
Herbert Jaeger

Generating exponentially many periodic
attractors with linearly growing Echo State
Networks

Technical Report No. 3
August 2006

School of Engineering and Science

Generating exponentially many

periodic attractors with linearly

growing Echo State Networks

Herbert Jaeger

International University Bremen

School of Engineering and Science

Campus Ring 6

28759 Bremen

Germany

E-Mail: h.jaeger@iu-bremen.de

http: // www. faculty. iu-bremen. de/ hjaeger/

Abstract

When a human listens to a novel piece of music, wherein a reason-
ably short motif (likewise novel to the listener) is repeated twice, the
human is able to (1) detect this fact, (2) continue to reproduce the
motif periodically. A similar phenomenon is iterated phone number
rehearsal to keep a phone number in short-term memory. Mathemat-
ically, these are cases where a dynamical system (the brain) hosts a
huge number of periodic attractors, into which it can be driven by
feeding the corresponding periodic time series as a cue input. Here
we demonstrate how this phenomenon can be modelled using Echo
State Networks featuring a spatial encoding of musical pitch. The
network is trained as a pure delay-line memory. The number of peri-
odic attractors that a given, trained ESN can produce without further
parameter adjustment scales exponentially with the network size. A
stability analysis of the attractors is provided.

1 Introduction

Humans are capable of detecting in acoustic time series a novel pattern that
is repeated twice (or more often) in immediate succession. After detection, it

is immediately available in short term memory and can be stably reproduced
periodically. An example is discerning a repeated motif in a piece of music
upon first hearing, with subsequent overt, periodic reproduction of the motif
by singing (or whistling or humming...). Likewise, when someone tells us
a phone number, we can keep it active in short-term memory by mental
rehearsal, that is, by repeating the number to ourselves. The reproduction of
the motif or phone number is stable, that is, immune to disruption by noise.
Because of the short time required for this phenomenon to unfold, synaptic
weight changes cannot be involved. This implies that human brains, cast as
dynamical systems, host a large number of periodic attractors which can be
selected and activated by input signals that are similar to signal produced
by the respective attractor.

Here we present a recurrent neural network architecture based on Echo
State Networks (ESNs, [1] [4]) which exhibits an abstract version of these
phenomena. The data that we use are discrete-time, one-dimensional, ran-
dom time series that we might consider as “melodies”. Standard ESNs are
trained as delay-line memories, or “retrodictors”, on such signals, that is,
they have various output channels each of which corresponds to a discrete
delay time k and should output the input from k time steps earlier. The
“pitch” of the input and signals is coded spatially, by assigning different in-
put (or output, respectively) units to respond optimally to different pitches.
The trained network is augmented by a leaky retrodiction error integration
mechanism which enables the system to detect periodicity in its input: if the
input signal is periodic with period length k, the error on the retrodiction
channel trained on the delay k will go toward zero. An additional voting
mechanism monitors the integrated retrodiction errors and feeds back those
network outputs to the input that correspond to low-error retrodictions, that
is, to the appropriate period length. We show analytically that the periodic
re-productions of cue signals is stable. The analysis reveals that the nonlin-
ear nature of the network output units is crucial for stability. Furthermore,
the spatial pitch coding, together with the short-term memory properties
of ESNs [2], enable the proposed architecture to host a number of periodic
attractors that grows exponentially with the network size.

Previous work on periodic attractors in neural networks concerned the
training of a network to stably reproduce a periodic teacher signal – in the
early days of neural network research this was a frequently used challenge
to demonstrate the performance of learning algorithms. Querying Google
on “neural network” + “figure eight”, for instance, retrieves more than 200
hits, mostly pointing to papers where a 2-dimensional periodic time series
whoses plots look like the figure 8 was to be learnt. A rather different venue
of research with a rich literature concerns the mathematical analysis of the

3

(bifurcation) dynamics of small recurrent neural networks, where the typical
finding is that even very small networks (2 neurons) exhibit a host of periodic
and other attractors across different weight settings, see, for instance, [5].
Our present study aims at something quite different and has, as far as we
can perceive, no precedent. Namely, we wish to set up (and analyze) a
recurrent neural network that hosts a large (even huge) number of periodic
attractors with one given, fixed setting of weights, such that the network can
be driven into any of these attractors by a suitable cue input.

The report is organized as follows. In sections 2 and 3 we rehearse the
basic ESN notation and describe the spatial pitch coding, as well as the
data scaling required to run the ESN in an appropriate operating regime.
The training of ESNs as delay-line memories is detailed out in section 4.3.
In section 5 the complete architecture comprising the delay-line ESN and
the error monitoring and voting scheme is explained. Its performance is
highlighted in section 6. A stability analysis of the network attractors is
provided in section 7. In the concluding discussion (section 8) an outlook on
further research is made.

All computations were done with Matlab. The code is available online
from the author’s publication page at http://www.faculty.iu-bremen.de/
hjaeger/pubs.html. The “EdNote” comments in the report below point to
variable names in the code.

2 Basic ESN notation

For a comprehensive introduction to Echo State Networks the reader is re-
ferred to the literature [1] [3]. This short section serves only to fix our
notation. We consider discrete-time ESN networks with K input units, N
internal network units and L output units. Activations of input units at
time step n are u(n) = (u1(n), . . . , uK(n)), of internal units are x(n) =
(x1(n), . . . , xN(n)), and of output units y(n) = (y1(n), . . . , yL(n)). Real-
valued connection weights are collected in a N×K weight matrix Win = (win

ij)
for the input weights, in an N × N matrix W = (wij) for the internal con-
nections, and in an L × (K + N) matrix Wout = (wout

ij) for the connections
to the output units. Here we do not use backprojections from the output
units to the internal units or connections between output units. Note that
connections directly from the input to the output units are allowed.

