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Summary

Echo State Networks (ESNs) is a recent simple and powerful approach to train-
ing recurrent neural networks (RNNs). In this report we present a modification
of ESNs - time warping invariant echo state networks (TWIESNs) that can ef-
fectively deal with time warping in dynamic pattern recognition. The standard
approach to classify time warped input signals is to align them to candidate pro-
totype patterns by a dynamic programming method and use the alignment cost as
a classification criterion. In contrast, we feed the original input signal into specifi-
cally designed ESNs which intrinsically are invariant to time warping in the input.
For this purpose, ESNs with leaky integrator neurons are required, which are here
presented for the first time, too. We then explain the TWIESN architecture and
demonstrate their functioning on very strongly warped, synthetic data sets.
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1 Introduction

Time warping of input patterns is a common problem when recognizing human
generated input or dealing with data artificially transformed into time series. In
many of these application areas artificial recurrent neural networks (RNNs) play
(or could potentially play) a significant role. However, research on neural networks
that can effectively deal with time warping does not seem to be very active.

The most widely used technique for dealing with time-warped patterns is called
dynamic time warping (DTW) [Itakura, 1975] and its modifications. All of them
are based on the idea of finding the cheapest (w.r.t. some cost function) mapping
between the observed signal and the pattern. The price of the mapping is then
taken as the classification criterion. Another very common approach to time-
warped recognition is hidden Markov models (HMMs) [Rabiner, 1990]. HMMs
model the underlying generating process as a Markov process, in which transi-
tions are memoryless, i.e. the probability of a transition to a different state does
not depend on how long we have stayed in the previous one. An interesting ap-
proach of combining HMMs and neural networks is proposed in [Levin et al., 1992],
where neurons that time-warp their input to match it to its weights optimally are
introduced.

A simple time warping invariant way of directly applying RNNs for time series
classification was presented in [Sun et al., 1993] more than ten years ago. In this
report we follow the idea in [Sun et al., 1993] to derive an effective method for
dynamic recognition of time-warped patterns.

This report has two main parts, theory and architecture in Section 2, and
numerical simulations in Section 3. More specifically, we briefly introduce the
main concepts of ESNs together with our notation in Sections 2.1 and 2.2. In
Section 2.3 we explain the principle of intrinsic time warping invariance that we
use. In Sections 2.4 and 2.5 we introduce ESNs with leaky integrator neurons
(LINs) and describe how the ESN learning scheme has to be adapted for this type
of neurons. In Section 3.1 we describe the data which is used in our numerical
simulations. In Section 3.2 we present empirical investigation of ESNs with LINs
and their parameters, and in Section 3.3 we investigate the performance of our
approach with different degrees of time warping in data. Finally, in Section 4 we
present some insights on possible further refinements of our method.

2 Theory and Architecture

2.1 Echo State Networks

Echo state networks (ESNs) [Jaeger and Haas, 2004] is a recent approach to recur-
rent neural network supervised training, which overcomes some obstacles in many
other approaches to training RNNs, namely implementation complexity of learn-
ing algorithms, slow convergence and suboptimal solutions in their training. In
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the ESN approach a large (order of 50 to 1000 neurons), randomly connected RNN
is used as a “reservoir” of dynamics which can be excited by suitably presented
input and/or fed-back output. The connection weights of this reservoir network
are not changed by training. In order to compute a desired output dynamics, only
the weights of connections from the reservoir to the output units are calculated.
A similar idea has recently been independently investigated in a more biologically
oriented setting under the name of “liquid state networks” [Maass et al., 2002].
Because there are no cyclic dependencies between the trained readout connections,
training an ESN becomes a simple linear regression task, for which numerous batch
or adaptive online algorithms are available.

The echo state networks investigated previously were discrete-time sigmoid
unit networks with the following state update equation:

x(n + 1) = f(Winu(n + 1) + Wx(n)), (1)

where x is a vector of reservoir neuron activations, n is the discrete time, f is
the neuron activation function (usually the tanh sigmoid) applied component-
wise, Win is the input weight matrix, u is the input vector, and W is a randomly
generated weight matrix of internal reservoir connections. The output equation is

y(n + 1) = fout(Wout[x(n + 1)|u(n + 1)]), (2)

where Wout is the (learnt) output weight matrix, fout is the output neuron activa-
tion function (usually tanh sigmoid or the identity) applied component-wise, and
“|” stands for vector concatenation. The standard batch supervised training of
ESN proceeds by driving them with the training input sequence uteacher(n) once,
harvesting the internal states, and then computing the output weights Wout as the
linear regression weights of the teacher output yteacher(n) on the internal states.
Because the learning is essentially a linear regression task, adaptive online learn-
ing methods can be obtained by employing standard methods from adaptive linear
systems, for instance the RLS algorithm [Jaeger, 2003].

