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Summary

Observable operator models (OOMs) are matrix models for describing stochastic
processes. In this report we proposed a novel algorithm for learning OOMs from
empirical data. Like other learning algorithms of OOMs, the presented algorithm
is based upon the learning equation, a linear equation on observable operators
involving two adjustable matrices P and Q. The algorithm designs P, Q so that
an upper bound of the error between the estimated model and the “real” model
is minimized. So we call it the error controlling (EC) algorithm.

One important feature of the EC algorithm is that it can be used online, where
it updates the estimation of observable operators on each new observation via a
set of RLS-like formulas 1 . By the linearity of the learning equation, we are able
to prove the asymptotic correctness of the online learning procedure.

The main numerical problem of the EC algorithm is to control the condition
of the learning equation online, leading to a special optimization problem. For
this special problem we proposed an efficient method that searches for the global

optimum alternatively on two orthogonal directions and call it the orthogonal

searching (OS) algorithm. The performance of EC, in which the OS algorithm is
used as the inner optimizer, is studied through some (offline and online) leaning
tasks.

1RLS means recursive least squares estimation.
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1 Introduction

Hidden Markov models (HMMs) trained with the EM (Baum-Welch) algorithm [1]
nowadays have become one of the standard tools for modeling stochastic systems
and have been used in a wide range of applications such as speech recognition [9],
control engineering [3], and biosciences [2] with large success.

Over the last few years, an alternative to HMMs has been developed, namely
observable operator models (OOMs) [6]. According to the OOMs theory, the future
conditional distributions of a stochastic process are seen as predictive states; and
the stochastic process itself can be modelled by means of linear operators τa acting
on these predictive states. HMMs can also be represented in a similar fashion using
linear operators acting on hidden states. The main difference between HMMs and
OOMs is that the matrices and state vectors in HMMs consist only of non-negative
entries, while OOMs allow for negative entries. This difference gives OOMs three
significant advantages over HMMs:

• The theory of OOMs is mathematically simple and elegant since only con-
cepts from elementary linear algebra is required.

• OOMs are more expressive than HMMs in that stochastic processes which
can be modelled by finite-dimensional HMMs can also be described by finite-
dimensional OOMs but not vice versa.

• While the (iterative) EM algorithm for HMMs suffers from the problems
of slow convergence and the presence of many local optima, a constructive,
asymptotically consistent learning algorithm for OOMs can be derived from
the equivalence theorem (cf. Section 2).

The basic theory of OOMs was set up in the last decade in [6], in which a
general constructive procedure for learning OOMs from empirical data was also
proposed. The performance of this general algorithm, however, heavily depends
on the choice of characteristic events and indicative events, for which only some
intuitive heuristics are obtained, see [6] for the detail. The first practical learning
algorithm was developed by Kretzschmar in [8], where he considered different
OOM representations of a stochastic process and proposed a systematic method
for searching for representations that minimize the effects of estimation errors
caused by finite training sequences. In this sense we call it the robust learning

algorithm. We will briefly introduce this algorithm in Section 2.
In this technical report we proposed a novel algorithm for learning OOMs, the

error controlling (EC) algorithm. Both the robust algorithm and the EC algorithm
are based on the learning equation, a linear matrix equation involving several
probability matrices whose elements are the probability masses on certain initial
sequences, and two adjustable matrices P and Q. While the probability matrices
are unavailable, they can be approximated by the counting matrices obtained from
the training data by accumulating the occurrence number of the corresponding
sequences. Since the training sequence is finite, this approximation will of course

1



introduce errors into the learning equation. So the basic idea here is to minimize or
control the effect of such an approximation, that is, to make the learning equation
well conditioned, by selecting appropriate P and Q. But the EC algorithm uses
a different target function for evaluating the matrices P, Q from that used by the
robust algorithm, which will be discussed later.

In a more recent paper [7], Jaeger argued that in many situations one can
only gain a small data set containing incomplete information of the underlying
process; so the statistical efficiency problem is more important than the above
error controlling problem. He then proposed another criterion for selecting the
matrices P and Q, from which an iterative learning algorithm of OOMs, called
efficiency sharpening (ES) algorithm, was derived. The ES algorithm will also be
introduced in Section 2 in brief, for the detailed procedure see [7].

Unlike the robust and ES algorithms, the EC algorithm can be used online. In
fact, due to the linearity of the learning equation, a set of RLS-like formulae for
updating the estimated model can be easily derived if the two adjustable matrices
P and Q are fixed. An efficient online method for modifying P and Q, however,
is demanded to minimize or control the condition of the learning equation online

so that the estimation error will not be magnified by inverting an ill-conditioned
matrix during the learning procedure. The condition of the learning equation can
be measured via different matrix norms. Under the Frobenius norm, the above
condition controlling problem is reduced to an optimization problem of special
form, for which a new method that searches for the optimum iteratively on two
orthogonal directions, and hence called the orthogonal searching (OS) algorithm,
is proposed. The OS algorithm can also be used offline to minimize the condition
of the learning equation, yielding the offline version of the EC algorithm.

The report is organized as follows. First the basics of OOMs theory, the robust
algorithm and the ES algorithm are reviewed in Section 2. Then we introduce the
online version of the EC algorithm in Section 3. Section 4 is devoted to the OS
algorithm, where the theoretical derivation and some numerical investigation are
presented. The performance of the EC algorithm is studied on several data sets;
and the results are presented and discussed in Section 5. Finally, we make the
conclusion in Section 6.

2 An Introduction to OOMs

The way that OOMs describe stochastic processes gives it its name. Let (Yn)n∈N be
a discrete-time stochastic process on some probability space (Ω,F , P ) with values
from a finite alphabet O = {1, 2, · · · , ℓ}. 2 According to OOMs theory, with
each observable a ∈ O one can assign a linear operator τa such that the probability
distribution of (Yn)n∈N is completely determined by the operators {τa}a∈O and an
initial state vector w0. These operators τa are hence called observable operators,

2To simplify the notation, observables are represented by their indices in the alphabet.
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which, together with the initial state w0, form an observable operator model of
the process (Yn)n∈N. Although OOMs can also be used to model continuous-time,
arbitrary-valued processes [5], in this report we will only consider the discrete-time,
finite-valued case.

2.1 The Basics of OOMs Theory

In this subsection we briefly introduce the basic results of OOMs theory as well
as the notation conventions used by the report, see [6] and the references therein
for the detail.

The definition of OOMs and the equivalence theorem

Throughout the report the alphabet is always denoted by O = {1, 2, · · · , ℓ}. For
a stochastic process (Yn)n∈N with Yn ∈ O, we write

P (a1a2 · · ·an) := Pr(Y1 = a1, Y2 = a2, · · · , Yn = an) ,

where n ∈ N and ai ∈ O (i = 1, 2, · · · , n), for the probability that an initial
sequence of outcomes a1a2 · · ·an is observed. Then an m-dimensional OOM of the
process (Yn) can be defined as a triple A = (Rm, {τa}a∈O, w0) with τa ∈ R

m×m and
w0 ∈ R

m such that, for any initial sequence a1a2 · · ·an,

P (a1a2 · · ·an) = 1T

mτan
· · · τa2τa1w0 , (2.1)

where 1m denotes the m-dimensional column vector of units.
To simplify the notation we use small letters with a bar (ā, b̄, . . . ) to denote

a finite sequence of observables in O; and O∗ to denote the set of all such finite
sequences, including the empty sequence ε. For any sequence ā = a1a2 · · ·an in O∗,
we denote by τā the reverse-ordered product τan

· · · τa2τa1 . With these shorthand
notations, eqn (2.1) can be rewritten as P (ā) = 1T

mτāw0.
A stochastic process can be modelled by different OOMs through eqn (2.1),

these OOMs are equivalent to each other. An OOM is said to be minimal if there is
no other OOMs with lower dimension m in its equivalence class. By this definition
of minimal OOMs and eqn (2.1), we get

Proposition 1 The structure A = (Rm, {τa}a∈O, w0) is a minimal OOM of some

stochastic process iff (1) 1T

mw0 = 1; (2) 1T

mτ = 1T

m, where τ :=
∑

a∈O τa is the

sum of τa’s; (3) 1T

mτāw0 > 0 for any ā ∈ O∗; and (4) the two families of vectors

{τāw0 : ā ∈ O∗} and {τT

ā 1m : ā ∈ O∗} both span the whole space R
m. Furthermore,

A describes a stationary process iff (5) τw0 = w0.

The reader is referred to the discussion in Section 14.5 (pp.426–428) of [7] for an
indirect proof of the above proposition and, more important, a general procedure
for converting a given OOM to its equivalent minimal OOM. So in the sequel we
may, and do, only consider minimal OOMs. Furthermore, this proposition gives
us an equivalent algebraic definition of minimal OOMs.
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Definition 1 An m-dimensional minimal OOM is a triple A = (Rm, {τa}a∈O, w0)
with τa ∈ R

m×m and w0 ∈ R
m, for which the first four conditions from Proposition

1 hold.

Now we are ready to state the equivalence theorem, which is of fundamental
importance when developing learning algorithms for OOMs. It is clear that two
minimal OOMs of different dimensions are not equivalent, so we can assume that
the two minimal OOMs whose equivalence we wish to ascertain have the same
dimension.

Proposition 2 (the equivalence theorem, see Proposition 5 of [6])
Two minimal OOMs A = (Rm, {τa}a∈O, w0) and B = (Rm, {ϕa}a∈O, v0) are equiv-

alent if and only if there exists a nonsingular matrix ̺ ∈ R
m×m such that (1)

1T

m̺ = 1T

m, (2) v0 = ̺w0 and (3) ϕa = ̺τa̺
−1 for all a ∈ O.

It is based on the above equivalence theorem that one can establish the learning
equation of OOMs, so far the starting point of all learning algorithms of OOMs
(the robust, ES and our EC algorithm).

The learning equation of OOMs

Given an OOM A = (Rm, {τa}a∈O, w0) of a process (Yn), one can compute the
distribution of (Yn) by eqn (2.1). Now we consider the reverse problem, i.e., given
the distribution of (Yn), we want to identify all the operators τa

3 so that A is an
OOM for (Yn). This can be done as follows.

Let Od be the set of all sequences over O of length d and {āj}Nj=1, {b̄i}Ni=1 two
enumerations of Od (hence N = ℓd). Note here the enumerations {āj}Nj=1 and
{b̄i}Ni=1 may be different (in order). We define the probability matrices

V =
[

P (āj b̄i)
]

i,j=1,2,··· ,N
, W a =

[

P (ājab̄i)
]

i,j=1,2,··· ,N
, (2.2)

where the observable a runs over O; āj b̄i denotes the concatenation of āj and b̄i;
and the notation ājab̄i has the similar meaning.

