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Abstract: Interpretability techniques help ensure the safe deployment of deep learning (DL)
models into production by providing practitioners with diverse debugging tools, yet the inner
workings of large models remain elusive. In this work, we propose a novel interpretability tech-
nique which can be used to distill sparse knowledge graphs from a model’s high-dimensional
embeddings using conceptors. This technique, termed Nested State Clouds (NSC), takes advan-
tage of the way state clouds of contextual embeddings are positioned relative to each other in
latent space. For instance, ”fruit” contextual embeddings appear to engulf ”apple” ones, as the
former includes not only the senses of the latter, but some additional ones as well. We success-
fully apply NSC to a pretrained masked language model, and recover an ontology of concepts
grounded in the model’s latent space.

1 Introduction

1.1 Background

In the past years, DL models have been claimed to
reach human parity on a range of tasks which were
deemed challenging only a few years ago. For in-
stance, machine translation is deemed on par with
human translators on popular language pairs [Toral
et al., 2018], scientific DL models are more accu-
rate than explicit hand-crafted ones in a growing
range of fields [Ravuri et al., 2021], while reinforce-
ment learning agents based on DL models have
outperformed professionals in multiple video games
[Schrittwieser et al., 2020] and industrial control
applications [Degrave et al., 2022].

The resounding success of recent DL work has in
large part been attributed to the newly-gained abil-
ity of DL models to automatically extract relevant
features from input data [LeCun et al., 2015], rather
than making use of hand-crafted features. This has
proven effective in advancing the state-of-the-art
on numerous DL tasks [Radford et al., 2021] [Rad-
ford et al., 2018]. Concretely, the automatically-
derived features are represented through the spe-
cific activation patterns of hidden layers as infor-
mation propagates through the DL model [LeCun
et al., 2015]. Besides early layers being able to al-

ready extract surface input features, a recurring
finding has been the fact that input representations
become increasingly abstract with each sequential
layer, before collapsing again to the concrete par-
ticularities of the output towards the final layers
[Tenney et al., 2019]. When such representations
are continuous and dense, they are referred to as
embeddings – high-dimensional vectors subjected
to sequential transformations specified through the
model’s parameters.

In the context of our increased reliance on DL
models on a societal level, the field of explainable
AI (XAI) investigates methods for interpreting the
inner workings of such models, which otherwise lack
clear internal rules due to being largely trained on
raw data [Arrieta et al., 2019]. Techniques of this
kind help researchers debug such DL systems, en-
suring their safe use in practice (e.g. avoids toxic
cultural biases, is aligned to human values). A
pervasive trade-off in XAI, however, is the con-
flict between formulating explanations which (1)
accurately reflect the actual processing performed
by DL models (i.e. functionally-grounded), yet (2)
are highly comprehensible and intelligible for hu-
mans (i.e. human-grounded) [Madsen et al., 2021].
This resembles a constant conflict faced in ma-
chine translation (MT), where models should (1)
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adequately preserve input meaning (i.e. adequacy),
while (2) producing a coherent translation in itself
(i.e. fluency) [Koehn, 2017]. Framing explainable
AI as a translation task from machine to human
representations has proven a useful lens for under-
standing the obstacles faced by the current work, as
the adequacy-fluency trade-off in MT is intuitive.
Given the central role of input representations in

recent DL models, a large body of advances in XAI
has focused on distilling high-dimensional embed-
dings into a form which is interpretable by humans
[Madsen et al., 2021]. As the embeddings them-
selves arguably lack meaning when not grounded
in input or output data, the vast majority of such
work has specifically attempted to highlight how
a certain DL model relates inputs and outputs by
means of embeddings.
For instance, prior work has highlighted toxic

gender biases in word embeddings (e.g. ”woman”
being represented as closer in meaning to ”nurse”
than ”programmer” by a DL model), which
promptly led to debiasing techniques being devel-
oped by the NLP community [Bolukbasi et al.,
2016]. Moreover, methods have been developed to
construct ontologies from embeddings by means of
hierarchical clustering, in order to better under-
stand how the underlying DL model groups con-
cepts together [Liu et al., 2018]. As another line
of research, behavioral and structural probes have
been employed to locate the ”site” of various com-
putations (e.g. part-of-speech tagging in NLP), by
means of relating embeddings from different lay-
ers to cruder external representations (e.g. part-of-
speech) [Tenney et al., 2019]. Additionally, methods
have been suggested to explicitly represent abstrac-
tion relations using embedding ”columns”, hinting
at future DL models which are partially explain-
able themselves, even before making use of post-hoc
XAI tools [Hinton, 2021].
However, even when interpretability techniques

focus on directly relating inputs to outputs, embed-
dings are often involved as mediators [Danilevsky
et al., 2020]. As an example of tracing specific in-
put influences on the output, feature explanations
highlight which particular aspects of the input data
have been most influential in yielding the output
[Jain and Wallace, 2019]. Alternatively, techniques
based on counterfactuals and adversarial exam-
ples aim to find marginally different inputs which
cause massive changes in output [Madsen et al.,

2021]. As a particularly ergonomic family of ex-
planations, methods have also been developed to
incentivize models to directly explain themselves
in natural language [Madsen et al., 2021]. Finally,
another effective technique is based on extracting
knowledge graphs by inferring entity-relationship-
entity triples directly via (masked) language mod-
eling [Wang et al., 2020].

In this context, we extend the existing toolkit
of interpretability techniques by introducing a
novel approach termed Nested State Clouds (NSC).
This technique can be used to distill highly-
comprehensible knowledge graphs directly from
sets of high-dimensional embeddings, with no
modality constraints. In other words, given a DL
model and an auxiliary dataset, NSC appears to
be a promising candidate technique for automati-
cally organizing concepts in an abstraction hierar-
chy which reflects the model’s internalized knowl-
edge. An important benefit of NSC is its modality-
agnostic design (i.e. appears applicable to DL mod-
els operating with various non-text modalities), in
stark contrast to methods which only focus on dis-
tilling knowledge graphs from text [Wang et al.,
2020]. By automatically analyzing the way state
clouds of contextual embeddings are positioned rel-
ative to each other in latent space, NSC appears ca-
pable of distilling high-dimensional representations
which have been abstracted away from particular
modalities. Through the present work, we investi-
gate the question of whether the modality-agnostic
spatial layout of high-dimensional embeddings can
be meaningfully interpreted so as to yield a relevant
knowledge graph.