2.2 Echo State Property

The echo state property is crucial for making the ESN learning method work. In-
tuitively, a RNN which is driven by an external signal u(n) has the echo state
property if the activations x(n) of the RNN neurons are systematic variations
of the driver signal u(n). More formally, this means that for each internal unit
xi there exists an “echo function” ei, such that, if the network has been run
for an indefinitely long time in the past, the current state can be written as
xi(n) = ei(u(n), u(n− 1), u(n− 2), · · · ). For discrete-time ESNs there are several
nontrivial alternative definitions of this condition and algebraic characterizations
of which network weight matrices W lead to networks having the echo state prop-
erty [Jaeger, 2001]. For practical purposes it suffices to fix the spectral radius
ρ(W ) of W to a value below unity to ensure the echo state property. It is also

5



important that the dynamics of the reservoir neurons be richly varied. This is en-
sured by a sparse interconnectivity (of 1-20%) within the reservoir. The condition
lets the reservoir decompose into many loosely coupled subsystems, establishing a
richly structured reservoir of excitable dynamics.

2.3 Time Warping Invariance

Intuitively time warping can be understood as variations in the “speed” of a pro-
cess. For discrete-time signals obtained by sampling from a continuous time series
it can alternatively be cast as variations in the sampling rate. By definition two
signals α(t) and β(t) are connected by an approximate continuous time warping
(τ1, τ2), if τ1, τ2 are strictly increasing functions on [0, T ], and α(τ1(t)) ∼= β(τ2(t))
for 0 ≤ t ≤ T . We can choose one signal, say α(t), as a reference and all signals
that are connected with it by some time warping (e.g. β(t)) call (time-)warped ver-
sions of α(t). We will also refer to a time warping (τ1, τ2) as a single time warping
(function) τ(t) = τ2(τ

−1
1 (t)) which connects the two time series by β(t) = α(τ(t)).

A common problem is recognition (which is detection plus classification) of
time-warped patterns in a signal. In this report we start out from an idea of
time warping invariant neural networks originally proposed in [Sun et al., 1993].
This approach (in contrast to most others) does not look for a time warping that
could map an observed signal to a target pattern, but treats all signals in a time
warping invariant fashion. Time warping invariance is achieved by normalizing
time dependence of the state variables with respect to the length of trajectory of
the input signal in its phase space. In other words, the input signal is considered in
a “pseudo-time” domain, where “time span” between two subsequent pseudo time
steps is proportional to the metric distance in the input signal between these time
steps. As a consequence, input signals will be changing with a constant metric
rate in this “pseudo-time” domain. In continuous time, for a k-dimensional input
signal u(t), u : R+ → Rk we can define such a time warping τ ′u(t), τ ′u : R+ → R+

by
dτ ′u(t)/dt = b · ‖du(t)/dt‖ , (3)

where b is a constant factor. Note, that the time warping function τ ′u depends on
the signal u which it is warping. Then the signal warped by τ ′u (i.e. in the “pseudo-
time” domain) becomes u(τ ′u(t)), and as a consequence ‖du(τ ′u(t))/dt‖ = 1/b, i.e.
the k-dimensional input vector u(τ ′u(t)) changes with a constant metric rate equal
to 1/b in this domain. Furthermore, if two signals u1(t) and u2(t) are connected
by a time warping τ , then time-warping them with τ ′u1

and τ ′u2
respectively results

in u1(τ
′
u1

(t)) = u2(τ
′
u2

(t)), which is what we mean by time warping invariance (see
Figure 1 for the graphical interpretation of the k = 1 case).

A continuous-time processing device could be made time warping invariant, if
for any given input u(t) it could vary its processing speed (i.e. its internal “pseudo-
time”) according to τ ′u(t) by changing the time constant in the equations describing
its dynamics. This is an alternative to time-warping the input signal u(t) itself,
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Figure 1: A time warping invariant interpretation of two one-dimensional signals
connected by a time warping. We can see that in the “pseudotime” domain τ ′u(n)
(3) the shape of the signal is basically time warping independent, only the density
of the data points differs. We can also observe that for the specific case of one-
dimensional input the interpretation causes a big loss of the original temporal
information – the signal u(τ ′u(n)) can be fully described by the sequence of values
at local minimums and maximums of u(n). The notion of time warping level l is
taken from (9) here.

which may be difficult (e.q. with discrete time signals) or even impossible (e.g. in
real time processing).