It follows from eqn (2.1) that V = US and W a = UτaS, where U denotes the
N×m matrix with 1T

mτb̄i
as its i-th row and S the m×N matrix with j-th column

τāj
w0. Since 1T

m(
∑

a∈O τa) = 1T

mτ = 1T

m and since {b̄i}Ni=1 is an enumeration of Od,

we have 1T

NU =
∑N

i=1 1T

mτb̄i
= 1T

m(
∑

a∈O τa)
k = 1T

m. Furthermore, by the definition
of minimal OOMs, the matrices S and U both have rank m for sufficiently large
d (e.g., d > m). So we can select matrices P, Q ∈ R

m×N such that 1T

mP = 1T

N and
that PU , SQT both are invertible. Let ̺ = PU . Then 1T

m̺ = 1T

NU = 1T

m and

PW aQ
T = PUτaSQT = ̺τa̺

−1PUSQT = (̺τa̺
−1)(PV QT) . (2.3)

3The initial state vector w0 is usually evaluated from the OOMs conditions (1) and (5) from
Proposition 1.
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It follows from the equivalence theorem that, by selecting different matrices P and
Q, we are able to construct the whole equivalence class of OOMs

{A(P, Q)} = {(Rm, {̺τa̺
−1}a∈O, ̺w0)} =: {(Rm, {τ̃a}a∈O, w̃0)}

of the given stochastic process (Yn) via the formula

τ̃a(P, Q) = (PW aQ
T)(PV QT)−1 . (2.4)

Both eqn (2.3) and eqn (2.4) are therefore called the learning equations.

Estimating OOMs from empirical data

The learning equation (2.4) reveals how to reconstruct an OOM from the known

distribution of a stochastic process. In practical modelling tasks, however, the
distribution of the underlying process (Yn)n∈N is typically unknown. Instead, a
finite length instantiation of the process is given and we are required to estimate
an OOM that approximately models the process. In this report we will consider the
following learning task: estimate an m-dimensional OOM from a finite sequence
s̄ = s1s2 · · · sl which is assumed to be produced by a stationary and ergodic process.
Here the dimension m is also assumed to be known.

For ergodic processes, the probability matrices V and W a in eqn (2.3) can be
asymptotically approximated by the following counting matrices

V # =
[

{āj b̄i}#
]

i,j=1,2,··· ,N
, W#

a =
[

{ājab̄i}#
]

i,j=1,2,··· ,N
, (2.5)

respectively, where {ājab̄i}# denotes the occurrence number of the sequence ājab̄i

in the training sequence s̄, while {āj b̄i}# is obtained from s1s2 · · · sl−1, omitting the
last observation sl. This is because one should keep the same “counting factors”
(l − 2d in our case) on both sides of the learning equation (2.3).

A remark on the indices l and t. — As we will also discuss the online version
of the EC algorithm, it would be convenient to relate the length l of the training
sequence (in offline EC) to the time step t (in online EC). The above discussion
about how to get the counting matrices from the whole training sequence s̄ is, of
course, for offline learning task. For online learning, the length of s̄ is potentially
infinite; and at each time t only the initial part of s̄ is known to us. To unify the
two cases, we (1) for the offline case define the “effective length” t := l− 2d of the
training sequence; (2) for the online case assume that at time t the initial part of
s̄ up to the (t+2d)-th symbol st+2d is observed. Then for the two (different) cases
one may only consider the same sequence s1s2 · · · st+2d, with the index t meaning
(1) the effective length of s̄ in the offline case; or (2) the time, also the effective
length of s̄ up to the current time t in the online case.

To get the counting matrices V # and W#
a online, we use an inspection window

of width 2d + 1. The detailed scheme is as follows. The matrices V # and W#
a

are initially set to be zero. Assume at time t, we have gotten V # = V #(t) and
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W#
a = W#

a (t). At time t, as supposed above, the subsequence st+1 · · · st+1+2d is
observed in the inspection window. Assume that

st+1 · · · st+d = āj , st+1+d = c ,
st+1+d · · · st+2d = b̄k , st+2+d · · · st+1+2d = b̄i ,

for which we say the event (j, c, k, i) is observed at time t+1 and write (j, c, k, i)t+1.
Then we update the matrices V # and W#

c by adding one at their (k, j)-th and
(i, j)-th position, respectively. This can be written in matrix notation as

(V #)+ = V # + eke
T

j , (W#
a )+ = W#

a + δaceie
T

j , (2.6)

where the superscript + denotes updated values (at the next time step) due to new
observations; ei is the i-th unit vector with dimension determined by the context;
and δac is the Kronecker symbol: δac = 1 if a = c and δac = 0 otherwise. Notice
that one can use eqn (2.6) also for offline learning task (to get the final counting
matrices), bus as an iterative approach rather than update rules.

The basic (offline) procedure for estimating OOMs of dimension m from a given
sequence s̄ can now be summarized as follows. First we count the occurrences of
āj b̄i and ājab̄i via eqn (2.6) to get the matrices V # and W#

a , respectively. We then
select two matrices P, Q ∈ R

m×N by some way. Finally, the observable operators
are estimated by the formula

τ̂a = (PW#
a QT)(PV #QT)−1 , (2.7)

which will also be referred to as the learning equation in this report.
Notice that the estimation (2.7) is asymptotically correct provide that the

training sequence s̄ were indeed generated by an m-dimensional OOM in the first
place. In other words, the underlying OOM will be perfectly recovered (up to its
equivalence class) almost surely as the effective length (or time) t goes to infinity.
This is because the normalized counting matrices t−1V # and t−1W#

a converge
almost surely to V and W a when t tends to infinity.

About the choice of P and Q

The estimation τ̂a obtained by eqn (2.7), and hence the performance of the learning
algorithm, depends crucially on the choice of P and Q. For instance, if the matrices
P and Q are poorly selected that PV #QT is nearly singular, then the algorithm
will be unstable. Two methods have been developed for this problem: the robust
algorithm [8] and the ES algorithm [7].

• The idea of the robust algorithm is quite intuitive: one just designs the
matrices P and Q so that the condition number of PV #QT is minimized.
In [8], the matrices P , Q are restricted to be of a special form derived
from the singular value decomposition (SVD) of V #; and a systematic but
somehow complicated method is proposed to minimize the condition number
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of PV #QT. Although several positive experiments are reported, the criterion
for designing P and Q used by the robust algorithm lacks a theoretical
foundation, as will be discussed in the next subsection.

• In the ES algorithm, the matrix P is given the name a characterizer and
is designed by minimizing the quantity JES(P ) = tr(PDP T) (eqn (14.56) of
[7]) under the constraint PU = Im (Proposition 14.14 of [7]), where D is
the diagonal matrix of order N with P (b̄i) (i = 1, 2, · · · , N) as its diagonal
entries and U , as before, is the N×m matrix with i-th row 1T

mτb̄i
. According

to the discussion in pp.443–444 of [7], the quantity JES(P ) represents the
“mean stochastic approximation error” caused by finite training data when
the matrix P is used as the characterizer. So the principle here is to minimize
the mean stochastic approximation error by selecting an appropriate P (the
matrix Q is then set to be (PV #)†, the pseudo inverse of PV #).

As the matrix U is unknown, the ES algorithm is an iterative method: One
first “guesses” (or trains using other methods) an OOM, from which the
matrix U is computed; then he computes P, Q so that JES is minimized and
updates τ̂a’s via eqn (2.7). This procedure is repeated on the new updated
OOM until some stop criterion is satisfied.

In this report we consider the problem of choosing P and Q from a purely
algebraic viewpoint. More concretely, we want to minimize or control the error
‖τ̃a− τ̂a‖ between the “real” operator τ̃a and the estimated τ̂a. In the next subsec-
tion, an upper bound of this error is derived so that one can select the matrices
P and Q by minimizing this upper bound. This is why we call our new algorithm
the error controlling (EC) algorithm.

To simplify the notation in the sequel we will write τa for τ̃a.

2.2 Error Analysis and Controlling

If the distribution of a stochastic process is known, one can construct its OOM
from the probability matrices V and W a via eqn (2.4). When learning OOMs from
empirical data, the probability matrices V , W a are approximated by the counting
matrices V # and W#

a , respectively; and estimation errors in τa are then introduced.
In this subsection we first investigate the influence of errors in counting matrices
on the estimated operators τ̂a, then briefly discuss the robust algorithm [8].

To fix the notations we let V̂ = t−1PV #QT, Ŵa = t−1PW#
a QT (recall that t

is the effective length of the training sequence) and V = PV QT, Wa = PW aQ
T.

Then eqns (2.4), (2.7) can be rewritten as

τa = WaV
−1 and τ̂a = ŴaV̂

−1 , (2.8)

respectively. Let E = t−1V # − V , Ea = t−1W#
a −W a be the error matrices of

V and W a respectively. For ergodic processes, E, Ea asymptotically converge to
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zero almost surely. So in the following analysis we (1) assume that the entries in
E and Ea are sufficiently small and of the same order; (2) only consider the first
order terms and omit those terms of higher orders.

It is well known for a sufficiently small matrix A ∈ R
m×m (i.e., its spectral

radius ρ(A) < 1), (Im − A)−1 exists and has the following Taylor expansion:

(Im −A)−1 = Im + A + A2 + · · ·+ An + · · · = Im + A + O(‖A‖2) ,

where O(‖A‖2) denotes the sum of all second and higher order terms. Since the
error matrices E and Ea are small enough, by eqn (2.8) and the definition of E
and Ea one can evaluate

τ̂a = (Wa + PEaQ
T)(V + PEQT)−1

= (Wa + PEaQ
T)(Im + V −1PEQT)−1V −1

= (Wa + PEaQ
T){Im − V −1PEQT + O(‖E‖2)}V −1

= (Wa + PEaQ
T){V −1 − V −1PEQTV −1 + O(‖E‖2)}

= τa − τaPEQTV −1 + PEaQ
TV −1 + O(‖E‖2) . (2.9)

Similarly, V −1 = (V̂ −PEQT)−1 = V̂ −1 + V̂ −1PEQTV̂ −1 +O(‖E‖2). Substituting
this identity into eqn (2.9) and omitting all O(‖E‖2) terms, one obtains

τ̂a ≈ τa − τaPEQTV̂ −1 + PEaQ
TV̂ −1 ,

and so
‖τ̂a − τa‖ 6 (‖τa‖ · ‖E‖+ ‖Ea‖) · ‖P‖ · ‖QTV̂ −1‖ . (2.10)

In the above discussion, ‖ · ‖ can be any consistent matrix norm, i.e., the norm
with the property ‖AB‖ 6 ‖A‖ · ‖B‖ for any matrices A, B. In this report we
will use the Frobenius norm ‖A‖ :=

√

tr(ATA) for computational reasons.
According to eqn (2.10), to control the estimation error ‖τ̂a − τa‖, one should

control the value of κ1 := ‖P‖ · ‖QTV̂ −1‖. The robust algorithm uses a similar
quantity κ2 := ‖V̂ ‖2 · ‖V̂ −1‖2 [8], the condition number of the matrix V̂ measured
by the spectrum norm ‖ · ‖2. By the definition of V̂ = t−1PV #QT, the above two
quantities κ1 and κ2 can be expanded into

κ1 = t‖P‖ · ‖QT(PV #QT)−1‖ , (2.11)

κ2 = ‖PV #QT‖2 · ‖(PV #QT)−1‖2 , (2.12)

They all characterize the condition of the learning equation (2.7); and we will call
them condition indicators of the learning equation in the sequel.

