
 1 

 
 

Computability and Complexity 
 

Lecture Notes 
 
 
 

Herbert Jaeger, Jacobs University Bremen 
 
 
 
 

 
 
Version history 
Jan 30, 2018: created as copy of CC lecture notes of Spring 2017 
Feb 16, 2018: cleaned up font conversion hickups up to Section 5 
Feb 23, 2018: cleaned up font conversion hickups up to Section 6 
Mar 15, 2018: cleaned up font conversion hickups up to Section 7 
Apr 5, 2018: cleaned up font conversion hickups up to the end of these lecture notes 



 2 

1 Introduction 
 
1.1 Motivation  
 
This lecture will introduce you to the theory of computation and the theory of computational 
complexity.  
 
The theory of computation offers full answers to the questions, 
 

• what problems can in principle be solved by computer programs? 
• what functions can in principle be computed by computer programs? 
• what formal languages can in principle be decided by computer programs? 

 
Full answers to these questions have been found in the last 70 years or so, and we will learn 
about them. (And it turns out that these questions are all the same question). The theory of 
computation is well-established, transparent, and basically simple (you might disagree at 
first).  
 
The theory of complexity offers many insights to questions like 
 

• for a given problem / function / language that has to be solved / computed / decided by 
a computer program, how long does the fastest program actually run? 

• how much memory space has to be used at least? 
• can you speed up computations by using different computer architectures or different 

programming approaches? 
 
The theory of complexity is historically younger than the theory of computation – the first 
surge of results came in the 60ties of last century. It grounds in the theory of computation. In 
comparison to the theory of computation, the theory of complexity is itself much more 
complex, is haunted by difficult unsolved fundamental questions, and is a highly active field 
of research.  
 
Why should you want to know about either of the two? There are three sorts of reasons. 
 
First, a philosophical reason. Being (or becoming) computer scientists, you should (want to) 
know what computation is. Just out of curiosity, just like a physicist should have sharp, rich 
and immediate intuitions about energy, mass or spacetime. We will use the largest part of 
today's lecture to outline the philosophical/mathematical history of how some of the most 
famous thinkers of mankind tried to come to terms with "computation".  
 
Second, a social reason. If you are a computer science professional, you will talk to other 
computer science professionals over lunch or in cozy conference lounges. Your colleagues 
will have learnt all that is standardly learnt about computation and complexity. A lecture on 
computation and complexity is taught in every CS program on every habitable planet in the 
universe. Just in order to be accepted by your colleagues, you need to know how to keep a 
conversation running that starts like, "I have a problem that seems undecidable to me...", or 
"no chance to solve this task in a thousand years of runtime... ", or "smells like NP-complete, 
I don't envy you, ha-ha..." (very funny).  
 
Third, some practical reasons: 
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1. The theory of computation has led to a mathematical formalism called lambda calculus 
that in turn has spawned a family of pragramming languages called functional 
programming languages. The best known among them are probably LISP, the workhorse 
language for many applications in artificial intelligence, and ML (you know it from your 
GenCS lecture).  

 
2. In your future career as professional computer scientist you might be asked to write 

computer programs that solve tasks like the following: 
 

• Given an electronic ciruit, find a VLSI chip layout that minimizes connection wiring 
length. 

• Given a microprocessor program for an airplane autopilot, prove that the program will 
never stall (the certification-of-airworthiness authorities will want such a proof). 

• Given the daily assignment of customers to serve in different cities, schedule a fleet of 
delivery trucks such that effective mileage is minimized. 

• Given two DNA sequences, decide whether they share some subsequence, possibly 
with omissions and insertions within the shared subsequence. 

 
Three among these four problems are practically unsolvable, and one is (comparably) 
easy. Unfortunately, the autopilot certification task is not the simple one – and in fact, 
passenger airplanes have crashed because of onboard computer program failure. In this 
lecture you will  
 
• learn what “practically unsolvable” means (roughly, it means NP-complete),  
• get a hands-on feeling for detecting a practically unsolvable problem when you see it 

(by studying numerous examples),  
• learn about ways to attack "practically unsolvable" problems (by resorting to a slightly 

different but solvable problem; by finding approximate solutions; or by finding the 
correct solution with high probability).  

 
In sum, a training in computational complexity will prepare you for the diagnosis of, and 
the coping with, computationally complex tasks. 

 
3. The theory of complexity (together with number theory) is at the core of modern 

cryptography techniques – and encrypting data is essential for safe communication 
protocols. In this sense, the future commercial impact of web-based technology hinges on 
(advanced) results from the theory of complexity.  

 
1.2 Overview 
 
This is the planned contents for this course. Parts marked by * are optional; we will enter 
them as time admits. 
 
1. History of "computation" 
2. Our workhorse: Turing machines 
3. Computability and decidability, computing functions vs. deciding languages 
4. Recursive functions 
5. Lambda calculus 
6. Functional programming 
7. What "problems" are in the perspective of complexity theory 
8. Complexity classes 



 4 

9. NP-complete problems: your bread and butter as a computer scientist 
10. *Logical characterization of complexity 
 
In parts 1. through 6., I used many sources and recommend to rely mainly on these lecture 
notes. For parts 2. and 3., the textbook Introduction to Automata Theory, Languages, and 
Computation by Hopcroft, Motwani and Ullman will be helpful as an additional reference, but 
I will not follow it too closely. In 7. through 11., I will largely follow the book Computational 
Complexity by Christos H. Papadimitriou – a standard textbook. These lecture notes are 
intended to be a fully self-contained course companion, and the material covered herein is 
what you need to know for exams. 
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Part 1: Computation 
 
2. A short history of "computation" 
 
Philosophers and mathematicians struggled with the question what "computation" is for over 
two thousand years. You are in the happy historical condition that today this question is 
deemed understood and even answered. In the beginning, computation was not called 
computation. Instead, the question first appeared in the form of what is logical reasoning. 
Roughly speaking, logical reasoning is the art of arriving at a conclusion from some 
assumptions in a step-by-step fashion, executing justifiable rules of argumentation for every 
step of the argumentation chain. Only today we understand that this is largely the same thing 
as performing a computation – which also, on a digital von-Neumann computer such as your 
PC, proceeds by executing "correct" instructions in step-by-step fashion. The theory of 
computation departed from logics only quite recently, roughly since 130 years. In this little 
overview we will cover both the "ancient" and the more modern developments. 
 
A handy overview1 of this philosophical history of logic and computation can be found at the 
Website of theoretical computer scientist Grant Malcolm2 – I have taken some inspirations for 
the following overview from it, as well as from the magnificent collection of mathematician's 
biographies3 maintained by John J O'Connor4 and Edmund F Robertson5 at the University of 
St. Andrews, Scotland.  
 
Aristotle6 (384-322 B.C.) is, in many respects, the original inventor of the natural sciences. He 
emphasized rational reasoning over myth and mystics and painstakingly described and 
catalogued natural phenomena, especially animals and plants. He also investigated what 
correct argumentation (as opposed to mere rhetoric and "sophisms") is and found formal 
reasoning rules called syllogisms. The most famous syllogism is  
 

1. All humans are mortal. 
2. All Greeks are humans. 
3. Therefore: All Greeks are mortal.  

 
Syllogisms describe "logical" derivations of one conclusion (3.) from two premises (1., 2.). 
When the premises are true, the conclusion is true, too – because of the logical form of the 
argument itself. Aristotle presented and systematicised 19 syllogisms and claimed "that every 
deductive argument can be expressed as a series of syllogistic inferences. That the argument 
is unconvincing masks the fact that simply by raising the problem, Aristotle earns the right to 
be considered not only the father of logic, but also the (grand)father of metalogic." (Jonathan 
Lear, Aristotle and Logical Theory. Cambridge: Cambridge University Press, 1980.).  
 
Euclid7 (330? – 275? B.C.) invented what is today understood by mathematicians as 
mathematics. He used sequences of strict arguments to derive true (geometrical) theorems 
from axioms which were evidently true. You can still buy Euclid's book "The Elements" at 
Amazon, which is remarkable in many ways (consider, for instance, that the webserver 

                                                
1 http://www.csc.liv.ac.uk/~grant/Teaching/COMP317/logic.html 
2 http://www.csc.liv.ac.uk/~grant/index.html 
3 http://www-history.mcs.st-and.ac.uk/ 
4 http://www-history.mcs.st-andrews.ac.uk/%7Ejohn 
5 http://www-history.mcs.st-andrews.ac.uk/%7Eedmund 
6 http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Aristotle.html 
7 http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Euclid.html 
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software of Amazon runs by the same principles as the arguments in Euclid's book – not from 
axioms to theorems but from your typed-in commands to the billing message).  
 
Middle ages in Europe: academic thinking – both subjects and methods – was rigidly ruled by 
the ideology of scholasticism8, very much a re-brew of Aristotelian philosophy. Logic itself 
was not further developed, but applied to develop intricate conceptual systems to explain God, 
the universe, and everything – in conformity with the dogmas of the Christian Church. The 
formal rigour of syllogisms crept into, and stifled, academic life itself: "In the scholastic 
period, undergraduates at Oxford University could be fined for arguments that contravened 
the valid syllogisms." (from Grant Malcolm's page). Suggested reading: Umberto Eco, The 
Name of the Rose9. 
 

Little is known about the life of Al-Khwarizmi10 (~780 – ~850), Arabian 
mathematician who wrote application-oriented treatises on the calculation of roots of 
quadratic equations. One manuscript introduces the Hindu decimal system of the 
natural numbers into the Arabian (and from there, later, Christian / Western) culture. 
The original text is lost but a Latin translation, Algoritmi de numero Indorum ("Al-
Khwarizmi on the Hindu Art of Reckoning") gave rise to the word algorithm deriving 
from the author's name in the title.  

 
Gottfried Leibniz11 (1646-1716), philosopher, broadly innovative mathematician (co-invented 
calculus with Newton, invented binary numbers, much modern mathematical notation 
originates from him), large-scale academic politician, literary author, inventor of mining 
technology, correspondent to 600 scholars throughout Europe – "as capable of thinking for 
several days sitting in the same chair as of travelling the roads of Europe summer and winter 
… an indefatigable worker, a patriot and cosmopolitan, a great scientist, and one of the most 
powerful spirits of Western civilisation." (from the mathematician's biographies collection). 
This most powerful spirit had a dream: not having to do all that thinking anymore all by 
himself, but implement a universal reasoning mechanism in a (mechanical) machine which 
would capture and embody all truth and valid reasoning. He called this the characteristica 
universalis:  
 
"All our reasoning is nothing but the joining and substituting of characters, whether these 
characters be words or symbols or pictures… all inquiries that depend on reasoning would be 
performed by the transposition of characters and by a kind of calculus.... And if someone 
would doubt my results, I should say to him: `let us calculate, Sir,' and thus by taking to pen 
and ink, we should soon settle the question." (from Grant Malcolm's webpage).    
   
About the task to mechanically deduce all truths from first principles, Leibniz wrote:  
"I believe that a number of chosen men can complete the task within five years; within two 
years they will exhibit the common doctrines of life, that is, metaphysics and morals, in an 
irrefutable calculus." (from Grant Malcolm's webpage).    
 

                                                
8 http://en.wikipedia.org/wiki/Scholasticism 
9 http://en.wikipedia.org/wiki/The_Name_of_the_Rose 
10 http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Al-Khwarizmi.html 
11 http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Leibniz.html 
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George Boole12 (1815 – 1864), mathematician, found that elementary logical operations "and" 
(in mathematical notation: Ù), "or" (Ú), "not" (¬) have similar operational structure as has 
arithmetics modolo 2 or set-theoretic manipulations with the empty and the all set. For 
instance, "a Ù b" (where a and b are propositions that can be true or false) behaves in the same 
was as "X Ç Y" (where X and Y are either the empty set or an "all" set), and both behave in the 
same way as the multiplication "x * y" modolo 2 (where ). These insights are 
published in a slim book with a bold title, An investigation into the Laws of Thought. Boolean 
logic or Boolean algebra is nowadays implemented in terms of "transistor on / off" in logical 
gate arrays which form the basis of digital computer chips. Boolean algebra establishes a first 
rigorous connection between reasoning and calculation. Boole also found out that two of the 
19 classical Aristotelian syllogisms were not valid. 
 
David Hilbert13 (1862 – 1943). Possibly the most renown mathematician of his time, with 
contributions to (and connections between) many fields in mathematics, Hilbert at the turn of 
the century was bold enough to declare in a famous speech The open problems of Mathemtics 
what would be the most important questions for Mathematics in the upcoming (20th) century. 
At that time, the foundations of formal logic (Gotthold Frege14 1845 – 1925, Bertrand 
Russell15 1872 – 1970, Alfred N. Whitehead16 1861 – 1947 ) and set theory (Georg Cantor17, 
1845 – 1918) were being developed, and there was hope to reduce all mathematics to a few 
first principles, and to prove mathematically that these foundations would be coherent, i.e. 
never lead to contradictions. Hilbert was convinced that this could be achieved. A central 
aspect of this program was to prove that the theory of arithmetics (as defined by the axioms 
usually named after Guiseppe Peano18 (1858 – 1932)) was free of internal contradictions. 
Proving this meta-theorem was indeed one (the third) of Hilbert's famous Open Problems, 
called by him "the compatibility of the arithmetic axioms". On his tombstone, Hilbert had to 
be written 6 intellectually aggressive words, We must know, we shall know (Wir müssen 
wissen, wir werden wissen). 
 
Ludwig Wittgenstein19 (1889 – 1951) was a philosopher/logician who led an intensely 
unhappy, isolated life as a renown but introverted genius. His fame rests on a small, highly 
compressed, enigmatic logical-philosophical investigation into the nature of nature and logic, 
the Tractatus Logico Philosophicus (1922). This book of crystalline mysteriousness contains 
sentences like "The riddle does not exist. If a question can be put at all, then it can also be 
answered." "Everything that can be said, can be said clearly.", and, most famous citation of 
all, "Whereof one cannot speak, thereof one must be silent." The book starts (and continues) 
like a hymn on reasoning (my translation from the German original; there are more scholarly 
correct translations available):  
 
1  The world is everything which is the case.  
1.1 The world is the totality of facts, not of things. 
1.2 The world is determined by all facts and by the fact that those are all facts. 
… 
3. The logical image of facts are thoughts. 

                                                
12 http://www-history.mcs.st-and.ac.uk/history/Mathematicians/Boole.html 
13 http://www-history.mcs.st-and.ac.uk/history/Mathematicians/Hilbert.html 
14 http://www-history.mcs.st-and.ac.uk/history/Mathematicians/Frege.html 
15 http://www-history.mcs.st-and.ac.uk/history/Mathematicians/Russell.html 
16 http://www-history.mcs.st-and.ac.uk/history/Mathematicians/Whitehead.html 
17 http://www-history.mcs.st-and.ac.uk/history/Mathematicians/Cantor.html 
18 http://www-history.mcs.st-and.ac.uk/history/Mathematicians/Peano.html 
19 http://www-history.mcs.st-and.ac.uk/history/Mathematicians/Wittgenstein.html 
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3.01 The totality of true thoughts is an image of the world. 
3.02 The thought contains the possibility of the circumstance it thinks. What is thinkable is 

possible. 
3.03 We cannot think anything unlogical, because then we would have to think unlogically. 
… 
3.032 Representing something "contradictory to logic" by language is just as impossible as 

rendering by its coordinates a figure which contradicts the laws of geometry. 
 
It is difficult to understand the Tractatus, but struggling with it makes your mind think more 
beautifully. My interpretation is that it claims that the physical world follows the same 
structural rules as does language, and that the truth of sentences derives from a structural 
agreement between the symbolic structure of the sentence with the circumstance (Sachverhalt) 
described. Wittgenstein and his Tractatus lead from mathematical logic into the philosophy of 
science and language and has been enormously influential for our current "positivistic20" 
understanding of scientific methods and insight.  
 
Kurt Gödel21 (1906 – 1978) in 1931 published an article On Formally Undecidable 
Propositions 22(Über formal unentscheidbare Sätze der Principia Mathematica und 
verwandter Systeme). This paper was a mind-boggling flash of lightning which shattered the 
hopes that ran from Aristotle through Leibniz to Hilbert. Loosely speaking, the Gödel 
incompleteness theorems state that no mathematical theory (which includes at least basic 
arithmetics) can prove all theorems that are true in this theory. Or, stated more generously and 
somewhat mysteriously, you cannot catch all mathematical truths from within mathematics. 
Interestingly, this can be proved from within mathematics. The basic idea of the proof runs as 
follows: 
 
1. Assume you have an algorithm A that gives true answers to all questions that have true 

answers.  
2. Write down the statement "A will never say that this sentence is true". Call this statement 

G (honoring Gödel). 
3. Ask A whether G is true. 
4. What should A report? If A says, G is true, then G is false. So A can't say G is true, 

because A always answers correctly. So A won't say G is true. So G is true! 
5. We have found a true statement, G, which cannot be asked from A. Thus, our initial 

assumption that we have an algorithm that gives true answers to all questions is false.  
 
The Gödel incompleteness theorems can be seen from many angles23 and always retain a 
certain dizzifying quality. For instance, the second Gödel incompleteness theorem implies that 
we cannot disprove 0 = 1 (and that this is basically the same why Microsoft Word or airplane 
autopilots cannot be certified never to crash). The incompleteness theorem has been much 
abused in philosophical and popular discussions, as in statements like "you can never 
completely know yourself".  
 
Alan Turing24 (1912 – 1954), code-breaking English war hero, marathon athlete, and cruelly 
harassed homosexual, was a machine-oriented mathematician if there ever was one. He 
reduced syllogisms and every other computation to a little read/write device that wandered up 

                                                
20 http://en.wikipedia.org/wiki/Logical_positivism 
21 http://www-history.mcs.st-and.ac.uk/history/Mathematicians/Godel.html 
22 http://www.research.ibm.com/people/h/hirzel/papers/canon00-goedel.pdf 
23 http://www.miskatonic.org/godel.html 
24 http://www.turing.org.uk/turing/index.html 
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and down a long tape with zeros and ones on it. This was the Turing Machine (TM for short), 
which we will get to know extremely well in this lecture. In 1950 he published  Computing 
Machinery and Intelligence25, a paper where he claims that machines can, in principle, think 
like humans. As a criterium to decide whether a machine can really think he proposed an 
imitation game (later known as Turing Test): if an external (human) judge cannot decide 
whether one partner in an overheard conversation is a computer or a human, and it is indeed a 
computer, then this computer cannot be denied the quality of human thinking. Turing 
addresses the obvious critique implied by the Gödel theorems by putting the notion of "human 
intelligence" into a human perspective: true human intelligence can come up with errors and 
only draws from finite resources. Therefore, Gödel's (and actually Turing's own) 
mathematical results on incompleteness and undecidability do not apply, because they refer to 
a 100%-errorless notion of truth derived by idealized mechanisms with infinite resources. 
Note that this is a fundamental turn in perspective: whereas the old, pre-Gödel dream went 
something like this: 
 
• True is what can be derived by correct reasoning 
• Humans (and machines) can do correct reasoning 
• Therefore, humans (and machines) can discover all truths 
 
the new, post-Turing dream goes like this: 
 
• Human intelligence is produced by a finite mechanism 
• Computers are finite mechanisms that can simulate other finite mechanisms 
• Therefore, computers can perfectly simulate (i.e., be) intelligence 
 
There is a direct road from Turing's theses to the claims of Artificial Intelligence, which have 
been criticised for over-reaching. But Turing's original claims are, in fact, quite moderate in 
that they gracefully accept the Gödel blow and ascribe the same kind of modest, finite, error-
prone intelligence to both humans and machines.  
 
With this I will end my historical reflections. What has come after Turing is the theory of 
complexity. It is not yet history and we will devote much of this course to it, starting where 
history ends: with the Turing machine. I hope that you have a better feeling where you and I 
stand in the big sway of history: namely, on the shoulders of giant eagles, with little sparrow's 
wings to try some fluttering of our own. 
 
 
 
 
 

                                                
25 A. M. Turing (1950) Computing Machinery and Intelligence. Mind 59 (236): 433-460. 
http://www.wps.com/projects/Computing-machinery.html 
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3 Turing Machines and Computability 
 
3.1 How to work with Turing machines 
 
By and large, our Turing machine (TM) notation follows the Papadimitriou book. 
 
A TM is a deterministic automaton model like deterministic finite automata (DFA) or 
pushdown automata (PDA). In the lecture "Advanced CS 1" we used automata for describing 
languages: with every DFA or PDA we associated a formal language, the set of all words 
accepted by the automaton. Turing machines can be used to define languages, too. But this is 
not the only, and indeed not the most common, purpose of TMs. Here is a list of what TMs 
are used for: 
 
1. Computing numerical functions. A numerical function is any function f: Nk ® N (where 

k ≥ 0), not necessarily defined everywhere. Examples range from simple addition to 
functions as strange as "fG is the function that returns 1 on every input if the Goldbach 
conjecture holds, else it returns 0 on every input". [The Goldbach conjecture claims that 
every even number is the sum of two primes; it has resisted all efforts to be proven so far]. 
If you could compute fG(1), you'd be instantaneously famous. TMs can compute some 
numerical functions, and cannot compute some others. We'll see that every function that 
can be computed at all can also be computed by a TM.  

2. Solving problems. A "problem", in the language of theoretical computer science, is a 
family of similar questions that can be rigorously formalized. A standard textbook 
example is the problem of REACHABILITY (we will use all-uppercase words to denote 
problems in this lecture): given a graph with a particular starting node A and a particular 
goal node B, the question is whether there is a path in the graph from A to B. This is not a 
single concrete question but a whole family of questions, because for every graph and 
choice of start and goal node you get another concrete question. Each such concrete 
question is an instance of the problem. TMs are used to solve problems as follows. First, 
code a problem instance to make it TM-readable – that is, convert it to a symbol string. 
Then input this string to the TM, and start it. Then wait... if after some time the TM stops 
and writes "yes" on its output tape, the answer to the problem instance is "yes". If the TM 
stops and writes "no", the answer is "no". If the TM does not stop at all, then you have 
chosen an inappropriate TM, or this problem is undecidable, that is, no TM exists that can 
give correct yes/no answers on all problem instances. Notice that in problem solving, you 
re-use the same TM for all instances of the problem.  

3. Defining languages by enumeration. Just like DFAs and PDAs, TMs come equipped 
with an accepting state and can be used to define a language by acceptance: a word w 
belongs to the language of the TM if and only if the TM ends up in the accepting state on 
input w. For reasons that will later become clear this method of defining a language by a 
TM leads to the class of recursively enumerable languages. It turns out that this is the 
same class of languages that we obtain through type-0 grammars (aka unrestricted 
grammars).  

4. Deciding languages. Another way of defining a language by a TM is to require that the 
TM is equipped with two special states, an accepting state and a rejecting state. Then we 
say that such a TM decides a language, if on every word input w it either ends in the 
accepting state or in the rejecting state. The word w belongs to the language of such a TM 
iff the TM ends in the accepting state. This method leads to the class of recursive (or 
decidable) languages, which is a proper subclass of the recursively enumerable languages.  
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Computing totally defined functions, solving problems, and deciding languages will turn out 
to be essentially equivalent tasks. If you know how to cope with either of these three, you 
automatically know how to solve the remaining types of tasks. We will soon learn much more 
about this. Here is how these three types of tasks can be transformed into each other: 
 

• Language decision problems as numerical function computation: Given: a 
language decision task, that is, a language L and the task to decide whether a given 
word w is in L or not. Transform this into an equivalent numerical function 
computation by (i) coding words w by integers through a codefunction, (ii) defining f 
to be f (codefunction (w)) = 1 iff w is in L, else 0. Then if you can compute the 
function f with a TM, you have also solved the word membership decision problem. 

• Numerical function computation as problem solving: Given: a numerical function f 
that you want to compute. Transform this task into a problem solving task by (i) 
coding queries "f(n) = m?" into input strings that can be read by a TM, (ii) use this TM 
to give answers to the series of queries "f(n) = m?" for m = 0, 1, 2, ... , waiting until for 
some m the answer is "yes". Then you have computed the value of f(n). 

• Problem solving as language decision: Given: a set of problem instances q in TM-
readable format. Transform this into a language decision problem by (i) interpreting 
the questions q as words (inputs to TMs are in fact words over some alphabet), (ii) 
solving the problem by deciding the language L = {q | answer to q is "yes"}.  

 
In a similar way, the tasks of defining languages by recursive enumeration, of computing 
partially defined functions, and of solving problems that do not always have yes/no answers, 
are essentially identical.  
 
Theoretical computer scientists freely jump from one variant of these tasks to another, taking 
for granted that a problem first stated in one variant can be "coded into", "transformed into", 
"reduced to", "represented in" the other variants. The theory of computability is mostly 
expressed in terms of function computation and language decision. The reason is that, 
historically, the theory was started in the 1930'ies by mathematicians with an interest in 
functions, and that later it became part of theoretical CS with its preference for formal 
languages – which allows to see TMs in the same light as DFAs and PDAs. The reason why 
the theory of complexity instead is usually spelled out for problems is practical: it's ultimately 
mostly problems what computer programs are designed for.  
 
3.2 Definition of TMs 
 
A DFA is just a deterministic, finite state transition mechanism with no further "memory" 
except the current state. A PDA is a DFA equipped with an additional memory of a simple 
stack organiziation. TMs come next (and last) in this sequence: TMs are DFAs equipped with 
a more powerful additional memory, namely, a re-writable tape. We saw in the ACS 1 lecture 
that many limitations of PDAs arise from the fact that the automaton can only "see" the 
topmost memory element; in order to see what is below, it has to erase the topmost element. 
By contrast, a TM may inspect any part of its memory without erasing anything else.  
 
A basic TM consists of three components:  
 
1. a right-infinite tape which serves as input medium, output medium and memory (the TM 

can read/write symbols from/to it),  
2. a read/write head (or "cursor") that can move over this tape and read/write symbols, and  
3. a control unit that is actually a DFA, controlling the actions of the read-write head.  
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Graphically, a TM looks like this: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1 Schema of a TM 
 
 
In the beginning of a TM run, input may be written on the tape as a finite word. Then the TM 
works by repeating a simple operating cycle. One operating cycle runs as follows: 
 

1. read the tape symbol under the r/w head 
2. use this as input to the control DFA 
3. DFA transits to next state according to symbol input 
4. as a side effect of this transition,  

a. the symbol is overwritten 
b. the r/w head may move one tape cell to the right or left or just remain on its 

current position 
5. stop if the control DFA enters a special state (there are several types of stopping states, 

accepting or rejecting or just halting states) 
 
After stopping, what is left on the tape may be used as the TM's output (not all variants of 
operating TMs lead to output). 
 
Before we proceed to the formal definition, a historical note. Turing arrived at the notion of 
TMs by reasoning from intuitive first principles concerning the nature of (machine-
executable) operations on symbols, for instance:  

"... The behaviour of the computer at any moment is determined by the symbols which he is 
observing, and his “state of mind” at that moment. We may suppose that there is a bound B to 
the number of symbols or squares which the computer can observe at one moment. If he 
wishes to observe more, he must use successive observations. We will also suppose that the 
number of states of mind which need be taken into account is finite. The reasons for this are 
of the same character as those which restrict the number of symbols. If we admitted an 
infinity of states of mind, some of them will be “arbitrarily close” and will be confused...." 
(From the original paper where Turing introduces his machine model, "On computable 
numbers, with an application to the Entscheidungsproblem26" (1936-37))   

 
                                                
26 http://www.abelard.org/turpap2/tp2-ie.asp 
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Now we give the formal definition. There are many (equivalent) ways of how to define TMs. 
We use the definition from the Papadimitriou book.  
 
Definition 3.1: A Turing machine is a structure M = (K, S, d, s), where K is a finite set of 
states, s Î K is the initial state, the alphabet S is a set of (tape) symbols, and where K and S 
are disjoint. We assume that S always contains the special symbols + and @, the blank and the 
first symbol. Finally, d is a transition function, where  
 

d: K ´ S  ® (K È {h, "yes", "no"}) ´ S ´ {¬, ®, -}. 
 
We assume that h (the halting state), "yes" (the accepting state), "no" (the rejecting state), 
and the cursor directions ¬ for "left", ® for "right" and - for "stay", are extra symbols not in 
K È S .  
 
This might seem a bit awkward, but if you consider (as we shall see) that this definition gives 
you "total computing power", it's really very compact.  
 
Because the special symbols + and @ are always assumed to be in S, we sometimes will not 
explicitly mention them for simplicity and, for instance, say that a TM has alphabet {1, 0} 
although technically speaking, the alphabet is {1, 0, +, @}. 
 
The function d is the hardwired operating rule of the machine. It specifies, for each 
combination of current state q Î K and current symbol s Î S, a triple d(q, s) = (p, r, D), 
where p is the next state, r is the symbol to be overwritten on s, and D Î {¬, ®, -} is the 
direction in which the cursor will move. Special rules apply to our special symbols. For @ we 
require that upon reading @, the same symbol @ is re-printed and the head moves right. In this 
way, @ works as a "left end mark" which is never erased. The symbol + marks an empty tape 
cell. 
 
For initialization we agree that the initial state is s. The tape is initialized to @, followed on the 
right by a finite (possibly empty) word x Î (S - {+, @})*, followed by an infinite sequence of 
+ symbols marking an empty tape. We say that x is the input. The cursor is pointing to the 
first symbol, always a @. This ends our special agreements. 
 
Although our agreements ensure that the cursor never trips over the initial @ to the left, it may 
wander arbitrarily far to the right.  
 
This definition of a TM has some convenience features that are not strictly required from a 
theoretical perspective. One could omit the left-end delimiter symbol @ and use a left-right-
infinite tape; one could omit the "yes" and "no" states and replace them by a terminal 
subroutine where these results would be explicitly printed on the tape just before halting. Also 
the stand-still cursor motion "-" could be replaced by a subroutine of two moves  ® ¬.   
 