2.4 ESN with Leaky Integrator Neurons

As we have just argued, in order to process a time-warped signal in the “pseudo-
time” domain by a continuous-time processing device, the latter must be described
by a differential equation featuring a time constant. In order to employ ESNs, we
therefore need continuous-time reservoir dynamics. We have chosen leaky integra-
tor neuron reservoirs since they are the most simple and most commonly used
continuous-time neurons. A preliminary discussion of such leaky integrator ESNs
was provided in [Jaeger, 2001], but we need a better understanding of such ESNs
for our purposes, which we presently develop.

A leaky integrator neuron (LIN) is a biologically inspired model of a neu-
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ron, which accumulates (integrates) its inputs, but also exponentially loses (leaks)
accumulated excitation over time. In contrast to Eq. (1), the continuous-time
dynamics x(t) of leaky integrator reservoir are given by the differential equation

ẋ(t) =
1

c
(−ax(t) + f [Winu(t) + Wx(t)]), (4)

where the positive quantity c is the time constant of this equation (governing the
speed of its dynamics) and a is the decay (or leakage) rate. For simulations of
these dynamics on digital computers Eq. (4) must be discretized. The simplest
discretization is the Euler (linear) interpolation, which turns Eq. (4) into

x(n + 1) = (1− a∆t)x(n) + ∆tf(Winu(n + 1) + Wx(n)), (5)

where ∆t is a time gap between two consecutive time steps divided by the time
constant c. The output equation of our ESN remains as Eq. (2). In this model
we can implement time warping by varying ∆t over time steps ∆t = ∆t′(n + 1),
where ∆t′(n + 1) is a “pseudo-time” gap between time steps n and n + 1. Using
a discrete time version of Eq. (3) we get

∆t′(n + 1) = τ ′u(n + 1)− τ ′u(n) = b · ‖u(n + 1)− u(n)‖ . (6)

Note, that our “pseudo-time” is dimensionless, so we can choose a time constant
c = 1 or alternatively assume that it is incorporated in b. Substituting ∆t in
Eq. (5) with ∆t′(n + 1) from Eq. (6), we obtain the state update equation of a
time warp invariant echo state network (TWIESN):

x(n + 1) = x(n)− b ‖u(n + 1)− u(n)‖ (ax(n) + f [Winu(n + 1) + Wx(n)]). (7)

2.5 Parameter Constraints of ESNs with LINs

Going from classical ESN to leaky-integrator ESN, we have to reformulate the
conditions for the echo state property into

ρ((1− a∆t)I + ∆tW ) ≤ 1, (8)

where ρ() denotes spectral radius, I is identity matrix and ∆t denotes average time
gap between two consecutive time steps [Jaeger, 2002]. Other natural constraints
are imposed by the definition of leakage: a∆t > 0, otherwise it would not be a
leakage, and a∆t ≤ 1, as a neuron can not leak more excitation than it has. At
this point TWIESNs effectively leave us with three free parameters, that should be
optimized satisfying the constraints: (i) the spectral radius of the reservoir weight
matrix ρ(W ), (ii) the decay rate a, and (iii) the (average) time gap between two
time steps ∆t(n). There is no analytical method known for finding a combination
of these values that minimizes the training error. In Section 3.2 we will however
describe insights that help to optimize these global control parameters heuristi-
cally. Note, that the classical ESN is a special case of leaky-integrator ESN, where
a = 1 and ∆t = 1 [Eq. (5)], therefore performance of optimized leaky-integrator
ESN must be better or equal to the classical ESN.
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3 Numerical Simulations

3.1 Data Used for Numerical Simulations

We have performed extensive numerical simulations using synthetic data. We
started out from data that combined a red noise (a [−0.5, 0.5] uniformly distributed
white noise with filtered-out 60% of its higher frequencies) background signal
g(t) with smoothly embedded random short target sequences p(t) with a similar
frequency makeup. Smooth continuous-time signals of this kind were produced,
and then time-warped discrete-time samples were drawn (the above mentioned
frequency makeup corresponds to the discrete-time signals with no time warping).
We did a recognition of only one pattern (i.e. the ESN had 1-dimensional output),
as recognition of multiple patterns would in essence be done independently.