We now briefly introduce Kretzschmar’s work on how to minimize the condition
indicator κ2 under the constraint 1T

mP = 1T

N , given the counting matrix V #. The
reader is referred to [8] for the detailed procedure.

Let V # = LΣRT be the SVD of V #, where Σ is a diagonal matrix with diagonal
entries σ1 > σ2 > · · · > σN (> 0) and L, R ∈ R

N×N are orthonormal matrices, i.e.,
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LTL = RTR = IN — the identity matrix of order N . In the robust algorithm, the
SVD of V # is rewritten as

V # =
[

L1 L2

]

[

Σ1 0
0 Σ2

]

[

R1 R2

]T

= L1Σ1R
T

1 + L2Σ2R
T

2 ,

where Σ1 = diag{σ1, · · · , σm} and 0, which denotes zero matrices here, and other
matrices have the corresponding shape. The matrix Q is then fixed to be RT

1 and
P is parameterized (by Φ and θi) as

P = Φ · diag{θ1, · · · , θm} · LT

1 + em1T

NL2L
T

2

with Φ being an m×m orthonormal matrix and θi > 0 (i = 1, 2, · · · , m).
With the above setting of P and Q, direct computation shows that

PV #QT = Φ · diag{θ1σ1, · · · , θmσm} ,

1T

mPL =
[

1T

mΦ · diag{θ1, · · · , θm} , 1T

NL2

]

.

So the constraint 1T

mP = 1T

N holds iff 1T

mΦ · diag{θ1, · · · , θm} = 1T

NL1 and the
matrix PV #QT has the singular values {θ1σ1, · · · , θmσm}. It follows that

κ2 =
max{θiσi : i = 1, 2, · · · , m}
min{θiσi : i = 1, 2, · · · , m} .

It is now obvious that κ2 > 1 and the equality holds if and only if θiσi = µ for
all i = 1, 2, · · · , m. Thus, the problem of minimizing κ2 amounts to minimizing
an error function, e.g., J =

∑m
i=1(θiσi− µ)2, under the constraints ΦTΦ = Im and

1T

mΦ · diag{θ1, · · · , θm} = 1T

NL1.
Kretzschmar then parameterized the matrix Φ by anti-symmetric matrices,

i.e., by matrices ω with the property ωT = −ω. In fact, the matrix exponential
exp(ω) :=

∑∞
n=0 ωn/n! of any anti-symmetric matrix ω ∈ R

m×m is orthonormal.
So one can set Φ = exp(ω) and evaluate θi by θi = (1T

NL1ei)/(1T

m exp(ω)ei), which
is derived from the constraint 1T

mΦ · diag{θ1, · · · , θm} = 1T

NL1. In this way, we
have converted the original constrained problem to an unconstrained optimization
problem so that standard numerical methods can be utilized.

The robust learning algorithm of OOMs can now be summarized as follows: 1.
get the counting matrices V # and W#

a from data; 2. calculate the SVD of V #; 3.
minimize J(ω, µ) =

∑m
i=1[θi(ω)σi − µ]2 to get the minimal point ω∗; 4. calculate

the matrices P, Q from ω∗; 5. estimate τ̂a by eqn (2.7). This procedure, however,
is quite expensive and therefore unsuited to online learning.

Moreover, as has been pointed out earlier, although some positive results are
reported for the robust algorithm, its starting criterion for selecting the matrices
P, Q is not theoretically verified. Because one can arbitrarily select a matrix P
such that 1T

mP = 1T

N and PV # has rank m (almost all P with column sums 1 will
do) and compute QT = (PV #)†, then PV #QT = Im and κ2 reaches its minimum

9



1. In other words, if we use minimization of κ2 as the only criterion for designing
P and Q, we are almost free to choose P (and then compute QT = (PV #)†).
So the complicated Kretzschmar computation is unnecessary; and the theoretical
foundation of the robust algorithm is incomplete. In conclusion, one should use
κ1, not κ2, as the target function for selecting the matrices P and Q.

3 The Error Controlling Algorithm

Based upon the above discussion, we sketch out the offline version of our error
controlling algorithm in three steps:

1. Get the counting matrices V # and W#
a ’s from the training sequence.

2. Minimize the condition indicator κ1 to get the matrices P, Q.
3. Estimate the observable operators τ̂a by the learning equation (2.7).

To make this learning procedure online, one should consider the online form of the
above three steps one by one. For the first step, the counting matrices V # and
W#

a are updated by eqn (2.6), which is already in online form. We next consider
the other two steps.

3.1 Making the Second Step Online

Assume at time t we have gotten V # and W#
a . Then by eqn (2.11) in the second

step we need to calculate the matrices P, Q via the optimization problem:

minimize κ1 = t‖P‖ · ‖QT(PV #QT)−1‖ ,
subject to 1T

mP = 1T

N .
(3.1)

Although numerical algorithms for general optimization problems such as the well
known gradient descent (GD) method can be employed for problem (3.1), they
are computationally too expensive to be used online because for online learning it
requires the computation of the derivative of κ1 w.r.t. P and Q for each time step.
On the other hand, if one can keep the value of κ1 under some predefined threshold
κ during the learning procedure, then by (2.10) the estimation error ‖τ̂a− τa‖ will
converge to zero as t goes to infinity. This is because for ergodic processes the errors
E, Ea in probability matrices converges to zero when observations accumulate. So
minimizing (3.1) at each time step is actually not necessary, what needed is a
cheap updating scheme of P, Q so that the condition of the learning equation will
not exceed some predefined threshold.

One such updating scheme will now be outlined. It is an iterative method:
at each time step, if the target function κ1 exceeds some predefined threshold κ,
the matrices P , Q are modified column by column, unless some stop criterion
is satisfied; otherwise, P and Q remain unchanged for this step. We call it the
column-by-column (CbC) scheme. The detailed procedure of CbC is as follows.

10



We arrange the columns of P and Q in an ordered list {p1, q1, · · · , pN , qN}, where
pn (resp. qn) denotes the n-th column of P (resp. Q); and make a cycle pointer
running over the list. Whenever the threshold κ is exceeded, (only) the column
under the pointer will be modified, with all other columns remaining unchanged.
The pointer is then moved right to the next column and the same modification
scheme is repeated until the condition indicator κ1 drops below some level κ′ or
reaches the plateau of decreasing. Here κ′ is usually set to be 0.1κ ∼ 0.5κ so that
the CbC scheme will not be triggered too frequently.

The above CbC scheme leads to two optimization problems: minimizing κ1

w.r.t. pn or qn, denoted by min-κ1(pn) and min-κ1(qn), respectively. The problem
min-κ1(qn) has an analytical solution, as shown below.

Assume qn is the currently pointed column and is modified to q∗
n = qn + h.

In matrix notation this can be written as Q∗ = Q + heT

n . By eqn (2.11) we know
κ∗

1 = t‖P‖ · ‖Q∗T(PV #Q∗T)−1‖. Here and in the sequel, the superscript ∗ always
denotes the updated values due to the modification of P or Q. To simplify the
notation we define three auxiliary matrices X = PV #QT, Z = X−1 and B = QTZ,
then X∗ = PV #Q∗T = X + PV #enh

T =: X + unhT. By the Sherman-Morrison
theorem (rank-one modification of matrix inverse) [10] we know

Z∗ = (X + unh
T)−1 = Z − ZunhTZ

1 + hTZun
. (3.2)

Since P is fixed, minimizing κ∗
1 is equivalent to minimizing the norm of

Q∗TZ∗ = (QT + enh
T)Z∗ = QTZ − (QTZun − en)hTZ

1 + hTZun

. (3.3)

For the Frobenius norm of matrices ‖A‖ =
√

tr(ATA), direct computation from
its definition reveals that

‖A + bcT‖2 = ‖A‖2 + 2bTAc + ‖b‖2 · ‖c‖2 . (3.4)

So by setting gn = QTZun − en and xT = hTZ/(1 + hTZu), one obtains

‖Q∗TZ∗‖2 = ‖QTZ‖2 − 2gT

nQTZx + ‖gn‖2 · ‖x‖2 .

This is a quadratic function of x, with xmin = ‖gn‖−2 · (ZTQgn) as the unique
minimum. By the definition of x we conclude hmin = −Qgn/(eT

ngn). 4

Summing up, one modifies the matrix Q (column-wisely) by (i) computing
un = PV #en and gn = QTZun − en; (ii) modifying qn by q∗

n = qn + h with

h =

{

−Qgn/(eT

ngn) if eT

ngn 6= 0
Qgn otherwise

. (3.5)

4If eT

n
gn = 0, then ‖Q∗TZ∗‖2, as a function of h, has no minimal point. For this case, one

can set h = Qgn, for which it can be easily proven that ‖Q∗TZ∗‖ < ‖QTZ‖.

11



Now we consider the problem min-κ1(pn). Assume that p∗
n = pn + h, or

equivalently, P ∗ = P + heT

n , then κ∗
1 = t‖P ∗‖ · ‖QT(P ∗V #QT)−1‖. From the

constraint 1T

mP = 1T

m we know 1T

mh = 0. Thus, the vector h is determined by the
optimization problem:

minimize ‖P + heT

n‖ · ‖QT{(P + heT

n)V #QT}−1‖ ,
subject to 1T

mh = 0 .
(3.6)

For this special problem we proposed an efficient method that iteratively searches
for the global optimum on two orthogonal directions in R

m, which is hence called
the orthogonal searching (OS) algorithm. We postpone the introduction of the OS
algorithm to the next section and turn now to the third step of the offline EC
algorithm.

3.2 Making the Third Step Online

Assume that at time t we have gotten the matrices V #, W#
a ; P , Q and τ̂a; and

that at time t+1 the event (j, c, k, i)t+1 is observed. Then by eqns (2.6) and (2.7),

τ̂+
a = {P (W#

a + δaceie
T

j )QT}{P (V # + eke
T

j )QT}−1

= (PW#
a QT + δacpiq

T

j )(PV #QT + pkq
T

j )−1 . (3.7)

It follows from the definition of Z = X−1 = (PV #QT)−1 and the rank-one modifi-
cation of matrix inverse that (PV #QT +pkq

T

j )−1 = Z− (1+qT

j Zpk)
−1(Zpkq

T

j Z);

and from eqn (2.7) that τ̂a = PW#
a QTZ. Substituting these two equalities into

eqn (3.7), we get the update rules for observable operators τ̂a:

τ̂+
a = τ̂a − [τ̂apk − δacpi]s

T

jk with sT

jk :=
qT

j Z

1 + qT

j Zpk

. (3.8)

Thus far we have derived the online EC algorithm for estimating OOMs from
empirical data, for which a block diagram is presented in Figure 1. From Figure 1
we see that the matrix Z = (PV #QT)−1 plays a central role in the online learning
algorithm. Other quantities can be represented as functions of Z, for example,
κ1 = t‖P‖ · ‖QTZ‖. The update formula for Z is as follows: upon the observation
of the event (j, c, k, i)t+1,

Z+ = Z −
Zpkq

T

j Z

1 + qT

j Zpk

= Z − Zpks
T

jk , (3.9)

with the vector sjk defined as in eqn (3.8).
Note that the condition indicator κ1 of the learning equation can also be up-

dated online. For instance, when κ1 6 κ, i.e., the matrices P , Q are fixed, we have
κ+

1 = (t + 1)
√

F (P )F (QTZ+) = (t + 1)
√

F (P )F (B+) with

F (B+) = F (B)− 2pT

k BTBsjk + ‖Bpk‖2 · ‖sjk‖2 , (3.10)
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(j, c, k, i)t+1
κ1 > κ?