In order to illustrate the intuitions behind our definition, we consider an example.  
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Example 3.1 (from the Papdimitriou book): The following table specifies a 4-state TM 
SHIFTRIGHT with alphabet {0,1}, which shifts the input one place to the right. To the right 
of the table you see a run of this TM. Underscores indicate current cursor position. 
 
p Î K   s Î S   d(p, s) 
s 0 (s,0, ®) 
s 1 (s,1, ®) 
s + (q, +, ¬) 
s @ (s, @, ®) 
q 0 (q0, +, ®) 
q 1 (q1, +, ®) 
q + (q, +, -) 
q @ (h, @, ®) 
q0 0 (s,0, ¬) 
q0 1 (s,0, ¬) 
q0 + (s,0, ¬) 
q0 @ (h, @, ®) 
q1 0 (s,1, ¬) 
q1 1 (s,1, ¬) 
q1 + (s,1, ¬) 
q1 @ (h, @, ®) 
 
 
Note that we provided a completely specified lookup table for d here. However, some rules 
are redundant because they will never be executed (e.g., rule d (q, +) = (q, +, -)). We shall 
often leave out rules that we know to be redundant (but note that we will not be generally able 
to decide for an arbitrary rule whether it is redundant! – because that would solve the halting 
problem which we will soon get to know).  
 
Like with the definition of DFAs and PDAs (in the lecture ACS 1), the raw definition 3.1 of 
TMs does not tell us how to use them – the previous example reflected merely our intuitions. 
To make these precise in a very similar way as with DFAs and PDAs, we introduce 
"snapshot" descriptions of TM runs (configurations), and then specify how d induces 
sequences of configurations.  
 
Definition 3.2: A configuration of a TM M is a triple (q, w, u), where q Î K is a state, and w 
and u are words from S*.  
 
The intended interpretation of a configuration is the following: q is the current state that the 
TM is in at the beginning of a working cycle, w is the tape symbol string to the left of the 
cursor, including the symbol currently scanned by the cursor, and u is the symbol string to the 
right of the cursor (the finite string without the infinitely many trailing +'s); u may be the 
empty string e. The symbol string to the right of the cursor contains all the symbols that have 
been printed by the cursor during the previous (and including the current) steps of the 
computation. Blank symbols + are included in a configuration only if they have been printed 
(that is, the default blank symbols that inhabit the tape at the start of the computation are not 
part of a configuration). For instance, the configuration @010+  encountered at the fifth step in 

0. s @010 
1. s @010 
2. s @010 
3. s @010 
4.  s @010+ 
5. q @010+ 
6. q0 @01++ 
7. s @01+0 
8. q @01+0 
9.  q1 @0++0 
10. s @0+10 
11. q @0+10 
12.  q0 @++10 
13. s @+010 
14. q @+010 
15. h @+010 
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Example 3.1 would be written as (q, @010, +). Using configurations, we shall describe the 
workings of a TM, as follows: 
 
Definition 3.3:  
(a) Let (q, w, u), (q', w', u') be two configurations of a TM M, where w = a1...an, u = b1...bm, 

where only u is possibly empty. Then, if either of the three following cases holds: 
 

1. d(q, an) = (q', c, ¬) and w' = a1...an-1 and u' = cb1...bm 
2. d(q, an) = (q', c, ®) and w' = a1...an-1cb1 and u' = b2...bm 
3. d(q, an) = (q', c, -) and w' = a1... an-1c and u' = b1b2...bm 

 
we say that d carries M from configuration (q, w, u) to configuration (q', w', u') in one 

step, and we write (q, w, u) (q', w', u'). (Notice that we should add a special case when 
the cursor moves right and u was empty – such trifles are commonly neglected in the TM 
literature, where a spirit of "details will sort themselves out anyway" rules.)  

 

(b) If M transits from (q, w, u) to (q', w', u') in k steps, we write (q, w, u) (q', w', u'). If 

there exists a finite k such that (q, w, u) (q', w', u'), we write (q, w, u) (q', w', u').  
 

(c) If (s, @, x) (q, @w, u), where q Î {h, "yes", "no"}, we agree on the following 
terminology: 

 
 
• If q = h, we say the TM has halted with output y = wu. We write  M(x) = y.  
• If q = "yes", we say the machine accepts its input and write M(x) = "yes".  
• If q = "no", we say the machine rejects its input and write M(x) = "no".  
 

(d) If for no k, (s, @, x)  (q, @w, u), where q Î {h, "yes", "no"}, we say that the TM does 
not halt on input x, and write M(x) = â.  

 
These different possibilities reflect the different uses one can make of a TM: the case M(x) = y 
is used for computing functions and certain problems that have output beyond a simple yes/no 
answer, the cases M(x) = "yes" and M(x) = "no" are used for language decision and problem 
solving, and the case M(x) = ‰ is encountered when a function is only partially defined or a 
problem is undecidable for some inputs.  
 
 
Example 3.2 (from the Papadimitriou book): Consider the two-state TM PSEUDO-ADD1 
with alphabet {0,1} specified by the following table.  
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p Î K   s Î S   d(p, s) 
s 0 (s,0, ®) 
s 1 (s,1, ®) 
s + (q, +, ¬) 
s @ (s, @, ®) 
q 0 (h,  1,  -) 
q 1 (q,  0,  ¬) 
q @ (h, @, ®) 
 
 
 
 
 
 
 
 
 
 
On the right side you see two runs of this TM. It implements the numerical "add 1" operation 
on its binary input, by first moving to the rightmost end of the input (in state s) and then 
working its way leftward again (in state q), flipping 1's to 0's. The first 0 it encounters is 
flipped to 1 and the machine halts. However, the machine has a bug: it will transform input 1n 
to output 0n. A possible remedy would be to combine PSEUDO-ADD1 with the TM 
SHIFTRIGHT from example 2.1. Roughly speaking, build a combined TM ADD1 that first 
executes SHIFTRIGHT. When SHIFTRIGHT halts, the cursor is one position right from the 
left end-marker on an empty cell symbol: @+. Modify SHIFTRIGHT such that in this 
situation it doesn't halt but prints a 0 and moves the cursor left, entering the starting state of 
PSEUDO-ADD1. Then, execute PSEUDO-ADD1. Because some of the states of PSEUDO-
ADD1 and SHIFTRIGHT have the same names (s and q), this requires that the states of 
PSEUDO-ADD1 be renamed (say, to s' and q').  
 
This is a painfully low-level way of programming; assembler programming is luxury 
compared with this. But you saw that it is not difficult to build more complex TMs from 
simpler ones in a modular way, exactly like we assembled complex DFAs from simple ones 
or complex computer programs from pre-programmed modules. The basic idea to 
dynamically connect "module" TMs is to redefine the halting rules of all non-terminal module 
TMs such that they switch not to a halting state but into the starting state of the module TM 
whose turn is next. We will not bother about details – working with TMs is the art of not 
bothering about computational detail, and after your previous experience with DFAs and 
PDAs you are supposed to be able to fill in such detail for yourself.  
 
Many TM simulators (Java applets) can be found on the Internet, for instance at 
http://morphett.info/turing/turing.html . You will see there are some minor differences to our 
basic definition: rules are denoted in a different format; for instance 6,A 12,_,< means "if 
symbol A is read in state 6, then enter state 12 and print a blank and go left". Generally, TMs 
come in many variants; they are all bascially equivalent as we shall see. 
 
 

0. s @010 
1. s @010 
2. s @010 
3. s @010 
4.  s @010+ 
5. q @010+ 
6. h @011+ 
 
0. s @011 
1. s @011 
2. s @011 
3. s @011 
4.  s @011+ 
5. q @011+ 
6. q @010+ 
7. q @000+ 
8. h @100+ 
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Example 3.3 (from the Papdimitriou book): SHIFTRIGHT is a TM that performs a simple 
memory re-allocation operation, ADD1 is a TM that computes a numerical function. We will 
now give an example of a 6-state TM PALINDROME that decides a language over S = {0,1}, 
namely, the language of palindromes  L = {w Î {0,1}* | w = wR}.  
 
 
q Î K   s Î S   d(q, s) 
s 0 (q0, @, ®) 
s 1 (q1, @, ®) 
s + ("yes", +, -) 
s @ (s, @, ®) 
q0 0 (q0,  0,  ®) 
q0 1 (q0,  1,  ®) 
q0 + (q'0,  +,  ¬) 
q1 0 (q1,  0,  ®) 
q1 1 (q1,  1,  ®) 
q1 + (q'1,  +,  ¬) 

q Î K   s Î S   d(q, s) 
q'0 0 (q,  +,  ¬) 
q'0 1 ("no",  1,  -) 
q'0 @ ("yes",  +,  ®) 
q'1 0 ("no",  1,  -) 
q'1 1  (q,  +,  ¬) 
q'1 @ ("yes",  +,  ®) 
q 0 (q,  0,  ¬) 
q 1 (q,  1,  ¬) 
q @ (s,  @,  ®) 
 
 

 
 
The machine PALINDROME works as follows. In state s, it searches the tape for the first 
input symbol. When it finds it, it turns it into a @ and remembers it in its state (entering q0 if 
symbol is 0 and entering q1 if it is 1). Remembering symbols through states is a common trick 
when programming TMs. PALINDROME then moves to the right until the first + is met, 
upon which it switches to q'0 or q'1 (still remembering the first symbol). Then it goes one to 
the left and checks whether the symbol seen is the one remembered in q'0 / q'1. If not, stop in 
the rejecting state. If yes, overwrite the rightmost symbol with +, and enter state q. In state q, 
the TM just moves leftwards until it sees a @. Then the entire routine is started all over again. 
Note that one cycle of this routine replaces the leftmost symbol of the (remaining) input word 
with @ and the rightmost with a blank symbol. When the entire input has been used up in this 
way without the TM entering the rejecting state, it reaches the accepting state. At 
http://morphett.info/turing/turing.html you can run a TM on the PALINDROME problem to 
experience how it works. 
 
For example, on input 0010 (not a palindrome), PALINDROME will pass through the 
following configurations:  
 

(s, @, 0010)  (q0, @@010+, e)  (q'0, @@010, +)  (q, @@01, ++)  (q, @@, 01++) 

 (s, @@0, 1++)  (q0, @@@, 1++)  (q0, @@@1+, +)  (q'0, @@@1, ++)             
("no", @@@1, ++). 
 
 
We have informally noted that TMs can be applied in various tasks. The following definition 
makes this precise: 
 
Definition 3.4 (= adapted from Papadimitriou Def. 2.3):  
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• Let L Í (S - {+, @})* be a language and M a TM which on input x Î (S - {+, @})* 
halts with "yes" if x Î L and with "no" if x Ï L. Then we say that M decides L. If L is 
decided by some TM, L is called a recursive language.  

• We say that M accepts L if on input x Î (S - {+, @})* M halts with "yes" if x Î L, but 
if x Ï L, then M(x) = â. We say that L is recursively enumerable. 

• Let f: (S - {+, @})* ® S* be a totally defined string function, and let M be a TM with 
alphabet S. Then we say that M computes f, if for all x Î (S - {+, @})*, M(x) = f(x). If 
such M exists, f is called a total[ly] recursive function.  

• Let f: (S - {+, @})* ® S* be a partially defined string function, and let M be a TM 
with alphabet S. Then we say that M computes f, if for all x Î (S - {+, @})*, M(x) = 
f(x) if f(x) is defined and M(x) = â if f(x) is undefined. f is then called a [partial[ly]] 
recursive function.  

 
Note that this definition does not include our case of problem solving, and that the task of 
computing functions is here stated not only for numerical functions but for any functions from 
words (= "strings") to words. Don't be irritated by such mismatches and variations. Every 
author uses his/her own versions of definitions. I used Papadimitriou's version here to stay 
consistent with that book. All such definition variants can be transformed into one another. 
We will become quite experienced in such transformations in this lecture. For the time being, 
just observe that problem solving can be considered as a case of language decision in a natural 
way (as outlined above). 
 
We point out a few basic facts about the relationships between recursively enumerable and 
recursive languages.  
 
Proposition 3.1.  
 

1. If L is recursive, then L is recursively enumerable. 
2. If L is recursive, then Lc = S* \ L (the complement language of L), is recursive. 
3. L is recursive if and only if both L and Lc are recursively enumerable. 

 
Proof. 1. If M is a TM deciding L, we obtain from M another TM M' that accepts all words 
from L with a "yes" and goes into an infinite loop on other inputs, by changing the "no" 
producing transitions in M's table into transitions that enter some trivial infinite loop. 
2. If M is a TM deciding L, we obtain from M another TM Mc deciding Lc by simply reversing 
the "yes" and "no" answers in M.  
3. " Þ ": Follows from 1. and 2. " Ü ": If L and Lc are recursively enumerable, we have a TM 
M which reports "yes" on every input w Î L and doesn't halt on input w Ï L, and we have 
another TM Mc which reports "yes" for w Ï L and runs forever for w Î L. Combine M and Mc 
into a new TM K which decides L, by making K emulate both M and Mc simultaneously (K 
alternatively emulates steps of M and Mc). On any input w, either the M-emulating or the Mc-
emulating "branch" of K produces its "yes". According to which of the two does, K terminates 
in "yes" or "no" state. · 
 
The word "recursively enumerable" should be explained at this point. By definition a 
language L is recursively enumerable iff there is a deterministic TM M that accepts L, that is, 
M halts with "yes" on all words of L and runs forever for inputs not in L. We can construct 
from M another TM N which "enumerates" L, that is, on empty input writes a (possibly 
infinite) output of the form w1+w2+w3+...   such that L = {𝑤#}#  (repetitions in N's output are 
admissible). N systematically simulates M on all possible input words x, by generating these 
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words in lexicographical order and simulating M on each of the inputs. A suitable 
"dovetailing" (or time-sharing) scheme ensures that arbitrarily long runs on M on any input x 
are captured. For instance, N might first simulate M for maximally 10 steps on the first 10 
inputs (in lexicographical order), then simulate M for maximally 100 steps on the first 100 
inputs, then for 1000, ... etc. Whenever in one of these (possibly truncated) simulation runs 
the simulated machine M accepts its current simulated input, N writes this input to its output 
tape. 
 
 
3.3 Busy Beavers 
 
It seems that TMs are not very efficient computing devices – awkwardly low-level, and bound 
to stumble over their own symbols because they only have a linear string as memory. But this 
perception is misguided and only reflects our prejudices that programming should consist in 
convenient access to a RAM and if-then-else statements. In fact, even very small TMs can 
perform astounding acts which could not easily be replicated with equally small "ordinary" 
programs.  
 
TMs for the Busy Beaver (BB) task are a point in case. Wikipedia gives a comprehensive 
introduction. A standard and very readable scientific introduction paper27 has been written by 
one of the busiest Beaverists, Heiner Marxen. The TM simulator at 
http://morphett.info/turing/turing.html has the 4-state BB pre-configured. The BB task is 
spelled out for a variant of TMs with two-sided infinite tape and alphabet S = {0,1} (no 
special tape-boundary symbol @). The TM is started on an all-0 tape in its starting state. The 
goal is to write as many 1's as possible and halt. The maximal number of 1's possible (there 
may be 0's interspersed between them) with an n-state TM is called s(n). The function s(n) is 
also known as the Rado function, after the mathematician who first introduced the busy 
beaver problem. An n-state TM that achieves this length is called a Busy Beaver. The number 
s(n) increases very rapidly with n. Busy Beavers are known only for n £ 5. Here is a table 
which gives the current state of the art (from Heiner Marxen's BB webpage28): 
 

n s(n) = # of 1's # of steps Authors 
1 1 1 Lin & Rado 
2 4 6 Lin & Rado 
3 6 21 Lin & Rado 
4 13 107 Brady 
5 >= 4098 >= 47,176,670 Marxen & Buntrock 
6 > 3.514*1018276 > 7.412*1036534 Kropitz  

 
The Rado function has some other fascinating properties beyond being fast-growing. For 
instance, within the framework of our standard mathematical proof methods we can determine 
only finitely many values of the Rado function (so far, 4 values have been determined). This 
and related facts have recently been proven; for the mathematically inclined here here is a 
little sniplet from one of the authors' blogs29: 

                                                
27 Heiner Marxen, Jürgen Buntrock, Attacking the Busy Beaver 5, Bulletin of the EATCS, Number 40, February 
1990, pp. 247-251, http://www.drb.insel.de/~heiner/BB/mabu90.html 
28 http://www.drb.insel.de/~heiner/BB/ 
29  Scott Aaronson: The 8000th Busy Beaver number eludes ZF set theory: new paper by Adam Yedidia and me 
 http://www.scottaaronson.com/blog/?p=2725 . Copy at http://minds.jacobs-
university.de/sites/default/files/uploads/teaching/share/AaronsonBlogpage.zip (retrieved Feb 3, 2017) 
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"But the BB function has a second amazing property: namely, it’s a perfectly well-defined 
integer function, and yet once you fix the axioms of mathematics, only finitely many values of 
the function can ever be proved, even in principle.  To see why, consider again a Turing 
machine M that halts if and only if there’s a contradiction in ZF set theory.  Clearly such a 
machine could be built, with some finite number of states k.  But then ZF set theory can’t 
possibly determine the value of BB(k) (or BB(k+1), BB(k+2), etc.), unless ZF is inconsistent! 
 For to do so, ZF would need to prove that M ran forever, and therefore prove its own 
consistency, and therefore be inconsistent by Gödel’s Theorem." 
 
3.4 TMs with multiple tapes 
 
Designing a single-tape TM for a given task is often awkward because there is only one 
read/write head which must move on a linearly organized memory. If portions of data have to 
be shifted in memory, this leads to annoying low-level subroutines. Machines with several 
tapes, each of which is read/written by its own head, are more convenient to use. In this 
section we will see that by introducing such augmented versions of TMs, we obtain machines 
that can compute the same functions as single-tape TMs. (Remember that this is different for 
pushdown automata: adding stack memories properly increases the number of acceptable 
languages). 
 
While in the first half of this lecture we will concentrate on the question which functions can 
be computed by machines at all (the question that constitutes the theory of computation) we 
will also already introduce some terminology and elementary insights relating to the question 
of how fast functions can be computed by machines (the topic of the theory of complexity). 
We will see that multi-tape TMs typically run faster than single-tape TMs, but not much 
faster.  
 
Definition 3.5. A k-tape TM (where k ³ 1) is a structure M = (K, S, d, s), where K, S and s are 
like in single-tape TMs. The transition function d is augmented to cope with k tapes 
simultaneously by putting d: K ´ Sk  ® (K È {h, "yes", "no"}) ´ (S ´ {¬, ®, -})k. The 
semantics is obvious. Initialization conventions: all tapes are left-bounded by @, and initially 
are blank except for the first tape which contains the input word. The output of a k-tape TM 
which stops in the halting state h is, by convention, the symbol string that is written on the last 
tape.  
 
A configuration of a k-tape TM is a (2k+1)-tuple (q, w1, u1, ..., wk, uk), where wi, ui describes 
the contents of the i-th tape with the convention that the i-th cursor points to the rightmost 

symbol of wi. Single-step transitions (q, w1, u1, ..., wk, uk) (q', w'1, u'1, ..., w'k, u'k), t-step 

transitions  and finite-length transitions  are defined as in the 1-tape case. The notions 
of acceptance and rejection of input are defined in the same way as for single-tape TMs.  
 
In the second half of this lecture, we will use k-tape TMs as our reference model for 
measuring computational complexity. Here we introduce the requisite terminology: 
 

Definition 3.6 If for a k-tape TM M and input w we have (s, @, w, @, e,..., @, e)  (H, w1, u1, 
..., wk, uk), where H Î {h, "yes", "no"}, then the time required by M on input w is t. Let n 
denote the word length of inputs w. We say that M operates within time f(n), if for any input 
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word w of length n the time required by M on input w of is at most f(n). f(n) is a time bound 
for M.  
 
Note that f need not be a tight bound: if f'(n) ³ f(n) for all n, and M operates within time f(n), 
then M also operates within time f'(n). 
 
Next comes a fundamental definition of complexity theory. 
 
Definition 3.7 Suppose that a language L Í (S - {+, @})* is decided by a some multi-tape 
TM within time f(n). We say that L Î TIME(f(n)).  
 
For a given f, TIME(f(n))   is a set of languages, namely, the set of languages that can be 
decided by some multi-tape TM within time f(n).  TIME(f(n))   is a compexity class. We will 
write L Î TIMEk(f(n))  if L is decided by a k-tape TM within the time bound f(n). 
 
Make sure that you understand the following box statements perfectly. 
 
 
 
 
 
Conventions / traditions / imperfections. In complexity theory, one is interested in the 
asymptotic computation time that some TM needs as the input word length grows longer. 
How a particular TM performs on the few possible inputs of short length does not matter. 
However, from a rigorous mathematical perspective, the small-input-length behaviour 
sometimes is troublesome. For instance, an interesting class of languages is TIME(n2), the 
languages decidable in quadratic time. But what happens when the input is the empty word e? 
It has length 0 and therefore, because 02 = 0, must be accepted or rejected in zero steps, which 
means that the starting state of the TM must already be accepting or rejecting state, which 
would make this poor machine always stop before it even has started. To avoid this and 
similar pitfalls, various strategies are employed in the literature: 
 
1. Papadimitriou makes a convention (Definition 1.1. in his book!) that all numerical 

functions, regardless of their standard mathematical definition, always return the smallest 
nonnegative integer larger or equal the correct mathematical value. This would mean that, 
for instance, 02 = 1 or log(0) = 1.  

2. In some textbooks, TIME(f(n)) is defined in a slightly different way, namely, TIME(f(n)) 
is there defined as the set of languages that can be decided by some multiple-tape TM 
within the time bound g(n), where g(n)  =  O(f(n)). If we wish to use this convention in 
these lecture notes, we will write TIME(O(f(n))). 

3. In the first (much more detailed and rigorous than the second) edition of the 
Hopfcroft/Ullman book on formal languages and computability30, it is stated explicitly 
that TIME(f(n)) should be read as TIME(max{n + 1, a f(n) q }) and SPACE(f(n)) as 
SPACE(max{1, a f(n) q}).  

4. Some authors admit only inputs of length > 0. In complexity theory that makes sense, 
because there the languages to be decided typically code instances of some problem, and 
such codewords never have length 0.  

                                                
30 Hopcroft, J.E., Ullman, J.D., Introduction to Automata Theory, Languages and Computation. Addison-Wesley 
1979 

TIME(f(n)) is a set of languages. It contains exactly those languages which can be decided 
by some multiple-tape TM within the time bound f(n). 
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5. Most authors simply don't care, don't comment on this issue and tacitly assume that any 
statements about computational complexities should be understood as referring only to 
large enough n. Papadimitriou is a good (or bad) example in this respect!  

 
In this script, I will generally assume that languages or problems to be decided do not contain 
the empty word or a zero-length problem coding. – The problem of zero input length is just 
one instance of a technical complication that arises for small input lengths. In this script, I try 
to be as precise as possible. At various places, where other such complications turn up, I make 
them explicit and describe ways to circumvent them. 
 
Multiple vs. single tape time complexity. Obviously, a multitape TM can solve a given 
problem at least at fast as a single-tape TM. How large is the speedup that we can gain by 
using multiple tapes? This question is partially answered by the following propositions.  
 
Proposition 3.2 Given any k-tape Turing machine M operating within time f(n), we can 
construct a single-tape Turing machine M' operating within time O(f(n)2) such that, for any 
input x, M(x) = M'(x). (We say, M' simulates M with quadratic loss in efficiency). 
 
Remark. The following proof is typical for many proofs in complexity: the workings of one 
system are simulated by the workings of some other mechanism. Usually these proofs are 
tedious and provide little insight through their technical detail – that's why the simulations 
occurring in such proofs are often described very superficially. However, there is always the 
danger that through being sloppy one brushes away some crucial little snag, and ends up with 
at faulty proof. I am afraid that this happens more often than one might believe – and because 
proofreaders also do not bother much about the nitty-gritty detail of simulation proofs, such 
faults will have a strong tendency to go unnoticed for a long while. 
 
Proof of Prop. 3.2, sloppy version. Set up M' such that for every simulated step of M it has on 
its tape the contents of the k tapes of M in concatenated form (use extra delimiting symbols 
between each tape representation). The current head positions of the k heads of M are coded in 
this representation by extra symbols. For simulating one step of M, M' must traverse its entire 
tape once in order to assemble the information that goes into the left-hand side of the 
transition function d of M, and traverse it a second time to make the changes in each of the k 
tape copies corresponding to a one-step transition of M. Complication: if M prolongs the 
inscription on one of its tapes to the right, M' has to shift the remaining copies one place to the 
right. In the worst case this incurs at most another k back-and-forth traversal of M''s tape. 
Now, since M runs in time f(n), none of its k tape inscriptions ever becomes longer than f(n). 
Taking all together, M' traverses its tape of length £ k f(n) at most 2 + 2 k times for simulating 
a single step of M, and thus in time O((2 + 2 k) k f(n)2) = O(f(n)2) [since k is a constant] for 
the complete simulation of f(n) steps of the simulated TM.   
 
Prop. 3.2, taken together with the obvious observation that any k-tape TM can simulate a 
single-tape TM with no loss of time, implies that any k-tape TM can simulate any other l-tape 
TM (k, l ³ 1) with at most quadratic loss in time. Ignoring the subtelties which distinguish one 
polynomial from another, in the relaxed perspective of complexiticians what counts is the fact 
that one TM simulating another incurs a polynomial loss (they don't care whether it's 
quadratic or cubic or to-the-tenth!). More formally, we say 
 
Definition 3.8: two functions f, f': N ® N  are polynomially related if there exists a 
polynomial p such that f(n) £ p(f'(n)) and f'(n) £ p(f(n)).  
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Then, what we have learnt is that if one TM solves a problem in time f(n) and another TM in 
g(n), then g and f are polynomially related if both TMs were designed without stupidity, or 
stated in yet another way, for large parts of complexity theory it does not matter which kind of 
TM we use.  
 
We will now consider the question whether the bound of Prop. 3.2 is tight, i.e. whether we 
can simulate a k-tape TM on a single-tape machine with better than quadratic loss. The 
answer is, in general, no. We will prove that a particular language, which can be decided by a 
2-tape TM in linear time, cannot be decided on a 1-tape TM in better than quadratic time. The 
proof introduces an elementary scheme for finding lower complexity bounds which can be 
used for other problems, too.  
 
I follow the book of W. Paul.  
 
We first prove a general-purpose lemma. Consider a single-tape TM M. Note that if M decides 
some language, M can be modified such that it reaches its "yes" or "no" state always with its 
head on the left tape delimiter symbol @. The additional time can at most double the running 
time of the original program, so we can assume without loss of generality that M halts with its 
cursor at the leftmost position.  
 
Consider a particular cell i > 0 on the tape and run M on input w (we number cells such that 
the leftmost has index i = 0) Whenever in the ensuing computation the cursor crosses from 
cell i – 1 to cell i or vice versa, note down the state M is in directly after this crossing step. 
The sequence of states obtained this way is called the crossing sequence at position i of M run 
on w, and is denoted by CS(w, i).  
 
Lemma 3.3: Let M be a single-tape TM deciding a language L. Let u, v, w, x be words, and 
let CS(uv, |u|) = CS(wx, |w|). Then ux Î L iff uv Î L. 
 
The proof follows almost immediately from the following diagrams (Fig. 3.2) which show the 
head position of our TM on inputs uv, wx, ux in a case where CS(uv, |u|) = CS(wx, |w|) = s1, 
s2, s3, s4.  
 

 
 
Fig. 3.2 cross-coupling crossing sequences.  
 
If you "cut open the computation" for uv and wx at positions |u| and |w|, (Fig. 3.2 (a) and (b)) 
and reconnect them as in Fig. 3.2 (c), it is clear that you get a run that accepts ux iff M accepts 
uv. · 
 

u w uv x x

s1
s1

s1

s2

s2

s2
s3

s3

s3
s4

s4
s4

(a) (b) (c)
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We will now consider a language decision problem which demonstrates that the bound in 
Prop. 3.2 is tight in certain cases. 
 
Proposition 3.4 Let S Ê {a, 0, 1} be a tape symbol alphabet. The language L = {wa|w|w | w Î 
{0,1}*} has the following properties: 
 

1. L Î TIME1(O(n2))  
2. L Î TIME2(O(n))  
3. L Ï TIME1(f(n))  for f(n) = o(n2) 

 
Note: the notation f(n) = o(g(n))  [pronounce "small-oh"] means that limn®¥ f(n) / g(n) = 0, 
i.e. f grows asymptotically slower than g (note: if f(n) = o(g(n)), then also                              
f(n) = o(C g(n)) for any constant factor C.) 
 
Proof. We only show 3. and leave 1. and 2. as easy exercises. Let M be a single-tape TM 
deciding L with time bound f(n), with tape alphabet S and state set K. Let m Î N and let n = 
3m. For any i Î {m+1, ..., 2m} and w, w' Î {0,1}m, w ¹ w', it must hold that CS(wamw, i) ¹ 
CS(w'amw', i) because otherwise M would accept wamw' by Lemma 3.3. Let p(i) be the 
average length of crossing sequences at position i in accepting runs, i.e. 
 

 
 
At least half of the w Î {0,1}m (that is, at least 2m-1 many) must satisfy |CS(wamw, i)| £ 2 p(i). 
Thus there are at least 2m-1 many crossing sequences at position i with length not exceeding   
2 p(i). On the other hand, for combinatorial reasons there exist at most (|K|+1)2p(i) different 
crossing sequences of length less or equal 2 p(i). These two findings imply (|K|+1)2p(i) ³ 2m-1 
or equivalently, p(i) ³ (m – 1) / (2 log2 (|K|+1)). The running time of M on input wamw is 
certainly at least 𝐶𝑆(𝑤𝑎)𝑤, 𝑖))-#./) . The average runtime Tavacc of accepting runs 
(given m) then can be bounded from below by 
 

 
 
 
 
 
 
 
 
 
 

 
(We say f = W (g)  iff  g = O(f)). Therefore, the runlength of at least one accepting run must be 
at least W (n2) = a n2 for some positive number a which depends only on L. · 
 
 



 25 

Space complexity. Next to runtime, the most important efficiency aspect of computations is 
how much memory they require. We finish our introduction of multitape TMs by considering 
space complexity.  
 