The activation of internal units is updated according to

x(n + 1) = f(Wx(n) + Winu(n + 1)), (1)

4

where f are the internal unit’s output functions – here we use the identity1, EdNote(1)
applied element-wise to the network state vector. The ESN thus becomes a
linear network, as far as the reservoir activations are concerned. The output
is computed according to

y(n) = fout(Wout(x(n),u(n)), (2)

where fout is the output activation function – here we use 1/2 + tanh /22, EdNote(2)
which is a sigmoid ranging strictly between 0 to 1 with a value of 1/2 for a
zero argument. Introducing a sigmoid-shaped nonlinearity here is crucial for
achieving a stable reproduction of the motif.

3 Melody coding

We study “melody” signals, that is, sequences m(n)3, where n = 1, 2, ... EdNote(3)
and m(n) can take p equidistant values i/(p − 1) between 0 and 1 (where
i = 0, 1, ..., p−1). In order to feed such a signal to the ESN, it is space-coded
by mapping m(n) on a p-dimensional4 binary vector b(n)5. Specifically, the EdNote(4)

EdNote(5)space coding transforms m(n) = i/(p−1) to a binary vector b(n) whose i-th
component is one.

Our networks will be trained to generate various time-delayed versions
of such space-coding vectors b(n) as their output signals. Because we use
a (0, 1)-ranging sigmoid fout for the output activation function, this would
make it impossible for the network to produce zero values in b(n) output
vectors. To accomodate for this snag, we shift and scale6 the vectors b(n) to EdNote(6)
vectors u(n) whose components range in (0.1, 0.9):

u(n)[i] = 0.8 b(n)[i] + 0.1. (3)

Such code vectors u(n) have components ν = 0.1 and µ = 0.9 where b(n)
have 0 and 1. They provide the data format which the network finally receives

1
EdNote: Matlab: esn.reservoirActivationFunction

2
EdNote: Matlab: esn.dataActivationFunction

3
EdNote: Matlab: rawSignal

4
EdNote: Matlab: p

5
EdNote: Matlab: sampleInput, sampleOutput, the mapping is done with the helper

function rawToUnitCoded. Notice that originally the code was written for coding arbitrary
analog values into a p-dimensional vector, which is what rawToUnitCoded does. For the
purpose of this paper, I however used only binary coding vectors. Leaving the rawToUnitCoded
parts in place for later experiments, the analog-equivalent space coding is reduced to binary
coding by taking the max of the vectors created by rawToUnitCoded.

6
EdNote: Matlab: done via esn.inputShift, esn.inputScaling, esn.teacherShift, and

esn.teacherScaling

5

as inputs, and which it should produce as outputs.

4 Training ESNs as delay-line memories

4.1 Data preparation

We train ESNs to work as delay-line memories. The goal is that the trained
network, on an input sequence u(n), outputs d vectors7 [u(n − d)u(n − EdNote(7)
d + 1) . . .u(n − 1)]. Technically, we arrange the vectors u(n − d),u(n − d +
1), . . . ,u(n−1) into a p×d array y(n)8. The training data are thus generated EdNote(8)
as follows9: EdNote(9)

1. Produce a random sequence m(n) of length N and transform it into a
space-coded, scaled/shifted sequence u(n).

2. For each n > d, assemble y(n) from the previous d instances of u(n).
For the first n ≤ d, use dummies (initial transients of the network will
be discarded anyway).

3. The training data consist of nmax input – teacher output pairs (u(n),y(n)).

4. Create a similar pair sequence for testing purposes.

In our study, we use p = 10 pitch bins, d = 10 delays and nmax = 1500 for
training data and nmax = 500 for testing.

Notice that we train the network on a delay memory task – that is, the
network outputs are trained to “retrodict” the input. However, when later
used in a task where the objective is to detect and repeat a k-periodic motic,
the semantics of the outputs change from retrodiction to prediction. When
the input is k-periodic, the current output trained on a delay of k − 1 will
predict the next input; or equivalently, the previous output trained on a delay
of k − 1 will predict the current input.

4.2 Network setup

We use an ESN with a reservoir of N = 100 units10. The internal weights W EdNote(10)

7
EdNote: Matlab: the number d of delays is the variable esn.d

8
EdNote: Matlab: the concatenation order is to sort the longest-delay outputs to the left

in this array. The teacher signal thus becomes an array of size signal-duration ×p×d, and the
network outputs are collected in a p × d array netOut (used in run melody 8).

9
EdNote: Matlab: in demo 8, this is done in the code block 1.2

10
EdNote: Matlab: the creation of the network is done in generate esn 8.

6

are drawn from a uniform distribution over [−1, 1], with approximately 90%
of the connection weights becoming nulled, resulting in an average connec-
tivity of 10%. The sparse weight matrix is then rescaled to yield a spectral
radius of 0.8.