{P,Q}

{P,Q}

CbC scheme

update Z

Z(t)
Z(t+1)

time delay

calculate τ̂a

τ̂
(t)
a

Yes

No

Figure 1: The block diagram of the online EC algorithm.

in which F (·) := ‖ · ‖2 means the square of Frobenius norm and the identity (3.4)
is utilized. Other update rules, e.g., the one for κ1 due to the modification of P
or Q, can be derived in the similar way (see Table 2).

At this point, we find it convenient to list all involved variables and formulas
that will be consistently used in this report in tables (see Table 1 and Table 2).
Basically, all the formulas in Table 2 are derived from eqns (3.2) and (3.4). Note
that symbols not listed in Table 1 may have different meanings in different places;
and we believe the readers will not be confused by such abuse of symbols.

Table 1: Variables in the online algorithm

Symbols Description
m, ℓ resp. dimension of estimated OOMs, alphabet size;
d, N resp. length and number of basic strings, N = ℓd;
s̄, t resp. training data, current time or effective length of s̄;
V #, W#

a counting matrices; V #, W#
a ∈ R

N×N

P , Q adjustable parameter matrices; P, Q ∈ R
m×N

X, Z, B auxiliary matrices, X = PV #QT, Z = X−1, B = QTZ;
F (·) square of Frobenius norm, F (A) = ‖A‖2;
τ̂a estimated observable operators, τ̂a = PW#

a B;

κ1 condition indicator, κ1 = t
√

F (P )F (B);

3.3 Determining the Threshold κ Theoretically

Figure 1 shows the overall framework of the online EC algorithm, in which two
problems remain unsolved: the implementation of the CbC scheme and the value
of the threshold κ. In this subsection we discuss the latter, leaving the former to
the next section. More concretely, in the following we will derive (in theory), for
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Table 2: Formulas in the online algorithm

Events (Possibly) involved formulas

(j, c, k, i)t+1 (V #)+ = V # + eke
T

j , (W#
a )+ = W#

a + δaceie
T

j ;
[set sT

jk = (qT

j Z)/(1 + qT

j Zpk)],
Z+ = Z − Zpks

T

jk, B+ = B − Bpks
T

jk;
τ̂+
a = τ̂a − [τ̂apk − δacpi]s

T

jk;
F (B+) = F (B)− 2pT

k BTBsjk + ‖Bpk‖2‖sjk‖2,
κ+

1 = (t + 1)
√

F (P )F (B+).
p∗

n = pn + h [set vT

n = eT

nV #QT, sT

n = (vT

nZ)/(1 + vT

n Zh)],
Z∗ = Z − ZhsT

n , B∗ = B − BhsT

n ;
τ̂ ∗
a = τ̂a − τ̂ahsT

n + heT

nW#
a B − (eT

nW#
a Bh)hsT

n ;
F (P ∗) = F (P ) + 2hTPen + ‖h‖2,
F (B∗) = F (B)− 2hTBTBsn + ‖Bh‖2‖sn‖2,
κ∗

1 = t
√

F (P ∗)F (B∗).
q∗

n = qn + h [set un = PV #en, γ = (1 + hTZun)−1, rn = γZun],
[set gn = Bun − en and x = γZTh];
Z∗ = Z − rnh

TZ, B∗ = B −QTrnh
TZ;

τ̂ ∗
a = τ̂a − γτ̂aunh

TZ + γPW#
a enh

TZ;
F (B∗) = F (B)− 2gT

nBx + ‖gn‖2‖x‖2,
κ∗

1 = t
√

F (P )F (B∗).

a given counting matrix V #, an upper bound of the minimal value of κ1, which
can hence be taken as the threshold κ.

Let V #
0 = t−1V # be the normalized counting matrix at time t, then eqn (2.11)

can be rewritten as κ1 = ‖P‖ · ‖QT(PV #
0 QT)−1‖. Assume κ1 obtains its minimal

κmin
1 at P = P1 and Q = Q1. Define P2 = P1 and Q2 = QT

1 (P1V
#
0 QT

1 )−1. Then
it holds that κ1(P2, Q2) = κ1(P1, Q1) and that P2V

#
0 QT

2 = Im. Thus, adding
the constraint PV #

0 QT = Im will not change the minimal value of κ1; and the
problem is reduced to minimizing the quantity ‖P‖ · ‖QT‖ under the constraints
PV #

0 QT = Im and 1T

mP = 1T

N . That is, we need only to consider the problem

min
P,Q

{

‖P‖ · ‖QT‖ : PV #
0 QT = Im, 1T

mP = 1T

N

}

. (3.11)

Fix the matrix P , then (3.11) is equivalent to a quadratic form of Q with the linear
equality constraint PV #

0 QT = Im. By using the Lagrange function L(Q, Λ) =
1
2
tr(QTQ) − tr[ΛT(PV #

0 QT − Im)], where Λ ∈ R
m×m is the Lagrange multiplier,

we get the analytical solution of (3.11): QT = (PV #
0 )†. Here the superscript †

is the pseudo-inverse operation of matrices, which, for our case, is computed by
A† = AT(AAT)−1. So the problem is further reduced to

min
P
{‖P‖ · ‖(PV #

0 )†‖ : 1T

mP = 1T

N , rank(PV #
0 ) = m} . (3.12)
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Next we will take a special form of P and consider the problem (3.12) for such
special matrices P . Let V #

0 = L · diag{σ1, · · · , σN} · RT be the SVD of V #
0 with

σ1 > · · · > σN > 0; and take

P = Φ ·
[

θ1ek1, · · · , θNekN

]

· LT , (3.13)

where Φ ∈ R
m×m is an orthonormal matrix, θi’s are real numbers and eki

, as
mentioned before, denotes the ki-th unit column vector of dimension, for this
situation, m. So here all ki’s take values from {1, 2, · · · , m}. It follows that

PV #
0 = Φ ·

[

σ1θ1ek1 , · · · , σNθNekN

]

· RT ,

(PV #
0 )(PV #

0 )T = Φ · diag{ϕ1, · · · , ϕm} · ΦT ,

QT = (PV #
0 )† = R ·

[

σ1θ1ϕ
−1
k1

ek1 , · · · , σNθNϕ−1
kN

ekN

]T · ΦT ,

where ϕj =
∑

i:ki=j σ2
i θ

2
i for all j = 1, 2, · · · , m. Thus,

‖P‖2 · ‖QT‖2 =

(

N
∑

i=1

θ2
i

)

·
(

m
∑

j=1

ϕ−2
j

∑

i:ki=j

σ2
i θ

2
i

)

=

(

N
∑

i=1

θ2
i

)

·
(

m
∑

j=1

ϕ−1
j

)

.

Put ρj =
∑

i:ki=j θ2
i for each j = 1, 2, · · · , m and αi = (

√
ρki

)−1|θi| for each
i = 1, 2, · · · , N , by the above equality and Cauchy’s inequality,

‖P‖2 · ‖QT‖2 =
[

∑m
j=1 ρj

]

·
[

∑m
j=1 ρ−1

j

(

∑

i:ki=j σ2
i α

2
i

)−1]

>

[

∑m
j=1

(
∑

i:ki=j σ2
i α

2
i

)− 1
2

]2

,

with the equality holds if and only if ρ2
j

∑

i:ki=j σ2
i α

2
i is a constant (not depending

on j). Therefore, κ′
1 :=

∑m
j=1

(
∑

i:ki=j σ2
i α

2
i

)− 1
2 represents an attainable (lower)

level of κ1, an upper bound of κmin
1 ; and one should set the indices ki as well as

the weights αi such that κ′
1 is as small as possible. By the definition of αi’s we

have
∑

i:ki=j α2
i = 1 for each j. So one can easily see that κ′

1 reaches its minimal

κ′
1 =

∑m
j=1 σ−1

j under the settings

ki =

{

i if i 6 m
irrelevant if i > m

; αi =

{

1 if i 6 m
0 if i > m

.

Note that, the quantity κ′
1 =

∑m
j=1 σ−1

j is of order O(σ−1
m ), which represents

the best upper bound of κmin
1 (in the sense of order). In fact, by the definition of

κ1 we have κ1 · ‖V #
0 ‖ = ‖P‖ · ‖V #

0 ‖ · ‖QT(PV #
0 QT)−1‖ > ‖Im‖ =

√
m; whereas

‖V #
0 ‖2 =

∑N
i=1 σ2

i 6 Nm−1
∑m

i=1 σ2
i for σ1, · · · , σN are singular values of V #

0 in
decreasing order. Thus κ1 > mN−1/2(

∑m
i=1 σ2

i )
−1/2 = O(σ−1

m ). The value of κ′
1,

unfortunately, depends on the singular values of V #
0 . This prevents one directly

using κ′
1 as the threshold, for calculating the SVD of V #

0 at each time step is too
expensive.
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To get an estimation of κ′
1 =

∑m
j=1 σ−1

j here we would remind the reader
of the meaning of model dimension m. Real-world systems usually have infinite
dimension; and it is impossible and unnecessary to model a real system with 100%
accuracy. For the case of OOMs, when we say a process can be modelled by an
m-dimensional OOM, we actually mean that its distribution can be numerically
approximated by the OOM. More concretely, this means the normalized counting
matrix V #

0 , as an approximation of the probability matrix V (see eqn (2.2)), has
numerical rank m. Therefore, if the model dimension m is somehow appropriately
selected, the following two assertions must hold.

• The singular values σi (i > m) of V #
0 are small; for otherwise V #

0 will have
numerical rank > m.

• The quantity σ2
m, the smallest one of σ2

j ’s (j = 1, 2, · · · , m), is large enough;

for otherwise the numerical rank of V #
0 will be less than m.