The most straightforward way to measure the space used by a k-tape TM would be to count all 
the tape cells that are visited during a computation, summed over all tapes. However, this 
would give the input and output tapes the same weights as the "internal" tapes. This does not 
conform to our intiutions: Consider one of the old-fashioned desk calculators that printed out 
their results on a band of paper. It has no RAM to speak of, but during a day's work in a busy 
office receives a large amount of input (what the operator hacks in) and produces a long string 
of output. The important observation here is that the input is read-only (the calculator cannot 
overwrite the typed-in input) and the output is write-only. This motivates to use the following 
convention for k-tape TMs when we are investigating space complexity:  
 
Definition 3.9: A TM with input and output is a k-tape TM with at least 2 tapes. The first tape 
is designated the input tape  and the last tape the output tape. They are read-only and write-
only, respectively, in the sense that every transition rule d(q, a1, ..., ak) = (p, b1, D1, ..., bk, Dk) 
must satisfy b1 = a1 (i.e., an input symbol must be overwritten by itself) and Dk ¹ ¬ (i.e., the 
output cursor cannot move left). 
 
It is easy to see that for every k-tape TM operating within time bound f(n) there is a k+2-tape 
TM with input and output operating in time O(f(n)).  
 
Definition 3.10: The space required by a k-tape TM M with input and output (on a 
computation that halts) is the number of cells on tapes 2 to k – 1 which are visited during the 
computation. We say that M operates within space bound f(n) if for any input of length n, M 
requires space at most f(n). Finally, let L be a language decided by some TM with input and 
output within space bound f(n). Then L is in the space complexity class SPACE(f(n)).  
 
Many polynomial-time computations are in SPACE(log n). Because of its practical 
importance, this complexity class has gotten its own name and is usually referred to simply as 
L.  
 
 
Linear speedup. In complexity theory one makes liberal use of the O() notation, that is, one 
does not care about additive and multiplicative constants when it comes to measuring 
computation costs. This common practice can be justified by the observation that within the 
realm of multiple-tape TMs, one can always speed up computations linearly by any desired 
factor: 
 
Proposition 3.5: Let L Î TIME(f(n)). Then, for any e > 0, also L Î TIME(e f(n) + n + 2).  
 
The proof proceeds by showing how a k-tape TM M which decides L within time f(n) can be 
simulated by a k'-tape TM M' running in time e f(n) + n + 2, where k' = max(2, k). The basic 
idea for the simulation is to use for the alphabet of M' symbols which correspond to blocks of 
some length m of symbols of M. Processing such "block symbols" instead of the "elementary 
symbols" of M speeds M' up by a constant factor times m. By suitably selecting m (the larger, 
the faster the speedup) the required speedup of e can be ascertained. The n in the speed-up 
time comes from the fact that the simulating TM M' first has to scan the original input and 
transform it into a block-symbol version. Papadimitriou provides a semi-sloppy proof which 
however runs over two printed pages. A thoroughly non-sloppy version of this proof is a 
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tedious exercise, of the kind "you have to do something like that only once in your lifetime". I 
assume that you suffered your way through one of the detailed TM programming exercises on 
the exercise sheet, and therefore neither you nor I have to carry out this odious task here. 
(This is the way to hell: grossly inaccurate results may accumulate in the literature in this 
way!). 
 
 
 
4 Random access machines 
 
Alan Turing arrived at TMs by reasoning from first principles. His goal was to find the 
simplest possible model for a computing machine that could perform all computations that 
any finite machine (or brain) can do. Today, TMs are universally accepted as such a most 
simple, but entirely sufficient, model of computation. Why? We have to convince ourselves 
that TMs actually have "total computation power". A complete understanding of this problem 
will be obtained in several further parts of this lecture. We will begin our quest by 
demonstrating that TMs can perform the same computations that your PC can perform. 
Concretely, in this chapter we will first introduce a simplified, but realistic model of modern 
PCs, the random access machine (RAM) and then show that RAMs can carry out the same 
computations as TMs.  
 
A RAM is a simplified and formalized version of our current standard computer CPU 
architectures. Compared to TMs, RAMs can be "programmed" in the same way as standard 
PCs (using a kind of mixture programming language between assembler and Basic). Thus, it 
is generally easier and closer to our everyday programming practice to devise a RAM 
program for a given task, than it is to find an equivalent TM. The drawback of RAMs is that 
they are more complicated than TMs and thus are less suited as a machine model for 
mathematically investigating (and understanding) the truly fundamental properties of 
computation. 
 
Unlike TMs, which are usually specified for arbitrary symbol sets and are suited for language 
decision problems just as well as for arithmetics, RAMs are designed to perform numerical 
computations. 
 
In my rendering of RAMs I follow the book W.J. Paul, Komplexitätstheorie, Teubner 
Studienbücher Informatik, Teubner 1978. The description of RAMs in the Papadimitriou book 
is flawed and should be avoided [integers of any size can be read in in constant time in 
Papadimitriou, but correctly they must be read in in time proportional to input bitlength].  
 
A RAM consists of a central processing unit (CPU), a random access memory, an input tape, 
an output tape, and a program. The memory consists of countably infinite many registers, 
enumerated by 1, 2, ... . The number of a register is called its address. Every register can hold 
an arbitrary natural number. The program is a finite sequence of commands. There are only a 
few basic commands, which we will list below. The CPU consists of two items: (i) a special 
register called accumulator, which has register number 0, and (ii) a command counter k. 
The accumulator can hold an arbitrary integer or single symbols from the finite input/output 
alphabet S. The command counter can hold a positive number which corresponds to the 
currently executed command line in the program.  
 
The input tape contains a read-only word w Î S*. The RAM can move its read head only 
from left to right (i.e. can read each input symbol only once). On the output tape, the RAM 
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can move its head only from right to left, printing one symbol from S at each step: a model of 
a simple printer.  
 
At each time step, the configuration of a RAM is a quintuple (k, c, w, p, x), where 
 

• k is the contents of the command counter (initialized to 1), 
• c: N ® N È S is a function where c(i) is the contents of register i, (they are all 

initialized to zero). Note that only c(0) can be a symbol from S, the other registers 
must contain integers. 

• w Î S* is the input word, 
• p Î {1, ..., |w|+1} is the current position of the read head, 
• x Î S* is the word written on the output tape.  

 
In each single step, the executed command (i) changes the contents of at most one register, (ii) 
changes the command counter, (iii) possibly changes the position of the reading head, and (iv) 
possibly outputs one symbol. Table 4.1 lists all possible commands.  
 
 
 
Command    Result 
 
load i c(0) = c(i); k = k +1  
store i c(i) = c(0); k = k +1   
add i c(0) = c(0)+c(i); k = k +1    
sub i c(0) = max(c(0) - c(i), 0); k = k +1    
read c(0) = wp; p = p+1; k = k +1 
print a x = ax; k = k +1 [a Î S] 
shift c(0) = c(0)/2 if c(0)/2 is integer else (c(0) – 1)/2; k = k +1 
goto i k = i   [i > 0] 
if c(0) = i goto j if c(0) = i then k = j else k = k +1 (i Î N È S) 
ind load i c(0) = c(c(i)); k = k +1 [indirect addressing] 
ind store i c(c(i)) = c(0); k = k +1 [indirect addressing] 
ind add i c(0) = c(0) + c(c(i)); k = k +1 [indirect addressing] 
ind sub i c(0) = max(c(0) - c(c(i)),0); k = k +1 [indirect addressing] 
c load i c(0) = i ; k = k +1 (i Î N) [loading a constant] 
c add i c(0) = c(0) + i; k = k +1  (i Î N) 
c sub i c(0) = max(c(0) - i, 0); k = k +1  (i Î N) 
end stop  
 
The commands store, add, sub, shift, ind store, ind add, ind sub are defined 
only if the accumulator contains an integer, else they are undefined. 
 
At the start of a run, all registers are initialized to hold 0.   
 
Table 4.1 The command set of a RAM 
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Figure 4.1 Components of a RAM. 
 
Here is a RAM program for addition. The input is of the form u#v#, where u and v are binary 
representations of integers. The RAM has to stop with the binary representation of the sum of 
these integers on the output tape. The following program does this. The commands 1 – 8 are 
executed |u| times in a row, whereby the input u = u1 ... u|u|  (a string!) is transformed into 

(a number!) and saved in register 1. A similar procedure in steps 9 – 16 
transforms the symbol string v into its corresponding integer, which is held in register 2. The 
actual addition takes place in steps 17 – 18. The remaining commands (omitted here) serve to 
write the sum on the output tape.  
 
 

1 read 
2 if c(0)= # goto 9 
3 store 3 
4 load 1 
5 add 1 
6 add 3 
7 store 1 
8 goto 1 
9 read 
10 if c(0)= # goto 17 

11 store 3 
12 load 2 
13 add 2 
14 add 3 
15 store 2 
16 goto 9 
17 load 1 
18 add 2 
19 ... 
... end 

 
If P is a RAM program and w Î S*, we write P(w) = u if the RAM with program P enters the 
end command with output u on input w, and we write P(w) = â if the RAM with program P 
on input w does never enter the end command (which may happen if the program runs 
infinitely long or enters an undefined situation). 
 

program
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...

4 add 2

5 store 1

6 shift

7 store 2

8 add 2

...



 29 

The uniform computation time of a RAM which on input w runs k steps and then halts is just 
k: we simply count the number of steps. Specifically, we do not care in our time measuring 
how large the integers are which are fetched/stored from/to registers, or are processed in the 
accumulator. Thus, if a RAM processing inputs of length n runs at most f(n) steps, we say it 
has (uniform) time complexity f(n).  
 
This may not appear too realistic, because on real machines, the time to access an integer n is 
asymptotically proportional to log(n). Therefore one also uses logarithmic computation time 
where the costs of memory access and arithmetic operations scales logarithmically with the 
size of the integers processed.  
 
However, the time that we measure when we use the simple uniform time complexity is 
polynomially related with the more realistic logarithmic time. The fact that logarithmic and 
uniform RAM times are polynomially related is a consequence of the following two 
propositions, which show that both times are polynomially related with TM time:  
 
Proposition 4.1 (Simulation of TM by RAM) A TM (with arbitrary number k of tapes) that 
has time complexity f(n) can be simulated by a RAM in uniform time O(f(n)) and in 
logarithmic time O(f(n) log f(n)).  
 
This proposition is not surprising, inasmuch as RAMs are intuitively more powerful than 
TMs. The proof is a tedious exercise in coding whose detail we omit. The basic idea is that 
any configuration of the TM can be represented in the registers of a RAM. We illustrate how 
this can be done for a 2-tape TM with symbol set S = {a1,..., an} and state set K = {q1, ..., qm}. 
Assume the current configuration of the TM is (q10, a3a7a8a9, e, a5a6, a1). The position of the 
two cursors are on the 4th and 2nd tape cell, respectively. All this information is contained in 
the sequence of integers 10 4 2 3 5 7 6 8 1 9 0: the leading 10 indicates that the TM is in state 
q10, the next two numbers 4 and 2 indicate cursor positions, and the remaining numbers 
represent the tape contents (they should be interpreted pairwise, so the subsequence 3 5 means 
that the first symbol on tape 1 is a3 and the first symbol on tape 2 is a5). A "0" indicates a 
blank cell. Call this sequence a configuration coding sequence. This sequence of 11 integers 
is the contents of the registers c(3), c(4), ..., c(13): c(3) = 10, c(4) = 4, ..., c(13) = 0. It is clear 
that any TM configuration can be coded into registers c(3), c(4), ... in this way. The registers 
c(1) and c(2) are used for storing certain intermediate results that occur during a simulation 
run. One update step of the TM deterministically changes the configuration coding sequence 
in the first position (due to TM state change), the next two positions (due to cursor motion), 
and/or in two of the remaining positions (due to overwriting tape symbols). If the TM extends 
the tape used to the right, the configuration coding sequence grows by two integers to the 
right. It is intuitively clear that such a change of a configuration coding sequence can be "re-
programmed" with a RAM. The time bounds claimed in the proposition are obtained from a 
careful analysis of the simulating RAM program. The factor log(f(n)) in the logarithmic 
simulating time is due to the fact that address integers (which are needed in indirect 
addressing) are growing to (at most) f(n).  
 
 
Proposition 4.2 (Simulation of a RAM by a TM)  
 
1. A RAM that has logarithmic time complexity f(n) can be simulated by a 4-tape TM in 

O(f(n)2).  
2. A RAM that has uniform time complexity f(n) can be simulated by a 4-tape TM in 

O(f(n)3). 
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Part 1 of this proposition is again a coding exercise whose detail we omit. Analogous to the 
previous proposition, the main idea is that (i) the complete configuration of a RAM can be 
coded in three sequences of integers, (ii) these sequences can be written in a binary 
representation on the first three tapes of the simulating TM. The fourth tape is used for 
auxiliary computations. Of course, many variations are possible – the four-tape simulation is 
the one used in the Paul book. The complexity claim is yielded by an analysis of the 
simulating TM. 
 
However, part 2 of Prop. 4.2 involves more than a straightforward (albeit tedious) coding 
exercise: how is it possible for a TM (which has to perform all "memory management" of 
integers on its tape bitwise, and furthermore must perform arithmetic operations bitwise) to 
simulate a uniform-time RAM (which doesn't care about bitlength of register contents) in 
polynomial time, considering that integers can become arbitrarily large (and thereby the 
difference between TM vs. RAM operation times on those integers)? Here an extra idea is 
called for.  
 
The reason why part 2 of Prop. 4.2 can be proven is that additions are the only operations in 
our definition of RAM programs which can lead to longer integers – but the integer length can 
increase at most by 1 per addition. (This would be different if we also had a multiply 
command!). Therfore, the increase in time a TM needs to simulate a RAM step is at most 
linear with the ongoing uniform time of the simulated RAM. This fact must be used in the 
proof of the time bounds in Prop. 4.2.  
 
 
5 Recursive functions and Church's thesis 
 
We have seen that single-tape TMs, multi-tape TMs, and RAMs can compute the same 
(possibly partially defined) functions because any of these machines can simulate the others. 
In this section, we will characterize this same class of "computable" functions in a completely 
different way, which is reminiscent of how we defined the regular languages through regular 
expressions.  
 
Recall that we defined the regular languages in an inductive fashion: as an induction basis, we 
said that e, Æ, a were regular expressions denoting the languages { e}, Æ, {a} (for every a Î 
S). Then we considered the language operations of union, concatenation, and Kleene closure. 
We defined the regular languages as those languages that can be obtained from the basis 
languages { e}, Æ, {a} by applying some (finitely many) of the language operations.  
 
In a similar fashion, we will now characterize a class of functions inductively. This class of 
functions is called the recursive functions. We will see that the class of recursive functions 
thus defined yields the same functions that can be computed by TMs. Historically, this 
inductive definition came (a little bit) earlier than Turing Machines. The motivation to define 
the recursive functions was to find a rigorous definition of "computable": the goal was to 
characterize exactly those functions that can be computed "effectively", that is, by some 
algorithm that can be formulated with a finite description and runs in finite time. The 
inductive basis is provided by some very simple functions which are clearly computable. 
Then we introduce a few mechanisms which construct more complex computable functions 
from already existing ones. The recursive functions, then, are all functions which can be 
obtained by a finite number of application of such mechanisms. (I follow here the book W.J. 
Paul, Komplexitätstheorie, Teubner Studienbücher Informatik vol. 39, Teubner: Stuttgart 
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1978). We follow the development of mathematical history in that we first give the definition 
of the primitive recursive functions, which cover only a subset of the recursive functions but 
which for some time were believed to cover all intuitively computable functions. 
 
Definition 5.1: The class of primitive recursive functions f: Nk ® N (where ) is made 
from all functions which can be obtained by a finite number of applications of the following 
rules:  
 

1. Introduce the null constant: the function 0: N0 ® N , 0() = 0 is a primitive recursive 
function. 

2. Introduce the successor function: the function s: N ® N , s (n) = n+1 is a primitive 
recursive function. 

3. Introduce projection functions: the functions pr
i: N

r ® N , pr
i (n1, ..., nr) = ni for all    

r ³ 1 and 1 £ i £ r are primitive recursive functions. 
4. Construct a new function by substitution: if f: Nr ® N and g1,..., gr: N

m ® N are 
primitive recursive (where r ³ 1 and m ³ 0), then also h: Nm ® N, h(x) = f(g1(x),..., 
gr(x)) is primitive recursive.  

5. Construct a new function by primitive recursion: if f: Nr ® N and g: Nr+2 ® N are 
primitive recursive (where r ³ 0), then also every function h: Nr+1 ® N is primitive 
recursive which satisfies the following equations: 

 
a. h(0, x) = f(x),  
b. h(n + 1, x) = g(n, h(n, x), x). 

 
The rules 1. – 3. yield the inductive basis, a set of elementary functions from which new 
functions can be constructed using the function operations 4. and 5.  
 
The primitive recursion scheme is an augmented version of the familiar principle of induction 
for natural numbers. A good way to understand it is to view x as parameters of the function h 
that one wants to define from f and g. If there are no parameters (case r = 0), the recursion 
scheme collapses to the more familiar-looking scheme (note that constants can be seen as 0-
ary functions): 
 

5'. (stripped-down special case of 5.) Construct a new function h as follows by "ordinary" 
recursion: if c Î N and g: N2 ® N is primitive recursive, then also every function          
h: N ® N is primitive recursive which satisfies the following equations: 

 
a. h(0) = c,  
b. h(n + 1) = g(n, h(n)). 

 
Note that the concatenation of functions corresponds to the special case r  = 1 of rule 4:         
if f: N ® N and g: Nm ® N are primitive recursive (where m ³ 0), then also h: Nm ® N, h(x) = 
f(g(x)), for which we also write h(x) = f ◦ g(x). 
 
Example 5.1. We show how the function add: N2 ® N,  add(x, y) = x  + y is primitive 
recursive. The idea is to use the fact that addition on integers can be defined on the basis of 
the successor function s recursively by (1.) for all x:  0 + x = x (basis of recursion); (2) for all 
x, y: s(y) + x = s(x + y). Writing this with exactly the formalism given by the rules above, we 
get the following line of argument: 
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1. The identity function id: N ® N, id(x) = x, is primitive recursive by rule 3 because id = 

p1
1. 

2. The function j: N3 ® N, j(x, y, z) = s (y) is primitive recursive, because by rule 2, s 
is primitive recursive, and by rule 3, p3

2 is primitive recursive, and therefore by rule 4, 
j(x, y, z) = s ◦ p3

2 (x, y, z) = s (y) is primitive recursive. 
3. Now, by rule 5, the function add N2 ® N which satisfies 

a.  add(0, x) = id(x) 
b.  add(y+1, x) = j(y, add(y, x), x) = s (add(y, x)) 
is primitive recursive (where we have used id for the h that appears in rule 5, and j for 
the g that appears in rule 5). 
 

Notice how much care was used in this proof to really use only what is exactly provided by 
the 5 rules, in order to nail down the intuition of how to introduce addition inductively. 
Specifically, the primitive recursion rule 5 is more complex than what one is needed for many 
"ordinary" recursions that one meets in basic functional programming exercises. The 
complexity of rule 5 is however needed to master inductive function definitions that are more 
demanding than add. Conversely, for inductions that are as simple as is needed for add, one 
has to "project away" the unnecessary add-on features that rule 5 offers.  
 
For some time it was an open issue (raised by Hilbert in 1926) whether the primitive recursive 
functions covered all functions which are intuitively computable. In 1928 Ackermann 
provided an example of a function which was clearly computable but not primitive recursive. 
This Ackermann function is a function which grows exceedingly fast; it is inspired by the idea 
of turning the sequence of ever-faster growing functions, f1(n) = n + 2; f2(n) = 2*n; f3(n) = 
2^n; ... , into a single, two-argument function which would for instance yield f(1, n) = n + 2; 
f(2, n) = 2*n; f(3, n) = 2^n. The actual definition of the Ackermann function A: N2 ® N 
yields slightly different results and installs a wildly recursive carousel, as follows:  
 
Definition 5.2: The Ackermann function A: N2 ® N is defined by 
 

 A(0, n) = n + 1 
   A(m + 1, 0) = A(m, 1) 
   A(m + 1, n + 1) = A(m, A(m + 1, n)) 
 
Clearly, the Ackermann function is computable in an intuitive sense: you could easily write a 
program that computes it. However, it can be shown that it is not primitive recursive. The 
intuitive reason is that the Ackermann function grows faster than any primitive recursive 
function ever could because primitive recursive functions can only work from a finite number 
of recursions, whereas A is "recursively recursive" and creates arbitrarily many levels of 
primitive recursions, according to its first argument.   
 
The first argument in the Ackermann function specifies the function "type", the second 
argument the number of iterations. We have 
 
A(0, n) = n + 1: "successor function",  
A(1, n) = n + 2: "add 2",  
A(2, n) = 2n + 3: "essentially, multiply by 2",  
A(3, n) = 2n + 3 – 3: "essentially, exponentiate 2 by n",  
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A(4, n) =  2/1
1⋰
1

− 3  (the tower of 2's has height n + 3, evaluation order is top-down) 
A(5, n) = ... (try to imagine) 
 
 
A(4,2) is about 1019728. This is reminiscent of busy beavers! (We will soon see that the busy 
beaver function is actually even worse than the Ackermann function). 
 
Examples of non-primitive-recursive functions prompted an extension of the definition of 
primitive recursive functions, by introducing another function-construction mechanism, the µ-
operator, which intuitively computes a minimum function: 
 
Definition 5.3: For f: Nr+1 ® N, µ f: Nr ® N is defined by  
 

 
 
Then, augment Definition 5.1 by the following construction rule. 

 
2. Construct a new function by µ-recursion: if f: Nr+1 ® N is recursive, then µ f is 

recursive.  
 
The first 5 rules have to be adapted by replacing "primitive recursive" by "recursive" 
everywhere, and by specifying suitable conditions (in rules 4 and 5) to the effect that 
conditions of non-definedness are caught, as follows: 
 

4. Construct a new function by substitution: if f: Nr ® N and g1,..., gr: N
m ® N are 

recursive (where r ³ 1 and m ³ 0), then also h: Nm ® N, h(x) = f(g1(x),..., gr(x)) is 
recursive, where h(x) is defined for all x where all gi(x) are defined and f(g1(x),..., 
gr(x)) is defined.  

5. Construct a new function by primitive recursion: if f: Nr ® N and g: Nr+2 ® N are 
primitive recursive (where r ³ 0), then also every function h: Nr+1 ® N is primitive 
recursive which satisfies the following equations: 

 
a. h(0, x) = f(x),  
b. h(n + 1, x) = g(n, h(n, x), x). 

           
 h(n, x) is defined when f(x) is defined, and for all n' < n all h(n', x) are defined, and all  
 g(n, h(n, x), x) are defined.  
 
 
The new rules 1. – 6. yield the µ-recursive (or simply recursive) functions. Note that by using 
6. we may arrive at functions which are not defined everywhere – i.e., partial functions. They 
can be shown to be the same class of functions as the TM-computable numerical functions. 
(Note that also a TM need not terminate on every input – in which case the TM, too, 
computes only a partial function).  
 
The Ackermann function can be shown to be µ-recursive.  
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Church's thesis. We have seen by now that there are (at least) three equivalent ways of 
characterizing the partial functions that are "computable": TMs, RAMs, recursive functions. 
Soon we will learn about yet another such characterization, lambda calculus, which is as 
different as can be from TMs, RAMs, or recursive functions. The fact that such outwardly 
quite different formalizations lead to the same concept is remarkable and suggests that by the 
notion of partial recursive functions we have hit a truly fundamental concept.  
 
The intuitions that led mathematicians and (later) computer scientists to develop these 
characterizations were not quite identical but similar: 
 
• Turing invented TMs as a model of everything that any finite (human) intelligence can 

achieve by way of symbolic thinking. 
• Recursive functions were developed by mathematicians in order to make the intuitive 

notion of "computable" precise. 
• RAMs were designed as a simplified yet in principle realistic model of modern computers.  
• Lambda calculus was invented by Church as an alternative, axiomatic approach to set 

theory as a basis for all of mathematics, driven by the idea that the most elementary notion 
of mathematics should not be static-structural (as in set theory) but dynamical: namely, 
function evaluation.  

 
Thus, all of these scientific enterprises were driven, in one way or the other, by the desire to 
achieve a rigorous account of computation. The fact that all of these are equivalent can be 
proven – one basically has to "simulate" each of the formalisms by any of the others; this is 
sometimes tedious but not really difficult. But the fact that the notion of recursive functions 
indeed captures the intuitive notion of "computable" cannot be proven, because such a proof 
would have to show that an intuitive notion ("computability") is equivalent to a formally 
defined notion (recursive functions). But one cannot formally prove something about an 
intuitive notion. Therefore, the idea that the rigorous concept of recursive functions indeed 
captures all out intuitions about "computability" is and will remain a hypothesis. It is today 
known as the Church hypothesis or as the Church-Turing hypothesis.  
 
Among traditional computer scientists it is generally believed to be true. There are, however, 
frequent attempts to widen the intuitive notion of "computable" in some nonstandard way, for 
instance incorporating timing of analog computations or even quantum effects. It's an 
interesting and speculative niche somewhere between philosophy, maths, physics, psychology 
and computer science. Wikipedia has an extensive entry on "Hypercomputation" with links to 
dedicated websites. 
 
 
6 The halting problem and undecidability results 
 
6.1 Universal Turing Machines 
 
You can program your PC to simulate any TM (at least as long as you don't run out of 
memory, but well, "in principle" you can if you are prepared to buy further external memory 
whenever needed...). You can also program a TM U to simulate any other TM – such a TM U 
that simulates all TMs is called a universal TM. There are many ways of constructing 
universal TMs, all depending on some convention of how to code the simulated TMs. There is 
nothing remarkable or deep about universal TMs, once you have grown accustomed to the 
intuitions of coding and simulation. I briefly sketch the coding scheme proposed in 
Papadimitriou's textbook (there: chapter 3).  
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The objective of coding here is to define a convention that allows one to transform any TM  
M = (K, S, d, q0) into a codeword over some fixed coding alphabet – we take {0, 1, #}. We 
use angular brackets to denote the codeword <M> Î {0, 1, #}* of M.  
 
The coding M  #  <M>  should be effective, i.e. computable by a machine, and effectively 
reversible, i.e. it must be possible to automatically reconstruct M from <M>.  
 
To devise a coding, we assume that each TM M is given in tabular form (the transition table 
contains all the information about M). The only technical difficulty in translating a table into a 
word is that Turing machines M may have tape alphabets and state sets of arbitrary sizes. This 
problem can be resolved by coding symbols and states by natural numbers, which are 
represented in <M> as binary strings separated by "#". The transition rules of M can be 
encoded as 5-tuples of integers in a straightforward way (note that d(q, s) = (p, r, D) can be 
coded by 5 integer codes for states, symbols, and cursor action). A moment's thinking will 
convince you that one can find simple coding schemes for arbitrary M and x using a code 
alphabet {0, 1, #}, which we will assume in the rest of this section.  
 
We notice that if a TM M gets input words x from M's tape alphabet, then one can devise 
another coding scheme, following the same principles, that translates x into a codeword      
<x> Î {0, 1, #}*.  
 
U has to be able to simulate how any given TM M acts on some input x. Technically, U gets 
the input <M>;<x> (two binary coding words for M and x, respectively, separated by a special 
separator ";"). U is a multi-tape TM which simulates the action of M in a step-by-step fashion. 
U has a special tape on which the configurations of M are written in coded form. A sequence 
of steps of U which simulates one step of M transforms a coded configuration of M into a 
coded version of M's next configuration. When M halts in h, "yes" or "no", so does U. The 
result of M's computation can then be decoded from the coded configuration found on U's 
special tape.  
 
We write U(<M>;<x>) = M(x) to denote that U simulates M on input x. The value of 
U(<M>;<x>) is therefore the value of M(x), that is "yes", "no", or ‰ for decision problems 
and a coded version of the output string of M (or ‰) in the case of function computation 
problems.  
 
Side notice. Universal TMs need not be terribly complex. There exists a universal Turing 
Machine with just 2 states and 3 symbols (rather more correctly, a 1-dim cellular automaton 
emulating a universal TM). Read more at  www.wolframprize.org.  
 
6.2 The halting problem and some immediate consequences 
 
In the following treatment of the halting problem we depart from the Papadimitriou book 
(which falls in the sloppyness trap here and contains some technical errors / inaccuracies). We 
consider only a particular kind of TMs, namely those whose tape alphabet coincides with our 
coding alphabet {0, 1, #} (plus, of course, +, @}). Note that in this case we can "code" inputs 
x by the identity code, i.e. <x> = x. 
 
We now describe the classical example of an undecidable language. H consists of all words 
<M>;x Î {0, 1, #, ;}*  which code a halting run of some TM M with tape alphabet {0, 1, #} 
in the following way:  
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H  =  { <M>;x | M(x) ¹ â}      [shorthand] 
 = { <M>;x Î {0, 1, #, ;}* |  <M> is a code of some TM M which uses the  

   tape alphabet {0, 1, #}, x Î {0, 1, #}*, and  M(x) ¹ â}   
 [more precise version] 

 
The following is easy to establish: 
 
Proposition 6.1: H is recursively enumerable. 
 
Proof. We need a deterministic TM that accepts H, i.e. halts with "yes" on every input <M>;x 
Î H. It is easy to modify U to work this way. · 
 
The problem of deciding (not merely accepting) H is the famous halting problem, to which 
we will refer by HALTING. This problem is not decidable: 
 
Proposition 6.2: H is not recursive.  
 
Proof. The proof works by a method which is used for many undecidability results, a 
diagonalization argument. Suppose, for the sake of contradiction, that some TM MH decides 
H. Modify MH to obtain another TM D (with tape alphabet {0, 1, #}) that behaves as follows 
on inputs <M>. D first simulates MH on input <M>;<M>. Since MH is supposed to decide H, 
MH on any input will eventually halt with "yes" or "no". Specifically, MH on input <M>;<M> 
will eventually halt with "yes" or "no", too. Arrange D such that if MH on input <M>;<M> 
halts with "yes", D enters an infinite loop that moves its cursor to the right indefinitely. If MH 
on input <M>;<M> halts with "no", D halts with "yes". Formally,  
 
D(<M>) = if MH(<M>;<M>) = "yes" then ‰ else "yes". 
 