However, in the context of this paper, we limit
ourselves to an initial investigation of a pretrained
masked language model. Given this, we leave the
applicability of NSC to arbitrary classification
models (e.g. ViT [Dosovitskiy et al., 2021]) for fu-
ture work. We speculate on the tractability of gen-
eralizing NSC in the discussion by hinting at the
possibility of making use of state clouds obtained
from individual class member embeddings, rather
than token embeddings.

Attempting to place NSC in the existing land-
scape of interpretability techniques, we note that
our approach can generate global explanations (i.e.
which attempt to describe the model’s process-
ing across multiple inferences) which are provided
post-hoc (i.e. after training the model) [Danilevsky
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et al., 2020]. This is in contrast to those XAI tech-
niques which yield local explanations (i.e. describ-
ing the way a particular inference unfolds across
layers) and those which are provided during the
actual training of inherently interpretable models.

1.2 NSC Overview

Before introducing the core ideas behind NSC, we
specify in more depth several terms which will be
made heavy use of. By symbol, we refer to the ex-
plicit way in which a concept is represented in text
(e.g. the string ”fruit”). Interestingly enough, our
discussion illustrates plainly how the same symbol
can refer to multiple concepts. By exemplar, we re-
fer to a specific instance of a symbol in a certain
context (e.g. ”fruit” in ”It’s healthy to eat fruits
regularly.”). Importantly, each exemplar is a case
of a symbol assuming specific semantics which are
unique to its context (e.g. ”fruit” could refer to an
apple or a banana, depending on context). In prac-
tice, those specific semantics are represented nu-
merically by means of contextual embeddings [De-
vlin et al., 2019]. For the purposes of this work, we
generally assume an exemplar-based view of con-
cepts (e.g. defining the concept of fruit by means of
the finite totality of its exemplars), as opposed to
a prototype-based one (e.g. defining the concept of
fruit based on one general idealized prototype).
NSC works by first generating a state cloud of

contextual embeddings for each given symbol, rep-
resenting the semantics of its exemplars (subfig-
ure B of Figure 1.1). A state cloud is simply a
set of such high-dimensional embeddings, which in-
evitably comes to exhibit a certain shape and direc-
tionality when regarded as a whole. This generation
process is based on simply using the investigated
model in inference mode together with the auxil-
iary corpus. For instance, the symbol ”fruit” can
refer to a host of different objects, depending on
the context of use – variation which is captured by
distinct contextual embeddings. Following this ini-
tial step, NSC will have formed a collection of one
state cloud of contextual embeddings per symbol.
Each such state cloud will represent the distribu-
tion of semantics assumed by the various exemplars
in their respective contexts.
Next, NSC compactly represents the overarch-

ing shape of each resulting state cloud as a con-
ceptor identified with a high-dimensional ellipsoid,

instead of a large set of contextual embeddings
[Jaeger, 2017] (subfigure C of Figure 1.1). We find
that this representation often results in orders-of-
magnitude lower memory footprint compared to
the naive approach of storing all individual embed-
dings. While the ellipsoids are conceptually simi-
lar to the ones obtained using principal component
analysis (PCA), we opted for using conceptors as
compact high-dimensional objects due to existing
literature investigating meaningful ways of relating
them to each other [Jaeger, 2017]. Specifically, an
inherent abstraction ordering has been previously
defined for pairs of conceptors (subfigure B of Fig-
ure 2.1). This refers to a means of comparing two
such objects in terms of their level of abstraction, a
process which we are exploiting in the present pa-
per in an attempt to generate a knowledge graph.
Loosely speaking, a conceptor which spatially en-
gulfs another can be said to be more abstract, as
the former encompasses a broader region of seman-
tic space than the latter. We refer the reader to the
relevant methods subsections for details on concep-
tors and their abstraction ordering.

After generating one state cloud per symbol, rep-
resenting them as conceptor objects, and conduct-
ing pairwise comparisons of abstraction, an opti-
mization algorithm is employed to generate the
final output of NSC: a knowledge graph (subfig-
ure C of Figure 2.1). Concretely, the algorithm
based on simulated annealing is iteratively refining
a directed graph which aims to accurately repre-
sent the estimated relations of abstraction. In con-
trast to simply constructing a directed graph by
adding a new arc for each positive abstraction re-
lation, an optimization algorithm allows us to bet-
ter deal with noise. Additionally, the optimization
framing enables us to specify additional ”nice-to-
have” properties of the desired output graph [Mad-
sen et al., 2021]. For instance, we penalize high
numbers of arcs, parents per node, and children
per node, in an attempt to keep the output explana-
tions sparse and highly legible. In this, the objective
function of the optimization algorithm essentially
provides a ”slider” between functionally-grounded
and human-grounded explanations.

In the first half of Section 2, we describe the
model we are later applying NSC to. In the sec-
ond half, we describe in more depth the individual
stages of the NSC algorithm. In Section 3, we in-
vestigate the preliminary results of the novel tech-

3



Figure 1.1: A: Exemplars are located and extracted together with their surrounding contexts. B:
Each exemplar is encoded into a contextual embedding. Notably, the same symbol is encoded into
different such embeddings based on context, resulting in a state cloud per symbol. C: Conceptors
are derived from each state cloud as more compact representations.

nique. In Section 4, we explore potential issues of
the technique and highlight opportunities for future
work.