If we define two parameters ǫ1, ǫ2 (both depend on m) to be such that
∑m

j=1 σ2
j = (1− ǫ1)

∑N
i=1 σ2

i and σ2
m = ǫ2m

−1
∑m

i=1 σ2
i , (3.14)

the above two assertions imply the product (1 − ǫ1)ǫ2 will not be too small. By
the definition of V #

0 , its elements are all nonnegative and sum to 1; therefore
∑N

i=1 σ2
i = ‖V #

0 ‖2 > N−2, with the equality holds if and only if [V #
0 ]ij = N−2 for

all i, j. This inequality, together with (3.14), implies that

κ′
1 =

∑m
j=1 σ−1

j 6 mσ−1
m 6 m [(1− ǫ1)ǫ2m

−1N−2]
− 1

2 = γmN
√

m . (3.15)

The above discussion did not consider the constraint 1T

mP = 1T

N , which would
possibly increase the minimal value of κ1. But as this is not a strong constraint
and the upper bound (3.15) is already very loose, so in the online algorithm we
use the following thresholds for turning on/off the CbC scheme.

κ = γmN
√

m , κ′ = 0.5γmN
√

m . (3.16)

Notice here that the parameter γ still depends on the model dimension m and the
matrix V #

0 . In Section 4 we will study its range by means of numerical simulation.
A remark on the parameters ǫ1 and ǫ2. — Intuitively, the singular values

σi of V #
0 can be seen as a measure of information about the underlying process

contained in the i-th dimension of the estimated OOM. Thus the parameter ǫ1

actually represents the loss of information when we use an m-dimensional OOM
to describe the process; and ǫ2 measures the relative information mass contained
in the m-th dimension of the OOM. With this explanation (of ǫ1 and ǫ2), one
can also view ǫ1 or ǫ2 as design parameters from which the model dimension m is
determined by

∑m
j=1 σ2

j > (1− ǫ1)
∑N

i=1 σ2
i or σ2

m > ǫ2m
−1
∑m

i=1 σ2
i . (3.17)

That is, we require that the estimated OOM describes the process with loss of
information no more than ǫ1; or that each dimension contains relatively large
information of the underlying process.
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3.4 The Overall Online EC Algorithm

Based on the above discussion, we can now outline the online EC algorithm for
training OOMs.

• Inputs:
- the model dimension m and the alphabet size ℓ;
- the training data s̄ = s1s2 · · · and the length of basic strings d;

• Auxiliary variables:
- the counting matrices V #, W#

a ’s; and the adjustable matrices P , Q;
- the auxiliary matrices X := PV #QT, Z := X−1 and B := QTZ;
- the condition indicator κ1 and its turning on/off thresholds κ, κ′.

• Initialization:
a. Randomly create an m-dimensional OOM A = (Rm, {τa}a∈O, w0).
b. Initialize V # and W#

a to be the probability matrices of A.
c. Randomly initialize the matrices P, Q ∈ R

m×N such that 1T

mP = 1T

N .
d. Compute Z = (PV #QT)−1, B = QTZ and τ̂a = PW#

a B.
e. Calculate the condition indicator κ1 = ‖P‖ · ‖B‖.

• Iteration: for each new observation (j, c, k, i) do

1. If κ1 > κ then (iteratively) modify the matrices P and Q according to the
CbC scheme described in Subsection 3.1, until κ1 6 κ′ or the CbC procedure
reaches its saturation point, i.e., κ1 does not decrease significantly.

2. Update the auxiliary matrices Z, B and the operators τ̂a to Z+, B+, τ̂+
a ,

by the formulae listed in Table 2.

3. Recompute the condition indicator κ1 from the updated matrix B+.

We end this section with some remarks on the above online algorithm.

• In the first step, the matrices P and Q are modified column by column,
by adding a vector h to that column. When Q is modified, the vector h is
computed via eqn (3.5); otherwise it is calculated by the OS algorithm, which
will be discussed in Section 4. Whenever a column of P or Q is updated, one
should immediately modify other relative quantities via the corresponding
formula listed in Table 2.

• As indicated by eqns (2.2) and (2.5), we have N = ℓd. This means, due to the
limitation of memory-space, only small d’s are allowed. So only the short-
term information of the underlying process can be exploited by the online
algorithm. For offline learning task, it is clear that the sum of all elements
of V # (W#

a ’s) equals to t, the effective length of the training sequence s̄. So
for large d the matrices V #, W#

a ’s must be sparse, which can be represented
and manipulated using sparse matrices in Matlab.
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• Like the RLS method for linear systems identification, one can introduce a
forgetting factor β ∈ (0, 1] into the update rules listed in Table 2, getting an
adaptive variation of the normal online learing algorithm. More precisely,
the counting matrices V # and W#

a ’s are now updated by

(V #)+ = βV # + eke
T

j and (W#
a )+ = βW#

a + δaceie
T

j .

Correspondingly, in Table 2 the second, third and fifth lines now become

[set sT

jk = (qT

j Z)/(β + ηqT

j Zpk)] ,
Z+ = β−1(Z − Zpks

T

jk) , B+ = β−1(B − Bpks
T

jk) ;
F (B+) = β−2

[

F (B)− 2pT

k BTBsjk + ‖Bpk‖2‖sjk‖2
]

;

respectively, whereas all other lines ramain unchanged.

4 The Orthogonal Searching Algorithm

We have introduced the overall framework of the online EC algorithm: one ob-
serves the event (j, c, k, i) in the inspection window and updates the observable
operators by eqns (3.9) and (3.8); when the condition indicator κ1 becomes larger
than the threshold κ, one should modify the matrices P and Q to decrease κ1.
While the modification rule of Q has been derived in Subsection 3.1; the modifi-
cation of P amounts to the optimization problem (3.6), which we will discuss in
this section.

Let J1(h) denote the target function of (3.6), then κ∗
1 = tJ1(h). By the

algebraic-geometric mean inequality, we have

J1(h) 6
1

2

{

α0F (P + heT

n) + β0F (QTZ∗)
}

=: Jub
1 (h) , (4.1)

where α0, β0 are positive real numbers with product α0β0 = 1; the superscript ub

means upper bound ; and the matrix Z∗, similar to eqn (3.2), is calculated by

Z∗ = (P ∗V #QT)−1 = Z − ZheT

nV #QTZ

1 + eT
nV #QTZh

. (4.2)

In the following we will first present the basic OS algorithm for minimizing the
upper bound Jub

1 (h); then introduce an iterative procedure, which uses the basic
OS algorithm as the inner optimizer, for minimizing κ1; finally study the perfor-
mance of OS through some numerical examples. It turns out that the OS method
outperforms the standard numerical algorithms (see eqns (4.16) and (4.17)) on the
(special) problem (3.1).
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4.1 The Basic OS Algorithm

Instead of directly minimizing J1(h), we consider its upper bound Jub
1 (h). Let

rT := eT

nV #QTZ = eT

nV #B, then it follows from formula (3.4) and eqns (4.1),
(4.2) that

Jub
1 (h) =

1

2
β0F (B)− β0

hTBTBr

1 + rTh
+ β0

‖r‖2 · ‖Bh‖2
2(1 + rTh)2

+
1

2
α0F (P ) + α0h

TPen +
1

2
α0‖h‖2 . (4.3)

Setting G := BTB, u := Pen and omitting the constant 1
2
[α0F (P ) + β0F (B)] in

eqn (4.3), we get the following optimization problem:

minimize J(h) =
β0‖r‖2hTGh

2(1 + rTh)2
− β0h

TG · r
1 + rTh

+
1

2
α0‖h‖2 + α0h

Tu

subject to 1T

mh = 0 .
(4.4)

In this problem the constraint 1T

mh = 0 can be eliminated by putting h = Ed,
with d ∈ R

m−1 and E being an m × (m − 1) matrix whose columns form an
orthonormal basis of the null-space of 1m. In other words, here the matrix E has
the properties 1T

mE = 0 and ETE = Im−1. So if we define

r := ETr , G := ETGE , v := β0E
TG · r , u := α0E

Tu , (4.5)

the target function J(h) of (4.4) can be rewritten as

J(h) = J(d) =
βdTGd

2(1 + rTd)2
− dTv

1 + rTd
+

1

2
α‖d‖2 + dTu , (4.6)

with α := α0 and β := β0‖r‖2.
The constrained problem (4.4) is now converted to the unconstrained one:

mind∈Rm−1 J(d). An interesting observation is that, when d is orthogonal to r,
i.e., rTd = 0, J(d) is a quadratic form of d. This motivates us to search for the
minimum of (4.6) iteratively along the direction r and a direction orthogonal to
r. On each direction a global minimal point can be obtained, as will be discussed
in the sequel.

Let η = ‖r‖ be the norm of r and r0 = η−1r the unitary vector on the
direction r. 5 Let y = 1 + dTr, then dTr0 = η−1(dTr) = η−1(y − 1). Thus
the quantity η−1(y − 1) represents the length of the projection of d on r0 and
x := d − η−1(y − 1)r0 is the residual vector after the projection. It follows that
rT

0 x = 0 and the target function J(d) can be rewritten as

J(d) = 1
2
βy−2{x + y0r0}TG{x + y0r0} − y−1xTv − y−1y0r

T

0 v

+1
2
α(‖x‖2 + y2

0) + xTu + y0r
T

0 u [y0 := η−1(y − 1)]

=: c1y
2 + c2y + c3(x) + c4(x)y−1 + c5(x)y−2 (4.7)

=: 1
2
xTH(y)x + xTg(y) + c(y) , (4.8)

5If η = 0, then rTh = 0 and J(d) becomes a quadratic form. So the problem min J(d) has a
unique analytical solution.
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where, just by brute-force calculation,

c1 = 1
2
αη−2 ,

c2 = η−1rT

0 u− αη−2 ,
c3(x) = 1

2
αxTx + xTu + 1

2
η−2(α + βrT

0 Gr0)− η−1rT

0 (u + v) ,
c4(x) = xT(βη−1Gr0 − v) + η−1rT

0 (v − βη−1Gr0) ,
c5(x) = 1

2
βxTGx− βη−1xTGr0 + 1

2
βη−2rT

0 Gr0 ;

(4.9)

and
H(y) = αIm + y−2βG ,
g(y) = u + y−1(βη−1Gr0 − v)− y−2βη−1Gr0 ,

(4.10)

and c(y) is a scalar irrelevant to the algorithm.
Now we are ready to formulate the OS algorithm for minimizing (4.6). As

mentioned before, the OS algorithm searches for the optimum of J(d) along two
orthogonal directions. More precisely, we first fix y to some initial value y(0) and
allow x to vary. This leads to the quadratic programming problem:

minimize J(d) = 1
2
xTH(y)x + xTg(y) + c(y)|y=y(0)

subject to rT

0 x = 0 .
(4.11)

It is clear that H(y) is positive definite, so (4.11) has the unique global optimum

x(1) = H−1(y){λr0 − g(y)}|y=y(0) , (4.12)

where λ ∈ R is the Lagrange multiplier determined by the constraint rT

0 x = 0.
We then let x = x(1) be fixed and minimize the single-variable function

J(d) = c1y
2 + c2y + c3(x) + c4(x)y−1 + c5(x)y−2 . (4.13)

Taking the derivative of J(d) with respect to y and letting it equal to 0, we get
the quartic equation

2c1y
4 + c2y

3 − c4(x)y − 2c5(x)|x=x(1) = 0 , (4.14)

whose roots have an algebraic expression. 6 So one can get the global minimum
y = y(1) of (4.13) by comparing the values of J(d) on all real roots of (4.14). Next,
we fix y = y(1) and evaluate the optimum x(2) of (4.11), and so forth.