Now what is D(<D>)? If D(<D>) = ‰, then by definition of D we have that MH(<D>;<D>) 
= "yes", that is <D>;<D> Î H, that is, D(<D>) ¹ â. Conversely, if we assume D(<D>) ¹ â, 
then by definition of D we have D(<D>) = "yes", that is, MH rejects <D>;<D>, that is 
<D>;<D> Ï H, that is, D(<D>) = â. Thus our first assumption that some TM MH can decide 
H leads into a contradiction and must be false. · 
This type of proof is called a proof by diagonalization for the following reason. We may think 
of an infinite table whose rows and columns each are indexed by all TMs M1, M2, M3,... with 
tape alphabet {0, 1, #}. In cell (M, N) indexed by row TM M and column TM N of this table 
we write the result M(<N>) of the computation of M on input <N>. On the diagonal we have 
all results Mi(<Mi >) of runs of TMs M started on their own codewords as input:  
 M1  M2  M3  ... 
 
M1 M1(<M1>) M1(<M2>) M1(<M3>) 
M2 M2(<M1>) M2(<M2>) M2(<M3>) 
M3 M3(<M1>) M3(<M2>) M3(<M3>) 
...  
 
We know that every TM M (with tape alphabet {0, 1, #}) corresponds to one row. The row 
entries in row M show the results of the computations of the M on input words which are 
codes of other such TMs. Now we construct a TM D with tape alphabet {0, 1, #}. Assuming 
that MH exists, we define D such that for any TM M, D(<M>) is different from M(<M>), that 
is, we make the computations D(<M1>), D(<M2>),... of D different from the diagonal 
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elements M1(<M1>), M2(<M2>), ... of our table. But D itself must correspond to some row of 
our table. We consider the diagonal element D(<D>) in that row. By construction, we know 
that D(<D>) is different from D(<D>) – a crying-out-loud contradiction! 
 
Proofs by diagonalization are a common strategy in the field of computability and complexity. 
The general schema of such proofs is the following 
 

1. Goal: show that some machine M (or recursive language L) lacks some property P. 
2. Assume that M (or L) has property P.  
3. Set up a table like the above whose rows and columns are indexed by all machines (or 

recursive languages), and whose cells are functions of the row/column indices. 
4. Using assumption 2., construct a machine M' or language L' such that on the diagonal 

of the table, the result of the row/column function is different from the original table. 
At this point, often some kind of "self-referentiality" is exploited. 

5. Conclude that M' (or L') cannot be a row or column index. Contradiction, because 
these rows / columns range over all machines or languages. 

6. Thus, the assumption 2. must be false. 
 
From our undecidable language H we can derive other undecidable languages by a method 
called reduction. In fact, thousands of formal languages have been shown to be undecidable 
by reduction. A reduction proof of undecidability works as follows.  
 
Given: a language L1 Í S1* that one wants to show to be undecidable, and another language   
L2  Í S2*  which one already knows is undecidable (for instance, the halting language). Note 
that L and K may be defined over different alphabets.  
 
Ansatz: find an effective mapping r: S2* ® S1* such that w Î L2 iff r(w) Î L1. This mapping 
is called a reduction and one says, L2 is reduced to L1. 
 
Why this works: if one has found such a reduction r, then L1 cannot be decidable. Because if 
we assume that L1 were decidable, L2 could be decded too: in order to decide whether w Î L2, 
map w on r(w) and use the (assumed) decision method for L1 to decide whether r(w) Î L1. 
Since w Î L2 iff r(w) Î L1, this also would decide the question whether w Î L2. But since L2 
is known to be undecidable, this cannot be possible, so the assumption that L1 was decidable 
must be wrong.  
 
An important aspect of this story is that r must be an "effective" mapping. When researchers 
of theoretical CS use that word, they imply that there is an algorithmic procedure (that is, 
ultimately, a TM) which computes r.  
 
If one has established by reduction that L is undecidable, further languages can be shown to 
be undecidable by reducing L to them, etc. This gives a tree of undecidable languages, with 
the halting language at its root, and going down the tree one link from some language L to 
another language L' means that L can be reduced to L'. In fact, thousands of formal languages 
have been shown to be undecidable by reduction chains that ultimately lead back to H. These 
languages span all areas of mathematics and applied modeling techniques. Whenever in your 
professional carreer you meet a problem that you want to decide but can't find a simple 
decision method for, it is a good idea to consult the literature of the respective field where this 
problem arises and see whether you can find a problem that is similar to yours and which 
already has been shown to be undecidable.  
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Here is a collection of languages that are close relatives of H which can be shown to 
undecidable by reducing H to these languages in fairly simple ways: 
 
Proposition 6.3. The following languages are not recursive: 
 
H0 = {<M> | Code(<M>) and M halts on the empty input} 
H1 = {<M> | Code(<M>) and M halts on all inputs} 
H2 = {<M>;x | Code(<M>) and x Î {0, 1, #}* and there exists some y Î {0, 1, #}* 

 such that M(x) = y} 
H3 = {<M>;x | Code(<M>) and x Î {0, 1, #}* and the computation of M on input x uses  

 all states of M} 
 
Here, Code(<M>) denotes the condition "<M> codes a TM with tape alphabet {0, 1, #}". 
 
A host of other languages of a similar flavour can be shown not to be recursive. We prove 
undecidability of the first two and the last language by reducing HALTING to those 
problems, to illustrate the pattern of a reduction argument.  
 
Undecidability of H0: For any word <N>;x with Code(<N>) and x Î {0, 1, #}* we can 
effectively construct a TM K<N>;x with tape alphabet {0, 1, #}, which started on empty input 
first prints x on one of its tapes and then behaves as N on input x. Consider the language  
 
L = {<K<N>;x> | <K<N>;x> is a code of K<N>;x and K<N>;x(e) halts}.  
 
It is clear that <K<N>;x> Î L iff <N>;x Î H. The reduction r maps <N>;x on <K<N>;x>. 
 
Therefore H0 is not decidable. · 
 
Undecidability of H1: Take any word <N>;x with Code(<N>) and x Î {0, 1, #}*. We can 
effectively construct a TM K<N>;x with tape alphabet {0, 1, #} which, for all inputs y Î {0, 1, 
#}*, yields the following result: 
 
  K<N>;x (y)  =  if x = y then N(x) else "yes".  
 
Obviously, K<N>;x halts on all inputs iff <N>;x Î H. The reduction map here maps <N>;x on 
<K<N>;x>. · 
 
 
Undecidability of H3: same pattern as in the two previous examples. For a TM N with tape 
alphabet {0, 1, #}, we construct a TM KN with tape alphabet {0, 1, #} which on input x starts 
to simulate N(x). If this simulation reaches a halting configuration of N, then KN enters a 
subroutine which takes KN through all its states (that can be done, e.g., by printing a single 1 
on a special tape of KN when some halting condition of the simulated N is reached; if this 1 is 
present, KN cycles through its states). If the simulation does not enter the accepting state of N, 
then KN does not use all of its states (because it does not use its own halting state). Therefore 
we have: 
 
 
KN(x) uses all states  iff   <N>;x Î H,  
 
that is, we have devised a reduction r which maps  <N>;x on <KN>;x · 
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With a similar reduction to H we can prove an undecidability theorem of surprising 
generality. In essence, it states that for any non-trivial property C of recursively enumerable 
languages over some alphabet S, the language  
 
LC = {<M> | Code(<M>) and M is a TM that accepts a language L Í S* which has 
                      property C}  
 
is undecidable. In other words, for no nontrivial language property C there is a general 
method to effectively check whether the language L(M) accepted by some TM M has property 
C.   
 
Proposition 6.4 (Rice's Theorem): Suppose that C is a nontrivial subset of the class of 
recursively enumerable languages over some alphabet S. ("Nontrivial" means: not empty and 
not the class of recursively enumerable languages itself). Then LC is undecidable.  
 
Proof. We first consider the case that the empty language LÆ is not in C. Because C is 
nonempty, there must be some nonempty language L Î C which is accepted by some TM ML.  
 
Remember that H is recursively enumerable (Prop. 6.1), that is, there is a TM K which accepts 
all inputs of the form <M>;x where M(x) ¹ â. We don't know what may happen when K is 
given some input z not of this form, but we can modify K such that it continues to work like 
before on inputs of the form <M>;x, and on inputs z of a different form either runs forever or 
accepts. We assume that K has been modified this way, that is, K is a TM that accepts a 
language over {0, 1, #, ;}. Now, for every z Î S* ={0, 1, #, ;}*, a TM Mz  can be effectively 
constructed whose accepted language is either L or LÆ. On input y Î S*, Mz first simulates K 
on z. If K(z) = "yes", then Mz, instead of halting, goes on to simulate ML on input y: it either 
halts and accepts, or never halts, according to the behavior of ML on input y. And of course, if 
K(z) = â, then Mz(y) = â as well. Schematically, Mz is the machine 
 

Mz(y)      =  if K(z) = "yes" then ML(y) else â. 
 
Now we claim that L(Mz) Î C iff z Î L(K). To show this claim, first assume z Î L(K), that is, 
K(z) = "yes". Then by construction of Mz, Mz behaves like ML, that is, Mz accepts L which is in 
C. Now assume z Ï L(K), that is, K(z) = â. In this case Mz never halts, that is, Mz accepts LÆ, 
known not to be C.  
 
But the claim actually is a reduction of the halting problem to the problem of deciding LC. 
Because if we can decide LC, we can decide for any z whether L(Mz) Î C, which by the claim 
entails that we can decide for any z whether z Î L(K), which by construction of K entails that 
we can decide H, which is impossible.  
 
This completes the proof of the claim for the case that the empty language LÆ is not in C. In 
the other case (LÆ in C) repeat the proof for the complement language LCc = {<M> | M 
accepts a language without property C} and note that LCc is undecidable iff LC is undecidable.  
 

6.3 Busy Beavers revisited: s(n) is not recursive 
 
We have derived several undecidability results in this section, starting by a diagonalization 
argument which gave us undecidability of the halting problem, and then creating from this 
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result numerous spinoffs by reduction. You might argue that the halting problem is a rather 
artificial one, and the self-referential nature of the diagonalization argument is nothing that 
you would encounter in real-life problems. But fact, most of the undecidable problems found 
in the literature ultimately rest on a diagonalization argument (because they are derived from 
such a problem by reduction). It is rare that one encounters an undecidability proof which is 
not carried out by diagonalization or reduction.  
 
A charming little example of such an undecidable problem comes from the world of busy 
beavers. Namely, the Rado function s(n), which gives the maximal number of 1's that an n-
state 1-tape TM can leave on its tape before stopping, is not a recursive function. (This claim 
can be transformed into an equivalent language decision claim. Consider the language LRado = 
{<n>;<m> | <n> and <m> are binary representations of integers n and m, and m < s(n)}. It is 
clear that LRado is decidable iff s(n) is recursive.) 
 
Proposition 6.5. s(n) is not recursive. 
 
Proof. (Taken from Arno Schwarz's [German] paper on the limits of computability31 
http://www.zum.de/Faecher/Inf/Saar/material/grenzen/grenzen1.htm). We start with the 
observation that s(n) is a strictly growing function (argument: from an n-state busy beaver 
BBn writing s(n) construct an (n+1)-state beaver that writes one more 1 than BBn). Now 
assume there is a TM B that computes s(n). We may assume that B reads in n in binary 
representation and outputs s(n) in unary representation as a sequence of s(n) many 1's. Let B 
have m states. Let n = 2k-1 for some natural number k. Let An be a 1-tape TM which started 
on the empty tape writes n in binary representation on its tape – that is, a sequence of k 1's. 
This can obviously be achieved with an An that has k = log(n+1) states. Note that An is a 
beaver TM.  
 
If you couple An with B into a combined TM AnB which first acts like An and then like B, and 
start AnB on the empty tape, then AnB writes exactly s(n) many 1's and stops. That is, AB is a 
beaver with log (n+1) + m states which writes as many 1's as the busy beaver with n states. 
But if n is sufficiently large, we have log (n+1) + m < n. This means that the beaver AnB 
which has fewer states than the n-state busy beaver writes as many ones as the latter. This 
contradicts the strict growth of s(n). · 
 
So, the search for busy beavers will go on forever... 
 
6.4 Undecidability of first-order logic 
 
One of the most important implications of the undecidability of the halting problem is that 
first-order logic is undecidable, that is, there exists no algorithm that on input <F>; <j> 
(where <F>, <j> are suitably coded versions of a finite set of FOL formulae F and a single 
formula j, respectively) can decide whether F £ j. This was first proven by A. Church32 in 
1936, and in his honour the undecidability of FOL is sometimes referred to as Church's 
theorem. Church's proof rests on the l-calculus which he invented; only a few months later, 
Alan Turing, a student of Church at that time, published a proof of the undecidability of FOL 

                                                
31 http://www.saarland.de/dokumente/thema_bildung/Prinzipielle_Grenzen_der_Berechenbarkeit.pdf, lcoal copy 
at http://minds.jacobs-university.de/sites/default/files/uploads/teaching/share/Grenzen.pdf (in German) 
 
32 http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Church.html  
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which rested on Turing machines and the halting problem. In modern textbooks, proofs of the 
undecidability of FOL usually work by reduction from the halting problem.  
 
Proposition 6.6.33 Let Σ = {@, +, 0, 1, #} be our standard Turing tape alphabet, and  
S = {c, f@, f+ , f#, f0 , f1, R} be a signature, where c is a constant symbol, fi are unary function 
symbols for every i œ Σ, and R is a ternary predicate symbol (the reason for choosing such S 
will become clear in the proof below). Then, the language  
 
LFOL = {<φ> Î {0,1,#}* | φ is a formula of FOL with symbols from S, and £ φ, that is, j is a  
    tautology}  
 
is undecidable.  
 
Here <φ> is a coding of φ as a word in the alphabet {0,1,#} according to some (arbitrary) 
coding scheme. Notice that if LFOL is undecidable, then the more general question whether    
F £ j holds for any F, j (over any signature) is a fortiori undecidable.  
 
Proof. (By reduction from the HALTING problem). We will effectively assign to every input  
<M>;x to a universal TM a FOL S-sentence φM,x such that  £ φM,x iff M(x) ¹ â. Then, if LFOL 
were decidable, H would also be decidable, contradiction. The main work to be done is the 
construction of φM,x.  
 
Let M be a single-tape Turing machine with tape alphabet Σ = {@, +, 0, 1, #} which has states 
q0 , . . . , qn , where for convenience we assume q0 to be the initial state and qn to be the 
halting state. Recall that the configurations of M are specified by 3-tuples (q, w, u), where q 
denotes the current state, and w and u are words from Σ* (with the head placed at the end of 
w). Furthermore, the transition function δ can be specified as a function on possible 
configurations obeying certain rules.  
 
We assign to the pair (M, x) an S-structure ! = (Σ*, c!, f@

!, ..., f1
!, R!), in which we can 

model the run M(x), in the following way:  
 
Let c! = ε (where ε denotes the empty word), fi

!(v) = iv for any word v Î Σ* and i Î  Σ and  
 
 R! = {(#k, w, u) | (qk, w

rev, u) is a configuration reached in the run M(x)},  
 
where wrev denotes the reverse of w and #k denotes the word consisting of k times the symbol 
’#’. To simplify our notation we write k := f#

k(c) for numbers k Î N and x := fx1 ◦    ◦ fxm (c) for 
words x = x1 . . . xm œ Σ* (notice that k and x are S-terms).   
  
We then have ! £ R(c, f@c, x), since the initial configuration is surely reachable, and 
furthermore ! £ $u $v : R(n, u, v)  iff  M(x) ¹ â. 
 
Next, we want to code the state transition rules that determine the workings of M in terms of 
S-formulas (compare Def. 3.3):  
 
                                                
33 The following proof was adapted by Michael Thon from lecture notes of Robert van Glabbeek, 
http://kilby.stanford.edu/~rvg/154/handouts/fol.html   
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• If M has a transition rule δ(q, a) = (q′, b, ←), then  
  ! £ "u "v : R(q, fau, v) → R(q′, u, fbv). 
 

• If M has a transition rule δ(q, a) = (q′, b, – ), then  
  ! £ "u "v : R(q, fau, v) → R(q′, fbu, v). 
 

• If M has a transition rule δ(q, a) = (q′, b, →), then  
  ! £ "u "v : R(q, fau, fiv) → R(q′, fifbu, v)  for all i œ Σ and 
  ! £ "u "v : R(q, fau, c) → R(q′, f+fbu, c). 
 
Let φM be the conjunction of all formulas occurring under the three cases above, i.e. the 
conjunction of all "u "v : R(q, fau, v) → R(q′, u, fbv) etc. As M has only finitely many 
transition rules, this conjunction φM is finite as well, and thus a formula of first-order logic. It 
codes which next configuration is obtained from a previous one under the operations of δ. 
Now consider the formula  
 
 φM,x = R(c, f@c, x) Ù φM → $u $v : R(n, u, v).  
 
Then it holds that £ φM,x iff M(x) ¹ â. To see this, assume first £ φM,x. Since φM,x is a 
tautology, we have ! £ φM,x, which implies ! £ $u $v : R(n, u, v) because  
! £ R(c, f@c, x) Ù φM by the construction of M and φM . But we have already seen that  
! £ $u $v : R(n, u, v)  means that M(x) ¹ â. 
 
Conversely, assuming M(x) ¹ â, then the run of M on input x must be leading to a 
configuration (qn, w, u) for some w, u Î Σ* after k steps. Let us denote the configurations of 
this run as  
 
(q0, x, ε) =: (q0, u0, v0) 

5
 (q1, u1, v1) 

5
 (q2, u2, v2)	

5
... 

5
 (qk, uk, vk) = (qn, u, v) 

 
We have to check that the formula φM,x is provable, i.e. ¢ φM,x, and therefore £ φM,x. The 
logical derivation simply repeats the run of the TM. Concretely, deriving ¢ φM,x with the 
sequent calculus (or any other FOL calculus) is equivalent to deriving  
 
 ¢  R(c, f@c, x) Ù φM → $u $v : R(n, u, v), 
 
which in turn is equivalent to deriving  
 
 R(c, f@c, x) Ù φM ¢ $u $v : R(n, u, v). 
 
The obvious way to construct a derivation is the following (several substeps omitted): 
 

1.    R(c, f@c, x) Ù φM ¢ R(q1, u1, v1) ; use the appropriate rule coded in φM 
2.    R(q1, u1, v1) Ù φM ¢ R(q2, u2, v2) ; (same) 

  ... 
 k. R(qk-1, u k-1, v k-1) Ù φM ¢ R(n, u, v) 
 k+1. R(c, f@c, x) Ù φM  ¢ R(n, u, v) ; essentially a k fold application of chain rule 
 k+2. R(c, f@c, x) Ù φM  ¢ $u $v  R(n, u, v) 
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 k+3. ¢ R(c, f@c, x) Ù φM → $u $v  R(n, u, v) 
 
In sum, it holds that £ φM,x iff M(x) ¹ â. Since the latter is undecidable, £ φM,x is also 
undecidable. · 
 
Note. This is the shortest proof of undecidability of FOL that I am aware of. Each textbook 
will do it in its author’s own special way – using different versions of TMs (or RAMs), 
different encodings of TM configurations in FOL formulae, etc. But the basic idea is always 
the same: code termination of a run of a TM in FOL.  
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7 Combinatorial algebras and Lambda calculus 
 
TMs, RAMs and recursive functions are three ways to formalize the intuitive notion of 
"computable" or "computable function". TMs are "essentials-of-symbol-manipulation-
oriented", RAMs are "machine-oriented", and recursive functions are "arithmetics-oriented". 
We will now introduce yet another way of approaching "computable functions", which one 
might declare as "functional" or "Herbert's favourite". Bear with me if I spend some time on 
the beauties of: combinatorial algebras and the Lambda calculus (let's call it CALC).  
 
Warning: CALC is deep and strange. Be prepared that you have to twist your brain. Besides 
being deep, beautiful, and strange, CALC is also very practical: it lies at the heart of 
functional programming languages, which we will introduce after the maths part. The most 
venerable of these languages is LISP, the language of artificial intelligence programming. 
You know Standard ML from the Gen CS lectures: that is another functional programming 
language. 
 
CALC was developed in the 1920's and 1930's by Moses Schönfinkel (first invented 
combinators 1924), Alonso Church34 (1903-1995, he invented the lambda calculus, gave 
name to half of the Church-Turing hypothesis, and founded the Journal of Symbolic Logics), 
and by Haskell B. Curry35 (1900-1982, invented combinators independently of Schönfinkel, 
worked out combinatorial logics toward a foundation for mathematics, and posthumously lent 
his first name to a functional programming language). 
 
A very recommendable introductory text on the lambda calculus36 as a foundation for 
functional programming was written by L. C. Paulson. It is more advanced than our treatment 
but very accessible. Another beautiful text on CALC is the third part of the book 
"Foundations of Mathematics: Questions of Analysis, Geometry and Algebra" by E. Engeler 
(Springer-Verlag 1993). Some of the following is adapted from these two sources.  
 
 
7.1 Computation in the spirit of CALC: evaluation of functional expressions 
 
If you are doing practical maths, say, "calculating" an everyday formulae like sin(p + 1), what 
do you do? Well, you first add 1 to p and then take the sine of what you have gotten so far. 
You evaluate functions on their arguments. 
 
The CALC way of thinking about maths and computation starts from this everyday 
observation and makes a dramatic claim: computation (and mathematics) is, basically, nothing 
but function evaluation. The single basic concept of CALC is the notion of function 
application. This is an action-centered perspective: the CALC view of the world (and maths) 
is dynamical and centered on change. This is in stark contrast to the perspective of set theory, 
whose object-centered perspective traces everything back to the static concept of a set. Since 
computation is an activity, an action concept seems a good starting point for a theory of 
computation. 
 

                                                
34 http://www-history.mcs.st-and.ac.uk/history/Mathematicians/Church.html  
35 http://www-history.mcs.st-and.ac.uk/history/Mathematicians/Curry.html  
36 originally from http://www.cl.cam.ac.uk/users/lcp/papers/Notes/Founds-FP.pdf local copy at 
http://minds.jacobs-university.de/sites/default/files/uploads/teaching/share/Founds-FP.pdf  
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We start our expedition into the exotic (you will soon agree I am sure!) and beautiful (you 
will soon agree I hope!) world of CALC by fixing a few notational conventions. 
 
A basic convention in the world of CALC is to use prefix notation. Thus, sinn(y +p)  becomes 
^n(sin(+(y, p))). See a little essay37 by W. M. Leach for historical background on prefix 
("Polish") and postfix ("reverse Polish") notation – it once played a role as the notation in 
HP's first pocket calculators.  
 
Another convention is to use only unary functions. Schönfinkel discovered (and Curry re-
discovered) that unary functions always suffice. The trick to convert expressions containing 
multiple-argument functions into expressions made up only of unary functions is referred to 
as "Currying". Currying the binary function + in the expression + (y, p) would work by first 
introducing a new unary functional object (+ y) ("add y") and then apply this to p, changing   
+ (y, p) into (+ y) (p). Note that the functional object (+y) contains itself a variable; it depends 
on what value is assigned to y. Thus, Currying is just the trick to turn arguments of a multi-
argument function into parameters of unary functions. Our example expression sinn(y +p)  
would become ((^n)(sin))((+y) (p)). In this formula we find another functional object that 
depends on a variable, namely, ^n. This obviously just looks like an instance of a syntactical 
rewriting, but we will see that it has mind-boggling consequences.  
 
Another convention is to agree on left-associative binding for saving brackets. That is, a 
functional expression of the form fxyz would be read as ((fx)y)z. Using this convention, 
((^n)(sin))((+y) (p)) turns into (^n sin)(+y p).  
 
Generally, Currying an m-ary function expression of the form f(x1, …, xm) is done by 
successively splitting away arguments from the right: 
 

 
 
which could be written without brackets, observing left-associative binding, as 
 
 f(m-1)x1x2...xm. 
 
One characteristic feature of CALC is implicit in Currying: the evaluation of a functional 
expression like fx1x2…xm may yield a function as a result. For instance, f(m-1)x1 is a function 
that can be applied to x2; what you then get is a function that can be applied to x3, etc. In fact, 
CALC dispenses with the type distinction between functions and arguments; it would be in 
the spirit of CALC to write f0 f1 … fm  or x0 x1… xm. (Type distinctions can later be re-
introduced). 
 
This deserves a comment. In the world view of basic CALC, the only objects in computations 
and in mathematics are functions: you apply functions to functions and get functions (just as 
in the world of set theory, the only objects from which all other mathematical objects are 
made are sets – you put together sets and get new sets, and nothing else). Notice that unary 
functions, which always evaluate to the same result regardless of the argument, can be 
considered as constants.  
                                                
37 originally taken from http://users.ece.gatech.edu/~mleach/revpol/, local copy at http://minds.jacobs-
university.de/sites/default/files/uploads/teaching/share/ReversePolishNotation.html  
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Expressions like f(m-1)x1x2...xm or (^n sin)(+y p) are the subject matter of CALC approaches to 
computation. We call such basic expressions terms. Given some fixed finite set of constant 
symbols (for instance 0 [a unary function that always returns 0] and +1 [the unary function of 
adding 1]) and an infinite set of variables (we will often use x, y, z, f, g, ..., possibly with 
indices), terms are words over the symbol set {(, )} È <set of constants> È <set of variables>, 
which can be generated with this grammar: 
 
Definition 7.1 (grammar of "pure combinatorial algebra (CA)" terms) 
 
<term> ::= <variable> | <constant> | (<term> <term>) 
 
Note that the rule <term> ::= (<term> <term>) corresponds to writing down a function 
application. Bracket-saving conventions allow us to drop brackets when they conform to left-
associative binding, e.g. we may write xy(uv) instead of ((x y)(u v)). Constants are usually 
written by uppercase symbols, e.g. X, Y, S, C. 
 
Consider some term t', for instance  
 

t' = z(x(zu(Avu))).  
 
This term is combined from variables u, v, x, z and a constant A. Instead of variables, other 
terms could have been combined into the form of t', for instance if you replace u by W(r W), 
then  
 

t'' = z(x(z (W (r W)) (Av (W(r W)))))  
 
would have, at some level of description, the same structure as t'. Combining the variables u, 
v, x, z into t' is itself a mathematical action – an application of the term-building function 
"combine terms t1, t2, t3, t4 into the structure of t = t4 (t3 (t4 t1 (A t2 t1)))" applied to 
the arguments u, v, x, z. Such term-building functions that assemble terms of a given form 
from arguments are called combinators, and interpreting term-building operations as functions 
is called functional abstraction. CALC is very much concerned with combinators. In fact, 
"pure" combinatorial algebra considers a mathematical universe which is populated only by 
combinators (dual to set theory which interprets all mathematical objects as sets).  
 
It is easy to define a combinator, giving it a name at the same time. All that is needed is to 
write down, on the left-hand side of a combinator specification, a constant symbol that will 
serve as the name of the combinator to be defined, followed by its arguments, and on the r.h.s. 
the term whose structure is constructed by the combinator. For example,  
 

Cuvxz := z(x(zu(Avu))) 
 
declares C as the (name of the) constructor of terms of the form  z(x(zu(Avu))). Remember 
that Cuvxz, by the convention of left-associativity, means (((Cu)v)x)z.  
 
We write tn[x1, …, xn] to indicate that a term made from variables and constants contains at 
most variables from the set { x1, …, xn }. An n-ary combinator A, then, is a function 
associated with some term tn[x1, …, xn] such that when A is applied to n terms s1,..., sn, it 
yields the term As1...sn =  tn[s1 / x1, …, sn /xn], that is the term obtained from tn[x1, …, xn]  by 
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replacing every occurrence of xi by the term si (i = 1,..., n). We say that A represents the term 
tn.  
 
We will stick to pure CA for a while and introduce more familiar objects (like numbers or 
Boolean functions) into our world later. The world of pure CA certainly needs some time to 
get used to. In pure CA, if you use a constant symbol within a term, it must refer to a 
combinator! And variables, of course, can only be replaced by other terms – and ultimately, 
by combinators. 
 
Let's play around with terms of pure CA a little to get a feeling for them. We define three 
(famous) combinators S, K, I by the following equations: 
 
Definition 7.2 (Combinators S, K, I) 
 

for all terms x, y, z:  Sxyz = xz(yz) 
for all terms x, y:  Kxy = x 
for all terms x:  Ix = x 

 
Note that S is – like all combinators considered in CA – a unary operator, so it would also be 
allowed to write down the term Sx. A fully written-out version of Sxyz would spell ((Sx)y)z) 
and would be read as "apply S to x, then apply the obtained combinator Sx to y, then apply 
that obtained combinator Sxy obtained to z. The equation Sxyz = xz(yz) does not imply that S is 
a ternary operator, but rather makes a statement about an iterated application of first S to x, 
then of Sx to y, then of Sxy to z. 
 
We can use equations like Sxyz = xz(yz) to reduce a CA term. For instance, consider the term 
SK(KSS)t. Using the definitions of S and K, we can reduce this term as follows: 
 
(1) 
 
 
 
We find that SK(KSS) turns out to be the identity combinator I, so we could have defined I in 
terms of S and K by putting I = SK(KSS). (There are simpler ways to define I in terms of S 
and K.) We say that SK(KSS)t can be reduced to t.  
 
A precise definition of when some term t can be derived from some term s via a sequence of 
reductions comes in the form of a calculus.  We already met such a calculus in first-order 
logic. It came in the form of a sequent calculus, in which we could write down lines 
("sequents") of the kind F j according to certain rules, which either allowed us to write down 
certain such sequents a priori, or allowed us to write down a sequent given that certain other 
sequents had already been established. A sequence of sequents produced according to the 
rules can then be considered a proof of the statement of the last sequent written.  
 