The input weights Win are drawn from a uniform distribution over [−1, 1]11. EdNote(11)
For each delay i, we assign a separate output weight matrix Win

i of size
p × (K + N)

4.3 Training and testing

The ESN was trained on the delay-line memory task in the standard fash-
ion described, for instance, in [2]. The result of the training are d output
weight matrices Win

k . In order to stay away from overfitting, a regularizer is
implemented in the form of uniform noise12 from [−0.0005, 0.0005] added to EdNote(12)
the network states harvested while the ESN is driven by the training input.
Figure 1 shows the basic setup used in training.

W
in

W
out p pitch-coding

neurons per
delay

d

delays

dynamical
reservoir

...

Figure 1: The basic ESN setup during training.

Notice that in the light of the concepts and findings reported in [2], an ESN
capable of perfect performance on this memory task would need a memory
capacity of p d = 100, the theoretical maximum for a 100-unit ESN. Because
this theoretical maximum will not be reached (some of the network’s theo-
retical memory capacity would be associated with signals not used here), we
can expect suboptimal learning performance especially on longer delays. In
fact, a plot13 of the normalized mean root square errors (NRMSE) on train- EdNote(13)
ing data shows that the NRMSE of recalling earlier inputs is rather poor (see

11
EdNote: Matlab: by setting esn.inputWeightScaling to 1.0

12
EdNote: Matlab: trainNoiseLevel in demo 8

13
EdNote: Matlab: the diagnostics for the learning/testing performance is displayed in

Matlab figure windows 1 – 5

7

figure 2). The difficulties the ESN has with larger delays are also reflected
in the large output weights earned on larger delays (figure 2, right panel). A
detrimental consequence of large output weights is high sensitivity to noise.
We can expect that if the trained network is used and noise is added to its
operation, the produced outputs on the larger-delay channels will strongly
deteriorate.

While we could have easily achieved a more accurate and more noise-
resistant performance for the larger delays by using a larger reservoir, we did
not do so in order to investigate how the picking-up of a motif deteriorates
when the length of the motif ranges into the limits of the underlying short-
term memory.

2 4 6 8 10
0

0.2

0.4

0.6

0.8

2 4 6 8 10
0

20

40

60

Figure 2: Left: Test error (NRMSE) for the ten pitches (x-axis). Each plot
line corresponds to one delay, larger delays give higher test error. Note that
a NRMSE of 1 would correspond to completely uncorrelated test/teacher
signals; thus the NRMSE of about 0.7 for the largest delay characterizes a
quite poor accuracy. Right: average absolute output weights for the various
pitches (x-axis) and delays.

5 Picking up a motif and repeating it

5.1 Basic ideas

Once trained, the network is ready to be used in a setting where it receives
a cue signal which starts with a random “melody”, then presents a “motif”
twice, then stops. After the cue signal has terminated, the network should
continue to produce output autonomously, such that the output has two
properties:

1. The output is a periodic signal consisting of approximate repetitions of
the motif which was presented twice at the end of the cue.

8

2. The output is stable, that is, the network has settled into an attractor

reflecting the motif.

output

(time 1)t-

output
(time)t

input
(time)t

votes predict confidences

input
(time +1)t

leaky
integration

unit
delay

dynamical
reservoir

......

compare output
with input and assign

to each delay

previous

current

(time 1)
(time)

t

t

-

predict confidences

linearly combine
current outputs
(time) via votes
to yield new input
(time +)

t

t 1

...

...

Figure 3: ESN setup during autonomous operation.

The basic idea to realize such an operation is the following (see figure 3).

• The network’s output (that is, d delayed versions of the current input)
are monitored for how well they predict the current input. In the
presence of an input which is periodic with period k14, the k-delay block EdNote(14)
of outputs should show consistently good agreement with the input.
The prediction agreement across the d output blocks is integrated over
time and the “winner” output block is allowed to feed its signal back
into the input channel.

14
EdNote: Matlab: k is periodN in demo 8

9

• Technically, this requires (i) measuring and integrating the prediction
error for the d output blocks, (ii) using the accumulated error as a
basis for a competitive vote among the d outputs to determine one (or
several) winners, (iii) feed the winning ouput(s) back into the input.

• The network is operated in two distinct phases. First, in the cueing
phase, an external cue input (consisting in a transient random initial
melody followed by two repetitions of a motif) is used as input. After
that, the external input is replaced by the fed-back output(s) which are
linearly combined according to the strength of their respective votes.

5.2 Error integration and voting

The measuring and integration of prediction error is done by a leaky inte-
gration scheme15. For each delay i (i = 1, . . . , d), in each update cycle n the EdNote(15)
average MSEi(n) across the p components of the ith pitch coding vector is
computed16: EdNote(16)

MSEi(n) = ‖yi(n − 1) − u(n)‖2/p, (4)

where yi(n−1) is the previous network output for delay i (a vector of size p)
and u(n) is the current input to the ESN. These MSEi are leaky-integrated
according to

MSE-inti(n) = tanh((1 − γ1) MSE-inti(n − 1) + α1 MSEi(n)), (5)

where γ1 is the forgetting rate and α1 is an accumulation weight17. In the EdNote(17)
simulations reported below, we used γ1 = .4, α1 = 4. The tanh wrapper
makes the integrated prediction error saturate at 1.

The d integrated error signals thus obtained will evolve towards zero on
all delays that are a multiple of the period length k for a k-periodic input.
Likewise, for delays which are not multiples of k, the integrated errors will
evolve towards 1.