Iteratively applying the above method we get a sequence: y(0) → x(1) → y(1) →
x(2) → y(2) → · · · , for which it holds that

J(y(0), x(1)) > J(y(1), x(1)) > J(y(1), x(2)) > J(y(2), x(2)) > · · · .

If we define d(k) = x(k) + η−1[y(k) − 1]r0, then J(d(1)) > J(d(2)) > · · · ; moreover,
the function J(d) is clearly bounded from below, so the OS algorithm converges

to some local minimal of J(d).
The following are some more observations concerning the OS algorithm.

6See, e.g., http://mathworld.wolfram.com/QuarticEquation.html.
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1. In each OS iteration one gets the global minima of (4.11) and (4.13), so OS
is more efficient than general numerical methods such as GD on the special
problem (4.4) (see Subsection 4.3).

2. We find in most cases the OS algorithm is more efficient and more unlikely
being trapped by local optima if we let y(0) → 0 in (4.11). For this case the
target function J(d) is dominated by c5(x), from which we get

x(1) = η−1r0 + λG−1r0 = η−1r0 − (ηrT

0 G−1r0)
−1G−1r0 . (4.15)

In our numerical experiments, this x(1) will be used as the starting point of
the OS algorithm, unless the contrary is explicitly claimed.

3. Each OS-iteration involves the computation of (4.12), (4.14): while the latter
has constant complexity, the former requires about 1

3
m3 flops due to the

Cholesky factorization of the symmetric, positive definite matrix H(y). So
the complexity of the OS algorithm is about 1

3
Km3, where K is the number

of iterations. When K is large, the OS procedure can be simplified by
diagonalizing the matrix G via a rotation transform, as follows.

4. Since G is symmetric and positive definite, it has the Schur decomposition

G = RDRT, where D is diagonal and R orthonomal. Applying the rotation
transform [d, r, u, v]← RT[d, r, u, v], one can replace G by D in eqn (4.6),
with all other symbols remaining unchanged. The matrix H(y) in (4.10) now
becomes a diagonal matrix Im + y−2βD and eqn (4.12) can be efficiently
evaluated. Of course, one should rotate the solution d back to d ← Rd

after the OS procedure. The complexity of this rotated OS is about 9m3

flops because of the Schur decomposition of G (see pp.420–421 of [4]). So
theoretically the rotated version of OS is faster than the normal OS only
when K > 27.

4.2 Minimizing κ1 by the OS Algorithm

The above basic OS algorithm is developed for minimizing the function J(h),
which represents the upper bound (4.1) of κ1, the original target function of the
online algorithm (cf. eqns (4.1), (4.3) and (4.4)). One can also (iteratively) use
the same OS algorithm to minimize κ1, by selecting appropriate parameters α0

and β0 in eqn (4.1) such that the equality holds for each iteration. This gives us
the offline version of the EC algorithm.

It is well known that the equality in eqn (4.1) holds when the two terms of
Jub

1 (h) are equal. So if we set α0 = ‖QTZ‖/‖P‖ and β0 = ‖P‖/‖QTZ‖, then
J1(0) = ‖P‖ · ‖QTZ‖ = Jub

1 (0). With this setting of (α0, β0), we apply the
OS algorithm to problem (4.4) and get a local minimum h. 7 It follows that
Jub

1 (h) 6 Jub
1 (0) = J1(0) and thus J1(h) 6 Jub

1 (h) 6 J1(0). We then modify
the matrix P (or Q) by adding h to its corresponding column to get a new P ∗

7For the modification of columns of Q, eqn (3.5) would be utilized.
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(or Q∗). It is clear that κ1 > κ∗
1, where κ∗

1 denotes the value of κ1 on (P ∗, Q)
or (P, Q∗). Repeating this procedure: compute the parameters α0, β0 and update
the matrix P or Q by the OS algorithm or eqn (3.5), we get a monotonically
decreasing sequence of κ1: κ1 > κ∗

1 > κ∗∗
1 > · · · .

It is now quite clear how the basic OS algorithm can be used to solve the
original problem (3.1), as the following procedure shows.

a. compute the parameters α0 = ‖QTZ‖/‖P‖ and β0 = ‖P‖/‖QTZ‖;
b. get the vector h via eqn (3.5) or by solving the problem (4.4) with OS;

c. update the matrix P or Q by adding h to the corresponding column;

d. move to the next column and repeat steps a-c, until κ1 < κ′ or κ1 shows no
significant decrease.

Note that the above iterative method for minimizing κ1 can be used in the offline
EC algorithm: one first collects the counting matrices V # and W#

a ’s, then he
calculates a pair of appropriate matrices P , Q via the above steps a.-d., and
finally gets the estimated τ̂a’s by eqn (2.7).

4.3 Numerical Examples Concerning the OS Algorithm

In this miscellaneous subsection we discuss the performance and the offline use of
the OS algorithm, through several numerical examples. For comparison here we
consider two other numerical methods, which are easier to be thought out than
OS, for minimizing (4.6) and (3.6) respectively.

• The GD method for the problem min J(d) with J(d) defined by (4.6):

d(t) = d(t−1) − η
∂J

∂d

(

d(t−1)
)

, with (4.16)

∂J

∂d
= αd + u− v

1 + rTd
+

βGd + (dTv)r

(1 + rTd)2
− (βdTGd)r

(1 + rTd)3
,

where the learning rate η > 0 is determined by the following scheme.

At the t-th iteration, the value of J(d(t)) is determined by η and so can
be written as Jt(η). We put η0 = 0, η1 = 0.04, η2 = 0.2 and calculate
the interpolating polynomial Ĵt(η) = aη2 + bη + c of the points (ηi, Jt(ηi))
(i = 0, 1, 2). 8 If a 6 0, then we take η = η2; otherwise assume η∗ is the
minimal of Ĵt(η) and take the one of {η1, η2, η

∗} that makes Jt(η) minimal
as η, i.e., η = arg minη′∈{η1,η2,η∗} Jt(η

′).

• A direct iterative method for (3.11) — the “pseudo-inverse” method:

In Subsection 3.3, we have shown that if P is fixed such that 1T

mP = 1T

N ,
then QT = (PV #

0 )† is the minimum of (3.11). Similarly, if Q is fixed such

8If Jt(η1) > Jt(η0), one should reduce ηi by some factor, e.g., ηi ← 0.8ηi (i = 1, 2); and do
the interpolation again.
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that 1T

NV #
0 QT = 1T

m, which is derived from the two constraints in (3.11),
then P = (Im − 1

m
1m1T

m)(V #
0 QT)† + 1

m
1m1T

N is the minimal of (3.11). This
verifies the following updating formulas of P and Q:

Q(t)T =
[

P (t−1)V #
0

]†
,

P (t) =
(

Im − 1
m
1m1T

m

)[

V #
0 Q(t)T

]†
+ 1

m
1m1T

N .
(4.17)

A toy example — to get more insights into OS

OS is a special method for minimizing the function J(d) defined by (4.6). To get
an intuitive insight into this algorithm we consider a simple example of J(d) with
α = β = 1, G = [4, 2; 2, 2] (in Matlab’s notation), r = [1, 1]T, u = [3.5,−2]T and
v = [3, 2]T. Writing d =: [x, y]T, one obtains

J =
2x2 + 2xy + y2

(1 + x + y)2
− 3x + 2y

1 + x + y
+

1

2
(x2 + y2) + 3.5x− 2y , (4.18)

to which the OS algorithm and, for comparison, the GD method described in
(4.16) will be applied.

The function J(x, y) goes to infinity when x + y → −1 or ‖d‖ → ∞, so there
are local minima on both sides of the line x + y = −1. Figure 2 shows the surface
(a.) and the contour map (b.) of J : along the line x + y = −1 is an infinitly high
“ridge”, on each side of the ridge is a relatively shallow “basin” (compare to the
height of the ridge). To make the two basins visible, here the z-axis is scaled by
a base-10 logarithmic transform z = lg(J − Jmin + 0.1).

a. b.

Figure 2: Searching procedure of GD/OS for the minimal of J(d)

Figure 2b. also shows the searching trace of OS (yellow line marked by ◦) and
GD (magenta line marked by +), both starting from the initial point [1, 2]T. One
observes that the OS algorithm reaches the global minimal point A(−4.12, 0.53)
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in three iterations (searching on every two orthogonal directions is seen as an OS
iteration), better than GD, which converges to a local minimum B(−1.58, 2.88)
afte about twenty iterations. [JA = −6.76, JB = −5.55]

Although this toy example is quite simple and of little interest in itself, it offers
us several insights into the general problem (4.6) and the OS algorithm.

• The target function J(d) goes to infinity when 1 + rTd→ 0. This forms an
infinitely high ridge along the hyper plane rTd = −1, making an uncrossable
region (the red belt in Figure 2b. for our example) in the searching space
R

m for all gradient-based methods. So any GD-like method has at least half
chance being trapped by some local minimum.

• On the other hand, the second OS step searches for the global minimum
of J(d) along the direction r, enabling it to pass through the high ridge
freely. Moreover, when |1 + rTd| ≫ 0 (the region far from the ridge), by
(4.6) J(d) ≈ 1

2
α‖d‖2 +dTu becomes a quadratic function of d, of which the

global minimum is easily to obtain. This partly explains why OS usually
converges to the global minimum of J(d), although we cannot theoretically
prove it yet.

The performance of OS on the auxiliary optimization problem

In this experiment, 10×10 = 100 functions of form (4.6) with dimension m ranging
from 10 to 500 are randomly created as the target, to which the basic OS algorithm
and the GD method described by (4.16) are applied. The initial value of OS is
set as eqn (4.15); whereas for the GD method, we tried 10 different initial vectors
d(0): one is d(0) = 0 and the other 9 are randomly procured.

The average number of iterations K of both methods for problems with the
same dimension are shown in Figure 3a. Here the stopping criterion is that both
the decreasing value and rate of the target function between two subsequent iter-
ations are less than 10−6, i.e., max{JK−1 − JK , (JK−1 − JK)/|JK|} < 10−6; or K
reaches its maximal value 10000. We see that the number of OS iterations is much
less than that of GD, especially for high dimensional problems. The CPU-time
per OS iteration, however, is larger than GD. So the overall time of OS is only a
little bit less that that of GD, as depicted in the same figure.