In a similar spirit, we will now describe a calculus for specifying derivations of CS terms. 
Like in the FOL sequent calculus, this calculus allows one to write down a sequence of lines, 
where each line (i) is either justified by some starting conditions that allow us to write down 
the line per se, or (ii) is justified by using lines that were previously written down. Where a 
FOL sequent F  j should be understood as "there exists a derivation ¢ for j from F, that is, F 
¢ j ", the lines in our reduction calculus for CA have the format t1 ® t2, with t1, t2 being CA 
terms, and should be understood as "there exists a sequence of reductions that carries t1 to t2". 

 SK(KSS)t ® Kt((KSS)t)  [definition of S] 
  ® t   [apply leftmost K according to def. of K] 
 



 48 

 
Definition 7.3: (reduction calculus for CA terms with constants K and S): 
 
Axioms: you may immediately write down the following lines: 
 
(A1)  t ® t   for single symbol terms (variables or constants) 
(A2) S t1 t2 t3 ® t1 t3 (t2 t3) for any terms ti 

(A3) K t1 t2 ® t1  for any terms ti 
 
Inference rules: if lines corresponding to the "enumerators" in the following schemas have 
already been obtained, you may write down the lines in the "denominators": 
 

 
 
A sequence t  s is understood as "s can be obtained from t by a reduction sequence of any 
finite number of reduction steps (including zero steps)". You can use this calculus to find out 
whether some term s is the product of an (iterated) reduction of some term t, if you find a 
"proof" for t  s. A proof is a sequence of formulae u  v, where each formula can be 
either written down immediately, justified by one of the three axioms, or can be derived from 
previous lines by one of the inference rules.  
 
Side remark: it is undecidable whether for two CA terms t, s with constants K and S it holds 
that t ® s. The proof is not simple and is based on the fact that every recursive function can 
be represented by a combinator term (see the Engeler book for more). 
 
Our example reduction SK(KSS)t® t can be formally shown to be correct w.r.t. this calculus 
by the proof 
 
 
 
(2) 
 
 
 
Note that deriving a formal proof of t  s is not the same thing as invoking an evaluation 
algorithm. Our calculus does not tell you how, exactly, you should proceed in order to reduce 
a given starting term t. But if you wish to delegate this task to a computer, you have to give a 
deterministic, completely specified algorithm. The question of how one can set up a 
deterministic algorithm that carries out reduction sequences brings us to the important theme 
of evaluation strategies. 
 

1. SK(KSS)t  Kt((KSS)t)  (apply A2) 
2. Kt((KSS)t)   t   (apply A3) 
3. SK(KSS)t   t   (apply I3 on 1. and 2.) 
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To start our discussion of evaluation strategies, note that our derivation (1) of SK(KSS)t ® t 
proceeded by evaluating combinators "from the outside" in that we did not start by evaluating 
the inner bracket level (KSS), but passed this term (KSS) to the leftmost S in unevaluated 
form. Evaluating terms "from the outside" of the bracket structure is called normal-order 
evaluation. In normal order evaluation, the term tree of the expression is searched from the 
root downwards until an evaluable operator is found, which is then evaluated; the process is 
then repeated. The derivation (1) was a normal-order evaluation. Normal-order evaluation is 
also called call-by-name evaluation (because we pass the arguments to the function as they 
are written in the formula, i.e. as they are "named").  
 
There exists no law about evaluation order, so we could also have evaluated SK(KSS)t "from 
the inside", as follows:  
 
SK(KSS)t  ® SKSt  [apply def. of K to (KSS)] 
  ® Kt(St)  [apply definition of S] 
 
At this point we cannot go further by evaluation from the inside, because the inner term (St) 
cannot be further processed. By switching to call-by-name evaluation we would get t. 
Proceeding from the inside to the outside of bracket levels is called greedy evaluation, or call-
by-value, or strict evaluation. "Mixed" evaluation strategies are possible as well, for instance 
call-by-need (aka lazy evaluation). Call-by-need evaluation follows the strategy "prefer call-
by-name evaluation but switch to call-by-value opportunistically whenever this leads to 
shorter expressions".  
 
A little warning is in place here: the usage of "call-by-value", "call-by-name", etc., is not 
clearly defined. Most authors introduce these terms in a hand-waving way (just as we did 
here). But you run into challenging subtelties if you really get concrete. For instance, consider 
the combinator D defined by Dx = xx. If you evaluate the term Kx(DD) by call-by-value, you 
will immediately run into the loop Kx(DD) ® Kx(DD) ® Kx(DD) ®... But now replace D by 
SII. Observing that D =SII in the sense that SIIx = xx, you would expect that Kx(SII (SII)) ® 
Kx(SII (SII)) ® Kx(SII (SII)) just like before. But actually, if you strictly adhere to innermost-
bracket-level-first evaluation, you will find that the innermost SII cannot be evaluated, so you 
are immediately stuck instead of entering a loop. One way to dissolve this inconsistency 
would be to interpret "call-by-value" as "always evaluate the innermost bracket level which 
admits an evaluation". Making this precise is not quite trivial, by the way! The only detailed 
specification of various kinds of evaluation order which I have spotted in the literature is in an 
article38 written by Peter Sestoft that explicitly deals with this topic. That article, however, 
deals with the more complicated lambda calculus formulae, a superset of combinator 
formulae. A very good introduction and overview on evaluation strategies can be found at 
http://en.wikipedia.org/wiki/Evaluation_strategy. 
 
A term is said to be in normal form when it cannot be further evaluated, i.e. no evaluation rule 
is applicable. Our little example has shown us that the evaluation strategy (call-by-name, lazy, 
or strict, or yet others) does practically matter: Evaluations which terminate in a normal form 
can be obtained by some evaluation strategy but not by another. Can it happen that two 
different evaluation strategies lead to different normal forms? This would be disastrous, but it 
cannot happen, as stated in the fundamental Church-Rosser theorem: 
 

                                                
38 copy at http://minds.jacobs-university.de/sites/default/files/uploads/teaching/share/2159_Sestoft01.pdf , 
originally fetched from http://www.dina.dk/~sestoft/papers/mfps2001-sestoft.pdf 
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Theorem 7.1 (Church-Rosser): If two evaluation strategies transform a term into normal 
form, then the two normal forms are identical. 
 
A supplementary theorem says that if any strategy terminates, then so does call-by-name: 
 
Proposition 7.2 (Standardization theorem): If a term can be evaluated to normal form by any 
evaluation strategy, then this can also be done by means of call-by-name evaluation.  
 
(These theorems are usually stated for the lambda calculus, an extension of pure CA which 
we will learn about soon.) By the Church-Rosser theorem, it appears that one should always 
use call-by-name; however, call-by-name is in practice often very inefficient. If it terminates 
in a normal form, strict evaluation is usually faster (has shorter derivation sequences). 
Different functional programming languages have different default evaluation strategies, and 
generally evaluation strategies is a major topic in the design of programming languages. 
 
We saw that the I combinator can be made up from S and K. In fact, S and K suffice for all 
purposes: 
 
Proposition 7.3 (combinatorial completeness) Every combinator representing a term made 
from variables and symbols S, K can be constructed from S and K.  
 
Note: we will prove a variant, "Every combinator representing a term made from variables 
and symbols S, K, I can be constructed from S and K and I." Because I can be expressed 
through S and K, this is equivalent. When applying the proposition, this version is often more 
convenient to use. 
 
 
We write tn[x1, …, xn] to indicate that a term made from variables and constants contains at 
most variables from the set { x1, …, xn }. An n-ary combinator A, then, is a function 
associated with some term tn[x1, …, xn] such that when A is applied to n terms s1,..., sn, it 
yields the term As1...sn =  tn[s1 / x1, …, sn /xn], that is the term obtained from tn[x1, …, xn]  by 
replacing every occurrence of xi by the term si (i = 1,..., n). We say that A represents the term 
tn.  
 
 
Proof. We first show an auxiliary statement. Claim: for every n ³ 1, for every term      
tn[x1, …, xn] made from (possibly not all) variables x1, …, xn and constants S, K, I there exists 
a term tn-1[x1, …, xn-1] such that (tn-1[x1, …, xn-1])( xn) = tn[x1, …, xn]. Proof of claim: By 
induction over the composition structure of tn. If tn  is non-composite and of the form tn = S or 
tn = K  or tn = I  or tn = xi, where i ¹ n, we put tn-1 = K tn. Then it holds that tn-1[x1, …, xn-1] xn = 
(K tn [x1, …, xn]) xn = tn[x1, …, xn]. The remaining possibility for tn to be non-composite is tn = 
xn. Then we put tn-1 = I  and again have tn-1[x1, …, xn-1] xn = tn[x1, …, xn]. Now assume that tn  
is composite, that is tn = tn ' tn''. By induction we have  tn ' = tn-1' xn and tn '' = tn-1'' xn. We put 
tn-1[x1, …, xn-1] = S tn-1' [x1, …, xn-1] tn-1'' [x1, …, xn-1] and verify  
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This proves our claim (and, incidentally, explains the reason for S). Combinatorial 
completeness is proven by repeated application of this claim: 
 

 
 
Notice that t0[ ] contains no variables and hence must consist solely of K, S, and I. · 
 
 
Example. Applying the above theorem in practice is quite difficult, in fact a torture for 
humans (one would rather write a computer program implementing the procedure than doing 
it by hand). The difficulty comes from the fact that we are confronted with two nested 
inductions. For a demonstration, consider the combinator A defined by Axy = xx. Formally the 
action of A is defined for two arguments x,y, that is, A is formally represented by a term  
t2[x,y] = xx. Our task is to find a term t0[] made solely from S and K and I, such that t0[]xy 
evaluates to xx. In order not to become confused during the construction, we will strictly 
adhere to the terminology used in the proof – using lower indices ti to denote the maximal 
number i of variables in t, and use primes ' and double primes '' to denote the two halves of a 
composite term.  
 
We start with t2[x,y] = xx. This is composite: t2 [x,y] = t'2 [x,y] t''2 [x,y] with t'2 [x,y] = t''2 [x,y] 
= x. Let us consider t'2 [x,y] = x. This is non-composite and thus by the method of the proof of 
the theorem can be represented by t'2 [x,y] = t'1 [x] y  = (K x)y. Similarly, t''2 [x,y] = t''1 [x] y  = 
(K x)y. Turning back to the top level t2 [x,y] = t'2 [x,y] t''2 [x,y], we have                             
t1[x]   = S t'1[x]  t''1[x] = S (Kx) (Kx). That is, we have managed to transform t2 [x,y] into            
t1[x] y.  
 
Now we have to transform t1[x] to t0[] such that S (Kx) (Kx) = t1[x] = t0[] x.  
S (Kx) (Kx) is composite: t1[x] = t'1[x]  t''1[x] = (S (Kx)) (Kx), that is, t'1[x] = S (Kx) and t''1[x] 
= Kx. Our next step is to find t'0[] and t''0[] such that t'0[] x = t'1[x] = S (Kx)  and t''0[] x = 
t''1[x] = Kx.  
 
The second is easier, so let us start with this. t''1[x] = Kx is composite and we have t''1[x]  = 
t''(')1 [x] t''('')1 [x]  with t''(')1 [x] = K  and t''('')1 [x] = x. Again by the method of the proof we 
obtain t''(')0 [] = KK and t''('')0 [] = I. Now we can turn the composite t''1[x] into t''0[] = S t''(')0 
t''('')0 = S (KK) I.  
 
The more involved t'1[x] = S (Kx) comes next. It is again composite and we have t'(')1 [x] = S  
and t'('')1 [x] = Kx. Applying the proof method on the former we get t'(')0 [] = KS. For the 
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latter, we re-use our finding from before and put t'('')0 [] = S (KK) I. Using the "S-trick",  we 
conclude by t'0[] = S t'(')0 t'

('')0 = S (KS) (S (KK) I).  
 
Now we may return to t1[x] = t'1[x]  t''1[x] and apply the S-trick, which finally gives us  
A = t0[] = S t'0[] t''0[] = S (S (KS) (S (KK) I)) (S (KK) I). 
 
Checking: S (S (KS) (S (KK) I)) (S (KK) I) x y = (S (KS) (S (KK) I)) x ((S (KK) I) x) y =  
= KSx ((S (KK) I) x) (Kx) y = S ((S (KK) I) x) (Kx) y = ((S (KK) I) x)y ((Kx) y) =  
= (KK x) (I x) y x = K x y x = xx. Relief ! we did not err on our tangled path.  
 
 
 
 
 
7.2 Lambda abstraction 
 
Combinatorial completeness shows us that we could in principle define any combinator 
through S and K. However, this leads to quite complex formulas even for simple combinators. 
We would prefer to have a way to formally express something like "let A be the combinator 
which has the property that Axy = yx". The tricky part in this statement is "the combinator 
which has the property that Axy = yx". Why is this tricky? Well, how would you write down 
formally "the arithmetic operation which adds two numbers and squares the result"? The 
standard way of introducing functions in mathematics is to write something like 
 
f: N2 ® N , f(n, m) = (n + m)2 

 
and in programming to define a function by something like  
 
definefunction (type integer) (name f) (arguments x y) (x+y)^2 

 
In any case, you introduce a function symbol, and whenever you use that function later in 
proofs or programs, you have to follow up a (mental or programmed) pointer to the definition. 
But when you are living in a world made up exclusively of functions (the world of CALC), 
this is cumbersome, because during computations often there will be functions created "on the 
fly" for local use, and you would have to leave the ongoing computation, create that function 
definition, and return with a pointer. In addition, you would have to bother (in programming) 
about mechanisms for the automated creation of unambiguous function identifiers. 
Fortunately, Church invented lambda abstraction, or anonymous functions (though at his time 
he surely did not have programming in his mind). A lambda expression is a way to write 
down a function (in CALC: a combinator) without naming it (and without combining it 
explicitly from S and K). A lambda expression for our (n + m)2 example would look like this:  
 
lnm. ((n + m)2) 
 
In order to write down that this function is to be applied to two arguments, say arithmetic 
terms t1 and t2, you would write 
 
lnm. ((n + m)2) t1 t2 
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For example, you would have lnm. ((n + m)2) (1+2) 1 = 16, or lnm. ((n + m)2) k 1 = (k + 1)2. 
Or in a combinator example, luv. (vu) xy = yx. We now make this formal and extend our 
grammar of pure combinators into the grammar of lambda calculus: 
 
Definition 7.4 (syntax of l-terms) 
 
<term> ::= <variable> | <constant> | (<term> <term>) | 
           (l <variable> . <term>) 
            
 
The terms derivable in this grammar are called l-terms. Since combinators are unary 
operators, this grammar specifies only unary l-terms. We will use shorthand notation to save 
brackets and nested lambdas, for instance we write lxy. t for (lx. (ly. t)), etc. Note that this 
bracket-saving convention for nested lambdas relies on right-associative binding. This is a 
powerful source of confusion since otherwise we retain the left-associative binding 
convention. The term t in lx. t can, but need not, contain the variable x.  
 
To make this formal, in an expression (lx. t), t is called the body of the l-term. Every 
occurrence of x in the body t is bound by the lambda abstraction. An occurrence of a variable 
is free if it is not bound by some enclosing  l-abstraction. For example, x occurs bound and y 
free and z both bound and free in  (lxz. xz) zy. Here is a formal specification of which 
variables are bound and which are free in a lambda term (following  Paulson's lecture notes39, 
section 1.2. ): 
 
Definition 7.5: (free and bound variables in lambda terms).  
 
(a) The set BV(t) of the bound variables in a lambda term t is defined by induction over the 
structure of lambda terms as follows: 
 
BV(x) = Æ 
BV(C) = Æ 
BV(t t') = BV(t) È BV(t') 
BV(lx t) = BV(t) È {x} 
 
(b) The set FV(t) of the free variables in a lambda term t is defined by induction over the 
structure of lambda terms as follows: 
 
FV(x) = {x} 
FV(C) = Æ 
FV(t t') = FV(t) È FV(t') 
FV(lx t) = FV(t) \ {x} 
 
Notice that according to this definition, a variable x which is bound in t need not occur in the 
body of t. For instance, x is bound in  (lx. Syy).  
 
A l-term without a free variable corresponds to a combinator, and vice versa (think about it). 
Examples: our I combinator could be expressed by the lambda expression  lx. x, the S 

                                                
39 Originally from http://www.cl.cam.ac.uk/users/lcp/papers/Notes/Founds-FP.pdf; copy at http://minds.jacobs-
university.de/sites/default/files/uploads/teaching/share/Founds-FP.pdf 
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combinator by  lxyz. xz(yz). The l-term  ly. x contains a free variable and thus does not 
represent a combinator; instead, it represents a function which returns the variable x when 
applied to any argument. (Hey! isn't that weird? a function that returns a variable?? yes, it's 
weird – and smells as if it is strangely powerful, too...) Note that, due to cases with free 
variables,  l-terms are more expressive than combinators made from S and K: such 
combinators cannot "return" terms containing variables that are not supplied to the 
combinator as an argument.   
 
When we apply a l-term  (lx. t)  to another term s, what we actually do in terms of symbol 
manipulation is to substitute s for all free occurrences of x in t, and drop the  lx-enclosure. 
For instance, the application  (lx. (xKy)) (lz. Szzz) yields (lz. Szzz)Ky. To make this precise, 
we define variable substitution as follows: 
 
Definition 7.6: (variable substitution). t[s/y], the result of substituting a term s for all free 
occurrences of y in t, is defined per induction over the structure of terms by 
 

 
 
This definition is part of our meta-language about the lambda calculus, not a part of lambda 
calculus itself, which is why we write "º" and not "=". "x º y" should be understood as "the 
identifier x is identically the same symbol (or symbol sequence) as the identifier y". By 
contrast, when we write "x = y" we want to say: "the mathematical object denoted by x is the 
same mathematical object as denoted by y", which would be a statement within the theory of 
lambda calculus. 
 
Substitution must not disturb variable binding. Consider the combinator  (lx. (ly. x)). It 
should represent the function that, when applied to an argument s, returns the constant 
function (ly. s) [which, when applied to anything, returns s]. Unfortunately, this does not 
work with argument s º y, because then we would get  (lx. (ly. x)) y = (ly. y) = I. The 
argument y is "captured" by the bound of ly. To avoid such variable capture pitfalls we have 
to make sure that when we apply a lambda term t to an argument s, building ts, no variable 
which occurs bound within t is free in s. We can always rename the bound variables in t to 
make this condition true. For example, instead of  (lx. (ly. x)) y we would use  (lx. (lz. x)) y. 
We will tacitly use such variable renamings whenever required; a compiler for a programming 
language based on l–calculus would have to do this automatically. Renaming variables is 
sometimes called "a-reduction" in lambda calculus.  
 
 
b-reductions, h-reductions and l-calculus proper 
 
The process of applying a l-term to its arguments (= evaluation of a function) is called b-
reduction (or b-conversion). In formal terms, a b-reduction leads from (lx.t) s to t[s / x], 
written (lx.t) s ®b t[s / x]. When carrying out a b-reduction, one must make sure (by 
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appropriate variable renaming if required) that no variable which is free in s is bound in t, in 
order to avoid variable capture.  
 
Example: (lz.zy)lx.x ®b (lx.x)y ®b y.  
 
If you apply a l-term of the form (lx. fx) to any argument s, you get (lx. fx) s ®b  fs. That is, 
(lx. fx) behaves exactly like f itself, and we may therefore reduce terms of the form (lx. fx) to 
f. This is called h-reduction: (lx. fx) ®h f.  
 
b or h reductions can be applied to subterms, yielding overall correct reductions. We write     
s ® t if t can be obtained from s by a single b or h reduction, possibly applied to a subterm of 
s. Similar to TMs, where we introduced the transitive closure 

5∗
  of single-step state update 

rule applications, we write t ®* s if s can be obtained from t through a finite number of 
single-step reductions ®.  
 
When t ®* s, our insight into the intuitions behind b and h reductions would justify that we 
claim "s and t refer to the same mathematical object, they are equal" (just as we say, "2 is 
equal to (1+1)"). A bit more generally, we would also say that if s and t are equal, one is 
connected to the other by a sequence of reductions and/or expansions (where an expansion is 
just a reduction read backwards), like this: 
 

 
 
To make our notion of equality formal, we introduce a symbol "=" to denote it, and a 
complete calculus which allows us to carry out formal proofs for term equality:  
 
Definition 7.7: (calculus for equality of l-terms, aka "l-conversion calculus") 
 
Axioms: 
 

 
 
Inference rules: 
 

 
 
 
This calculus is (like the simpler reduction calculus for CA we met before) a tool for 
reasoning about (equality of) l-terms, not a machinery to actually compute with l-terms. For 
example, the following is a proof for the equality claim (luv. v) st = t: 
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1. (luv. v) s  =  (lv. v)    (A3) 
2. (lv. v) t  =  t    (A3) 
3. (luv. v) st  =  (lv. v) t  (I4) on 1. 
4. (luv. v) st  =  t   (I2) on 2., 3. 
 
 
7.3 Basic programming constructs in l-calculus 
 
If we want to do Boolean logic, construct standard data structures, or do arithmetics within l-
calculus, we have to define the respective basic mathematical objects (like truth values, lists, 
numbers and addition) as combinators – because combinators are the only objects we have at 
our disposal. This is similar to the re-construction of integers as sets (you may have learnt in 
the early math lectures that 0 is represented by the empty set {}, 1 by {{}}, 2 by {{{}},{}}, 
etc.) This involves some coding, i.e. we must agree on some conventions about what 
combinators will mean what mathematical object. The beauty of the l-calculus resides to a 
great deal in the fact that codings have been found which, in a sense, are not arbitrary: they 
carry with them the "symbol manipulation operations" which are typically performed on the 
respective mathematical object.  
 
Booleans 
 
We start with the booleans, where this becomes particularly clear. The most important usage 
of truth values TRUE and FALSE in most programming languages is in IF clauses, which 
basically look like this:  
 
IF "this is true" THEN "do this" ELSE "do that",  
 
or if you simplify the syntax a bit,  
 
IF "this is true" "do this" "do that". 
 
The evaluation of such a program statement should result in "do this" if "this is true" 
evaluates to TRUE, and it should result in "do that" if "this is true" evaluates to FALSE. 
Written out, we want to have 
 
IF TRUE "do this" "do that" ® "do this",  
IF FALSE "do this" "do that" ® "do that".  
 
Well, "do this" and "do that" refer to some mathematical action – clearly a combinator in the 
world of CALC. FALSE and TRUE also must be combinators – because in the CALC world 
there is nothing but. The same holds for IF. Considering this after a having emptied a glass of 
good wine, it becomes clear that all what we need to encode this piece of Boolean logic in the 
l-calculus are three combinators true, false, if which satisfy  
 
(*) 
 
for all l-terms s and t. The usual way to encode true, false, if such that this desired behavior 
is achieved is 
 

if true s t ®* s, 
if false s t ®* t 
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true  º  lxy. x  (=  K !) 
false  º  lxy. y 
if  º  lpxy. pxy 

 
It is easy to see that (*) is indeed obtained with this definition. For instance, let us check  
if true s t ®* s. Inserting the definitions of if and true, we get 
 
(lpxy. pxy) (lxy. x) s t     
   ®* (luvw. uvw) (lxy. x) s t  [variable renamings] 
   ®* (lxy. x) s t    [b-reductions]  
   ® s     [b-reduction] 
 
 
The operations of Boolean logics can be defined from here, for instance 
 

not  º  lp. if p false true 
and  º  lpq. if p q false 
or  º  lpq. if p true q  

 
In order to verify these, you have to check the truth table for the particular operator. For 
instance for and it should hold  
 

and true true  ®*  true 
and false true  ®*  false 
and true false ®*  false 
and false false ®*  false 

 
This is easily verified.  
 
 
 
 
Pairs and lists 
 
What is the essence of lists? Strange question... from the Algorithms and Datatypes lecture, 
and maybe from exposure to object-oriented programming, you are familiar with the idea that 
in order to define a datatype or object class (such as list), and in order to make it useful, one 
usually defines operations for constructing and for accessing instances of the datatype. This is 
also the spirit how datatypes are designed in lambda calculus. We start with the simplest kind 
of lists, namely pairs. A constructor for pairs is a combinator pair which takes two arguments 
and binds them into a pair – that is, the lambda term (pair s t) should represent the ordered 
pair made from terms s and t. The core operations that one should be able to  perform with 
pairs are – well, just to select the first element of a pair if one wishes, and to select the second 
if one wishes (think about it – that’s what “pair-ness” is all about). So, in addition to the 
constructor pair which binds s and t into the pair (pair s t) we also want to have selectors 
first and second, such that for any lambda terms s, t we have 
 

first (pair s t) ®* s 
second (pair s t) ®* t 
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There are many ways to design lambda-terms pair, first, and second which work out like 
that, for instance 
 

pair  º  lxyf. fxy 
first  º  lp. p true 
second  º  lp. p false 

 
do the job (easy to check). Magic can be so simple.  
 
It is sometimes convenient to write (s, t) for pair s t. Lists are construed by most authors as 
nested pairs, with some extra conventions. The basic idea is to conceive of a list [x1, ..., xk] as 
the nested structure of pairs (x1, (x2, (.... (xk-1, (xk, nil)) ...))), which in the world of lambda 
calculus is also often written as x1 :: x2 :: .... :: xk :: nil. nil is a special end-of-list marker which 
is also treated as the empty list, i.e. [] corresponds to nil. The central operation for 
constructing a list is to make a pair from the new head element of a list and the rest (tail) of 
the list. This operation is usually called "cons", and in l-calculus it is concretely the l-term 
 

cons  º  lxy. (pair xy) 
 
Example: the list [x1, x2] corresponds to the l-term (x1, (x2, nil)), which is obtained from 
reducing cons x1 (cons x2 nil). If you think about it, you will find that cons ®* pair by h-
reductions, so the definition of cons above gives us nothing new. cons is just another name 
for pair, introduced as an extra because (i) the definition lxy. (pair xy) of cons makes it 
visible how pair is employed to construct a pair from arguments, and (ii) because cons has a 
place in history (and present time) as a fundamental construct in LISP. Some authors define 
cons º  lxyf. fxy and avoid the introduction of pair; other authors yet (such as Paulson) use a 
different definition for cons (and lists), namely, cons º  lxy. pair false (pair xy).   
 
A way to define nil (derived from "not in list") which is useful for later purposes is to put  
 

nil  º  lx. true 
 
nil is useful to determine whether the end of list has been reached in recursive definitions on 
lists (see below), together with a predicate null which checks whether a list is the empty list, 
that is, a combinator satisfying 
 
  null nil ® true 
  null (cons x y) ® false 
 
One way to define null is via 
 
  null  º lp. (p (lxy. false). 
 
The selectors head and tail, which pick the first element and the rest of a list, respectively, can 
be defined by  
 

head  º  lx. (first x) 
tail  º  lx. (second x) 
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You can easily check that head (cons s t) ®* s and tail (cons s t) ®* t. Again, head and tail 
h-reduce to first and second, thus (like cons) they are superfluous, but illuminating "syntactic 
sugar40" items.  
 
This way of constructing lists directly models a frequent implementations of list data 
structures by "cons cells", where each element xi of the list is implemented by a pair of 
pointers, the first of which points to xi and the second to the next pair of pointers in line, as in 
Figure 7.1. Functional programming languages like Lisp or Scheme root in this way of 
handling lists (the name Lisp derives from "list processing").  
 
 

 
 
Figure 7.1: Implementing the list [x1, x2, x3] by "cons cells".  
 
 
Elementary arithmetics 
 
Church encoded the natural numbers in lambda terms now referred to as Church numerals: 
 

0  º  lfx. x 
1  º  lfx. fx 
2  º  lfx. f(fx) 
    ... 
n  º  lfx. f(...(fx)...)  [n occurrences of f in body of l-term] 

 
Thus, n gz evaluates to gnz, i.e. the Church numeral n is a general n-fold function iterator. 
 
The elegance of l-calculus comes to the surface when we see how addition, multiplication 
and exponentiation work: 
 

add  º  lmnfx. mf(nfx)    ["m-fold application of f followed by n-fold  
application of f gives m+n-fold application of f"] 

mult  º  lmnfx. m(nf)x ["m-fold application of n-fold application of f  
gives mn-fold application of f"] 

exp  º  lmnfx. nmfx  ["iterating m-fold application n times gives an  
mn-fold iterator, which applied to f gives mn-fold  
application of f"] 

 
 
We check addition here as an example: 
 
 

                                                
40 see http://en.wikipedia.org/wiki/Syntactic_sugar for the meaning of "syntactic sugar", who coined this term, 
and what syntactic salt and syntactic saccharine is! 
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  add m n  ®* lfx. m f(n f x) 
®* lfx. f m(f n x) 
º     lfx. f m+n x 

    º     m + n 
 
The successor function and the test for being zero can be coded as follows: 
 

succ  º  lnfx. f(nfx) 
iszero  º  ln. n(lx. false) true 

 
Defining the predecessor function pre (n + 1) ®* n and the subtraction sub is tricky; one way 
to do it is shown in Paulson's lecture notes41 on page 15. Church himself struggled a long time 
to find a way to get sub. Interestingly, recovering the Ackermann function is easier than 
subtraction: 
 

ack  º  lm. m(l f n. nf(f 1)) succ 
 
does it. It is altogether one page of straightforward calculation to show that the defining 
equations of the Ackermann function hold: 
 

ack 0 n  =  n + 1 
ack (m + 1) 0  =  ack m 1 
ack (m + 1) (n + 1)  = ack m (ack (m + 1) n) 

 
 
Defining functions by recursion 
 
The reconstruction of the Ackermann function by a lambda expression unfortunately comes 
"out of the blue" (like a good busy beaver program) and does not illuminate us toward a 
general-purpose recipe for creating recursive functions in the l-calculus. But such a general 
recipe exists, is simple, mathematically transparent, and is indeed one of the main reasons 
why you should know about CALC at all.  
 