2 Methods

2.1 Model

To investigate the feasibility of NSC, we attempted
to apply it to a pretrained BERT model, short for
Bidirectional Encoder Representations from Trans-
formers [Devlin et al., 2019]. For completeness,
BERT is a transformer model which maps a set
of subword tokens to another set of such tokens.
BERT has been originally trained on two differ-
ent natural language processing objectives using
a mixed corpus comprised of public-domain books
and an English wikipedia dump. First, it has been
tasked with a masked language modeling (MLM)
objective. This refers to the task of reconstructing
a short input text which has been intentionally cor-
rupted. The corruption typically consists in elim-
inating (i.e. masking) a random proportion of the
tokens contained in the input text (e.g. ”BERT is a
transformer model.” might be corrupted as ”BERT
is a [MASK] model.”). Given this, the MLM task
consists in reconstructing the pre-corruption text
from the corrupted version.

The second objective employed in training BERT
is a next sentence prediction (NSP) task. Given a

pair of two sentences, BERT is tasked with pre-
dicting whether they are consecutive in the original
text. The combination of those two conceptually
simple objectives has been shown to help BERT
learn rich semantic representations of the text be-
ing processed, as an instrumental goal in solving the
two tasks. For instance, mean-pooling token em-
beddings across texts has been shown to be highly
effective in downstream information retrieval tasks
based on vector similarity [Reimers and Gurevych,
2019]. Moreover, mean-pooling token embeddings
of a text and comparing the result with the mean-
pooled embeddings of a set of labels (e.g. science,
politics, economics), has been shown to be a com-
petitive baseline in text classification [Yin et al.,
2019]. Alternatively, BERT models fine-tuned on
limited data from other tasks (e.g. natural language
inference) had yielded state-of-the-art performance
in multiple tasks [Jiang and de Marneffe, 2019].

Internally, BERT represents each input token
(e.g. ”fruit”) as an embedding of dimensionality
768. The means of obtaining those representations
are gradually learned during the training phase, as
the model implicitly selects suitable information to
store in this high-dimensional vector. As the model
consists of a repetitive sequence of layers, the set
of embeddings which represents tokens is adjusted
from one layer to the next using multi-head atten-
tion mechanisms – means of routing information ef-
fectively across layers [Bahdanau et al., 2015]. It is
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precisely those token embeddings which we are try-
ing to distill knowledge graphs from using the NSC
approach. In the current study, we are attempting
to interpret the set of embeddings which are gen-
erated in the last BERT layer. This has been hy-
pothesized to contain high-level features extracted
the input tokens which are based in large part on
the tokens’ contexts, after extensive processing in
the earlier layers of the model [Tenney et al., 2019].
We opted for BERT due to its widespread use

in industry applications and its large number of
derivative models (e.g. RoBERTa [Liu et al., 2019],
ALBERT [Lan et al., 2020], distilBERT [Sanh
et al., 2020], DeBERTa [He et al., 2021], etc.). As
mentioned before, BERT takes in a sequence of sub-
word tokens as input and reconstructs it as output,
while generating a unique contextual embedding for
each token. Crucially, the same token can be at-
tributed different embeddings in different contexts
(e.g. ”she” referring to different people). In prac-
tice, the contextual embeddings of individual to-
kens are mean-pooled together to yield an overar-
ching document embedding. However, here we focus
only on the contextual embeddings of individual to-
kens or at most short sequences of them which form
a noun phrase (e.g. ”orange juice”), so as to be able
to investigate relations between specific concepts.

2.2 Data

As NSC requires an auxiliary dataset for generating
state clouds of contextual embeddings, we employ
one of the datasets which have been used for train-
ing the BERT model, namely BookCorpus [Devlin
et al., 2019]. This corpus consists of 11,038 public-
domain books across 16 different genres (985M
words, 74M sentences), and provides many differ-
ent contexts for symbols to appear in as exemplars
[Zhu et al., 2015].
We focus our investigation on relating a set of 100

hand-picked concepts to each other. For each con-
cept, we extract all contexts in which their associ-
ated symbols (e.g. the string ”fruit”) appear verba-
tim in the dataset as exemplars (e.g. the various in-
stances of ”fruit” which assume different semantics
based on context). This is illustrated in subfigure
A of Figure 1.1. A context is concretely defined as
the span of text starting 300 characters before and
ending 300 characters after the concept occurence.
Additionally, we trim the incomplete beginning and

ending sentences (i.e. trailing) from each context,
leaving in only complete sentences surrounding the
concept occurence.

For each context, we extract the contextual em-
bedding of the exemplar, thus obtaining a set of
such embeddings for each concept. This is illus-
trated in subfigure B of Figure 1.1. The cardinality
of each set depends on the frequency of occurence
of the respective symbol in the dataset. We fur-
ther filter our set of symbols being considered based
on the cardinality of their state clouds, eliminating
concepts which had fewer exemplars than the num-
ber of BERT embedding dimensions (i.e. 768). We
cover difficulties in handling sparser state clouds in
the discussion.

2.3 Conceptors

From each remaining state cloud representing the
set of exemplars contained in the dataset, we ob-
tain a conceptor [Jaeger, 2017]. This is illustrated
in subfigure C of Figure 1.1. For completeness, a
conceptor is a mathematical object which models
the distribution of state cloud in the space it pop-
ulates. However, conceptors do not represent the
density of embeddings in space using a probability
density function. Rather, a conceptor represents the
orthogonal directions across which the state cloud
spreads most across space, together with the spread
associated with each direction. This information
can be compactly represented in a square matrix
whose dimensionality matches the one of the space
populated by the state cloud.

Both conceptors and Principal Component Anal-
ysis (PCA) specify high-dimensional ellipsoids by
means of the correlation matrix of the state cloud.
However, an additional parameter appears in the
case of conceptors. Specifically, a conceptor also re-
quires an aperture to be defined. The aperture α is
a parameter which dictates the extent to which the
shape of the state cloud is reflected in the associ-
ated conceptor object. For increasing aperture val-
ues, the conceptor matrix approaches the identity
matrix. For decreasing aperture values, the concep-
tor matrix approaches the zero matrix.

Obtaining a conceptor from a state cloud is
straight-forward and computationally cheap. Given
the correlation matrix of the state cloud R and a
real value α specified for the aperture parameter,
the conceptor matrix can be obtained through the
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following closed-form equation:

C(R,α) = R(R+ α−2I)−1.