An obvious mechanism to “vote” for outputs which should be fed back
into the input channel would be to weigh ouputs by “predict confidences”
Ci(n) = 1 − MSE-inti(n), average across the weighted outputs, and feed the

15
EdNote: Matlab: the first part of the “voting and competing” code block in

run melody 8
16

EdNote: Matlab: in run melody 8, this is errors per delay(d, 1)
17

EdNote: Matlab: γ1 is errDecay and α1 is errGrowthConstant in run melody 8. The
development of the MSE-inti’s is plotted in Matlab output figure 7

10

resulting mixture back to the input. In this way, only those ouputs whose
delays are multiples of k – i.e., replicas of the periodic target – would be
chosen.

However, the integrated errors in the delay channels not commensurate
with k will not in general evolve towards 1, because within the periodic input
motif there may be time points with spurious good matches between the
current motif signal and incommensurable delays – this is bound to occur
when the motif contains notes with similar pitch. Thus, before becoming
useful for guiding the combination of outputs into new fed-back inputs, some
further cleaning of the integrated errors is necessary. We do this by two
operations. First, the predict confidences18 Ci(n) = 1 − MSE-inti(n) are EdNote(18)
thresholded at their lower end such that confidences falling below a threshold
ε19 will be zeroed, that is, instead of Ci(n) = 1 − MSE-inti(n) we use EdNote(19)

Ci(n) = s(1 − MSE-inti(n)), (6)

where s : R → [0, 1] maps any number smaller than ε to zero, any number
greater or equal to 1 to 1, and linearly interpolates in between. In the
simulations reported below, we use a threshold of ε = 0.3. Finally, a further
leaky integration and subsequent normalization smoothes Ci(n) to obtain the
final votes Vi:

Ṽi(n) = (1 − γ2) Vi(n − 1) + α2 Ci(n)

Vi(n) = Ṽi(n)/
∑

j=1,...,d

Ṽj(n) (7)

where again γ2, α2 are forgetting / accumulation factors20. In the simulations EdNote(20)
reported below, we used γ2 = .2, α2 = 4.

The details of how we realized an error-monitoring-and-voting mechanism
here are not important. We could have designed a more efficient mechanism,
for instance, by setting the maximum vote to 1 and the others to 0 at each
time step – this would result in a sharper, faster detection of input periodicity.
The reason why we relied on two cascaded leaky integrations to clean our
votes is an admittedly feeble attempt to remain biologically plausible.

18
EdNote: Matlab: currentPredictConfidence

19
EdNote: Matlab: ε is zeroPredictConfidenceThreshold, used in run melody 8

20
EdNote: Matlab: figure 6 displays the development of the clean vote signals Vi(n)

11

5.3 Feeding back the vote-combined output

In the cueing phase, after a “warmup” presentation of a random melody
(which serves to wash out the ESN startup transient), the external input
consists of two repetitions of a motif of period length k. During the presen-
tation of the second of the motif repeats, the network outputs match with
the k-step previous input and the vote Vk−1(n) will grow toward 1, while the
other votes move toward zero (it is not Vk(n) that will grow toward 1 due
to the unit delay in the feedback circle, see figure 3). When the cue period
ends after the second motif repetition, the external input is switched off and
the network receives instead an input u(n) which is essentially made from a
weighted combination of the network outputs:

ũ(n) =
∑

i=1,...,d

Vi(n − 1) yi(n − 1). (8)

A little refinement is needed here, though. The network outputs yi(n − 1)
contain some inaccuracies and will not perfectly correspond to pitch-coding
vectors p(n−1). Specifically, if the scaling/shifting from equation 3 is undone
to bring back yi(n − 1) into the original pitch coding format,

ỹi(n − 1) = (yi(n − 1) − [0.1...0.1]′)/0.8 (9)

(where ’ denotes vector transpose), then the component sum of ỹi(n − 1)
would in general slightly deviate from 1, the value required for perfect pitch
coding vectors. In order to enforce clean pitch coding, we normalize ũ(n) by
putting21 EdNote(21)

˜̃u(n) = (ũ(n) − [0.1...0.1]′)/0.8
˜̃̃
u(n) = ˜̃u(n)/component sum of ˜̃u(n)

u(n) = 0.8 ˜̃̃
u(n) + 0.1 (10)

Notice that we must carry out the normalization on a version of ũ where the
scaling/shifting from equation 3 has been undone.

In order to check the stability of the periodic pattern reproduction, we
added uniform noise ν(n) to the (fed-back) input u(n) in the simulations
reported below22. EdNote(22)

21
EdNote: Matlab: code block “restore perfect pitch coding” in run melody 8

22
EdNote: Matlab: noiseLevel argument in run melody 8

12

6 Performance

We tested our trained ESN with motifs of different length k and under various
amounts of noise ν(n). Depending on k and ν(n), interestingly different types
of performance were observed.

Motifs of length 6 or 7. In this condition, when the noise is not too strong
(|ν(n)| ≤ 0.005), the voting mechanism focusses on the appropriate
value of k before the second cue motif has ended, that is, the vote of for
the delay k−1 goes to 1 and the others to 0. A periodic pattern similar
to the cue motif is stably reproduced. Figure 4 shows a typical run for
k = 7, without and with noise. It is apparent that moderate noise does
not disrupt the periodic motif reproduction. Figure 5 shows the de-
velopment of the integrated errors MSE-inti(n) and the resulting votes
Vi(n). If the noise level is increased to a range around |ν(n)| ≈ 0.01,
the system is driven out of its attractors after every few repetitions of
the attractor’s loop, whereafter it settles into another periodic attrac-
tor, usually of the same period as the previous but distinguished from
it by settling on different values on some of the period’s time points
(figure 6); more rarely or when the noise is further increased, it may
jump to different period lengthes or become non-periodic altogether.