This general recipe has one super-power ingredient: a fixed point combinator Y. A fixed-point 
combinator is any combinator Y with the property that for any term f,  
 

Y f = f (Y f) 
 
Y is called fixed point combinator because for every term f, Y creates a fixed point of f, 
namely Yf. There are many ways to specify a fixed-point combinator by a l-term. The most 
frequently used one goes back to Curry: 
 

Y  º  lf. (lx. f(xx)) (lx. f(xx)) 
 
The following derivation shows us that Y thus defined does what we want: 
 

Y F   ®  (lx. F (xx)) (lx. F (xx)) 
® F ((lx. F (xx)) (lx. F (xx))) 

                                                
41 Originally from http://www.cl.cam.ac.uk/users/lcp/papers/Notes/Founds-FP.pdf; copy at http://minds.jacobs-
university.de/sites/default/files/uploads/teaching/share/Founds-FP.pdf 
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=    F (Y F) 
 
The fixed point combinator can be expressed in terms of S, K, I as follows (check it if you are 
of a playful disposition): 
 
  Y = S (K (S I I)) (S (S (K S) K) (K (S I I))) 
 
To demonstrate how recursion is realized using Y, we shall encode the factorial function and 
the infinite list [0,0,...] in l-calculus, realising the recursion equations 
 

fact N  =  if (iszero N) 1 (mult N (fact (pre N))), 
zeroes  = cons 0 zeroes, 

 
which of course are no valid definitions, because the to-be-defined combinator appears on 
both sides of the "=" – but that's just the essence of recursive definitions! However, with a 
little help from Y we can turn these equations into valid definitions: 
 

fact  º  Y (lgn. if (iszero n) 1 (mult n (g (pre n)))) 
zeroes  º  Y(lg. cons 0 g) 

 
In each of these definitions, the recursive call is replaced by the variable g. We verify that this 
works for zeroes and leave fact as an exercise.  
 

zeroes  =  Y (lg. cons 0 g)        [by definition] 
 =  (lg. cons 0 g) (Y(lg. cons 0 g))  [use fixed point property of Y] 
 =  (lg. cons 0 g) zeroes     [plug in def. of zeroes] 
 = cons 0 zeroes    [b-reduction] 

 
This is a fast, human-insight based derivation. The result zeroes  = cons 0 zeroes  could also 
be derived with 100% formal rigor using our l-conversion calculus from Def. 7.6: 
 
 
1.  Y  =  lf. (lx. f(xx)) (lx. f(xx))      premise 
2.  zeroes  =  Y (lg. cons 0 g)          premise 
3.  Y  (lg. cons 0 g)   =  (lf. (lx. f(xx)) (lx. f(xx)))  (lg. cons 0 g)     I4 on 1. 
4.  (lf. (lx. f(xx)) (lx. f(xx)))  (lg. cons 0 g) =  
  ((lx. (lg. cons 0 g)(xx)) (lx. (lg. cons 0 g)(xx)))  A3 on 3. 
5.  (lx. (lg. cons 0 g)(xx)) (lx. (lg. cons 0 g)(xx)) =  
  (lg. cons 0 g)((lx. (lg. cons 0 g)(xx)) (lx. (lg. cons 0 g)(xx)))  
          A3 on 4. 
6.  zeroes = ((lx. (lg. cons 0 g)(xx)) (lx. (lg. cons 0 g)(xx)))  I2 on 2., 3., 4.  
          (2 times) 
7.  (lg. cons 0 g)((lx. (lg. cons 0 g)(xx)) (lx. (lg. cons 0 g)(xx))) =  
  (lg. cons 0 g) zeroes      I5 on 6. 
8.  zeroes = (lg. cons 0 g) zeroes     I2 on 2., 3., 4., 5. 
          (3 times) 
9. (lg. cons 0 g) zeroes = cons 0 zeroes     A3 on 8. 
10. zeroes = cons 0 zeroes       I2 on 8., 9. 
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The combinator zeroes is a mathematical object that has the (defining) property              
zeroes = cons 0 zeroes. We can "visualize" this property by writing 
 
 zeroes =  0 :: 0 ::  0 :: 0 :: 0 … 
 
But this does not mean that zeroes is something like an "infinite-size l-expression". The 
representation of zeroes as a right-infinite sequence is just our human-intuitional way to 
visualize the property zeroes = cons 0 zeroes. Combinators that can be "visualized" in this 
way as right-infinite sequences are called streams. Streams are perfectly normal citizens of 
the data type universe, and one can define and apply perfectly normal selector operations for 
them, like first or second or third, with the obvious semantics. 
 
7.4 l-calculus and recursive functions 
 
Given that we can realize recursion in l-calculus, it is not surprising that we can easily 
represent all primitive recursive functions in l-calculus: 
 

• For 0 use 0. 
• For the successor function use succ. 
• For the projection pr

i use lx1...xr. xi 
• To get the substitution scheme, assume that the functions f: Nr ® N and                 

g1,..., gr: N
m ® N are represented by l-terms F, G1, ..., Gr. Their composition is 

declared in l-calculus by  
 

H  º  lx1...xm. F (G1 x1...xm)...( Gr x1...xm) 
 

• To get primitive recursion, assume that the functions f: Nr ® N and g: Nr+2 ® N are 
represented by l-terms F, G. The primitive recursive function H: Nr+1 ® N is defined 
by 
 H º Y ( lhyx1...xr. if (iszero y) 

(F x1...xr) 
(G (pre y) (h (pre y) x1...xr) x1...xr) 

) 
 
The µ-recursion scheme can likewise be described within l-calculus, but it is more involved 
and we omit it here (see the Paulson lecture notes for a simplified version which covers µ-
recursion from totally defined functions, and the Engeler book for a complete but very 
condensed treatment).  
 
Thus, the recursive functions can be characterized within the l-calculus. The converse is also 
true: every (partial or total) function definable within the l-calculus is a recursive function. 
The proof proceeds in two steps. First, one describes an interpreter mechanism for evaluation 
of l-terms, by specifying term transformation rules in the spirit of our reduction calculus (but 
including detailed specifications of evaluation order to end up with a deterministic 
mechanism). Second, the rules of this mechanism must be translated into the rules of a TM 
which mimicks the rules. This is yet another simulation exercise and shows that the functions 
definable within the l-calculus are TM-computable, which is equivalent to being recursive.  
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7.5 A simple functional programming language 
 
We now show how the l-calculus can be directly turned into a programming language. This 
yields a functional programming language. The programming language that we will use here 
was written and implemented by Lloyd Allison from Monash University, Australia. He hasn't 
named it, I will call it L5, which of course stands for LLoyd's Little Lambda Language. Much 
of the following description of L5 I have just copied from Lloyd Allison's lambda calculus 
webpage http://www.csse.monash.edu.au/~lloyd/tildeFP/Lambda/Ch/ (or 
http://www.allisons.org/ll/FP/Lambda/). Lloyd Allison has backed up this webpage with an 
interpreter for L5, so you can type in and run little L5 programs there.  
 
L5 is very similar to ISWIM ("If you see what I mean"), an early functional programming 
language devised by Peter Landin in the mid-60'ies to analyse Algol 60, a then dominating 
programming language (and, allow me a flash of nostalgia, the language that I was trained on 
during my university studies, using punchcards as input medium). ISWIM dominated the 
early literature on functional programming and was the model for ML, a functional 
programming language still in widespread use – as you know.  
 
Here is the central part of the syntax of L5:  
 
<program> ::= <Exp> 
 
<Exp> ::= <ident> | <numeral> | '<letter>' | () | true | false | nil | 
          ( <Exp> ) | <unopr> <Exp> | <Exp> <binopr> <Exp> | 
          if <Exp> then <Exp> else <Exp> | 
          lambda <param> . <Exp> |  <Exp> <Exp> | 
          let [rec] <decs> in <Exp> 
 
<decs>  ::= <dec>,<decs> | <dec> 
<dec>   ::= <ident>=<Exp> 
 
<param> ::= () | <ident> 
 
<unopr> ::= hd | tl | null | not | - 
<binopr> ::= and | or | = | <> | < | <= | > | >= | + | - | * | / | :: 
 
priorities:   ::                1  cons list (right associative) 
              or                2 
              and               3 
              = <> < <= > >=    4  scalars only 
              + -               5  (binary -) 
              * /               6 
              application       7 
              - hd tl null not  8  (unary -) 
 
Some comments: 
 
The basic construct of a L5 program is an expression <Exp>. If you look at the grammar, you 
will find that L5-expressions are essentially l-terms, with predefined constants true, false, 
nil, atomic data types <numeral> (which means integer; L5 only does integer arithmetics) 
and '<letter>' (i.e., alphanumeric symbols). Binary operators can be inputted in infix 
format.  
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The above syntax is not quite complete. For completion it would need subgrammars that 
declare what strings are admissible for variable names (i.e. the "identifiers" <ident>) and 
what letters are allowed (the <letter>). Lloyd's website does not provide these specs. If you 
use for identifiers alphanumeric sequences that start with letters (like var12, x, t, f, x1, 
x2) you are on the safe side.  
 
The let [rec] <decs> in <Exp> construct serves to pass values to the variables of a 
function. It directly corresponds to the evaluation of l-terms, that is, to b-reduction, as 
follows: 
 
let x = M in N  º    (lx. N) M  [single declaration example] 
let x = M, y = K in N º    (lxy. N) M K  [multiple declarations example] 
 
As an important special case, if M is a function, this reads 
 
let f = lambda x1. ... lambda xn. M in N  º    (lf. N) (lx1...xn. M) 
 
The optional rec argument in let is for recursive function definitions and relates to l-terms 
like this: 
 
let rec f = lambda x1. ... lambda xn. M in N º    (lf. N) (Y (lgx1...xn. M)) 
 
As a little starter demo, this is how one can write the factorial function in L5: 
 
let rec fact = lambda n. if n=0 then 1 else n*fact(n-1) 
in fact 10 

 
Nicely compact, isn't it? In l-calculus, this program would correspond to the term 
 
(lfact. fact 10) (Y(lgn. if (iszero n) 1 (mult n (g (pre n))))) 
 
As can be seen from this example, in L5 you cannot first define a function and then later 
independently use the definition. (There is no "define function" operator in L5). A 
function can only be defined within a let environment (which at its end typically evaluates 
the function). The fundamental structure <program> ::= <Exp> of a L5 program implicitly 
says "a program corresponds to a l-term, there is no way of sequencing commands like in 
imperative programming languages".  
 
A more interesting example is the hamm program given at 
http://www.csse.monash.edu.au/~lloyd/tildeFP/Lambda/Ch/03.Prog2.Hamm.shtml. Like the 
zeroes lambda expression that we considered earlier, hamm is best understood as representing 
a stream. In this case, hamm can be visualized as an "infinite list" which contains in ascending 
order the Hamming integers, i.e. all integers which are either 1 or some multiple of 2, 3 and/or 
5. The sequence begins 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, ... . Note that 7, 11, 13, 14 are not in 
the list.  
 
The Hamming program (see further below) defines a stream which begins with the first 
Hamming number `1':  
 

hamm = 1 :: ... 
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Besides 1, the Hamming numbers are all numbers whose factor decomposition only has prime 
factors 2, 3, 5. Stated differently, the Hamming numbers is the smallest set of integers 
containing 1 which is closed under multiplication with 2, 3, and 5. The program therefore 
continues from 1 :: ...   by merging the results of multiplying the members of the list by 2, 3 
and 5.  
 

merge (mul 2 hamm) (merge (mul 3 hamm) (mul 5 hamm)) 
 

Merging two increasing lists of integers means to compute the sorted union of the two lists 
(weeding out duplicates). The merge and multiply functions can be implemented quite 
straightforwardly. The program below never terminates but continues to print Hamming 
numbers until it runs out of space or is killed.  
 
let rec 
   merge = lambda a. lambda b. 
      if hd a < hd b then (hd a)::(merge (tl a) b) 
      else if hd b < hd a then (hd b)::(merge a (tl b)) 
           else (hd a)::(merge (tl a) (tl b)), 
 
   mul = lambda n. lambda l. (n * hd l)::(mul n tl l) 
 
in let rec 
   hamm = 1::(merge (mul 2 hamm) (merge (mul 3 hamm) (mul 5 hamm))) 
 
   in hamm 

 
 

 
 
Figure 7.2: data streams in hamm. 
 
The merge and multiplication functions can be thought of as processes communicating by 
streams of values. The initial value '1' has to be injected to start the calculation. Many 
operating systems and other useful programs have similar structures where graphs of 
processes communicate through streams. 
 
 
General remarks about functional programming languages 
 
There are many functional programming languages, some of them very close to l-calculus, 
others with extensive add-ons. The functional programming languages FAQ at 
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http://www.cs.nott.ac.uk/~gmh/faq.html42 lists about 20 such languages – the best known are 
probably Haskell, ML, Miranda, Scheme, and Lisp. (However, Lisp is not mentioned in that 
FAQ list! the reason is that Lisp is (in)famous for not being a "clean" functional programming 
language; in fact, Lisp is arguably the programming language with the largest set of command 
primitives, and like a chameleon, a Lisp program can on the surface mimic almost every 
programming style. However, the Common Lisp standard has a rigorous functional evaluation 
scheme underneath the gaudy surface.) 
 
Generally, quoting from the FAQ 

"Functional programming is a style of programming that emphasizes the 
evaluation of expressions, rather than execution of commands. The expressions 
in these languages are formed by using functions to combine basic values. A 
functional language is a language that supports and encourages programming 
in a functional style."  

 
Functional programming should be contrasted to imperative programming styles (and 
languages, such as C). In a C (or Pascal or Basic or Java... they are all imperative languages) 
program, you (the programmer) specify the operations and sequence of actions that are carried 
out when the program executes. You want, and get, control over the ticks of the 
computational clockwork. By contrast, in a functional programming style, you don't care (or 
pretend not to care) about the actual mechanism and sequence of manipulations that your 
computer does when it carries out the program. You just declare your problem to the machine, 
essentially by defining a function that results in the answer of your problem, and leave all the 
details of function evaluation to the interpreter and/or compiler. This is the basic idea of 
declarative programming styles: writing a program is "just" specifying the problem; the 
operations that derive a solution from your problem declaration are hidden from you and you 
don't even want to bother. Functional programming is one approach to declarative 
programming; the other main approach is logic programming (where you declare your 
problem as a logical formula that you wish to have proved by a mechanism which you don't 
want to care about).  
 
To put our little treatment of lambda calculus and functional programming into perspective, 
you might enjoy a condensed overview about history, types and principles of programming 
languages43  and at http://people.ku.edu/~nkinners/LangList/Extras/classif.htm44 where you 
find a short explanation of about 20 basic categories of programming languages and styles. 
You might also wish to get a feeling for history by taking a glance at the genealogical tree of 
the 150 most important programming languages compiled by Pascal Rigaux, which I found at 
http://rigaux.org/language-study/diagram.html   (Figure 7.3). 
 
A note on the practical usefulness of functional programming languages. They have one 
major disadvantage: execution of functional programs is slow, and they have one big 
                                                
42 local Jacobs copy (retrieved April 5 2010) at http://minds.jacobs-
university.de/sites/default/files/uploads/teaching/share/faq_compLangFunctional.html  
43 http://minds.jacobs-
university.de/sites/default/files/uploads/teaching/share/ProgrammingParadigmsHistory.html (fetched from 
http://www.cs.qub.ac.uk/~J.Campbell/myweb/oop/oophtml/node4.html in about 2005, this website is not longer 
active) 
44 local Jacobs copy at http://minds.jacobs-
university.de/sites/default/files/uploads/teaching/share/classifyingProgLangs.html , the original URL is now 
unavailable 
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advantage: functional programs are transparent, and their behavior can be described 
rigorously using lambda calculus. The first property renders functional programming 
languages often unsuited for industrial and business applications. But the second property 
makes them a premier choice for program and compiler verification tools. For instance, the 
HOL system45 (written in ML) "is a powerful and widely used computer program for 
constructing formal specifications and proofs [about l-calculus statements] in higher order 
logic. The system is used in both industry and academia to support formal reasoning in many 
different areas, including hardware design and verification, reasoning about security, proofs 
about real-time systems, semantics of hardware description languages, compiler verification, 
program correctness, modelling concurrency, and program refinement. HOL is also used as an 
open platform for general theorem-proving research." (from 
http://homepages.inf.ed.ac.uk/wadler/realworld/ where real-world applications of functional 
programming languages are listed). And, of course, their mathematical transparency also 
makes functional programming languages a frequent choice as a first language for students in 
university computer science courses.  
 

                                                
45 http://hol.sourceforge.net/ 
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Figure 7.3: a genealogy of programming languages. From Pascal Rigaux's stunning website 
on programming languages (rigaux.org) 
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Part 2: Complexity 
 
8  Two elementary problems: REACHABILITY and TSP 
 
We learnt earlier in this lecture that TMs (or algorithms in general) can be used to (i) compute 
numerical functions, (ii) decide / accept languages, (iii) solve "problems". These three aspects 
are basically equivalent (Section 3.1). For the theory of computational complexity, the third 
perspective is most commonly adopted.  
 
Remember that a "problem", in the language of theoretical computer science, is a bag of 
questions that can be rigorously formalized and be offered to a computer (or a TM or a RAM 
or to lambda calculus...), typically in the form of yes/no questions. To get started on the theme 
of complexity, we will present two concrete problems. The first of these problems, "finding 
out whether in a given graph a certain node is reachable from another given node", can be 
solved in polynomial time, whereas the other, the "traveling salesman problem", is famous for 
the fact that (very likely) it needs exponential time.  
 
 
8.1 The graph reachability problem 
 
Let G = (V, E) be a (directed) graph, i.e. V is a set {v1, …, vn} of nodes (or vertices) and E Í  
V ´ V a set of edges. For ease of notation we often identify nodes with their indices, i.e. write 
n for vn and (i,j) for (vi, vj). The most basic problem on graphs is this: given nodes 1 and n, is 
there a path from 1 to n? This problem is called REACHABILITY.  
 
Remarks: 
 

• We will generally give problems names that we write in SMALLCAPS. These names are 
rather standardized today and allow you to recognize problems across different articles 
and books. 

• REACHABILITY is a decision problem, in that we want a yes/no answer. This is the 
prevailing kind of problem. Other types of problems are for example optimization 
problems or function problems, which we will encounter soon.  

• Each problem comes in an infinite number of instances. For example, each graph and 
pair of nodes in this graph yields one instance of REACHABILITY. An algorithm that 
solves the problem must deal with all instances.  

• In order to offer a problem instance to a computer, it first must be coded into the input 
format required for that computer. For instance, when we use TMs for solving 
instances of REACHABILITY, the first thing to do is to design a coding scheme that 
transforms any graph G = (V, E) into a string made from a finite (input tape) alphabet. 
One possibility would be to use as tape alphabet the set {0, 1, (, ), ;}, code the nodes 
{v1, …, vn} by the binary representations of the integers 1, ..., n: 

v1  ®  < v1 > = 1 
v2  ®  < v2 > = 10 
... 
vn  ®  < vn > = [binary representation of integer n], 

code edges as pairs of codes of nodes, for instance 

(1, 3)  ®  (< v1 >; < v3 >) = (1;11) 
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and code the entire graph as a sequence that starts with the code of n, followed by the 
codes of edges. For instance, this would be a code of a three-node graph with edges 
(1,1) and (2,3): 

<(V, E)> = 11(1;1)(10;11) 
Such a coding scheme is arbitrary – you may invent yours according to taste. 
However, a coding scheme must have certain properties in order to qualify: 

a. Given any string from the coding alphabet (here: {0, 1, (, ), ;}), it must be 
decidable whether the string is a well-formed code of a problem instance. 

b. Given a code of a problem instance, the problem instance must be uniquely 
characterized by the code.  

c. The code of a problem instance must be concise in the sense that the length of 
the codeword reflects the bit information needed to describe the instance. Note 
that this requirement cannot be formulated rigorously because the original 
description of the problem instance can itself be formulated in various ways. 
For instance, an n-node graph can be represented by a list of the edges or as an 
n by n matrix with entries 1 at positions (i,j) corresponding to edges and entries 
0 at other positions. Thus, this requirement is actually an informal appeal not to 
use a "stupid" representation of the problem instances.    

A suitable coding scheme is typically not described explicitly but just taken as granted.  
 

 
REACHABILITY can be solved by a simple algorithm: maintain a set S of nodes. Initially, S = 
{1}. Each node can be marked or unmarked. Initially only 1 is marked. At each iteration of 
the algorithm, choose one node i from S and remove it from S. Then process all edges (i,j) 
going out from i. If node j is unmarked, mark it and add it to S. Continue until S is empty. 
Answer "yes" if at this point n is marked, else "no".  
 
This is of course an informal description of an algorithm, and it has gaps (we have left 
unspecified how the node i is chosen from S – e.g., whether by depth-first or breadth-first 
choice). It could be turned into a formal description by specifying a TM with input tape 
alphabet {0, 1, (, ), ;} that carries out the computations described above. In complexity theory, 
one very often works and argues with such informal descriptions, relying on the assumption 
that the problem could be coded into a TM format.  
 
Let's carry out a quick investigation of the number of steps required by this algorithm. It is 
clear that the algorithm processes every connection (i,j) at most once. There are at most n2 
edges in G. Assume that the other computations associated with an edge processing (choosing 
the edge, marking etc.) can be done in constant time. Under this assumption, the overall 
processing time is at most a constant factor times n2, that is, it runs within time O(n2). Note 
that this finding is not only quick, but also dirty, because the assumption of constant time for 
edge processing operations is unrealistic – the larger the graph, the more time intensive will 
memory access operations become, for instance.  
 
If we carry out a similar investigation using TMs and our coded version of the problem, things 
look a bit different. First, we have learnt earlier in the lecture that the computational 
performance of a TM is measured w.r.t. the length m of input words. If we use our coding 
scheme introduced above to turn a graph into a word over {0, 1, (, ), ;}, then the length m of 
the code is related to the size n of the graph as follows. The length of codes (< vi >; < vj >) for 
edges is O(log(n)). In the worst case, when we have a fully connected graph, we have n2 
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edges. In addition we have the leading code for n which adds another log(n) symbols. All in 
all, the code <(V, E)> for a graph with n nodes may reach a length of m = O(log(n) n2), or, 
more generously, m = O(n3). Next, we have to procure us with a TM that on input <(V, E)> 
computes the correct yes/no answer. We skip this here and assume we have a TM M that in 
the worst case has to traverse its input tape n times back and forth (I can easily think of a 
multi-tape TM that solves REACHABILITY in this way). This machine would therefore run 
within time O(n4). However, the time consumed by a TM should be measured w.r.t. the length 
m of its input word, not w.r.t. n. Thus, we should rather say that our TM has a time 
complexity of O(m4/3).  
 
This appears confusing, and indeed it is. The bad news is that we are confronted with at least 
three different ways of fixing a time bound for computing REACHABILITY: 
 

1. Using a natural measure n for the "size" of a problem instance and an informal 
algorithm, we get a time bound of O(n2). 

2. Using the same measure n for the problem size, but a concrete TM algorithm, 
including a proper coding scheme, we get O(n4). 

3. Using the TM algorithm and the length m of the codeword <(V, E)> for a problem 
instance as a basis for measuring the "size" of the instance, we get O(m4/3). 

 
Further complications arise from the arbitrariness of our coding scheme and the fact that we 
might design our TM in different ways. But now comes the good news: 
 
All our time bounds O(n2), O(n4), O(m4/3) are polynomially related. This reflects a general 
experience: switching between different bases of measuring problem size, different 
encodings, different concrete TM designs and even between TMs and RAMs and PCs will 
always (if we don't do really stupid things) lead to time bounds that are polynomially related. 
Therefore, as long as we are interested only in characterizing the computational complexity of 
problems up to polynomial relatedness, it is not important which of the options 1.—3. we 
choose. Some notes: 
 

• In the remainder of this lecture, we will be interested only in analyzing complexities 
up to polynomial relatedness. 

• In textbooks, these difficulties are sometimes brushed over, and sometimes you find 
that authors switch between the three perspectives without ever explaining. 

• Once one gets interested in a detailed analysis of linear or even sublinear computation 
times, this issue of coding, choosing a basis for measuring problem size, etc., becomes 
really important.  

 
 
8.2 The Traveling Salesman problem (TSP) 
 
This is one of the most intensely researched computational problems, and very likely you 
know it already. Problem instance: a set C of n cities (denote them simply by 1,…,n) and a 
distance function d: C ´ C ® N+. of pairwise inter-city travel distances (symmetric of course). 
Wanted: a travel route of minimal total length which starts in city 1, visits all cities exactly 
once and returns to 1.  
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A naïve algorithm for TSP enumerates all possible travel routes, computes their lengths, and 
returns the shortest one. Because there are ½ (n – 1)! tours to be considered, this naïve 
algorithm has time complexity W((n – 1)!), which is even far worse than exponential.  
 
A less naïve algorithm with better time complexity roughly goes like this. For each subset S of 
cities excluding city 1, and for each j Î S, define c[S, j] to be the shortest path that starts from 
city 1, visits all cities in S and ends in j. By skilfully calculating c[S, j]  from smaller sets S' Ì 
S, one arrives at an algorithm with time complexity O(n2 2n), "only" exponential.  
 
Note that TSP is not a decision problem – its answers are not of the yes/no kind. Rather, TSP is 
an optimization problem, where the result is a data structure (here: a graph path) that 
optimizes some evaluation criterion.   
 
A closely related variant of the TSP is however a decision problem: Given C and d, and 
additionally a "mileage budget" B, the yes-no-question is whether there is a route of length at 
most B. This decision-type version is denoted TSP(D). It is easy to see that the time 
complexity of TSP(D) is at most the time complexity of TSP. But also the other direction holds 
in a certain sense: if we had a polynomial-time algorithm for TSP(D), we could use it to obtain 
a polynomial-time algorithm for TSP. This is not quite trivial (see Chapter 5 in 
Garey/Johnson); we mention this fact here to motivate that we will mainly work on decision 
problems in this course.  
 
After half a century of intense investigations, no better than exponential-time algorithms for 
TSP have been found. Today most researchers are convinced that they don't exist. We'll learn 
why.  
 

 
 

Figure 7.146: What O(n2 2n) implies in practice. 
 
 

                                                
46 http://www.bte.org/shows/2001-2002/salesman.html 



 73 

8.3 On polynomial vs. exponential time complexities 
 
REACHABILITY can be solved in polynomial time, and TSP (for all we know) only in 
exponential time. Polynomial vs. exponential time complexity is a fundamental distinction for 
algorithms. Roughly speaking, problems with exponential time complexity quickly outgrow 
all our technical means, present and future, to solve them, whereas with polynomial-time 
problems there is always hope. The awe-inspiring growth of exponentials becomes clear from 
the following table with a few examples (from M. R. Garey & D. S. Johnson, Computers and 
Intractability, Freeman: New York 1979):  
 

             n 
f(n) 

10 
 

20 
 

30 
 

40 50 
 

60 
 

 
n2 

 
0.0001 sec 

 
0.0004 sec 

 
0.0009 sec 

 
0.0016 sec 

 
0.0025 sec 

 
0.0036 sec 

 
n5 

 
.1 sec 

 
3.2 sec 

 
24.3 sec 

 
1.7 min 

 
5.2 min 

 
13.0 min 

 
3n 

 
.059 sec 

 
58 min 

 
6.5 years 

 
3855 
centuries  

 
2e8 
centuries 

 
1300000 
billion 
yrs. 

 
Table 8.1. Some running times for algorithms of different time complexities f(n). An 
execution time of one microsecond per operation is assumed.  
 
Table 8.1 drastically shows that we will very likely never be able to execute an O(3n) 
algorithm for a problem instance with n = 60. In contrast, the polynomial time complexity 
O(n5) looks almost harmless. Here are some commonly stated beliefs of the field: 
 

• Algorithms with exponential time complexity are practically impossible to use except 
for very small problem instances. 

• Algorithms with polynomial time complexity are deemed "practically useful". 
• Experience tells that if an algorithm is found that solves a problem with polynomial 

time complexity of high order (say, O(n10)), then it usually does not take long until 
another polynomial algorithm is found with low order (say, O(n2.5)). A good 
demonstration of this point is the discovery of a polynomial-time algorithm for 
deciding primality of an integer. The first algorithm (the now famous AKS-
algorithm47, named after their inventors Manindra Agrawal, Neeraj Kayal and Nitin 
Saxena) had a complexity of O(n12). Only some months after its discovery in 2002, 
other researchers brought this down to O(n6) for a version that covers all integers. 
Later Agrawal proposed an O(n3) algorithm which however is only correct if a certain 
mathematical conjecture is true, which remains to be proven48.   

 
 
Taking all these facts and feelings together, the polynomial vs. exponential divide in time 
complexity is considered as the "continental divide" that separates useful from impractical 
algorithms.  
 

                                                
47 http://en.wikipedia.org/wiki/AKS_primality_test   
48 https://en.wikipedia.org/wiki/Primality_test  
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However, this wisdom sometimes has to be received with some caution: 
 

• If typical instances of a problem have large n (say, in the order of 1000), and if there 
are high demands on speed, then even an O(n2) algorithm can be painfully slow, and 
much ingenuity would be spent on improving it. Important example: DNA sequence 
alignment.  

• There are problems when the "arbitrary" constant hidden in the big-Oh notation 
actually becomes large. A very relevant example is matrix- matrix multiplication. 
Standard algorithms have time complexity O(n3) where n is the matrix size. For very 
big matrices of sizes n ~ 1,000,000 (which standardly appear in the computations of 
theoretical physics, for example), O(n3) becomes cumbersome. But, O(n2.8) would still 
be practical (it would run about 20 times faster). Indeed, O(n2.8) algorithms for matrix-
matrix multiplication have been devised. However, they are very complicated and 
their "overhead" leads to a large constant coefficient in the O(n2.8), which renders this 
type of algorithms useful only for very large matrices. The current record is an 
algorithm with O(n2.38), but its constant overhead is so large that this algorithm would 
become relevant only for matrix sizes that cannot be handled on today's computing 
machinery (see http://en.wikipedia.org/wiki/Matrix_multiplication_algorithm ).  