In the present work, we only obtain conceptors
from state clouds composed of contextual embed-
dings generated by the pretrained BERT model.
Each state cloud contains contextual embeddings
associated with one symbol composed of one or sev-
eral tokens (e.g. ”orange juice”), while each indi-
vidual contextual embedding is associated with a
specific exemplar. Given that we obtain conceptors
from state clouds of BERT contextual embeddings,
the dimensionality of the state cloud matches that
of the embeddings, namely

dBERT = 768.

We note that the interpretability technique we in-
troduce does not require this specific dimensional-
ity. Rather, the specific value of dBERT is only an
artifact of the investigated model’s architecture. It
is likely that NSC could be applied with minimal
modifications to state clouds of lower or higher di-
mensionality. In fact, some of the experiments used
to introduce conceptors as mathematical objects
make use of state clouds of only several dimensions.
Additionally, it is useful to note the large dif-

ference in terms of memory footprint observed be-
tween a state cloud of BERT embeddings and a
conceptor matrix derived from it. A state cloud
containing nembs = 106 BERT embeddings of di-
mensionality dBERT = 768 naively requires nembs ·
dBERT = 7.68 ∗ 108 floating point values to fully
represent. In contrast, the conceptor matrix ob-
tained from the same state cloud, given a certain
aperture, is a square matrix with dBERT rows and
columns. Hence, it only needs d2BERT ≈ 5.89 ∗ 105
floating point values to be represented. In this spe-
cific case, the conceptor represents the state cloud
with an approximately 103 times smaller memory
footprint. Moreover, the memory footprint of the
conceptor matrix is constant with respect to the
cardinality of the state cloud. It is only the accuracy
of representing the state cloud which increases with
more samples in the form of new contextual embed-
dings, as the correlation matrix converges. The im-
plication of this is that state clouds associated with
symbols which have relatively high frequency in the
auxiliary dataset get represented through concep-
tor matrices of the same size as those associated

with symbols with relatively low frequency. That
said, storing large numbers of conceptor matrices
can still become expensive. When this is the case,
a trade-off between numerical precision and mem-
ory footprint becomes relevant.

2.4 Abstraction Ordering

For each pair of conceptors (C1, C2) obtained from
different state clouds of contextual embeddings, we
attempt to estimate how they relate to each other
in terms of abstraction. This is illustrated in subfig-
ure A of Figure 2.1. We aim to determine whether
(1) C1 represents a concept which is more abstract
than the one represented by C2 (e.g. ”fruit” > ”ap-
ple”), whether (2) it is the other way around (e.g.
”apple” < ”fruit”), or whether (3) the two concepts
represented lack a meaningful abstraction ordering
(e.g. ”fruit” <> ”galaxy”). Ideally, we would only
want the final knowledge graph generated by NSC
to represent valid relations of decreasing abstrac-
tion by means of arcs (e.g. ”fruit” > ”apple”, NOT
”fruit” < ”apple”). This would conceivably lead to
a knowledge graph which approaches a hierarchical
structure.

In its original formulation, abstraction order-
ing of conceptors has two important characteristics
[Jaeger, 2017]. First, this prior art only describes
the three mutually-exclusive cases above, with hard
limits. C1 is described to be more abstract than C2

if and only if the difference matrix C1 − C2 is pos-
itive definite. Due to the symmetry of abstraction
ordering, C2 > C1 if and only if the difference ma-
trix C2 − C1 is positive definite. In the third case,
the conceptor matrices are equal.

Unfortunately, real data is noisy, making it ex-
tremely unlikely that the unambigious criterion of
positive definiteness ever holds for conceptors ob-
tained from non-synthetic data (e.g. BERT contex-
tual embeddings). Besides the inevitable aleatoric
noise associated with non-synthetic data, abstrac-
tion ordering in its original formulation is also hin-
dered by the cumulative error introduced by limited
machine precision when dealing with floating point
values. Approaches from numerical methods, how-
ever, might help mitigate the impact of this second
source of noise.

Besides requiring standards of precision and
signal-to-noise ratio which are non-trivial to attain
in practice, abstraction ordering in its original for-
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Figure 2.1: A: The matrix D represents the pairwise relations of abstraction between conceptors.
B: Matrix D is populated using abstraction heuristics, where Dij approximates how much more
abstract conceptor Ci is with respect to conceptor Cj. C: The graph optimization process attempts
to generate an ontology which is (1) faithful to the relations of abstraction identified previously,
and (2) legible and sparse.

mulation also happens to provide hard cut-offs. C1

can be determined to be more abstract than C2, less
abstract, or equally abstract. In practice, a contin-
uous signal representing how much more abstract
C1 is compared to C2 appears to be quite useful rel-
ative to the original ternary signal. In attempting
to make use of an abstraction ordering signal which
(1) is decently robust against the noise of real-world
data, and (2) can be used to gauge the precise mag-
nitude of the abstraction difference, we introduce a
heuristic. The design of this heuristic has been in-
formed by the fact that symmetric positive definite
matrices only have positive eigenvalues. This prop-
erty has led to the idea of mean-pooling eigenvalues
and using both the polarity and magnitude of the
result as a proxy for abstraction ordering of two
given conceptors.

Concretely, we estimate the abstraction ordering
of (C1, C2) by means of the following heuristic:

f(C1, C2) =
1

dBERT

dBERT∑
i=1

λi(C1 − C2).

To unpack, we first substract one conceptor ma-
trix from the other. Second, we compute the mean
of the eigenvalues of the difference matrix, where
lambdai(C1 − C2) denotes the i’th largest eigen-
value of said matrix. Intuitively, all eigenvalues of

the difference matrix are positive if the first concep-
tor spatially engulfs the other, having higher spread
than the second across all dimensions. This is illus-
trated in subfigure B of Figure 2.1. In the context
of this project, across all dBERT = 768 dimensions.
Conversely, all such eigenvalues are negative if the
first conceptor is completely contained by the sec-
ond across all dimensions. Inevitably, however, the
two conceptors will exhibit one such relation across
some dimensions, while simultaneously exhibiting
the opposite in other dimensions (see Figure 3.4).
Hence, we average the eigenvalues in an attempt
to reach a ”consensus opinion” as to how the two
conceptors are related to each other in terms of ab-
straction.