0 50 100
0

0.5

1

0 50 100
0

0.5

1

Figure 4: Network output (thick blue line, re-transformed from pitch coding
vectors to one-dimensional “melody” signal) vs. network cycles (x-axis). The
cue signal is rendered by a thin red line. Vertical black lines mark the two
cue motifs. Notice that the ESN does not receive the cue signal after the
second presentation of the motif. Left panel shows zero noise condition, right
panel with noise |ν(n)| ≤ 0.005.

Motifs of length 8 – 10. If the length of the motif grows into the region
where the delay line memory performance of the ESN is poor, the in-
accuracies in recalling the input from k − 1 steps earlier accumulate to

13

0 50 100
0
1

0 50 100
0
1

Figure 5: Development of integrated errors (left panel) and votes (right
panel) in the run with added noise rendered in the right panel of figure 4.
Each plot corresponds to one delay; top plot corresponds to shortest delay
k = 1.

an extent that the motif is not stably retained over time, even when
no noise is inserted into the dynamics. Figure 7 shows a typical devel-
opment for a k = 9 cue. Although the cue motif is initially reproduced
a few times, the reproduction accuracy is not good enough to retain
the pattern. A complex transient dynamics unfold, which after a much
longer time (1000 steps, not shown) would eventually settle in an at-
tractor not related to the cue motif in shape or period.

Motifs of length 4 or 5. Here two mechanisms become superimposed (see
figure 8 for an example where k = 5, zero noise condition). The voting
mechanism correctly determines the period length k by the time the
second cue motif ends, and the motif is initially correctly reproduced.
However, because a k-periodic signal is also 2k-periodic, the vote for
delay 2k also rises soon after the system starts to produce the pattern
autonomously, leading to a shared vote between k and 2k. Because the
2k-delay output channel has a poor reproduction performance, errors
accumulate and the reproduced pattern wanders away from the original.
The long-term behaviour is unpredictable; often the systems settles
in a k-periodic attractor unrelated in its shape to the cue, or (more
rarely) settles into an attractor with a different period. Notice that
this behaviour could be remedied by implementing a winner-take-all
mechanism between the votes which would prevent the 2k vote from
rising. We would then obtain a stable reproduction of the cue motif.

Motifs of length 2 or 3. If the motif is very short, the voting mechanism

14

0 50 100 150 200
0

0.5

1

0 50 100 150 200
0
1

0 50 100 150 200
0
1

Figure 6: Similar conditions as in figures 4 and 5, but with medium noise
(here of size 0.06), leading to “hopping” between attractor variants.

needs more time than is afforded by a double presentation of the cue
to rise toward 1 for the correct period length k. In our simulations,
three instead of two successive presentations were needed. Similar to
the case of motif length 4 or 5, after the reproduction sets in, the votes
for multiples of k rise, too. For example, if the motif has period 3 (this
case is shown in figure 9), the votes for 2k and 3k subsequently share
their saying with the vote for k. Unlike the case of motif length 4 or 5,
however, here we have two voted channels (k and 2k) with a sufficient
accuracy of recall, which outweigh the detrimental influence from the
inaccurate channel 3k. In the end, a stable reproduction of the original
motif is ensured even in the presence of noise.

7 Analysis

Our melody-pick-up ESN apparently hosts a huge number of different cyclic
attractors, into which it can be individually driven through a presentation of
corresponding cues. In this section we analyze this phenomenon mathemat-
ically.

15

0 50 100 150 200
0

0.5

1

0 50 100 150 200
0
1

0 50 100 150 200
0
1

Figure 7: A run on a cue of length 9, under a zero noise condition.

7.1 Problem simplification

We first simplify our architecture, stripping away a number of features, un-
til only the core phenomenon of a dynamical system hosting many cyclic
attractors is left.

The first non-essential feature is all the error monitoring and voting mech-
anisms. If we had an oracle instead that after the presentation of the second
cue motif simply sets the vote on the k-delay output to 1 and the others to
0, – or even simpler, if we knew the period length k from the beginning and
would use an ESN with only the k-delay outputs installed at all –, then we
would still have an architecture hosting a large number of periodic attractors
(now all of period k), which requires an explanation.

The second non-essential feature is the ESN reservoir itself. At time n,
the un-squashed k-delay output

(fout)−1yk(n) = Wout
k (x(n),u(n)) (11)

is extracted from the information in (x(n),u(n)) in a least-mean-square error
sense via Wout

k . The relevant component in (x(n),u(n)) which is read out
by Wout

k is the “echo” in the reservoir state reflecting the input from k steps
earlier, namely

16

0 20 40 60 80 100 120
0

0.5

1

0 50 100 150
0
1

0 50 100 150
0
1

Figure 8: Performance on a cue motif with length k = 5, zero noise condition.
Panels show network output, integrated error, and votes, respectively.