More specifically, first a short (length Tp) target sequence p(t), p : [0, Tp] → Rk

was generated in the same (above described) way as g(t), g : R+ → Rk (all k
dimensions were generated independently). Then, in order to smoothly embed p(t)
into g(t), a windowing signal w(t) was created, where t ∈ [0, Tp], w(0) = w(Tp) = 0,
and w(t) gently rises to 1 after t = 0 and smoothly falls again to zero level at t = Tp.
w(t) was made by filtering a trapezoidal window signal with the same low-pass
filter which was used to produce g(t) and p(t), so that w(t) would not introduce
any new (high) frequencies. Then the input signal u(t) was produced by smoothly
embedding p(t) into g(t) at random positions ti, where i ∈ N, and (ti+1 − ti) ∈
(Tp, 3Tp) is a uniformly distributed random variable with a mean value 2Tp. At
each ti the embedding of p(t) was u(ti + t) = (1−w(t))g(ti + t) + w(t)p(t), where
t ∈ [0, Tp]. The (1-dimensional) desired output signal yteacher(t) was constructed
by placing Gaussian bumps centered at the time points ti + Tp on a background
zero signal. The height of the bumps is 1 and the width roughly corresponds to
the average width of the main bump of the autocorrelation of p(t).

The above described continuous time signals were modeled in Matlab by a
cubic interpolation of the signals having a six times higher discretization rate, and
in some sense stood for the underlying generating process u(t), where t ∈ R+.
Discrete time time-warped observations u(n) of the process u(t) were drawn as
u(n) = u(τ(n)), where τ : N → R+ fulfilled both time warping and discretization
functions. Both u(t) and corresponding yteacher(t) were discretized/time-warped
together. More specifically, we used

τ(n) = (n + 10 · l sin(0.1n)), (9)

where l ∈ [0, 1] is the level (degree) of time warping: τ(n) is a straight line (no
time warping) when l = 0, and is a nondecreasing function as long as l ≤ 1. In
the obtained signals u(n) a time interval Tp on average corresponded to 20 time
steps and u(n) had (as mentioned before) on average 40% of its lower frequencies
present. The period of the time warping τ(n) is 20π, which stands in no rational
relationship with Tp and (ti+1 − ti) (the latter being random anyway). Discretiza-
tion, smooth embedding, and time-warping meant that different instances of p(t)
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Figure 2: A fragment of a one-dimensional input and corresponding teacher signal
without and with time warping.

may differ considerably in u(n) (see Figure 2). This, together with p(t) having
similar statistics and spectrum as u(t), make this a hard recognition task.

All the below-reported simulations used 1000 data points (iterations) to get
rid of possible initial transients of ESN, 2000 iterations for training, and 500 for
testing. All the ESNs had reservoirs of 50 units, with 20% interconnectivity.

3.2 Optimizing Leaky-integrator ESNs

As pointed out in Section 2.5, leaky-integrator ESNs leave us with three free
parameters (i-iii) for which an optimal analytical solution is not known. In this
section we report an empirical investigation aimed to get insight into conditions
for optimizing these three variables. For this we used data with no time warping
(l = 0). The network was trained with all combinations of the three parameters
(i-iii), varying them within reasonable limits: (i) ρ(W ) ∈ [0.1, 1], (ii) a ∈ [0, 2.9],
and (iii) ∆t ∈ [0.1, 3], with step size 0.1. The same randomly generated data and
internal weights W were used in all the trainings (W was scaled accordingly to
change ρ(W )).

Some essential results of the investigation are presented in Figure 3. Observed
self induced oscillations correspond to the settings, where ρ((1−a∆t)I+∆tW ) > 1.
We can observe, that the normalized mean square error (NMSE, that is, mean
square error divided by data variance) is generally lowest alongside the hyperbola
a∆t = const. This indicates, that a certain decay is optimal for different settings
of ∆t. It has to be expected that this rate depends on the dominating frequencies

10



1 2 3
0

1

2

2.9
ρ(W) = 0.1

∆ t

a

1 2 3
0

1

2

2.9
ρ(W) = 0.5

∆ t

a
1 2 3

0

1

2

2.9
ρ(W) = 0.9

∆ t

a

1 2 3
0

1

2

2.9
ρ(W) = 0.1

∆ t

a

1 2 3
0

1

2

2.9
ρ(W) = 0.5

∆ t

a

1 2 3
0

1

2

2.9
ρ(W) = 0.9

∆ t

a

Train Error:
Zmax = 0.5 (white)
Zmin = 0.0 (black)

Oscilations:
Zmax = 1.0 (white)
Zmin = 0.0 (black)

Figure 3: Dependence of mean square training error and high-frequency, self-
induced oscillations in internal states of leaky-integrator ESN on leakage rate a
(y-axis) and time constant ∆t (x-axis) for ρ(W ) = 0.1, 0.5 and 0.9 respectively.

of the input signals; faster signals presumably would favor bigger decay rates. One
possible heuristic for a rapid model optimization could be setting a relatively small
ρ(W ) ∈ [0.2, 0.3] and look for a good setting of a and ∆t on a diagonal a = C∆t,
where C is a constant of size about 0.3. If an optimal value has been found,
compute r = aopt∆topt and further refine the model performance (if needed) by
exploring parameters a and ∆t “sideways” along a∆t = r.