2.5 Graph Optimization

Given the pairwise estimates of abstraction order-
ing computed before, we conduct a graph optimiza-
tion process. This is illustrated in subfigure C of
Figure 2.1. All candidate graphs considered are di-
rected ones, while nodes are identified with con-
cepts, and arcs indicate relations of abstraction. We
explore other types of relations in Section 4.

We attempt to solve the graph optimization
task through the global search algorithm of sim-
ulated annealing (see Algorithm 2.1). Each candi-
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date graph is represented through a Boolean ad-
jacency matrix A. Specifically, Ak denotes the ad-
jacency matrix of the candidate graph considered
at step k of the graph optimization process. Ak

ij is
a Boolean value indicating whether concept i links
to concept j in the associated candidate graph of
step k. As an initial candidate graph, the optimiza-
tion process starts with a fully-disconnected graph,
where no concepts are related to each other. This
is represented through an adjacency matrix full of
null values, A0 = 0. Then, we randomly sample a
new graph proposal by randomly mutating the cur-
rent graph in one location – removing a previous arc
or adding a new one. The acceptance probability is
informed by a temperature schedule which linearly
decreases from one to zero over the course of the op-
timization process, encouraging heavy exploration
in the first epochs while using an increasingly con-
servative strategy towards the end.

The objective function which the search algo-
rithm attempts to maximize is a linear combination
of four different terms. Each term is a function of
either or both (1) the adjacency matrix Ak which is
identified with the state of the graph optimization
process in step k, and (2) the matrix D containing
pairwise estimates of abstract ordering.Dij denotes
the numerical estimate of abstraction between con-
ceptor i and j. In other words,

Dij = f(Ci, Cj).

We note that the particular way Dij is related to
Dji is determined by the choice numerical heuristic
employed for abstraction ordering. In our case (i.e.
mean of eigenvalues of difference matrix), Dij =
−Dji, yet this is not necessarily the case when opt-
ing for other heuristics, as explored in the discus-
sion (e.g. positive-negative eigenvalues ratio). Be-
sides the two matrices just described which influ-
ence the objective function through the four terms
whose description follows, the objective function is
also influenced by the four coefficients which are
used to weigh the four terms.

The first term is a function of both Ak and D.
It is equal to the mean of the abstraction order-
ing estimates represented in the candidate graph
by means of arcs. From now on, we refer to this
term as expressed abstraction (EA). In case of a
fully-disconnected graph (i.e. one in which no arc
exists in the graph at all) represented by Ak = 0,

EA(Ak, D) = 0. In contrast, in case of a fully-
connected graph (i.e. one in which there exists an
arc between any two nodes) represented by Ak = 1,
EA(Ak, D) = 1

n2

∑n
i=1

∑n
j=1 Dij . More generally,

EA(Ak, D) =
1

n2

n∑
i=1

n∑
j=1

Ak
ijDij .

In such case, min(D) ≤ EA(Ak, D) ≤ max(D).
This is the only among the four terms of the
linear combination which indicates functional-
groundedness, as it reflects the proportion of the
abstraction identified in high-dimensional space
which gets represented in the output knowledge
graph.

The second term is only a function of Ak. It is
equal to the proportion of arcs contained by the
candidate graph represented by adjacency matrix
Ak, relative to the maximum number of possible
arcs n2:

AD(Ak) =
1

n2

n∑
i=1

n∑
j=1

Ak
ij .

We refer to this term as arc density (AD). In case of
a fully-disconnected graph with Ak = 0, AD(Ak) =
0. In case of a fully-connected graph with Ak = 1,
AD(Ak) = 1. In all other cases, 0 < AD(Ak) < 1.

The third term is also only a function of Ak. It
is equal to the mean difference between a node’s
children count (i.e. number of nodes connected via
outbound arcs) and a target children count set in
advance:

CE(Ak) =
1

n

n∑
i=1

∣∣∣∣∣∣(
n∑

j=1

Ak
ij)− target children

∣∣∣∣∣∣ .
We refer to this term as children error (CE). In
case of a graph with adjacency matrix Ak in which
every node only has children equal in count to
target children, CE(Ak) = 0. For all other graphs,
CE(Ak) > 0.

The fourth and final term of the objective func-
tion is extremely similar to the previous one, yet it
addresses the distribution of parent counts, rather
than children counts. Concretely, it is equal to the
mean difference between a node’s parent count (i.e.
number of nodes connected via inbound arcs) and

8



a target parent count set in advance:

PE(Ak) =
1

n

n∑
j=1

∣∣∣∣∣(
n∑

i=1

Ak
ij)− target parents

∣∣∣∣∣ .
We refer to this term as parent error (PE). In
case of a graph with adjacency matrix Ak in which
every node only has parents equal in count to
target parents, PE(Ak) = 0. For all other graphs,
PE(Ak) > 0.
We occasionally refer to arc density, children er-

ror, and parent error collectively as legibility terms,
because their sole role in the objective function of
the graph optimization process is to directly influ-
ence the sparsity of the NSC output graph, as op-
posed to incentivizing the optimization process to
adequately represent the relations of abstraction.
The broader role of the legibility terms, as hinted
at in the introduction, is to help generate sparse
explanations which are cognitively ergonomic, or
human-grounded, as phrased in the XAI literature
[Madsen et al., 2021]. In contrast, expressed ab-
straction is the only term of the objective function
which incentivizes the adequate representation of
abstraction ordering.
Besides the four terms which are functions of

either or both Ak and D, the objective function
also contain four coefficients meant to influence the
relative weight of each term. We denote these as
α, β, γ, and δ in order for the four terms. Given
the four terms, the two additional targets for child
and parent count, and the four weighing coefficients
included in the linear combination, the objective
function can finally be defined as:

score(Ak, D, target children, target parents) =

αEA(Ak, D)

− βAD(Ak)

− γCE(Ak, target children)

− δPE(Ak, target parents).