Wk−1Winu(n − k + 1) = Wk−1Winyk(n − k), (12)

assuming that the output yk(n − k) is fed back to become the input u(n −
k + 1). All other signal components in (x(n),u(n)), which result from linear
superpositions of the fading echoes of other inputs, are filtered out by Wout

k

as well as possible. Using a large reservoir is just a way to provide enough
degrees of freedom such that a linear separation of all these superimposed
echoes becomes possible with a reasonable accuracy. We would only improve
the retrodiction performance if we did away with the reservoir and installed
a simple delay-line memory, turning equation 11 into

(fout)−1yk(n) = Wdirectu(n − k + 1) = Wdirectyk(n − k). (13)

The final item that we can dispense with is k and the motif’s periodicity.
Generally, if in a discrete-time dynamical system – that is, an iterated map
F – we have a k-periodic attractor that loops through values z1, . . . , zk,
analysing its stability reduces to investigating the stability of the fixed point
z1 under the map F k. In our case, we must analyse the stability of fixed
points of iterated maps of the kind

17

0 10 20 30 40 50 60 70 80
0

0.5

1

0 20 40 60 80
0
1

0 20 40 60 80
0
1

Figure 9: Performance on a cue motif with length k = 3. Noise size is
|ν(n)| ≤ 0.005. Panels show again network output, integrated error, and
votes, respectively.

y(n + 1) = foutWdirecty(n). (14)

The goal, then, is to demonstrate that maps as in equation 14 have many
stable fixed points – namely, as many as we find possible pitches coded per
time step in our original setting. Concretely, every vector y(n) that has a
single entry with a value of µ, while the other entries are ν = 1 − µ, should
be stable fixed points. Figure 10 visualizes what we are after.

We will thus investigate the following question: if Wdirect is such that on
µ, ν-component vectors y the MSE E[‖y − foutWdirecty‖2] is minimal, what
point attractors does this map have? Specifically, are the p vectors yi (where
i = 1, ..., p and yi is µ in the ith component, elsewhere being ν) stable fixed
points?

7.2 Stability of periodic patterns

We start with a simple observation: if fout were the identity, that is, if
foutWdirect were a linear map, then we could not obtain stable fixed points

18

f M
out direct f M

out direct

f M
out direct

Figure 10: Periodic motif generation seen as a combination of stable fixed
points of a map foutWdirect. Here the case k = 4, p = 5 is shown.

other than zero (a generic property of linear maps). Thus, the sigmoid char-
acter of fout is decisive.

Another simple observation is that if Wdirect maps each yi on (fout)−1yi,
we obtain a zero MSE E[‖y − foutWdirecty‖2]. It is not difficult to see that
such a matrix Wdirect is of the form

Wdirect =











α β · · · β

β
.

...
...

. β
β · · · β α











. (15)

Let us consider the fixed point z = y1 = (µν . . . ν)T (where superscript T

denotes transpose) and demonstrate that it is stable. If this is found true,
then the other fixed points yi are stable too by symmetry.

The fixed point z is stable if it is stable in its first and second component
(the remaining components are identical to the second), that is, if

fout ′((Wdirectz)[1]) ‖Wdirect‖ < 1 and (16)

fout ′((Wdirectz)[2]) ‖Wdirect‖ < 1, (17)

where fout ′ is the derivative of fout, (Wdirectz)[1] is the first component of
(Wdirectz), and ‖Wdirect‖ is the norm (largest singular value) of Wdirect, which
due to the symmetry of this matrix coincides with its spectral radius, i.e. its
absolute greatest eigenvalue. We start our verification of equations 16, 17 by
computing the spectral radius of Wdirect.

19

7.2.1 The spectral radius of Wdirect

It is clear from the structure of Wdirect that e0 = (1 · · · 1)T is an eigenvector
(to an eigenvalue λ0), and furthermore e1 = (1s · · · s)T, e2 = (s1s · · · s)T, . . . , ep =
(s · · · s1)T, where s 6= 1, are eigenvectors, these latter all to the same eigen-
value λ1. e1, . . . , ep span a linear subspace of dimension at least p− 1 and at
most p. It is p iff λ0 = λ1. In either case, there cannot be more eigenvalues
other than λ0 or λ1. Elementary algebra (for details see Appendix ??) reveals
that

λ0 = α − β + p β (18)

λ1 = α − β, (19)

or in terms of µ and ν (see Appendix ??),

λ0 =
(fout)−1µ − (fout)−1ν

µ − ν
+ p

µ (fout)−1ν − ν (fout)−1µ

((p − 1)ν + µ)(µ − ν)
(20)

λ1 =
(fout)−1µ − (fout)−1ν

µ − ν
(21)

of which the second is positive real and has the greater absolute value of the
two (Appendix B) and hence is the spectral radius of Wdirect.

7.2.2 Computing fout ′((Wdirecty1)[i])

The other item in equations 16, 17 that we need to determine is the derivative
fout ′ at the first and second component of Wdirecty1 (the remaining compo-
nents are equal to the second). We consider the first component first. The
derivative of fout is

fout ′(x) = (
1

2
tanh x +

1

2
)′ =

2

(ex + e−x)2
. (22)

Using the obvious (Wdirecty1)[1] = (fout)−1 µ, (fout)−1x = 1
2
log x

1−x
and equa-

tion 22, elementary transformations yield

fout ′((Wdirecty1)[1]) = 2 (1 − µ) µ. (23)

7.2.3 Concluding the proof of stability

In order to verify equation 16, and using equations 21 and 23, we have to
show that for 1/2 < µ < 1 it holds that

20

2 (1 − µ) µ
(fout)−1µ − (fout)−1ν

µ − ν
< 1. (24)

Utilizing (fout)−1x = 1
2
log x

1−x
and µ = 1 − ν yields the following equivalent

version of equation 24:

2 (1 − µ) µ
log µ

1−µ

2µ − 1
< 1. (25)

We substitute µ by 1/2 + ̺, which yields another equivalent version of equa-
tion 24:

log 1/2+̺
1/2−̺

(1/2 − 2 ̺2)

2 ̺
< 1 for 0 < ̺ < 1/2. (26)

Figure 11 gives a plot of this function. Notice that this function is not defined
in ̺ = 0; however, it can be smoothly (with respect to the first derivative)
closed at this point with a value of 1. Appendix C proves this and also that
this function is properly smaller than 1 for 0 < |̺| < 1/2.

