeren*®
OK
anekdote
OK
anfeilen
aarta
append
OK
ausin
ovenshuit
OK

OK

OK

OK

OK

OK

OK
bijsuterie*
OK

OK

OK
bolsten*
OK
bougeut*
OK

OK

OK

OK
budget
OK

OK

*

ppé

OK
glswnent
aelherent
adjunit
OK

OK

OK
aldehijde
Llra
alluminium
alpen

OK

OK

OK

angit
aufuedent
aorfa*
OK
OK
cousin
sch.uts
OK

OK

OK

OK

OK

OK
baghwan
OK

OK

OK

OK

OK

OK*
briquet
boutrgne
braadforel*
OK

OK

OK

OK

OK

*

pp7
abclonner
gl..ment*
OK

OK

OK

OK

OK

OK

OK
aluvium
OK
amanuensis
gynalise
OK

angel
anfeadant
OK
OK
OK
ausin
aller...
bruckey
OK

OK

OK

OK

OK

OK
byouterie
OK

OK

OK

OK

OK
bouguet
hautique
OK

OK

OK
buaget
OK

OK

*
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calcium column(3) ialuum* OK caluum* OK OK caliu.m
charisma chaam* OK karisma char... OK OK
checklist deselecteert OK OK OK OK OK OK
chevron OK OK OK OK OK OK OK
chloride OK OK OK OK OK OK OK
cockpit OK coeprit* coeghiz coehpit OK eoulque* OK
cocktail OK OK OK OK OK OK OK
colonnade interested colonne* colonne colo.nade* coloro..de* colomnade* colorzam..made*
comfort OK OK OK OK OK OK OK
concubine OK conuchrine* OK jmachine* emulsie* coneedr.. unuilrine*
conjunct original ongerust conjennet congruent conj..ent conjerent contract®
copywriter OK OK OK OK OK OK copywrite
cornwall OK comeback comercient*® OK comevalle OK contract®
corps OK OK oyeops OK OK esps* OK
cowboy country(2) OK OK OK OK OK OK
crawl OK OK vrawl OK OK ovaal c..aul
croquet OK OK OK eroquet™® OK OK erognet
cycle apt(2) cujle agile OK cyile OK eyile
czerny among(2) crusmg * ezexmy* czesny* cz...* czexmy* caexmy*
darwin OK dawm OK OK OK OK OK
dashboard OK OK deskboard OK OK OK OK
deadline OK OK OK OK OK OK OK
debugger struggle debug OK OK OK OK OK
dejeuner OK dyeumer OK OK OK OK OK
delhi altar(11) dek OK .elzi* OK delzin* delzi*
delinquent OK delenquent telequent™® delenquent delenquent OK OK
deodorant OK OK OK OK OK deodarant OK
diagnose OK OK OK OK OK OK OK
disjunct OK OK disment OK dujunet dujunet OK
dixieland deselecteerden OK aixleland OK OK OK OK
dizzy diary(3) OK OK OK OK OK OK
dozen closer(2) d.ren* OK lozen OK OK OK
drink OK OK OK OK OK OK OK
edelweiss OK edelweis edelweis OK edelweis OK edelweis
entertainment OK OK OK OK OK OK OK
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