The result of the graph search is the final output
of NSC: a graph which indicates how the under-
lying DL model relates concepts by means of con-
textual embeddings. The final graph optimization
step of NSC, which builds heavily on simulated an-
nealing, has been summarized in pseudocode in Al-
gorithm 2.1. Additionally, the whole NSC pipeline

Algorithm 2.1 Graph optimization in NSC

Input: D
Output: Aopt

A0 ⇐ 0 (fully-disconnected graph)
for k = 0 to epochs do
T ⇐ 1− k

epochs

Ak+1 ⇐ neighbor(Ak) (one-arc change)
if Pacceptance(score(D,Ak), score(D,Ak+1), T ) ≤
random(0, 1) then

Ak+1 ⇐ Ak

end if
end for
Aopt ⇐ Aepochs

Algorithm 2.2 Nested State Clouds

Input: symbols
Output: Aopt

conceptors ⇐ {}
for s in symbols do
a ⇐ contexts(s) (list of contexts for exem-
plars)
b ⇐ cloud(a) (list of contextual embeddings of
exemplars)
c ⇐ conceptor(b) (conceptor matrix obtained
from state cloud)
conceptors ⇐ conceptors ∪ {c}

end for
for i, ci in conceptors do
for j, cj in conceptors do

Dij ⇐ f(ci, cj)
end for

end for
Aopt ⇐ graph optimization(D)

has been condensed in Algorithm 2.2 in order to
offer an overview of the entire technique.

In the context of the present work, we have man-
ually specified values for the four coefficients of the
linear combination which comprises the graph opti-
mization objective: α = 1, β = 10−1, γ = 10−1, and
δ = 10−2. Besides those, we have also manually
specified values for the two hyperparameters re-
lated to local graph structure, target children = 3
and target parents = 1, in order to nudge the op-
timization process towards hierarchical solutions.
However, a more robust approach to specifying the
values of those six hyperparameters would be to
conduct a hyperparameter search. Concretely, one
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might resort to searching for appropriate values
for those six hyperparameters – in addition to the
number of graph optimization epochs, the temper-
ature schedule, and the conceptor aperture – which
successfully recover some presupposed relations of
abstraction between the concepts being related by
means of the resulting knowledge graph. We leave
that for future work and expand on the possibility
in the discussion.

3 Results

In this project, we designed a new interpretabil-
ity technique which can be used to extract knowl-
edge graphs from state clouds of contextual embed-
dings. We have noticed that NSC is able to success-
fully recover commonsense relations of abstraction
from raw text data (e.g. ”apple” < ”fruit”, ”orange
juice” < ”juice”, see Figure 3.1). We explore chal-
lenges of scalability to WordNet-scale benchmarks
in Section 4. Additionally, we have found that for
a limited number of concepts to relate, the graph
search is robust with respect to the starting state.
Moreover, the legibility terms included in the lin-
ear combination which comprise the search objec-
tive (e.g. arc count) successfully nudge the search
towards relatively sparse outputs.

Figure 3.1: NSC output graph when applied to
BERT using the shown symbols.

Additionally, the graph search history profile ex-
hibits proper foraging behavior, with fast increases
in solution quality in the beginning, followed by a
more conservative strategy which ends in marginal

improvements towards the move to heavy exploita-
tion (see Figure 3.2).

Figure 3.2: Candidate score by epoch during the
graph optimization process.

A graph optimization run with the same hyper-
parameter configuration and different targeted con-
cepts resulted in a similar graph output (see Figure
3.3). Interestingly enough, while every single arc
present in the output graph depicts a valid relation
of abstraction (e.g. ”food” > ”vegetable”, ”veg-
etable” > ”onion”, etc.), the graph still has several
shortcomings. The implicit structure of the con-
cepts analysed would reflect the three vegetables
mentioned (i.e. ”carrot”, ”potato”, and ”onion”) as
children of the ”vegetable” node. However, two of
them (i.e. ”carrot” and ”potato”) have been linked
directly to the more abstract ”food”.

Figure 3.3: NSC output graph when applied to
BERT using the shown symbols.

One possible explanation of this outcome is a
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limitation of the objective function we employed.
Namely, the four terms of the linear combination
(i.e. expressed abstraction, arc density, children
error, and parent error) have collectively proven
insufficient for capturing and incentivizing this
implicit structure. It appears more valuable for
the graph optimization algorithm in terms of
the objective function to populate the graph
with arcs which denote particularly abrupt re-
lations of abstraction (i.e. heuristic estimates
with high magnitude). In this last graph out-
put (see Figure 3.3), this is reflected in the
favoring of the (”food”, ”potato”) arc over the
{(”food”, ”vegetable”), (”vegetable”, ”potato”)}
pair of arcs. Alternatively, arc density could be
penalized less in order to render this arc pair more
appealing in contrast to the single more abrupt
arc.

Besides the final graph output generated by NSC,
we can also investigate the intermediate step of esti-
mating the relation of abstraction between two con-
cepts. If we zoom in on the pairwise estimate of ab-
straction between ”vegetable” and ”carrot”, we can
observe a promising pattern. We consider the dif-
ference matrix D = Cvegetable − Ccarrot, where the
two C matrices correspond to the matrices of the
conceptors obtained for the two concepts based on
their associated exemplars. If we derive and plot the
eigenvalues {λi(D)|i ∈ {1, 2, ...dBERT }} of the pre-
vious difference matrix, we notice that their mean
(denoted by the horizontal red line in the Figure
3.4) is positive. However, we also notice that there
is an important number of negative eigenvalues as
well, hinting at the value of improving the noise
robustness of NSC.

Figure 3.4: Eigenvalue spectrum of difference
matrix used in the abstraction heuristic em-
ployed.