−0.5 0 0.5
0

0.5

1

Figure 11: Plot of the function from equation 26 for −1/2 < ̺ < 1/2.

It appears from figure 11 that the closer we move |̺| to 1/2 (that is, µ to
1), the more stable should our attractors become. While this is certainly the
case for our simplified model, the situation is not so clear for the original
ESN + voting system. The reason is that moving µ closer to 1 interacts
with the output weights computed in the training of the ESN as a delay
line. The closer to 1 we set µ, the larger the output weights become. This
earns us an increase in noise sensitivity which to a certain extent cancels the
improvement of stability we would expect from the phenomenon in figure
11. We did not systematically investigate this matter but can only report
a spurious finding that if µ is set to 0.975 instead to 0.9, the stability of
reproducing k = 7 patterns appeared to improve slightly.

21

7.2.4 The exponential number of periodic attractors

Assuming that our simplifications are admissible, we may interpret the work-
ings or our ESN-based dynamical system as follows. For a delay k that is
learnt with sufficient accuracy, and assuming that the voting mechanism sin-
gles out the appropriate period length k, the system implements k interleaved
maps foutWdirect, as sketched in figure 10. Given that this map has p point
attractors, the entire system hosts pk periodic attractors of period k. Due
to cyclic shift and other symmetries, the actual number of “really” different
attractors is less than this – and not easy to calculate precisely – but is cer-
tainly O(pk). If we would restrict ourselves to delays k = 1, ..., dmax that are
learnt with sufficient accuracy (in our concrete simulations: dmax = 7), this
means that our network architecture hosts O(pdmax) periodic attractors.

Considering some fixed p, how does dmax scale with network size, that
is, the number N of reservoir units plus the number of input and output
units? Here we call upon the main finding in [2], which in a condensed
version states that the short-term memory capacity of a linear-reservoir ESN
is N . Roughly speaking, this means that in order to augment an ESN that is
capable of recalling the dth previous input p-vector with a certain accuracy,
to a network that also recalls the d + 1th previous input with a similar
accuracy, we have to grant another p reservoir neurons. Together with the
extra p-output-vector needed, we have to add another 2p neurons if we wish
to enhance our motif-pickupper from some dmax to d′

max = dmax + 1. But
this is only a linear increase of network size in dmax. Thus, pending a more
detailed analysis, it is fair to say that the number of periodic motifs that can
be picked up and reproduced via our architecture grows exponentially with
the size of the network.

8 Discussion

We have provided an ESN-based architecture that is capable of homing in on
any from an exponential number of periodic attractors if cued by a similar
motif presentend in two (or three, for short motifs) consecutive instances in
the input to the network. The ESN was trained as a delay-line memory,
and later works in conjunction with an external error integration and voting
mechanism.

The essential ingredients for this to function in a stable fashion turned out
to be (i) the output nonlinearity of the ESN, and (ii) the spatial pitch coding.
The error integration and voting mechanism that we used is, by contrast,
accidental; mechanisms of this sort other than the concrete instantiation used

22

here would work as well (or better) provided they are capable of detecting
the correct period length sufficiently fast.

Simulation experiments reveal that a certain accuracy of the ESN’s short-
term memory recall is needed to ensure a stable reproduction of the cue motif.
We arranged things in a way such the network ran into its accuracy limits
for long delays, resulting in a breakdown of the performance for long mo-
tifs. On motifs of intermediate length the architecture worked as desired.
With short motifs we encountered difficulties stemming from the fact that a
k-periodic signal is also nk-periodic for m = 2, 3, . . ., which activated feed-
back channels corresponding to these multiple delays. If such extra feedback
channels with a poor recall accuracy become involved, the performance may
be impaired. This could be prevented, however, by adding a competitive
mechanism (winner-take-all) between the vote signals.

This report is a first investigation into ESNs picking up periodic motifs.
Future research will elaborate the connections of this model with empirical
findings from music understanding and reproduction by humans, and explore
the question of whether similar architectures can be designed for continuous-
time and/or continuous-valued periodic patterns.

Acknowledgement. The investigations reported here were inspired and
triggered by lively conversations with Douglas Eck, who introduced me to this
beautiful modelling challenge. The paper owes much to careful proofreading
by Mathias Bode.