 
 
9 Nondeterminism and the first appearance of N = NP 
 
A not very stupid and very common way to attack a difficult problem is to first guess 
candidate solutions and then check whether they are indeed correct solutions. If the guessing 
and checking can be done in polynomial time, we witness a problem in one of the most 
(in)famous complexity classes, namely, NP. In this section we will formally introduce NP by 
describing nondeterministic ("guessing") TMs, and explain intuitively that, in a sense, many 
practical problems that you might encounter as a computer scientist, are in NP.  
 
A nondeterministic TM looks by and large like an ordinary (deterministic) TM, with the sole 
exception that at each time step, the nondeterministic machine can randomly select between a 
number of alternative next actions. Formally, this turns the transition function into a relation. I 
follow here the definition given by Papadimitriou (like always in complexity theory, other 
authors have other definitions, which may look different but are all equivalent – the powers of 
mutual simulation!) 
 
Definition 9.1 (nondeterministic TM). A nondeterministic (single-tape) Turing machine is a 
structure M = (K, S, D, s), where K, S, s are defined like in deterministic TMs, just as we also 
keep our conventions concerning the special symbols + and @. D is a relation  
 

D  Í  (K ´ S)  ´  [(K È {h, "yes", "no"}) ´ S ´ {¬, ®, -}] 
 
That is, for every state-symbol combination (q, a) there may be several possible next steps – 
or none at all. Multi-tape TMs are defined accordingly.  
 
A configuration of a nondeterministic TM M is a triple (q, w, u), where q is the current state, 
w is the symbol string to the left of the cursor, including the symbol currently scanned by the 
cursor, and u is the symbol string to the right of the cursor, as we had it with deterministic 
TMs. The workings of a nondeterministic TM are formalized, as follows:  
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Definition 9.2 If there is a rule in D which carries M from configuration (q, w, u) to 

configuration (q', w', u') in one step, we write (q, w, u) (q', w', u'). Furthermore, (q, w, u) 

(q', w', u') and (q, w, u) (q', w', u') are derived from (q, w, u) (q', w', u') as k-step 
iteration and as transitive closure, respectively, like usual. 
 
A nondeterministic TMs M accepts a language in a way that is reminiscent of how pushdown 
automata accept languages: 

Definition 9.3: A nondeterministic TM M accepts a word w Î L, if (s, @, w)  ("yes", u', 
v'), that is, there exists an accepting run for input w. The language L accepted by M is the set 
of words for which an accepting run of M exists.  
 
Note that we don't care whether there are other runs that take w into the rejecting state, or 
don't halt. The only criterium for M to accept w is that there exists some run which ends in the 
accepting state. 
 
A note on terminology: I used the term "L accepted by M" in agreement with W. Paul. Other 
authors speak of "L decided by M" (Papadimitriou) or of "L recognized by M" 
(Garey/Johnson). This terminological mess has a reason. When we say, a deterministic TM M 
decides a language L, then M gives a yes or a no answer for every input. Specifically, if a 
word w is not in L, then M tells us so. By contrast, if w is not in L, our nondeterministic TM 
cannot tell us. Therefore, it seems unsuitable to speak of a nondeterministic TM deciding a 
language. However, as we will see shortly, nondeterministic TMs whose time complexity is 
known can in fact be used to decide languages – and that is actually the way they are most 
often used. Therefore, again, it might seem appropriate to speak of nondeterministic TMs 
deciding languages. Deep down, the confusion arises from the fact that nondeterministic TMs 
are not really models of computation: they are models of guessing / verification mechanisms. 
But "decide" is a computational notion, so there is an inbuilt misfit of intuitions here. As it 
turns out, this misfit is very productive.  
 
The computation time of a nondeterministic TM is given by the time needed by an accepting 
run:  
 
Definition 9.4, Version a: A nondeterministic TM M accepts a language L in time f(n), if M 

accepts L, and moreover for any w Î S*, if (s, @, w)  (q, u, v) for any (q, u, v), then k £ 
f(|w|). That is, we require that on no input w, M ever runs longer than f(|w|).  
 
This definition is taken from Papadimitriou, and we will use it. Other authors use a different 
definition: 
 
Definition 9.5, Version b: A nondeterministic TM M accepts a language L in time f(n), if M 

accepts L, and moreover for any w Î  L, there exists an accepting run (s, @, w)  ("yes", u, 
v) with k £ f(|w|).  
 
The two definitions are by and large equivalent (up to O(f(|w|)): if a nondeterministic TM M 
accepts a language L in time f(n) according to Version a, then there exists another TM M' 
accepting L in time f(n) according to Version b, and vice versa (under certain conditions on f, 
see Definition 10.1; exercise!). 
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For space, we have the following definition:  
 
Definition 9.6: A nondeterministic TM M [with input and output] accepts a language L in 
space f(n), if M accepts L, and moreover for any w Î  L, there exists an accepting run that 
uses at most f(n) tape cells on its working tapes [remember that when dealing with space 
complexity, we use TMs that have working tapes separate from the input and the output tape; 
space consumption is measured only on the former]. 
 
  

 
 
Figure 9.1: schematic diagram of the branching possible computation paths that a 
nondeterministic TM accepting some L in time f(n) (version a. of Def. 9.4) can take on a 
given input word w. The input word w is accepted if one of these many branches ends in 
"yes"; others may end in "h" or "no" or may simply come to a dead end because D provides no 
continuation.  
 
The class of languages accepted by nondeterministic TMs in time f(n) is called NTIME(f(n)). 
The union of all polynomial such classes is NP,  
 

NP =  𝐍𝐓𝐈𝐌𝐄(𝑛>)>?@   
 
Note that it doesn't matter for fixing the class NP how many tapes the TMs have that we use, 
because the computation times of TMs with different numbers of tapes are polynomially 
related.  
 
Example: We claim that the problem TSP(D) is in NP. (Remember that TSP(D) was the 
following "decision" variant of the travelling salesman problem: Given a set of cities C and 
distance function d, and additionally a "mileage budget" B, the yes-no-problem is whether 
there is a route of length at most B. You can interpret this as a language decision problem by 
interpreting the inputs [i.e. the problem instance descriptions] as words). We can show 
TSP(D) Î NP, as follows. We design a multitape nondeterministic TM M that accepts 
TSP(D) in time O(n2). As a preparation, we invent some coding for travelling routes as 
symbol sequences, such that the codeword of a travelling route that satisfies the TSP 
conditions (circular, not hitting any city twice) is not longer than the problem instance 
description used in the input. M works in several stages. First, it writes a completely random 
(!) sequence of symbols on its second tape, of length no longer than its input. After that it 

start with input w

upper 
time 
bound 
(| |)f w

"yes"

"yes"

"no"

"no"

"no""no" h hh

h

dead 
end

dead 
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checks whether this sequence is a valid codeword of a TSP route. If not, it halts with "no". If 
yes, next it checks whether the total length of route is below the budget bound B. If yes, halt 
with "yes", if not, halt with "no". Both tasks can easily be carried out in time O(n2) [says 
Papadimitriou without blushing]. It is clear that M accepts TSP(D): if for a given input C and 
d there exists a tour of total mileage below B, then it can be guessed by the TM in its first 
stage and checked for "mileage below B" in the rest of the computation. Conversely, if there 
are no tours with mileage below B, then M will never stop with "yes".  
 
The TM in this example works according to the schema, "first guess a candidate solution, then 
check". We will now show that all language decision problems in class NP can be solved by 
this approach. In fact, some authors introduce nondeterministic TMs as two-stage processing 
machines, where first a candidate solution is guessed by a random string generation 
mechanism, and in a second deterministic stage this candidate solution is checked whether it 
is in L.  
 
Following the treatment from Papdimitriou (chapter 9), as a preparation for stating our main 
insight, we introduce the concepts of polynomial decidability and polynomial balance.  
 
Definition 9.7 Let R  Í S* ´ S*  be a binary relation on words. R is called polynomially 
decidable if there is a deterministic TM deciding the language {x;y | (x, y) Î R} in polynomial 
time. We say that R is polynomially balanced if there is some k ³ 1, such (x, y) Î R implies |y| 
£ |x|k. That is, the length of the second component is bounded by a polynomial of the length of 
the first component.  
 
Here comes our formal version of the "guess-and-check" strategy. The claim is stated a bit 
more generally than merely as a version of guess-and-check.  
 
Proposition 9.1 Let L  Í S* be a language. L Î NP if and only if there is a polynomially 
decidable and polynomially balanced relation R, such that L  =  {w | (w, y) Î R for some y}.  
 
Proof. "Ü ". Suppose that such an R exists. Then L  is decided by a nondeterministic TM M 
as follows. On input w, M guesses a y of length at most |w|k (the polynomial balance bound for 
R) and then uses the polynomial test algorithm on w;y to check whether (w, y) Î R. If so, it 
accepts, otherwise, it rejects. Clearly an accepting computation exists if and only if w Î L.  
"Þ" Suppose that L Î NP. Then there is a nondeterministic TM M that accepts L in time |n|k 
for some k ³ 1. Define R by (w, y) Î R if and only if y is the encoding of an accepting 
computation of M on input w. (Spelled out in detail, this would need to specify an encoding 
scheme for computation sequences of M; it is clear for all of you who have once in their lives 
specified a TM simulation in detail that this can be done). It is clear that R is polynomially 
balanced and polynomially decidable. Furthermore, by our assumption that M accepts L, we 
have that L  =  {w | (w, y) Î R for some y}. 
 
An y that comes by R with an accepted input w is called a polynomial witness, or a succinct 
certificate, of w being a "yes" instance. The most intuitive way to think about polynomial 
witnesses is to consider them as "candidate solutions" (as in the TSP(D) problem from above), 
but other types of polynomial witnesses are also intuitive, for instance the y's encountered in 
the proof of Proposition 9.1, which were encodings of accepting runs of an accepting 
nondeterministic TM (these encodings of accepting runs can also be considered as encodings 
of positive solutions, so the difference to the "candidate solution" interpretation is not that 
large).  
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It now becomes clear why so many practical problems are in NP. Many real-life tasks require 
the construction of a "solution" object, for instance a good VLSI layout, a transportation fleet 
schedule, a cost-efficient allocation of resources, you name it. The solution objects are the 
"witnesses" of a problem. The solution objects in themselves are typically not too large in 
comparison to the size of the task description – in our terminology, the witnesses are typically 
polynomial in size. Furthermore, it is typically not too difficult (that is, requires only 
polynomial time) to check whether a given solution object indeed is a solution (check for 
consistency and check for meeting the task's specification for a solution). But this is just 
another way of saying that the problem is in NP. This is why this class is so important, 
although its underlying mathematical -"computational" model (nondeterministic TMs) is 
clearly not a practical method. However, the nondeterministic TM model yields a powerful 
and transparent tool for a mathematical analysis of NP. 
 
If you have a nondeterministic TM M which "solves" your problem (i.e., accepts some 
language L) in its weird nondeterministic fashion in some time bound f(n), you can transform 
M into a standard deterministic TM M' which solves the same problem – and which you could 
actually run because it's deterministic. The obvious way to derive M' from M is to make M' go 
through all of the paths that M might take up to its allotted time horizon f(n), that is, to make 
M' build trees of the kind shown in Fig. 9.1, and to arrange things such that M' either 
terminates in the "yes" state if it finds some path of the "nondeterministic tree" that ends with 
"yes", or else terminates in the "no" state. Note that M' actually decides L in the usual sense of 
the word, i.e. you always either get a "yes" or a "no" for an answer.  
 
This transformation from M into an equivalent deterministic M' works only because we know 
that M accepts L in time bound f(n). Without that knowledge, we wouldn't know how deep the 
simulating deterministic TM M' should construct the "run tree" of M.  
 
Given a particular nondeterministic TM M, then there exists a maximum branching factor d 
such that in all "run trees" of M every node has at most d child nodes. This d depends only on 
the transition relation D of M. As a consequence, the size S (number of nodes) of run trees 
grows exponentially with exponent f(n) and base of d, that is, S £ df(n). Since such a tree can 
be constructed by a suitably designed (3-tape) M' in time proportional to its size S, we have 
that M' can decide L in time O(df(n)).  
 
In terms of complexity classes, we can state our last observation as follows: 
 
Proposition 9.2.  𝐍𝐓𝐈𝐌𝐄 𝑓 𝑛 	⊆ 	 𝐓𝐈𝐌𝐄 𝑑D E .GH@  
 
Our first investigations into the complexity of computations have so far led us to the 
following two intuitions: 
 

• The class of problems which are "practically" solvable is made of the problems for 
which deterministic polynomial-time algorithms exist, i.e. it is the class P.  

• Many real-life problems lie in the class NP. 
 
The world of computer scientists would be a very comfortable place if most real-life problems 
would be practically solvable, that is, if P = NP. Unfortunately, all that we know today is that 
P Í NP Í EXP = 𝐓𝐈𝐌𝐄(2>E)>?@ . The first inclusion follows immediately from the fact 
that every deterministic TM is a special case of a nondeterministic one. The second inclusion 
is a special case of Proposition 9.2. Nobody knows whether P = NP, almost everybody 
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believes that P ¹ NP, and one person yet unknown will gain eternal fame by settling this 
question.  
 
 
 
10 Relationships between complexity classes 
 
10.1 Introduction 
 
In this section we will develop two basic insights, one positive and one negative:  
 

• The positive one: There exists proper hierarchies of complexity classes, that is, 
sequences of the form TIME(f1(n))  TIME(f2(n))  TIME(f3(n))  ... , where 

f1(n) < f2(n) < ... . That is, by admitting more time for computation, one can compute 
properly more problems. Such theorems can be obtained relatively easily and with fine 
granularity, that is, even rather small increments in computation time lead to properly 
larger solvable problem classes. Such hierarchy theorems are established within a 
particular type of complexity classes, for instance TIME(f(n)) or SPACE(f(n)). 

• The negative one: it is very difficult to establish similar proper inclusion relations 
across different types of complexity classes, for instance when comparing 
deterministic with nondeterministic complexity classes. To wit, all of the following 
inclusions are suspected of being proper, but none of them has yet been proven to be 
so: L Í NL Í P Í NP Í PSPACE. Only few such "cross-type" results are known, 
and we will see some of them. 

 
When reasoning about complexity classes of the form TIME(f(n)) or SPACE(f(n)), one has 
to make some assumptions about the functions f used to measure the complexity. Specifically, 
f should not be more difficult to compute (use more time or space) than the (time or space) 
complexity class it describes.  
 
Definition 10.1: A function f: N ® N is a proper complexity function (or simply proper) iff 
 

1. f is nondecreasing, that is f(n + 1) ³ f(n), 
2. f can be computed by some deterministic multitape TM Mf  with input and output 

which on input n (in binary) produces as output a sequence of f(n) many * (a 
"yardstick" representation of f(n) using the special quasi-blank symbol *), 

3. Mf  uses time O(n + f(n)), 
4. on each of its tapes (except the input and output tape) Mf  uses at most space O(f(n)).  

 
Using proper complexity functions f, we will investigate the following types of complexity 
classes49: 
 

• TIME(f(n)): deterministic time 
• SPACE(f(n)): deterministic space 
• L = SPACE(log(n)) 
• NTIME(f(n)): nondeterministic time 
• NSPACE(f(n)): nondeterministic space (a nondeterministic TM M uses space S on 

input x if no possible run on this input covers more than S cells on M's internal tapes) 
                                                
49 Keep in mind the remarks after Def. 3.7 concerning the imperfections of notation for complexity functions! 



 80 

• NL = NSPACE(log(n)) 
• P = TIME(nk) 

• NP = NTIME(nk) 

• PSPACE = SPACE(nk) 

• NPSPACE = NSPACE(nk) 

• EXP = 𝐓𝐈𝐌𝐄(2>E)>?@  
 
 
 
 
10.2 Hierarchy theorems 
 
Let f(n) be a proper complexity function which is at least linear, that is f(n) ³ n. Consider the 
following time-bound version of the HALTING language H (adapted & corrected from 
Papadimitriou): 
 

Hf = {<M>;x | Code(<M>) and Standard(x) and |<M>| ³ |x| and if M(x) = "yes", then  
M on input x runs at most f(2|x|+1) steps} 

 
(We use the same convention as in Section 5, that is, we consider only TMs M that operate 
with symbol set {0,1,#}, and <M> denotes a codeword for M made of symbols {0,1,#}.) We 
will first show that Hf  can be decided essentially by simulation of M in time f 3, and secondly 
we will use a diagonalization argument to see that Hf cannot be decided in time f. Both 
insights taken together create a hierarchy of complexity classes.  
 
 
Proposition 10.1 Hf Î TIME(f(m)3). 
 
Proof. Let m denote the length |<M>;x| throughout. We build a simulating machine Uf  that on 
input <M>;x checks in time f(m)3 = f(|<M>;x|)3 whether M accepts x in time f(2|x|+1). We 
adapt here the proof given in Papadimitriou.  
 
Uf works in several stages. Let g(n) = f(2n+1). 
 

1. Uf  first behaves as Mg, the TM associated with g according to Def. 10.1, and writes a 
"yardstick" of g(|x|) = f(2|x|+1) many quasi-blanks * on a special tape. Time needed: 
O(f(2|x|+1)) 

2. Next, Uf  checks whether Code(<M>) and Standard(x) and |<M>| ³ |x|. If not, reject 
input. If yes, continue. Time needed when Uf devotes two tapes to this task: O(m) 
[says Papadimitriou].  

3. Next, Uf
  simulates the run M(x). After each simulated step, Uf ticks off one mark from 

the "yardstick", thus keeping record of the simulated time. If the simulation of M(x) 
reaches M's accepting state before the end of the yardstick is reached, Uf accepts; else 
it rejects. This can be done in time O(f(m)2) per simulation step. f(2|x|+1) such 
simulation steps are needed, which makes a (generously measured) total of O(f(m)3) 
[use |<M>| ³ |x|].  
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Taking 1.-3. together, we see that Uf takes O(f(2|x|+1)) + O(m) + O(f(m)3) = O(f(m)3) steps. 
By treating several symbols as one like in the proof of the linear speedup theorem, this 
O(f(m)3) can be sharpened to an exact f(m)3. · 
 
Proposition 10.2  Hf Ï TIME(f(m )). 
 
Proof. A diagonalization argument! Assume that there exists a TM MHf that decides Hf in time 
f(m), where m denotes length of input for MHf : m = |<M>;x |. From MHf we can construct a 
machine Df with the following behavior: 
 

Df(<M>)   =  if MHf(<M>;<M>) = "yes" then "no" else "yes" 
 
Df  can be constructed such that on input <M>, where |<M>| ≥ |< Df >|, it runs in at most the 

time as MHf on input <M>;<M>, that is, within time f(2|<M>|+1).  

 
Now consider the following implications:  
 

Df(<Df >) = "yes"  
Û  MHf(<Df >;<Df >) = "no"  
Û  <Df >;<Df > Ï Hf   
Û  Df does not accept <Df > within f(2|<Df >|+1) steps  
Û  Df(<Df >) = "no",  
 
a contradiction. · 
 
From Propositions 10.1 and 10.2 we get 
 
Proposition 10.3 (a time hierarchy theorem): If f is a proper complexity function, then 
TIME(f(m))  TIME(f(m)3).  

 
Iterated application of this proposition leads to a hierarchy of properly included time 
complexity classes TIME(f(m))  TIME(f(m)3)  TIME(f(m)9)... 

 
This time hierarchy is not the sharpest possible. Much tighter results are known, for instance 
TIME(f(m))  TIME(f(m) log (f(m))). The proofs rely on simulations that are more 

sophisticated than our simulation in Proposition 10.1.  
 
The following is a little helper observation that is often used in proofs of complexity theory 
without explicit mention. Essentially it states that for determining inclusion of time classes we 
may often ignore the time used for inputs of short length, and concentrate on the asymptotic 
growth of the time used in the two classes that we want to compare. 
 
Proposition 10.4 If f, g are proper complexity functions and g(n) ³ f(n) + 2 n0 for all n > n0, 
and f(n) ³ n and g(n) ³ n for all n, then TIME(f(n)) Í TIME(g(n)).  
 
Proof: Let M be a TM that decides some language L within time f(n). Modify M into M' such 
that M' first scans the input up to a length n0, and immediately accepts / rejects if the input 
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word x has length £ n0 (this requires that M' possesses a lookup table for the accepted/rejected 
inputs of length £ n0). If M' finds that the input is longer than n0, it moves its input tape cursor 
back to the leftmost position and then continues like M from the start of M(x). It is clear that 
M' decides L in time g(n).  
 
From Propositions 10.3 and 10.4 we can conclude 
 
Proposition 10.5 P  EXP.  

 
Proof: We show first that P is a subset of TIME(2n).  Because any polynomial nk will 
ultimately become smaller than 2n, we have that P is a subset of TIME(2n) [use Prop. 10.4]. 
By Proposition 10.3, TIME(2n)  TIME((2n)3). Now conclude P Í TIME(2n)  

TIME((2n)3) =  TIME(2(3n)) Í EXP.  · 
 
Similar hierarchy theorems hold for space. We give a standard result without proof: 
 
Proposition 10.6 For proper complexity functions f,  
 

SPACE(f(m))  SPACE (f(m) log (f(m))). 

 
 
We now turn to the more difficult part of this Section, relations between complexity classes of 
different types. The following proposition collects some of the more obvious facts.  
 
Proposition 10.7 For proper complexity functions f, 
 

1. SPACE(f(n)) Í NSPACE(f(n))  and  TIME(f(n)) Í NTIME(f(n)), 
2. NTIME(f(n)) Í SPACE(f(n)), 
3. NSPACE(f(n)) Í  TIME(klog n + f(n)). 

 
Proof. 1. is trivial. 2. is almost trivial. Idea: Let L Î NTIME(f(n)) be accepted by 
nondeterministic TM M in time f(n). Then L can be decided by a deterministic TM K, which 
generates all branches of the "run-tree" of M (see Fig. 9.1) and checks whether one of them 
accepts. Because each branch has length at most f(n), it can be dealt with by K using space 
f(n). K can treat all branches one by one, re-using the same space of size f(n).  
 
The only not so obvious part is 3. Let L Î NSPACE(f(n)), that is, there exists an m-tape 
nondeterministic TM M with input and output that accepts L within space f(n). We have to 
find a deterministic TM N which decides L within time k log n + f(n), where n = |x| is the length of 
input words x presented to K, and k is some constant that depends on N and M. 
 
The key observation is that because M works within space f(n), the number of configurations 
that might appear in a computation of M on input x is bounded by a constant that depends 
only on |x|. We can determine an upper bound as follows. Each configuration of M that might 
turn up in the computation M(x) is determined by the machine state q Î K, by the cursor 
position i of the input reading head, and for each of the m-2 internal tapes by two words u, v, 
where u is the tape inscription left from (and including) the cursor and v the inscription to the 



 83 

cursor's right. Because none of the internal tape inscriptions may exceed f(|x|) in total length, 
both u and v have length at most f(|x|). Taking all these components of a configuration 
together, we find that we can bound their number a (generously) by  
a £ |K| (|x| +1) |S|2(m-2)f(|x|) £ |x| (2 |K| |S|)2(m-2)f(|x|)  =: |x| c1

 f(|x|) = c1
log |x| + f(|x|).  

 
These maximally c1

log |x| + f(|x|) many configurations that might possibly occur in a run M(x) can 
be used as nodes of a directed configuration graph G(M, x), which has an edge from 
configuration C to another configuration C' iff C 

5
 C'. Obviously, |x| Î L iff there is a path in 

G(M, x) that runs from the configuration C0, which corresponds to the starting configuration 
of M(x), to some configuration whose state q is "yes". That is, we can reduce the problem of 
deciding whether |x| Î L to an instance of REACHABILITY (with multiple goal nodes) on a 
graph with c1

log |x| + f(|x|) nodes.  
 
Technically, we can cast this reduction into a deterministic TM N in many ways, for instance 
by first letting N construct the adjacency matrix of G(M, x). That can be done in at most time 
|x| + f(|x|) per pair C, C' to be checked, that is in time (|x| + f(|x|)) c1

2(log |x| + f(|x|)) altogether.  
 
We know that REACHABILITY can be solved in polynomial time np by a deterministic TM, 
where n is the number of nodes of the graph. Thus N first uses at most f(|x|)2 c1

2(log |x| + f(|x|)) 
steps to construct G(M, x) and then uses at most another c1

p(log |x| + f(|x|)) steps to solve 
REACHABILITY. By some generous bounding estimates using simple arithmetic inequalities 
we can find a k such that f(|x|)2 c1

2(log |x| + f(|x|)) + c1
p(log |x| + f(|x|)) £ klog |x| + f(|x|).  · 

 
Combining the results from Proposition 10.7, we get the following sequence of inclusions: 
 
(10.1) L Í NL Í P Í NP Í PSPACE 
 
The only not immediately obvious inclusion is NL Í P, which follows easily from 
 
NL  =  NSPACE(log(n))  

Í TIME(k log(n) +log(n)) for some k  [use Prop. 10.7 (3) ] 
= TIME((2 log(k) ) 2 log(n)) 
=  TIME(n 2 log(k)) [elementary arithmetics; we use log to base 2] 
Í  P 

 
We know from the space hierarchy theorem that L ⊊ PSPACE, so at least one of the 
inclusions in Eq. (10.1) must be proper. However, it is not known which – in fact, all of the 
inclusions are suspected to be proper.  
 
The "reachability method" we witnessed in the proof of Prop. 10.7 (3) is just the simple idea 
that all possible runs of a space-bounded nondeterministic TM can be represented in the 
(finite) configuration graph, and that the existence of accepting runs is thereby translated into 
instances of REACHABILITY. This basic method can be refined to yield some of the more 
precious results connecting different types of complexity classes.  
 
We describe first a space-efficient implementation of REACHABILITY, which is also 
interesting for its own sake: 
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Proposition 10.8 (Savitch's theorem [1977], here basically copied from Papadimitriou). 
REACHABILITY Î SPACE(log2n), where n refers to the number of graph nodes (not length 
of input word coding the graph!).  
 
Proof. Here we understand REACHABILITY in the version given at the beginning of Section 
8, that is, the question is whether in a graph with vertices v1, ..., vn, there is a path from v1 to 
vn. We identify as usual the vertices with the integers 1, ..., n.  
 
Let G be a graph with n nodes, let x and y be nodes of G, and let i ³ 0. We say that the 
predicate PATH(x, y, i) holds if there is a path from x to y in G, of length at most 2i.  
 
Notice that because a path in G need have at most length n to solve REACHABILITY, we can 

solve that problem if we can compute whether PATH(x, y,  |- log n -| ) for any two nodes in G.  
 
We design a multiple-tape TM M with two working tapes besides the input tape, which 
decides whether PATH(1, n, |- log n -| ). G is presented to M at the input tape in the form of the 
adjacency matrix, turned into a word in a suitable fashion. Note that for multiple-tape 
machines with read-only input tapes, we defined their space complexity in terms of the space 
consumption on the working tapes only (Definition 3.9), so we don't have to think about the 
size of the codeword used to input G.  
 
M starts its work by writing the triple (1, n, |- log n -| ) on its first working tape. In the following 
computation, the first working tape of M will typically contain several triples, of which        
(1, n, |- log n -|)  is (and remains) the leftmost. The other working tape serves as scratch space 
(size O(log n) is enough, says Papadimitriou) and we will not give a detailed account of it. 
 
We now describe how M decides recursively whether PATH(x, y, i), for any triple (x, y, i) 
which appears as the rightmost triple on the first working tape (in the beginning, there is only 

one such triple, which is (1, n, |- log n -|)). If i = 0, we can tell whether x and y are connected by 
a path of length at most 20 = 1 by simply checking whether x = y or whether x ® y. If i ³ 1, 
then we decide PATH(x, y, i) by the following recursive algorithm: 
 

For all nodes z test whether PATH(x, z, i-1) and PATH(z, y, i-1). 
 
We may conclude that PATH(x, y, i) is true if our test finds some such z – the reason for this 
is that a path from x to y of length at most 2i exists iff there is a node z halfways on this path, 
that is, a node z with distances at most 2i-1 from x and from y.  
 
To implement this idea in a space-efficient manner, we generate the binary indices of all 
nodes z, one after the other, re-using space. Once a new z is generated, we add a triple (x, z, 
i-1) to the first working tape, and start working on this problem recursively. If a negative 
answer to PATH(x, z, i-1) is found, we erase this triple and move on to the next z. If a 
positive answer is found, we replace the triple (x, z, i-1) by (z, y, i-1), and work on deciding 
whether PATH(z, y, i-1). If this is negative, we erase the triple and try the next z; if it is 
positive, we return a positive answer to the call PATH(x, y, i).  
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It is clear that this recursive algorithm decides PATH(1, n, |- log n -|). The first working tape 

contains at any time |- log n -| or fewer triples, each of length at most 3 log n + c, where c is a 
constant accounting for extra symbols (like semicolons or brackets) we might have used for 

organizing our triples. Thus the maximum tape consumption is |- log n -|  (3 log n + c) =    
O(log2 n). This can be further linearly compressed to a tape consumption of log2 n, by using a 
version M' of M with a "blocked" alphabet as introduced in the linear speedup theorem.  · 
 
Because the simulation of a space-bound nondeterministic TM by a deterministic TM in 
decision tasks can be recast as a version of REACHABILITY, Savitch's theorem is a pillar for 
understanding nondeterministic space vs. deterministic space complexity. One immediate 
consequence of Savitch's theorem is  
 
Proposition 10.9 NSPACE(f(n)) Í SPACE(f(n)2) for any proper complexity function f(n) ³ 
log n. 
 
Proof: To simulate an f(|x|)-space-bound nondeterministic TM run K(x) by a deterministic 
TM, we run Savitch's TM on the configuration graph of K(x). Since the configuration graph 
has klog |x| + f(|x|) £ k2 f(|x|) £ k' f(|x|) nodes, Savitch's TM needs log2(k' f(|x|)) = O(f(|x|)2) space, or, 
possibly after alphabet compression, f(|x|)2 space.  · 
 
This result immediately implies  
 
Proposition 10.10  PSPACE = NPSPACE, 
 
which in the sense of treating all polynomial complexities as equal means that 
nondeterminism does not give any advantage over determinism with respect to space – quite a 
contrast to what we believe nondeterminism yields with respect to time.  
 