Additionally, we took note of the fact that the
graph optimization process employed to output the
final knowledge graph is highly sensitive to the pre-
cise choice of the objective function. Striking a bal-
ance between the legibility terms and the expressed
abstraction is difficult to achieve manually. Often,
one component of the linear combination tends to
dominate the others. For instance, undervaluing the
impact of the children error (i.e. the term which
nudges the optimization process towards graphs
whose nodes have a specific number of children)
fails to penalize graphs which contain nodes with
either numerous children or none at all (see Figure
3.5).

Figure 3.5: NSC output graph after undervalu-
ing children count per node constraints.

A similar failure mode manifested itself when un-
dervaluing the impact of arc density on graph opti-
mization (i.e. the term which nudges the optimiza-
tion process towards graphs which are sparse, in
that they contain a relatively low number of arcs
connecting nodes). In this other case, the optimiza-
tion process favored graphs which contain many
arcs (Figure 3.6). We speculate that this happened
because considering candidate graphs which con-
tain many arcs translates to an increase in ex-
pressed abstraction. In other words, simply includ-
ing arcs which connect concepts which seemingly
have a positive relation of abstraction (i.e. the arc’s
origin node is the slightest more abstract than the
arc’s target node) yield increases in terms of the
objective function. Without a comparable arc den-
sity penalty, the optimization process approaches
graphs overpopulated by arcs.

This sensitive balance between the compet-
ing terms which make up the objective function
echoes a broader concern which permeates XAI.
There is a constant trade-off between functional-
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Figure 3.6: NSC output graph after undervalu-
ing arc pruning.

groundedness and human-groundedness which re-
sembles the adequacy-fluency trade-off frequent in
machine translation [Madsen et al., 2021]. In our
case, the expressed abstraction term incentivizes
functional-groundedness, the adequate communi-
cation of high-dimensional relations among con-
cepts. In contrast, the three legibility terms em-
ployed in the objective function incentivize human-
groundedness, the communication of DL model rep-
resentations in a manner which is cognitively er-
gonomic for humans.

In our experiments, we find that striking this
balance is especially difficult when trying to dis-
till larger knowledge graphs containing more con-
cepts from high-dimensional embeddings, bringing
the scalability of NSC into question. That said,
normalizing the objective’s components relative to
the total number of concepts being analyzed (i.e.
all legibility terms assume values in [0, 1] before
weighting, regardless of node count) appears to im-
prove scalability.

4 Discussion

4.1 Potential issues

4.1.1 The same symbols can represent dif-
ferent concepts

Upon inspecting low-dimensional state cloud pro-
jections, we observed the presence of distinctive
clusters across latent space (see Figure 4.1). For
instance, the state cloud of the symbol ”plant” ap-
pears to be populated by at least three clusters.
To investigate this, we ran a K-means clustering
(K = 3) procedure on the ”plant” state cloud and

surfaced the contexts which yielded contextual em-
beddings closest to the cluster centroids. Upon in-
spection of those contexts, we noticed that the con-
text sets contained distinctive word senses, roughly
corresponding to (1) vegetation, (2) the action of
planting, and (3) factories (see Table 4.1).

Figure 4.1: 2D PCA projection of the state cloud
associated with the symbol ”plant”

This diversity of meanings assumed by the same
symbol across the text corpus casts doubt on our
assumption of there being a one-to-one correspon-
dence between symbols and graph nodes. An in-
termediate clustering step might be effective in de-
coupling different word senses and producing dif-
ferent state clouds, though the issue of how many
senses are there per symbol is non-trivial. Simi-
lar to how words themselves appear to discretely
quantize the otherwise continuous semantic space,
finite word senses as ”subsymbols” run into similar
trade-offs between sparsity and accuracy. While we
did try solving this polysemy challenge by K-means

Table 4.1: Context samples by K-means cluster
of ”plant” state cloud.

Cluster Sample context

1
absently, i raised the blinds so that
the plant was able to soak in the
impromptu sunshine.
i’ve brought you over a few
macramé plant hangers to decorate
your room.

2 i wanted to plant them myself.
she’ll just plant new ones and start
all over again.

3
the computers running the plant
were all infected, of course.
it was plant shutdown for two
weeks.
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clustering with arbitrary values for K, the output
graph quality degraded significantly, suggesting the
difficulty in disentangling the different senses with
this naive approach.

4.1.2 State clouds are non-linear

While we employ conceptors as compact ellipti-
cal objects which approximate high-dimensional
state clouds of contextual embeddings, their lim-
ited expressivity might fail to capture the intricate
non-linear layout of real-world embeddings. Low-
dimensional PCA projections of several state clouds
of BERT embeddings radically diverge from Gaus-
sian distributions, bringing into question the suit-
ability of elliptical conceptors to represent them
(see Figure 4.2). However, we note that state
clouds of less ambiguous terms (i.e. limited num-
ber of word senses) appear more well-formed. Non-
linearities might arise mainly from diverse word
senses being assumed by the same symbols.

Figure 4.2: 2D PCA projection of the state cloud
associated with the symbol ”earth”

4.1.3 NSC requires many exemplars

The central role of state clouds in NSC means that
the technique is highly dependent on a large num-
ber of occurences and contexts for each concept
analyzed. This makes it difficult to interpret the
model’s internal representations with respect to ob-
scure tokens, as those are extremely rare in natu-
ral datasets. However, synthetic datasets might ad-
dress this issue, provided the ability to synthesize
a wide range of unique contexts for an arbitrary
concept [West et al., 2021].

4.1.4 NSC is influenced by the choice of
auxiliary data

NSC does not only require the model under inves-
tigation in order to work. There is also the require-
ment of an auxiliary dataset which contains a wide
range of exemplars in different contexts. NSC then
uses those exemplars in order to approximate the
overarching state cloud with a conceptor object. In
this project, we used part of the training data of the
model under investigation as the auxiliary dataset.
However, the particular choice of dataset in which
the concept instances are to be found has a high
influence on the output knowledge graph.

For instance, consider two senses of the symbol
”property.” It might refer to (1) a characteristic, or
(2) a real estate asset, among other senses. Differ-
ent datasets might contain quantitatively distinct
distributions of the meaning of ”property” across
latent space. One predominantly containing text
about real estate matters might be skewed towards
considering sense (2) above as the most pervasive
one. In contrast, a dataset containing text about
the physical properties of certain materials might
be skewed in the other direction, towards consider-
ing sense (1) above as the most typical one.