A The eigenvalues of Wdirect

We consider the eigenvector e1 = (1s · · · s)T in the eigenvalue equation Wdirecte1 =
λe1. Writing this equation for the first two vector components gives us

λ = α + (p − 1) β s (27)

λ s = α s + (p − 2) β s + β (28)

Solving these equations for λ by eliminating s leads to a quadratic equation
in λ whose roots are α− β + p β and α− β. Since we know that Wdirect has
exactly two eigenvalues, these must be the two eigenvalues. Checking these
roots in the equations Wdirecte0 = λ e0 and Wdirecte1 = λ e1 yields that

λ0 = α − β + p β (29)

λ1 = α − β (30)

23

In order to obtain eigenvalue expressions in terms of µ and ν, we exploit that
(µν · · · ν)T = foutWdirect(µν · · · ν)T, which gives

µ = fout(α µ + (p − 1) β ν) (31)

ν = fout(α ν + (p − 2) β ν + β µ), (32)

which in turn solve to

α =
((p − 2)ν + µ) (fout)−1µ − (p − 1) ν (fout)−1ν

((p − 1)ν + µ)(µ − ν)
(33)

β =
µ (fout)−1ν − ν (fout)−1µ

((p − 1)ν + µ)(µ − ν)
. (34)

Inserting these into eqns. 29 and 30 yields equations 20 and 21.

B The spectral radius of Wdirect

We have to decide which of the two eigenvalues λ0, λ1 has the greater absolute
value. We will show that λ1 has the greater absolute value.

Because we may assume that µ > ν, an inspection of equation 21 reveals

that λ1 = (fout)−1µ−(fout)−1ν
µ−ν

=: t1 > 0. The term µ (fout)−1ν − ν (fout)−1µ
in equation 20 is negative, as can be verified easily when we exploit that
(fout)−1x = 1

2
log x

1−x
and that ν = 1 − µ. This renders the term pβ =

p µ (fout)−1ν−ν (fout)−1µ
((p−1)ν+µ)(µ−ν)

=: t0 in equation 20 negative. Thus in order to demon-

strate that |λ1| > |λ0|, we must show that 0 < 2 t1 + t0. Writing out 2 t1 + t0
yields, after some elementary transformations

2 t1 + t0 =
(fout)−1µ(2(p − 1)ν + 2µ − pν) − (fout)−1ν(2(p − 1)ν + 2µ − pν)

((p − 1)ν + µ)(µ − ν)
.

(35)
Since the denominator is clearly positive, in order to show that 2 t1 + t0 > 0
we have to verify that the term 2(p−1)ν +2µ−pν is positive, which is easily
ascertained under the assumption that 0 < ν < 1/2. Thus, the spectral

radius of Wdirect is λ1 = α − β = (fout)−1µ−(fout)−1ν
µ−ν

.

C Properties of the function from figure 11

We first show that

24

lim
̺→0

F (̺) = lim
̺→0

log 1/2+̺
1/2−̺

(1/2 − 2 ̺2)

2 ̺
= lim

̺→0

log 1/2+̺
1/2−̺

4 ̺
= 1. (36)

This amounts to showing that

(

log
1/2 + ̺

1/2 − ̺

)

′

(0) = 4, (37)

which can be mechanically verified. Similarly, it amounts to a mechanical
verification that

lim
̺→0

(

log 1/2+̺
1/2−̺

(1/2 − 2 ̺2)

2 ̺

)′

= lim
̺→0

(

log 1/2+̺
1/2−̺

4 ̺

)′

= 0, (38)

thereby ascertaining that F can be smoothly closed (with respect to the first
derivative) at ̺ = 0 by putting F (0) = 1. It remains to show that

log 1/2+̺
1/2−̺

(1/2 − 2 ̺2)

2 ̺
=< 1 for 0 < |̺| < 1/2. (39)

This is equivalent to

log
1/2 + ̺

1/2 − ̺
<

̺

(1/2 + ̺) (1/2 − ̺)
for 0 < |̺| < 1/2. (40)

Knowing already that F (0) = 1 and F ′(0) = 0, and taking into account that
F is clearly symmetric, equation 40 is proven once we have shown that for
the derivatives of the two sides of equation 40,

A(̺) =

(

log
1/2 + ̺

1/2 − ̺

)

′

=
1

(1/2 + ̺) (1/2 − ̺)
, (41)

B(̺) =

(

̺

(1/2 + ̺) (1/2 − ̺)

)

′

=
2̺2 + (1/2 + ̺) (1/2 − ̺)

(1/2 + ̺)2 (1/2 − ̺)2
, (42)

it holds that

1 > A(̺)/B(̺) =
1/4 − ̺2

2̺2 + (1/4 − ̺2)
, (43)

which clearly is the case for 0 < |̺| < 1/2.

25

References

[1] H. Jaeger. The ”echo state” approach to analysing and training re-
current neural networks. GMD Report 148, GMD - German National
Research Institute for Computer Science, 2001. http://www.faculty.iu-
bremen.de/hjaeger/pubs/EchoStatesTechRep.pdf.

[2] H. Jaeger. Short term memory in echo state networks.
GMD-Report 152, GMD - German National Research In-
stitute for Computer Science, 2002. http://www.faculty.iu-
bremen.de/hjaeger/pubs/STMEchoStatesTechRep.pdf.

[3] H. Jaeger. Tutorial on training recurrent neural networks, cov-
ering BPPT, RTRL, EKF and the echo state network approach.
GMD Report 159, Fraunhofer Institute AIS, http://www.faculty.iu-
bremen.de/hjaeger/pubs/ESNTutorial.pdf, 2002.

[4] H. Jaeger and H. Haas. Harnessing nonlinearity: Predicting chaotic sys-
tems and saving energy in wireless communication. Science, 304:78–80,
2004.

[5] F. Pasemann. Characterization of periodic attractors in neural ring net-
works. Neural Networks, 8(3):421–429, 1995.

26