Although the OS algorithm has no significant advantage in speed comparing
to GD, it obtains better result than GD on the problem (4.6). It turns out that
OS always gets smaller target values on the above 100 examples than GD (despite
the fact that GD is initialized by different d0’s). We plotted the optimal values
obtained by the OS and GD (with the 8-th initial vector d0) methods in Figure 3b:
each point for one problem, with its x-coordinate being the minimal value obtained
by OS and y-coordinate the difference between GD and OS on the same problem.
To make the picture clearer a logarithmic transform y = log(JGD − JOS) is used
for y-axis. Therefore, for instance, the point A(−175.5, 1.28) means that, for some
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Figure 3: Comparison of the OS and GD algorithms

example the OS method gets the minimal value −175.5, while GD converges to a
local optimal with the target value J = −175.5 + 1.28 = −174.2.

Now we set a threshold δ = 0.01 for checking whether the GD method gets
a local minimal: if JGD − JOS > δ for some problem, then we thought that GD
is trapped by a local minimum on this problem. Figure 3b. shows that on 41
problems (the points above the deshed line) OS obtains smaller optimum than
GD. The similar phenomena are observed when GD is initialized with different
d0. This is because, as has been mentioned earlier, the surface of J(d) has an
infinitely high ridge that separates the whole space into two parts, of which only
one (depends on the initial vector d0) is reachable by GD. Therefore, the GD
method can only get a local minimal when d0 and the global minimum of J(d) lie
in different parts of the searching space.

The performance of OS on the original optimization problem

We now investigate the performance of the OS algorithm on the original opti-
mization problem (3.1). Let V #

0 denote the normalized counting matrix with
elements summing up to unity, then the target function κ1 can be written as
κ1 = ‖P‖ · ‖QT(PV #

0 QT)−1‖. To make the simulation more “real-life”, here the
matrix V #

0 is created by the following procedure:

1. randomly create three matrices U , S and E by, e.g., the Matlab codes U =
rand(m, N); S = rand(m, N); E = rand(N, N);

2. normalize the above three matrices so that U and S have row sums 1 and
E has elements sum m, i.e., U1N = S1N = 1m and 1T

NE1N = m after the
normalization;

3. set V = UTS + ǫE, where ǫ is a small positive real number representing the
amplitude of perturbations on the matrix V ;

4. calculate the normalized counting matrix by V #
0 = [m(1 + ǫ)]−1 · V .
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Thus, the created matrix V #
0 is characterized by three parameters: m, N and ǫ.

In this example, the dimension m is in {3, 6, 10, 15, 20, 30, 50, 80}; the size N is
determined by the ratio N/m, which takes values from {2, 4, 7, 10, 15}; and the
parameter ǫ ranges from 0.1 to 0.5, with step length 0.1. All together there are
8× 5× 5 = 200 different configurations of (m, N, ǫ). For each such configuration
we create 10 matrices V #

0 using the above method. 9

So far we have constructed 200× 10 = 2000 testing problems of form (3.1), to
which the CbC scheme with OS as the inner minimizer of (4.4) [CbC+OS] and
the pseudo-inverse method described in (4.17) [PsInv] are to be applied. First we
investigate the sensitivity of the two methods to the initial values P0 and Q0. To
lighten the computation load here we randomly selected 40 testing matrices V #

0 ’s
and for each V #

0 randomly procured 25 pairs of (P0, Q0) with 1T

mP0 = 1T

m as the
initial values, by, e.g., the Matlab codes:

1 P0 = 2 * rand(m,N) - 1.0;

2 Q0 = 2 * rand(m,N) - 1.0;

3 P0 = P0 - repmat(mean(P0), m, 1) + 1/m;

This leads to 1000 (= 40 × 25) instances divided naturally into 40 groups. If a
method is insensitive to initial values, then it should obtain essentially the same
minimum for examples in the same group. So the deviation-mean ratio (DMR) of
the minima in one group obtained by a given method can be seen as a measure of
its sensitivity to initial values. More precisely, here we use the quantity

DMR = J̄−1

√

1

24

∑25
k=1(Jk − J̄)2 with J̄ :=

1

25

∑25
k=1 Jk ,

where Jk denotes the minimal value of the k-th example obtained by the method
under consideration, as the measure of the sensitivity to initial values.

Figure 4 shows the average minimal values obtained by the CbC+OS and
PsInv methods (a.); and their corresponding DMR-values (b.). The examples are
sorted so that the minimal values obtained by CbC+OS is increasing. For these
examples the minimal values obtained by PsInv are about 60.6% (2.1dB) larger
than that obtained by CbC+OS in average (note the logarithmic scaling of the
y-axis in Figure 4a.). Moreover, CbC+OS is much less sensitive to initial values
than PsInv: the average DMR-value of CbC+OS on the examples is 5.0 × 10−5,
versus 0.067 of PsInv. Practically, when used to minimize (3.1), the CbC+OS
method always gets the same minimal value regardless of how the matrices P, Q
are initialized.

Next, we minimize the whole family of the above constructed 2000 problems
by the CbC+OS method, with P, Q initialized by P0 = Q0 = [Im, · · · , Im], the
block-matrix consisting of N/m copies of Im. According to its construction (cf.
p.25), the normalized counting matrix V #

0 , and thereby the minimal value Jmin of

9Just for one can reproduce the results, the random numbers generator rand is initialized by
the k-th initial state (k = 9, 19, · · · , 99): rand(’state’, k) when creating the matrices V T

0
.
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Figure 4: Comparison of the CbC+OS and pseudo-inverse methods

the corresponding problem obtained by CbC+OS, are (uniquely) determined by
four parameters: the dimension m, the ratio N/m, the perturbation amplitude ǫ
and the initial state k of the random numbers generator. So below we will write
Jmin = Jmin(m, N/m, ǫ, k), a 4-D array in Matlab.

Figure 5 shows, on the plane of the dimension m and the ratio N/m, two
exemplary contour maps of the maximal one of Jmin’s with m, N/m and ǫ being
fixed, i.e., of J∗

min(m, N/m, ǫ) = maxk Jmin(m, N/m, ǫ, k). Note that in Figure 5
all the quantities are logarithmically scaled. Also note that the contour curves
are almost equidistant parallel straight lines. This finding motivates us to do the
following multiple linear regression:

log(Jmin) = a · log(m) + b · log(N/m) + c · log(γ) + Er , (4.19)

where γ is computed from (the singular values of) V #
0 as in (3.15); and Er is the

regression error. Using our 2000 testing matrices V #
0 , we computed the coefficients

a, b, c in (4.19) as: a ≈ 2.6, b ≈ 1.1 and c ≈ 0.7, with the regression error
Er ranging from −0.121 to 0.077. Substituting these values into (4.19) we get
Jmin ≈ (75.7–119.4)% · γ0.7m1.5N1.1, which represents a reachable (lower) level for
the condition indicator κ1.

A comparison of this numerical result with eqn (3.15) might be interesting.
For a given matrix V #

0 assume κmin
1 is the minimal value of the problem (3.1).

Then (3.15) shows that κmin
1 6 γm3/2N , whereas the numerical simulation here

reveals that κmin
1 6 1.2γ0.7m3/2N1.1. Both bounds are of approximately the same

order O(m3/2N) on m and N , although in (3.15) the constraint 1T

mP = 1N was
not considered at all. For the order of γ, the numerical simulation gets a lower
value than (3.15), due to the reason that in (3.15) the matrix P is restricted to be
of a special form (3.13). On our 2000 examples the parameter γ ranges from 4.35
to 35.04, see Figure 6 for a histogram of γ. As Figure 6 approximately represents
the distribution of γ, according to eqn (4.19) it is safe to set the threshold of κ1

to be κ = 35.040.7m3/2N ≈ 12m3/2N for the online EC algorithm of OOMs.
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In conclusion, from the above numerical experiments we see that CbC+OS
is an efficient and stable numerical method for the optimization problem (3.1),
and can be used in the EC algorithm for estimating OOMs from data online (cf.
Subsection 3.4) or offline (using it to minimize the condition indicator of learning
equation).

5 Numerical Experiments

In this section we check our results obtained so far via some symbolic sequence
modelling experiments. More precisely, the EC algorithm will be used for estimat-
ing OOMs from the data sets generated by the “probability clock” [6]; by some
HMMs; by a symbolic logistic system; and by a system switching between two
different HMMs (hence the created sequences are nonstationary and the online
EC algorithm is required). To measure the quality of learnt models, we define a
quantity called description accuracy (DA) by

DA(A, S) := f [1 + NLL(A, S)] := f
[

1 + (S#)−1 logℓ Pr(S|A)
]

, (5.1)

where A is the model whose quality we want to measure; S is a data set gener-
ated by the underlying process and S# denotes the number of symbols in S; ℓ is
the alphabet size; and f is a nonlinear function which maps the infinite interval
(−∞, 1] to the finite one (−1, 1] via

f(x) =

{

x if x > 0 ,
(1− e−0.25x)/(1 + e−0.25x) if x < 0 .

Intuitively, NLL(A, S) is the normalized log-likelihoods of A on the data S and
assumes values from −∞ to 0. Therefore the range of DA(A, S) is (−1, 1]: DA = 1
means the model describes the data S perfectly well (it can predict the data with
probability one); DA = 0 means the model is irrelevant to the data for it provides
no more information about the process than just randomly “guessing” such a data
set; DA < 0 means the model is even worse than a randomly created one, which,
as one can imagine, rarely happens in practice.

In the following numerical experiments the quality of all learnt models will be
measured by its DA-values on the training sequence and testing sequences from
the same source as that of the training data.

5.1 Modelling the Probability Clock

The probability clock is a 3-dimensional OOM (R3, {τi}i∈{1,2}, w0) with

τ1 = 0.5





1 0 0
0 c s
0 −s c



 , τ2 = 0.5





.75 .75(2− c + s) .75(2− c− s)
0 0 0

.25 .25(2− c + s) .25(2− c− s)




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and w0 =
[

.75 0 .25
]T

, where c = cos(1) and s = sin(1). It should be pointed
out that the process described by the probability clock is not a HMM process, i.e.,
it cannot be modelled by any finite-dimensional HMMs (see Section 6 of [6]).

Running the probability clock we create 41 sequences: one is of length 10000
as training sequence, the other 40 are all of length 300 reserved as the testing
data. From the training sequence several OOMs and HMMs of different dimensions
m ∈ {2, 3, · · · , 9} are estimated, using the offline EC algorithm (with κ1 minimized
by the CbC+OS scheme) and the EM algorithm, respectively. When learning
OOMs, the length of basic strings is chosen to be d = 5 (cf. Subsection 3.4). For
HMMs, the EM algorithm is terminated when the increasing of the DA-value on
the training sequence between two subsequent iterations is less than δ = 10−5.
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Figure 7: DA-values of the estimated OOMs and HMMs (probability clock).