One might be tempted to simply aim for large
datasets in order to alleviate this concern. Unfortu-
nately, the issue as hand is not that certain senses
are not represented enough through exemplars in
order for their meaning to be captured. Rather, it
is specifically an issue of representativity in the re-
sulting population of meanings.

This has two implications, one concerning indus-
try applications, and one concerning epistemics.
The first is that, in practice, one would have to
identify an auxiliary dataset which is representa-
tive enough of the concepts desired to be placed
in the resulting knowledge graph. For instance, if
one aims to investigate an DL model’s internalized
representations related to real estate matters, one
concerning material science would be a poor choice
of auxiliary dataset. The second implication hints
at the fact that transparency tools like the ones
used broadly in XAI can only meaningfully relate
latent representations to the world models of peo-
ple who authored the datasets. If one was to apply
NSC on a book corpus, as we did, it would be un-
likely for terms like ”entity,” ”object”, or ”thing”
to be organized in an ontology in the same way a
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logician might organize them.

4.2 Future work

4.2.1 Improved graph optimization scala-
bility

The graph optimization process is the final step of
NSC, and is responsible for actually generating the
output knowledge graph given a host of constraints,
including the expressed abstraction and arc density,
among others. There are several hyperparameters
which need to be specified in order to properly de-
fine the objective function used by the graph op-
timization procedure. For instance, there are the
four coefficients to be found in the linear combina-
tion which defines the objective: α, β, γ, and δ. Be-
sides, there are the two hyperparameters which help
specify the constraints on local graph structure:
target children and target parents. Additionally,
there are the few hyperparameters which help spec-
ify the underlying simulated annealing algorithm
employed: the number of epochs and the tempera-
ture schedule used. Finally, the conceptor aperture
needs to be specified in order to be able to obtain
conceptors from state clouds.
In the context of the present work, all those

values have been specified manually. Those have
proven quite brittle, especially with larger numbers
of concepts to relate to each other in the resulting
knowledge graph. Beyond toy examples only con-
taining a handful of concepts, it is extremely diffi-
cult to reach sensible outputs based on default hy-
perparameter values. Given this state of affairs, it
would be useful to investigate systematic searches
over hyperparameter space, so that suitable values
for the graph optimization procedure can be auto-
matically identified. The objective function of this
meta-level search for hyperparameters of the graph
optimization process can be informed by whether
or not the process can successfully recover a few
assumed relations of abstraction deemed true (e.g.
”fruit” > ”apple”).

4.2.2 Beyond abstraction ordering

While this work focuses solely on the meronymous
relationship of abstraction between to concepts, it
is conceivable that the difference matrix computed
in NSC as an intermediate step contains a rich rep-
resentation of other relationships between concepts.

This is reminiscent of the seemingly algebraic prop-
erties of prototype word embeddings (e.g. ”king”
+ ”woman” - ”man” ≈ ”queen”), which appear
to encode diverse analogies and conceptual rela-
tionships. The relative spatial layout of entire state
clouds might provide similar information.

However, mathematical objects depicting the ag-
gregate shape of high-dimensional space clouds are
likely to capture more information about the se-
mantics of the symbols involved, compared to more
rudimentary single prototype embeddings. Assum-
ing the benefit of employing more expressive rep-
resentation which stays faithful to large sets of ex-
emplars at once, the difference matrices obtained
from pairs of conceptor objects might also repre-
sent more nuance compared to the less expressive
vector of displacement between prototype embed-
dings.

4.2.3 Beyond token embeddings

The present work focuses solely on extracting a
knowledge graph from the state clouds comprised of
contextual embeddings of text tokens (e.g. ”juice”)
or short sequences of such tokens (e.g. ”orange
juice”). In section 1, however, we mention that NSC
is modality-agnostic, in that it can theoretically be
employed to distill knowledge graphs from embed-
dings of other modalities. One possible way of ac-
complishing that is by pooling together the data
points associated with a certain class in an im-
age classification setting. The class would then be
identified with a concept based on its label (e.g.
”fruit”), while its associated state cloud would not
consist in a set of contextual embeddings, as in
the case of text, but would be composed of a set
of image embeddings generated for entire images
(e.g. thousands of images of fruits). By learning
conceptors from those state clouds, relating them
using abstraction ordering heuristics, and search-
ing for an appropriate knowledge graph structure,
it is likely that meaningful meronymous structures
would arise. Similar approaches could be employed
for yet other modalities. For instance, audio clas-
sification datasets would give way to ontologies of
audio concepts. Alternatively, datasets comprising
video or 3D point clouds, together with labels uni-
fying them in meaningful classes, might also lead
to XAI tools in those other modalities.
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4.2.4 Alternative abstraction heuristics

In the present work, we employ a rather specific
heuristic for quantifying the relation of abstrac-
tion between two conceptors. For completeness, we
mean-pool the eigenvalues of their difference ma-
trix. Large positive values indicate the first concep-
tor is deemed to be more abstract than the second,
while large negative values indicate the reverse.
Values close to zero indicate a limited relation of
abstraction between the two.
However, there might be other – better

mathematically-motivated – ways of quantifying
this relation. For instance, one might opt for dif-
ferent pooling mechanisms (e.g. median), which
are more robust against outliers. Alternatively, one
might eliminate the eigenvalue pooling mechanism
entirely, and focus instead on the ratio between pos-
itive and negative eigenvalues.

4.3 Conclusion

In sum, the present work has been centered around
the following contributions:

• We have provided qualitative evidence high-
lighting the connection between the spatial
layout of nested state clouds and the abstrac-
tion relation of the concepts they represent.

• We have formulated an novel algorithm for
flexibly distilling a set of high-dimensional
state clouds into a compact directed graph
which depicts relations of abstraction.

• We have drawn evidence-based observations on
the way individual symbols relate to concepts
in contextual embeddings.
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