3.3 Results

To evaluate the performance of TWIESNs, simulations were done with varying
levels of time warping l in Eq. (9), and different input dimensions k. Performance
of leaky-integrator ESNs was compared to the performance of TWIESNs. Both
ESNs were run with parameters a = 0.3, 〈∆t〉 = 1.2, and ρ(W ) = 0.3 optimized
using the heuristic in Section 3.2. For TWIESNs the parameter b in Eq. (6) was
adjusted such, that 〈∆t′(n)〉 = 1.2, i.e. b = 1.2/〈‖∆u(n)‖〉, where 〈‖∆u(n)‖〉 is
the average ‖u(n)− u(n− 1)‖ computed over training data. The range of ∆t′(n)
during the runs was bounded by a hard saturation to impose constraints described
in Section 2.5: ∆t′(n) = min(b ‖∆u(n)‖ , 1/a). While varying the level of time

11



warping l in the simulation, the underlying continuous-time signals were kept the
same. The same data and randomly generated reservoir connections W were used
for all modifications of ESNs. Results of the simulation averaged over 100 runs
are presented in Figure 4.

A criterion of the actual pattern recognition was the output y(n) level exceed-
ing a certain threshold h. In this simple setup each continuous interval of n for
which y(n) > h corresponds to one recognized instance of the pattern. The com-
bined quality of recognition q was calculated for each output signal, by adding the
number of correctly recognized patterns, the number of patterns what ESN failed
to recognize and the number of “false alarms”, and dividing by the number of
correctly recognized patterns. A pattern is considered to be recognized correctly
if the intervals of n where y(n) > h and yteacher(n) > h overlap (one interval of
y(n) can only be matched with one interval of yteacher(n)). The value of h was
optimized by maximizing q over the training data.

We can see in Figure 4, that TWIESN performance remains almost constant
while the level of time warping l increases. To better understand the nature of
the observed slight decrease in the performance, we also constructed a version
of a leaky-integrator ESN, which “unwarped” the signals artificially: ∆t(n) =
min(b[τ(n) − τ(n − 1)], 1/a), using the (in real life unavailable) knowledge of the
time warping τ(n) used for producing u(n). The observed identical decrease of
performance (see Figure 4) of this method implies, that this decrease is due to
information loss induced by producing u(n) and limited accuracy of our neuron
model [Eq. (5)] (and thus constraints), but not due to our estimation of ∆t′(n).
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Figure 4: Performance of the classical ESN with LIN (blue dashed line), artificial
time “unwarping” ESN (green dotted line) and TWIESN (red solid line), for input
dimensions k = 1, 3, 10 and 30 respectively, and different levels of time warping l
(y-axis). Thin line in normalized mean square error (MSE) plots shows training
performance and bold line – testing performance. The plots below the ones with
MSEs indicate corresponding comparison of combined recognition qualities q.
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We can also observe that the more dimensions k the input signal u(n) has,
the lesser level of time warping l is needed to benefit from TWIESNs over simple
ESNs (in the case of k = 30, performances of TWIESN and artificially “unwarping”
ESN are almost identical). It is intuitively clear, that the bigger the number of
independent input dimensions we have, the less important the role of the actual
time axis is, i.e. the loss of temporal information which is intrinsic to TWIESNs
becomes less important. In other words, the temporal information can in some
sense be deduced from the dynamics of many independent input variables.

4 Discussion

In this report we presented an investigation of ESNs with leaky-integrator neu-
rons, which is a generalization of the common ESN and thus with good choice of
parameters cannot be outperformed by it. Based on the leaky-integrator ESN we
proposed TWIESNs – an RNN architecture capable of dynamically recognizing
temporal patterns in (strongly) time-warped signals. In contrast to dynamic time
warping, this method does not require a “correct” reference pattern, to which the
signals are compared.

Further improvements of the method could be done by choosing a more ac-
curate than Euler’s approximation of the leaky-integrated neuron dynamics. An
alternative way of improving precision could be interpolating input data with ad-
ditional intermediate points, when input changes rapidly. The work described
in this report was carried out as the first step towards applying TWIESNs for
handwriting recognition.
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