In Figure 7a. we plotted the curve of DA-values of the estimated OOMs and
HMMs on the training and test sequences versus model dimensions. From the
figure we see for 3-dimensional (the correct dimension) models the DA-values of
OOM are about two times higher than that of HMM; for other dimensions OOMs
also outperforms HMMs. However, the oscillating of the DA curves of HMMs in
Figure 7a. indicates that the EM algorithm might be terminated too early, and
only “immature” HMMs are learned for the dimension m = 6, 8. To verify this
suspicion we decrease the termination threshold δ to 10−6 10 and do the same
experiment again. The result is presented in Figure 7b.. Now the performance of
HMMs looks better than that in Figure 7a., but still inferior to that of OOMs,
especially in the 3-dimensional case. Thus OOMs trained by EC beats HMMs
trained via EM on this dataset, although EM is designed in the first place to
maximize the log-likelihoods (on training data), while the goal of EC is to optimize
the condition κ1 of the learning equation. Currently we have no clear idea about
the relationship between the training log-likelihoods and the condition indicator
κ1, but the experiment here shows that minimizing κ1 will also increase the log-

10This termination criterion is also used in later experiments.
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likelihoods. Furthermore, it is worth emphasizing that EC is much (10–100 times)
faster than the EM algorithm, at least in this experiment.

The HMMs trained in the above experiment are the so called state-emission

HMMs (SE-HMMs), in which the outcomes are “emitted” by the hidden states.
A stationary m-dimensional ℓ-observabel SE-HMM, which is characterized by a
transition matrix T ∈ R

m×m and an emission matrix E ∈ R
m×ℓ, has m2 + mℓ

free parameters, while an OOM of the same size has ℓm2 free parameters. So it
is unfair for SE-HMMs to compare them with OOMs of the same dimension. To
be fair we consider transition-emission HMMs (TE-HMMs), in which the symbol
emitted at time t depends on the hidden states at times t and t + 1. A TE-HMM
can be seen as an OOM whose parameters are all nonnegative; and can also be
trained by the EM algorithm [11].

In this experiment several TE-HMMs and OOMs with different dimensions
m ∈ {3, 5, 7, 9, · · · , 19} are trained from, and tested on, two data sets generated
by the probability clock. Each data set consists of a training sequence of length
10000 and 40 test sequences of length 300. For the EC algorithm, the length of
basic strings is set to be d = 5 when m < 10 and d = 6 when m > 10; because for
higher dimension m we need larger counting matrices V # and W#

a . The curves of
DA-values on the two data sets are shown in Figures 8a. and 8b., respectively.
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Figure 8: DA-values of OOMs and TE-HMMs (probability clock).

From Figure 8 we see that for m = 3 the DA-values of OOMs are higher than
that of TE-HMMs. When the model dimension m increases, the performance of
TE-HMMs trained by EM becomes a little better than that of OOMs trained with
EC (m = 5, 7, 9). But for even larger dimensions m, the EM algorithm begins
to overfit the trainind data (the train DA-values increase but the test DA-values
decrease); whereas EC still works well until m = 19, for which case both train and
test DA-values make a big drop for, rather than the overfitting phenomenon, the
fact that the counting matrix V # has numerical rank less than 19 and the learning
equation (2.7) is extremely instable. This is another benifit we got from the EC
algorithm: it can (somehow) automatically find the “correct” model dimension
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based (only) on the training data and one need not to worry about the overfitting
problem.

In the third experiment we created a data set of 30 training sequences of length
2000 and 40 test sequences of length 300. From each training sequence several TE-
HMMs, SE-HMMs and OOMs of dimension m = 2, 3, · · · , 9 are learnt using the
EM and EC algorithm, respectively. The DA-values of these models on the train-
ing sequence and test sequences are boxplotted in Figure 9, in which we marked
the 10%-percentile, lower quantile, median, upper quantile and 90%-percentile
positions of the DA-distribution of the learnt 30 models (of the same dimension
and the same model-type, but learned from different training sequences). It is
observed that HMMs trained via EM suffers from the overfitting problem when
m > 4 (for shorter training sequences HMMs are easier to overfit); and that the
test DA-values of OOMs become larger than that of HMMs when model dimension
m increases. For training DA-values, howevere, OOMs are inferior to HMMs. One
reason for this is that the training sequences are too short to characterizing the
underlying process; and OOMs just cannot learn too much about the process from
the sequence.

For the case of m = 3, we converted the target model (i.e., the probability
clock) and all the estimated models to their equivalent interpretable OOMs (cf.
Section 7 of [6]) w.r.t. the characterize events A1 = {11}, A2 = {12, 21} and
A3 = {22}. — Recall that in this report symbols are represented by their indices
in the alphabet and that HMMs can be seen as OOMs with positive parameters.
In Figure 10 the first two parameters (i.e., [τ̂1]11 and [τ̂1]21) of these models are
marked on the [τ1]11-[τ1]21 plane. From the figure we see that the parameters of
OOMs are more condensed than that of HMMs, illustrating the EC algorithm is
more insensitive to the concrete training sequence than EM. — This means EC
is more robust than EM concerning the variance of estimated parameters (from
different training sequences).

5.2 Modelling the Quantized Logistic System

In this experiment we consider the logistic system y(t + 1) = µy(t)[1 − y(t)]
with µ = 4. The attractor of this dynamical system, the closed interval [0, 1], is
devided into 10 equidistant sub-intervals, yielding a quantized logistic system with
alphabet size ℓ = 10. Running this system with different initial values y(1) we get
50 sequences: 30 are of length 5000 as the training data; and the other 20 are of
length 500 used as the test data.

As before, several OOMs, SE-HMMs and TE-HMMs with dimensions m ∈
{3, 5, 8, 12, 16, 20, 25, 30, 40} are learned from each training sequence; and the DA-
values of these estimated models are computed on the training and test data.
When learn OOMs using the EC algorithm, the length of basic strings is set to
be d = 4. Figure 11 shows the distribution of DA-values on the training (a.) and
test (b.) data set for the three model classes. From the figure we see that
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Figure 9: DA-distribution of OOMs (black line marked by ×), SE-HMMs (blue
line marked by �) and TE-HMMs (red line marked by ◦) on the data set generated
by the probability clock.
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Figure 10: Distribution of the first two parameters of the estimated OOMs (black
crosses), SE-HMMs (blue rectangles) and TE-HMMs (red circles). The magenta
dot denotes the parameters of the target model.
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1. for low dimensions HMMs obtain higher DA-values than OOMs, on both
training data and test data;

2. when model dimension m increases, the performance of OOMs becomes bet-
ter than that of SE-HMMs, and is comparable to TE-HMMs;

3. when m is even larger (> 30), TE-HMMs begin to overfit the training data,
whereas OOMs still work well.

One possible reason for this is that the “real dimension” of the logistic system
may be high; and one just can not describe such a high-dimensional system using
a low-dimensional model. So for low model dimensions m, the EC algorithm fails
to grasp the underlying process, which is reflected by the low DA-values; and it
is not surprising that HMMs get higher DA-values than OOMs for this situation,
since the target of EM is to maximize the model’s log-likelihoods, while EC aims
to minimize the estimation error. For high dimensions m, the model class is rich
enough to characterize the process, so there is a big jump in the DA-values of
OOMs at m = 8, making OOMs comparable to HMMs.

As the EC algorithm is designed to minimize the estimation error, it should
be more robust than the EM algorithm. This is reflected in Figure 12, where the
standard deviation of DA-values for each dimension and each model-type on the
training (a.) and test (b.) data are plotted. It turns out that when m > 12,
OOMs trained by EC are more stable and robust than HMMs trained with EM.

5.3 Using EC with CbC+OS for Online Learning

In this experiment, we use a 4-state-3-output time-varying “cyclic” HMM to gen-
erate training and test sequences. Figure 13 shows its structure, in which the
parameters a and c are dependent on the time t:

(a(t), c(t)) =

{

(0.97, 0.95) if t 6 1000 ,
(0.03, 0.05) if t > 1000 .

So the process produced by this HMM is nonstationary and all its sample paths
consist of two segments with different statistical properties.

The goal here is to check whether the online EC algorithm can adaptively
modify its estimation when the underlying process varies with time. To this end
we use 51 sequences of length 2000 generated by the above HMM: one for training
and the other 50 for testing. From the training sequence a 4-dimensional OOM is
learnt using the online EC algorithm with forgetting factor β = 0.99. During the
learning procedure, the “predictive” DA-values of the current estimated OOM are
computed over the next 20 symbols for each time step (we update the operators
τ̂a and at the same time drive the estimated model by the training and test data).
Figure 14a. shows the curve of the average predictive DA-values on the test data;
and Figure 14b. shows the variation in the condition indicator κ1 of the learning
equation for each time step.
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Figure 11: DA-distributions of OOMs (black line marked by ×), SE-HMMs (blue
line marked by �) and TE-HMMs (red line marked by ◦) on the data set generated
by the quantized logistic system.
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Figure 12: Standard deviation of DA-values for OOMs (black line marked by ×),
SE-HMMs (blue line marked by �) and TE-HMMs (red line marked by ◦) on the
data set generated by the quantized logistic system.
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Figure 14: The (predictive) DA-value of OOMs on the test data (online learning).

37



In Figure 14a. the curve of the test predictive DA-value shows a big drop
at time t = 1000, revealing the underlying process is somehow changed at this
point. Later it remains at a row level for long time, meanwhile the condition
indicator κ1 raises steadily, indicating the learning procedure becomes more and
more instable. When κ1 exceeds some threshold κ, the OS algorithm is triggered
and the matrices P, Q are adjusted to decrease the value of κ1. At the same time,
there is a jump in the DA-value of the estimated OOM. All these observation
illustrate the importance of an appropriate selection of the adjustable matrices P
and Q in learning algrithms of OOMs.

6 Conclusion

The equivalence theorem is of fundamental importance in OOMs’ theory. It is
from this theorem the learning equation involving two adjustable matrices P, Q
was derived and a general procedure for learning OOMs from empirical data was
developed. Two principles for designing P, Q have been discovered, leading to
two different learning algorithms: the ES algorithm introduced in [7] and the EC
algorithm in this report.

Unlike the ES algorithm, EC can be used in online form, which modifies the
OOM estimation on each new observed symbol via a set of RLS-like formulae. In
this sense, the online EC algorithm can be seen as a statistical version of RLS
estimation for system identification. Moreover, by introducing a forgetting factor,
the online EC method, like the RLS estimator, is also adaptive to the change of
the underlying process, as illustrated by the numerical experiments.

The main numerical problem of the EC algorithm is to minimize (for offline
learning) or control (for online learning) the condition of the learning equation.
For this we developed the OS algorithm, which, together with the CbC scheme,
is demonstrated to be an efficient and appropriate method in our simulation.
Furthermore, the numerical experiments for offline learning illustrate the EC al-
gorithm is a robust method for learning OOMs.

We end this report with a remark on a painful issue of the EC algorithm
(which is also the main shortcoming of the theory of OOMs). EC does not solve
the negative probability problem: it only garantees that conditions (1) and (2) from
Proposition 1 are satisfied by the estimated system; and might assign “negative
probabilities”, i.e., P̂ (ā) = 1T

mτ̂āŵ0 < 0 to some (rare) sequences ā ∈ O∗. However,
heuristic methods to master this problem exist, and are used here, see [7] for the
detail.
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