Savitch's theorem is also instrumental in the proof of the following strengthening of the 
obvious TIME(f(n)) Í SPACE(f(n)), which we give here without proof (a sketch of the proof 
can be found in the Papadimitriou book as exercise 7.4.17): 
 
Proposition 10.11 [Hopcroft, Paul, Valiant 1975]: TIME(f(n)) Í SPACE(f(n) / log(f(n))) for 
proper complexity functions f.  
 
The "reachability method", that is, transforming a nondeterministic, space-bound TM 
computation into the graph problem REACHABILITY, is also used to prove the following 
important theorem (proof in Papadimitriou): 
 
Proposition 10.12 For a proper complexity function f(n) ³ log n, NSPACE(f(n)) = 
coNSPACE(f(n)).  
 
Here coNSPACE(f(n)) is the class {L | Lc Î NSPACE(f(n))}.  
 
Generally, for some complexity class C, one denotes by coC the class {L | Lc Î C}. For 
deterministic time or space complexity classes C, one always has C = coC, because if any 
language L can be decided deterministically within some time- or space-bounded TM ML, 
then Lc can be decided by the same machine within the same bounds by reversing the "yes" 
and "no" answers. Proposition 10.12 says that also nondeterministic space classes are closed 
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under complement. However, it is an open problem whether nondeterministic time classes are 
closed under complement. It is strongly believed that NP ¹ coNP. Again, like PSPACE = 
NPSPACE, NSPACE(f(n)) = coNSPACE(f(n)) reflects that nondeterminism appears to be 
more powerful in time than in space. 
 

 
 
 
 

The figure (from 
http://en.wikipedia.org/wiki/Com
plexity_class) illustrates some 
known relationships between 
basic complexity classes, and the 
classes of the Chomsky 
hierarchy. Solid lines mean 
"properly contained in", dashed 
lines mean "contained in – and 
conjectured that the inclusion is 
proper". The naming of 
complexity classes here 
sometimes differs from ours. 
Explanation: EXPSPACE = 
exponential deterministic space; 
NEXPTIME = exponential 
nondeterministic time; 
EXPTIME = what we called 
EXP; BQP = this is something 
exotic, namely "bounded error 
quantum polynomial time", the 
class of decision problems 
solvable by a quantum computer 
in polynomial time, with an error 
probability of at most 1/3 for all 
instances; BPP = a little less 
exotic (in fact, practically useful), 
namely "bounded-error 
probabilistic polynomial time", 
the class of decision problems 
solvable by a probabilistic Turing 
machine in polynomial time, with 
an error probability of at most 1/3 
for all instances; NC = "Nick's 
Class", see 
http://en.wikipedia.org/wiki/NC_
(complexity) if you want to learn 
more (it measures "tractable on 
parallel computers" complexity).   
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11 Propositional logic (again!, but used now as a pillar for 
complexity theory) 
 
11.1 A quick recap 
 
Since you should already be familiar with propositional (= Boolean) logic, I start with a 
condensed recap of the basic definitions, following the notation of the Papadimitriou book. 
 
Definition 11.1 (essentials of Boolean logic): 
 

1. Syntax of Boolean expression: terms whose atoms are Boolean variables xi, from 
which more complex terms are formed with the operators ¬, Ù, Ú. Terms of the form 
xi or ¬xi are  literals. j ® y  is shorthand for  (¬j) Ú y. Precedence: ¬ before Ù 
before Ú before ®.  

2. Semantics of a Boolean expression: a truth assignment T is a mapping from (a finite 
subset of) the variables X to {true, false}. T satisfies a Boolean expression j, written 
T |=  j, if (if j = xi then T(xi) = true) and (if j = ¬y then T |¹ y) and (if j = y Ù y' 
then T |=  y and T |=  y ') and (if j = y Ú y' then T |=  y or T |=  y '). 

3. Normal forms: every Boolean expression is equivalent to one in conjunctive normal 
form (CNF), e.g. (x1 Ú  ¬x2 Ú  x3) Ù (x2 Ú ¬x4), and to one in disjunctive normal form 
(DNF), e.g. x1 Ú (x2 Ù ¬x4). The disjunctions appearing in a CNF are called the clauses 
of the expression.  

4. Numerous laws for equivalence, e.g.  
a. (x1 Ú  (x2 Ù  x3)) º (x1 Ú x2) Ù (x1 Ú  x3); (x1 Ù  (x2 Ú  x3)) º (x1 Ù x2) Ú (x1 Ù  x3) 

[distributivity] 
b. ¬ (x1 Ù x2) º (¬x1 Ú ¬ x2); ¬ (x1 Ú x2) º (¬x1 Ù ¬ x2)  [deMorgan's laws] 
c. ¬¬x1 º x1  [double negation] 

5. j is satisfiable iff there exists T such that T |=  j. It is valid or a tautology iff it is 
satisfied by every T, written |=  j. It is unsatisfiable or a contradiction iff it is not 
satisfied by any T.  

6. An n-ary Boolean function is a function f: {true, false}n ® {true, false}.  
a. Every Boolean expression represents a Boolean function in a natural way.  
b. Conversely, every n-ary Boolean function f can be expressed as a Boolean 

expression jf with variables x1, x2,... xn.  
c. One simple way to construct jf is to make it the disjunction of subexpressions 

that represent the truth value combinations that f makes true. For instance, 
consider the binary f defined by the following truth table: 
 
x1 x2 f  
true  true true 
true  false true 
false  true false 
false  false  false 

 
then the corresponding jf is 

 
jf  = (x1 Ù x2) Ú (x1 Ù  ¬x2).  
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Note that jf  is in DNF. In a similar way, one can get another j'f  for f in CNF, 
by creating a conjunction of disjunctions, each of which corresponding to one 
negated truth value combination that makes f false. For our example, we get  
 
j'f   = (x1 Ú ¬x2) Ù (x1 Ú x2). 
 

7. A Boolean circuit (or simply circuit) is a directed graph whose nodes i are of sort si Î 
{true, false, ¬, Ù, Ú, x1, x2, x3, ...}. Nodes are called gates. The indegree (= number of 
ingoing edges) of a gate is 0 for gates of sort true, false or xi; 1 for gates of sort ¬ and 
2 for gates of sort Ù or Ú. Gates are numbered such that if (i, j) is an edge, then i < j. 
Gates of sort xi are input gates. The gate with largest index n is the output gate of the 
circuit. Given a truth assignment T, truth values are propagated through the circuit C 
as truth values of its gates and result in a truth value of the output gate, which is the 
final value T(C) of the circuit. See Figs. 11.1 and 1.2 for examples of circuits.  

8. The notions of satisfiability etc. carry over from Boolean expressions to circuits in an 
obvious way.  

 

 
 
Figure 11.1: Two circuits, both representing the expression  
(¬x3 Ù ¬((x1 Ú x2)Ù (¬x1 Ú ¬x2))) Ú (¬x3 Ù (x1 Ú x2)Ù (¬x1 Ú ¬x2)) 
 

 
 
Figure 11.2: A circuit with no variable gates, representing the expression (x3 Ù ((x1 Ù 
x2) Ú ¬x2)) together with the assignment T(x1) = true, T(x2) = T(x3) = false. 
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11.2 Some complexity considerations concerning Boolean logic 
 
The computational problem of whether a given Boolean expression or a circuit is satisfiable 
will turn out to be an important pillar for complexity theory. This problem SATISFIABILITY 
or just SAT for short is the following: given a Boolean expression j in CNF, is it satisfiable?  
 
Posing this question from the perspective of complexity, we need to standardize how an 
expression is presented to a TM. As a tape alphabet we take S = {0, 1, ¬, Ù, Ú, (, )}. It is clear 
that we can directly rewrite a Boolean expression in CNF using this alphabet if we code the 
variables xi by the binary representation of i. The length of any Boolean expression j is then 
the length of the symbol string that we obtain from the CNF of j.  
 
A deterministic TM can check whether a given truth assignment is satisfied by j in time 
O(m2) [m denotes length of input]. Using truth assignments as polynomial witnesses, it is 
directly seen that SAT is in NP. It is not known whether SAT is in P. All known deterministic 
algorithms to decide SAT need exponential time; they boil down to checking all possible truth 
assignments. 
 
A special case of SAT is by far easier to compute, namely, if all clauses of j are Horn 
clauses, that is, they contain at most one positive literal. We say that j is a Horn formula, and 
name the corresponding satisfiability problem HORNSAT. For instance,  
 
(11.1)   x3 Ù (¬x1 Ú ¬x2) Ù (¬x3 Ú ¬x1 Ú x2) 
 
is a Horn formula. We will see how satisfiability of (11.1) can be checked without considering 
all possible truth assignments. The clauses that are not purely negative (like the second clause 
in (11.1) is) can be re-written as implications. (11.1) would become 
 
(11.2)   (true ® x3) Ù (¬x1 Ú ¬x2) Ù (x3 Ù x1 ® x2) 
 
Note that (11.2) is not actually a Boolean expression but could be transformed into one if one 
replaces true by (y Ú ¬ y). Now, to check whether (11.2) is satisfiable, we proceed in two 
stages. In the initial stage we consider only the clauses that are implications – here, the first 
and third clause. We start from the all-false truth assignment T0, which we incrementally 
change to T1, T2, ... by going through the implication clauses repeatedly from left to right. 
Each Ti+1 contains exactly one more positive assignment than Ti. 
 
Assume that we have an assignment Ti-1. We inspect all implication clauses from left to right. 
There are two possibilities.  
 

1. If all implications are satisfied by Ti-1, we leave the first stage and call Ti the critical 
assignment Tcritical. 

2. If we find some implication of the form (true ® xj) or   (xn1 Ù ... Ù xnk ® xj), and this 
implication is not satisfied by Ti-1, (which implies that Ti-1(xj) = false), we change Ti-1 
to Ti by flipping the value for xj from false to true.  

 
Because in each update from Ti-1 to Ti we increase the number of positive assignements, this 
first stage must terminate. The assignment Tcritical is minimal in the sense that if T' is another 
assignment that satisfies the implications in j, then T' assigns true to all variables that Tcritical  
assigns true to, for which we write Tcritical Í T'.  Because, if not Tcritical Í T', consider the first i 
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where Ti ceases to be a subset of T'. The clause that caused a flip in Ti cannot be satisfied by 
T'. 
 
In our example (11.2), we get 
 
 
T0 = (false, false, false) 
T1 = (false, false, true)  [after considering (true ® x3)] 
 
Because T1  satisfies all implications, we put Tcritical = T1. 
 
The truth assignment Tcritical thus obtained satisfies all implication clauses in j, and every 
truth assignment which satisfies all implication clauses in j must have at least the positive 
assignments of Tcritical. It remains to be checked in a second stage whether Tcritical satisfies the 
(possibly) remaining all-negative clauses of j. In our case, Tcritical does satisfy the clause (¬x1 

Ú ¬x2), so we can conclude that j is satisfiable. The entire procedure is apparently 
polynomial in the length of j, so we have HORNSAT Î P.  
 
SAT is one (important) example of a problem which is in NP, and which can be turned into a 
tractable P problem by requiring a special restriction, in our case, Horn clauses. It is a very 
general phenomenon that intractable problems have tractable special cases, and often indeed 
the practical task of a program designer / engineer / computer scientist is to find a special case 
of an intractable problem which can be practically solved – this being one way to deal with 
intractability.  
 
It is intuitively clear that the problem of whether a given circuit is satisfiable, called CIRCUIT 
SAT, is closely related to SAT. It is easy to see that CIRCUIT SAT is also in NP (argument: 
guess a truth value assignment for the input gates, then check whether the circuit comes out as 
true). Finally consider the problem of whether a given truth assignment satisfies a given 
circuit, known as CIRCUIT VALUE. Fig. 11.2 shows an example. Obviously an instance of 
CIRCUIT VALUE can be computed by going through the circuit once, which can be done in 
polynomial time.  
 
We collect our findings: 
 
Proposition 11.1 SAT Î NP, HORNSAT Î P, CIRCUIT SAT Î NP, CIRCUIT VALUE Î 
P. 
 
Comparing the two circuits in Fig. 11.1, which both represent the same Boolean expression, 
we see that the left circuit is economical in that it uses only a single copy of the clauses         
(x1 Ú x2) and of (¬x1 Ú ¬x2) which appear several times in the original expression. This raises 
the question whether in principle the construction of "economical" circuits could lead us away 
from the exponential complexity of SAT. However, this is not so: 
 
Proposition 11.2 For any n > 1 there is an n-ary Boolean function f such that no circuit with 
at most m = 2n/2n gates can compute it.   
 
Proof (sketch): There are 2/J different n-ary Boolean functions (why?). But how many 
circuits with at most m gates exist? A rough estimate yields that there are less than  
((n+5) m2)m such circuits [full argument in the Papadimitriou book; idea: there are n+5 sorts, 
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each gate is determined by sort and at most 2 input arrows (that is, at most m2 choices for 
input arrows)]. Elementary arithmetics shows that ((n+5) m2)m < 2/J if n > 1 and m = 2n/2n. 
 
 
12 Reductions and Completeness, and P =? NP 
 
In Section 10 we considered inclusion relations between complexity classes, that is, we asked 
questions like "what kind of problems can we solve when we allow so-and-so much time / 
space?". The underlying intuition was that with more resources one can solve "harder" 
problems. In this section we will show how one can rigorously compare the "hardness" of two 
problems (and not of two complexity classes as before). 
 
12.1 Reductions 
 
The tool for comparing two problems is the concept of reduction. Intuitively, a problem B can 
be reduced to another problem A, if  
 

1. we have an algorithm (a TM) N that solves A, 
2. we have a computable function R to "translate" instances x of B into instances y = R(x) 

of A that have the same yes/no answer.  
 
"Translation" here means: R is a TM that takes the description x of an instance of B as an 
input argument and yields an instance y = R(x) of A. And the overall computation N(R(x)) 
must solve the problem B. Figure 12.1 sketches this idea. 
 
  

 
 
Fig. 12.1: Reduction of problem B to problem A  
 
 
Now we have a sharper intiution of the relative hardness of problems: we would say, problem 
A is at least as hard as problem B, if we can translate B into A as in Fig. 12.1. However, there 
is a caveat: The function R should not itself be so powerful as to significantly contribute to the 
solution of B. To illustrate this point, think of B as the TSP(D) problem, which (we think) is 
hard, and of A as REACHABILITY, which we know is easy. Now if R were an algorithm that 
first solves TSP(D), then in the case of a "yes" answer passes to REACHABILITY as R(x) a 
two-node graph with two connected nodes and in the case of a "no" answer a two-node graph 
with two unconnected nodes, then obviously R would qualify as a reduction in the sense of 
Fig. 12.1. This example teaches us to restrict the computational power of R. It must be less 
than the computational complexity of the problem we are reducing. For our purposes, it will 
be enough to consider polynomial-time reductions R when we are reducing some problem B to 
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A, where A is in NP; and to use logarithmic-space reductions when the target problem A is in 
P.50  
 
Definition 12.1 A language LB is ptime-reducible (or logspace-reducible, respectively) to 
another language LA, if there is a word-to-word function R computable by a deterministic TM 
MR in polynomial time (in logarithmic space, respectively) such that for all inputs x the 
following is true: x Î LB iff R(x) Î LA. R is called a ptime-reduction (or logspace-reduction) 
from LB to LA. 
 
When the context is clear (A Î NP vs. A Î P), we may omit the qualification ptime/logspace 
and simply speak of reductions.  
 
Reducibility is transitive: if LC is ptime/logspace reducible to LB and LB to LA, then LC is 
ptime/logspace reducible to LA. (exercise!). 
 
We now inspect a simple, instructive example of a reduction. Let HAMILTONIAN PATH be 
the problem to decide whether in a given directed graph there exists a path p which visits 
every node exactly once. This "smells" like a difficult combinatorial search problem. Indeed, 
one can show that HAMILTONIAN PATH is essentially (that is, up to polynomial-time 
transformations) as difficult as SAT: each of the two problems can be reduced to the other. 
We show only the easy direction: 
 
Proposition 12.1 HAMILTONIAN PATH is ptime-reducible to SAT.  
 
Proof. We must find a polynomial-time reduction R which transforms the question, "is there a 
Hamiltonian path p in graph G?", into a question of the kind "is the CNF Boolean formula j 
satisfiable?". The idea is to construct j = R(G) such that it describes the existence of a 
Hamiltonian path. Suppose that G has n nodes 1, 2, ..., n. We construct j with n2 Boolean 
variables xij. Informally, variable xij denotes the statement "p is a sequence of graph nodes and 
node j appears at the i-th position in it" (which may be true or false). We now give a list of 
requirements that are clearly equivalent to stating that p is a Hamiltonian path, and show how 
each requirement can be described by certain clauses of j.  
 

• Requirement 1: "Every node j of G must appear in p". For each 1 £ j £ n, this is 
expressed by a clause (x1j Ú  x2j Ú ... Ú xnj) of j.  

• Requirement 2: "No node may appear at two different positions i and k in p". To 
ensure this, for every pair i ¹ k, and every node j, we add the clause (¬ xij Ú ¬ xkj) to j.  

• Requirement 3: "For every position i of p there must be a node j": add the clause (xi1 Ú  

xi2 Ú ... Ú xin) for every i.  
• Requirement 4: "No two nodes j, k can appear at the i-th position of p": for every i and 

pair of nodes j ¹ k, add the clause (¬ xij Ú ¬ xik). 
• Requirement 5: "If (j, k) is not an edge in G, then node k cannot be the direct successor 

of node j in p": for every position 1 £ i £ n-1, and every (j, k) which is not an edge in 
G, add the clause (¬ xij Ú ¬ x(i+1)k). 

 
It is clear that if there exists a truth assignment that makes j true, then there exists a 
Hamiltonian path, and vice versa. To see this, note that requirements 1 – 4 boil down to 

                                                
50 This choice is standard in the literature. Papadimitriou differs from the standards in his book in that he uses 
logspace reductions also for problems in NP. 
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stating that there exists some bijection between n positions and the n nodes, and requirement 5 
enforces that any such bijection is a path that is in agreement with the existing graph arcs.  
 
Note that j is in CNF. It is not difficult to construct a TM for R which on input G constructs 
all these clauses and writes them on the output tape, separated by Ù. Furthermore, there are 
only polynomially many such clauses, and computing each clause clearly requires only 
polynomial time, so the overall polynomial time requirement for R is easily satisfied. (Of 
course this is a dangerously sloppy argument...). · 
 
Expressing HAMILTONIAN PATH in terms of SAT is easy because Boolean logic is all 
about expressing combinations of discrete facts. We will soon see that the expressive powers 
of Boolean logic and SAT are much greater than this simple example demonstrates: in fact, 
every problem in NP can be reduced to SAT.  
 
Before we come to that, we will give another simple example of a reduction, namely, from 
CIRCUIT SAT to SAT. Recall from Section 11 that a circuit is a directed graph whose n 
nodes ("gates") i are of sort si Î {true, false, ¬, Ù, Ú, x1, x2, x3, ... xk}; that gates are numbered 
such that if (i, j) is an edge, then i < j; that gates of sort xi are input gates; that gate n is the 
output gate of the circuit; and that given a truth assignment T, truth values are propagated 
through the circuit C as truth values of its gates and result in a truth value of the output gate, 
which is the final value T(C) of the circuit. The problem CIRCUIT SAT is to decide whether 
a given circuit has a satisfying truth assignment.  
 
Proposition 12.2 CIRCUIT SAT ptime-reduces to SAT. 
 
Proof. For a given circuit with gates 1 £ i £ n, and k Boolean input variables x1, ..., xk, we have 
to construct a Boolean expression j in CNF such that the circuit is satisfiable iff j is 
satisfiable. We build j from n Boolean variables yi  (which correspond to the gates of the 
circuit), plus variables x1, x2, ... xk in the following way:  
 

• Start with empty j.  
• For i = 1, ..., n, add clauses to j, to encode the circuit, as follows: 

- If i is a true gate, add the clause yi. It is clear that only a positive truth 
assignment to yi can satisfy this clause, so yi reflects a true gate. 

- If i is a false gate, add the clause ¬yi. It is clear that only a negative truth 
assignment to yi can satisfy this clause, so yi reflects a false gate. 

- If i is of sort xj, add the clauses (¬yi Ú xj) and (yi Ú ¬xj). It is clear that any 
truth assignment to yi which satisfies these clauses must assign the same truth 
value to yi and to xj.  

- If i is a NOT-gate, with predecessor j, add the clauses (¬yi Ú ¬yj) and (yi Ú yj). 
It is clear that yi Û ¬yj. 

- If i is an AND-gate with predecessors j and j', add the clauses (¬yi Ú yj), (¬yi 
Ú yj') and (yi Ú ¬yj Ú ¬yj'). Then in any truth assignment T which satisfies these 
three clauses, T(yi) must be T(yj) Ù T(yj').   

- If i is an OR-gate with predecessors j and j', add the clauses (yi Ú ¬yj), (yi 
Ú ¬yj') and (¬yi Ú yj Ú yj'). Then in any truth assignment T which satisfies these 
three clauses, T(yi) must be T(yj) Ú T(yj').   

- Finally, add the clause yn to ensure that the entire circuit must be satisfied. 
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It is clear from this construction that the circuit can be satisfied if and only if j can be 
satisfied, and that j can be constructed in polynomial time in the size of (a reasonable coding 
of) the circuit. · 
 
 
12.2 Completeness, especially NP-completeness 
 
Overview. We have seen in the previous section that some problems can be conveniently 
reduced to SAT. All we had to do was to "describe" the original problem through a suitably 
constructed Boolean formula. In this section we'll learn that in fact every problem in NP can 
be "rephrased" as a SAT problem. The basic argument runs through the following three steps: 
 

1. A problem in NP can be described by the nondeterministic TM by which it is solved. 
This TM has an accepting run of polynomial time. 

2. An accepting, polynomial-time run of a nondeterministic TM can be described as a 
polynomial-length path in the configuration graph of the TM. 

3. The existence of such paths can be coded in a Boolean expression j in a way that is in 
principle similar to what we did in the reduction of HAMILTONIAN PATH to SAT. 

 
The ptime-reducibility of any NP-problem to SAT is one of the pillars of today's complexity 
theory. It was first shown by Stephen Cook in 1971. Before we embark on the proof, we 
introduce some terminology.  
 
Definition 12.2 Let C be a complexity class and L a language. Then L is C-hard with respect 
to ptime/logspace reductions iff every language L' Î C can be ptime- (logspace-, respectively) 
reduced to L. If L is C-hard and furthermore L is itself in C, we say that L is C-complete with 
respect to ptime/logspace reductions. 
 
One application of the completeness concept is that it can be used to show that two 
complexity classes C and C' coincide. This is important in advanced complexity theory, where 
one defines complexity classes by different mechanisms, and often does not easily know 
whether a class C defined in one way is actually identical to another already studied class C'. 
To see how completeness helps here, we first introduce the concept of closure under 
reduction: a complexity class C is closed under reduction if, whenever L is reducible to L' and 
L' Î C, then also L is in C. The classes P and NP and EXP are of this kind (for logspace / 
ptime / ptime reductions, respectively). Now it holds that if both C and C' are closed under 
reductions, and there is a language L which is complete for both C and C', then C = C'. The 
argument runs as follows: if L* is some language in C, then L* can be reduced to L and hence 
(because C' is closed under reduction) L* Î C'. That is, C Í C'. The other direction follows 
by symmetry.   
 
We will consider only C = NP in the remainder of our course. An NP-complete language 
captures, in a sense, "the essence" of the class NP: If we have a decision algorithm for L (that 
is, a nondeterministic TM that accepts L in polynomial time), and we want to find a decision 
algorithm for some other language L' Î NP, then all we have to do is to reduce L' to L. Then 
the TM for L can be re-used to decide L'.  
 
We will presently show that SAT is NP-complete. By reducing SAT to other languages, and 
these other languages to yet others, a host of languages have been found that are NP-
complete, too. In a sense, SAT is the mother of all NP-complete languages. 
 



 95 

However, it is not at all evident that NP-complete problems should exist at all! Thus it comes 
as no surprise that showing SAT to be NP-complete requires some work.  
 
Theorem 12.3 (Cook 1971): SAT is NP-complete. 
 
Proof. We follow the proof given in the Papadimitriou book. We already know from Section 
11 that SAT is in NP. Therefore, all we have to show is that SAT is NP-hard, that is, if L is 
some language in NP, we can find a reduction R from L to SAT. Of course showing hardness 
is the hard part! 
 
So, let L Î NP. We know from Prop. 11.2 that CIRCUIT SAT reduces to SAT, and we know 
that reducibility is transitive. Therefore, it suffices to show that L can be reduced to CIRCUIT 
SAT. Let M be a nondeterministic TM (K, S, D, s) which accepts L in polynomial time, and x 
Î S* a candidate word. We may assume that M is a single-tape TM. We have to construct a 
circuit R(x) which is satisfiable iff x Î L. For this construction, we may use our knowledge of 
M. (Furthermore, R must be computable in polynomial time – but that is a relatively easy 
side-issue, which we will deal with at the end). Several ideas have to be combined to achieve 
the construction of R(x). All these ideas aim at a standardized representation of the workings 
of M, wherein the actions of M can be described by 0-1-valued (i.e. Boolean) variables. Once 
we have arrived at a standardized "0-1-description" of how M works, a way to cast this as a 
Boolean circuit is immediately found. 
 
Idea 1: Describe the working of a deterministic polynomial-time TM N by a computation 
table. (We will later transform the nondeterministic working of M into a deterministic 
decision problem). A computation table is a standardized representation of runs of the TM in 
a table form. 
 
Consider the general case of some language L' which is decided by a deterministic single-tape 
TM N = (K, S, d, s) in time |x|k. The computation table A of a run N(x) is a matrix of size |x|k+1 
by |x|k+1 and in each row shows one configuration of the run. Figure 12.1. shows the 
computation table of a run N(0110) for some such N that runs in quadratic time. 
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@ 0s  1 1 0 + + + + ... (repeat up to column 43) ... +  Figure 12.1  
@ @ 1q0 1 0 + + + + ...       ... +  A computation table 
@ @ 1 1q0 0 + + + + ...        ... +  for a run N(0110) 
@ @ 1 1 0q0 + + + + ...        ... +  (after Papadimitriou) 
@ @ 1 1 0 +q0 + + + ...        ... + 
@ @ 1 1 0q'0 + + + + ...        ... + 
@ @ 1 1q + + + + + ...        ... + 
@ @ 1q 1 + + + + + ...       ... + 
@ @q 1 1 + + + + + ...        ... + 
@ @ 1s 1 + + + + + ...        ... + 
@ @ @ 1q1 + + + + + ...        ... + 
@ @ @ 1 +q1 + + + + ...        ... + 
@ @ @ 1q'1 + + + + + ...        ... + 
@ @ @q + + + + + + ...        ... + 
@ @ @ +s + + + + + ...        ... + 
@ @ @ +yes + + + + + ...        ... + 
@ @ @ yes + + + + + ...        ... + 
@ @ yes + + + + + + ...        ... + 
@ yes + + + + + + + ...        ... + 
@ yes + + + + + + + ...        ... + 
     ... 
   (repeat up to row 43) 
     ... 
@ yes + + + + + + + ...        ... + 
 
 
How a computation table is made in principle should become clear from the figure. A few 
details must be explained: 
 

1. The symbol set G used to annotate the cells of the table is  G = {@, +} È S È  ({@, +} 
È S) × K È {yes, no}, that is, N's standard tape symbols, plus these standard symbols 
indexed by N's states, plus two special new symbols "yes" and "no". 

2. A table size of |x|k by |x|k is enough to accomodate all configurations (both in number 
and in length) that may occur in a run of N(x), if N runs within time |x|k. 

3. We will later need computation tables where the leftmost "@" is never visited by the 
cursor. This can be achieved by modifying N such that (i) it is started not from the 
leftmost "@" but from the first input symbol, and (ii) if N visits the leftmost "@", the 
corresponding row is simply dropped from the table. 

4. We will also need that the rightmost + is never visited by the cursor, and that the 
machine halts before the last line in the table. This can be ensured by increasing k: a 
TM that runs within time |x|k also runs within time |x|k+1. The TM in Fig. 12.1. actually 
runs in time |x|2, however, the table has been written in size |x|3 by |x|3.  

5. After the original machine halts (with "yes" or "no" because it decides a language), a 
special symbol "yes" (or "no") is written in the corresponding row of the table, and (by 
an extension of N) subsequently shifted to the left until it reaches the second position. 
(Again, by using table size k + 1 it is ensured that there are enough rows left, after the 
TM has ended in its "yes" or "no" state, to propagate the special "yes" or "no" symbol 
to the left margin of the table. 
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6. When the "yes" (or "no") symbol has reached the second position, the remaining rows 
of the table are filled with copies of this final configuration.  

 
We say that the table A is accepting if A(|x|k+1, 2) = yes. It should be clear that A is accepting 
iff x Î L'.  
 
Idea 2: encode the "local transition function" of a computation table by a Boolean circuit C.  
 
First I will explain what the "local transition function" is. For 2 £ j £ |x|k+1 -1 and i > 1, the 
value of the cell A(i, j) depends only on the values A(i-1, j-1), A(i-1, j) , A(i-1, j+1) of the 
three adjacent cells in the previous row (as in a 1-dimensional cellular automaton, if you are 
familiar with them). (The leftmost and rightmost cells of each row simply are constant @ or +, 
respectively, thanks to our special agreement spelled out in points 2. and 3. above). That is, 
the changes in A from each row to the next are governed by a function f: G3 ® G.  
 
Encode the symbols from G as binary numbers of length m = |- log | G| -|. We introduce the 
notation bi,j,k for the k-th binary digit of the binary code for the symbol in cell A(i, j). Then the 
three table symbols A(i-1, j-1), A(i-1, j) , A(i-1, j+1) become a 0-1-sequence of length 3m, 
and f can be interpreted as a function f: {0,1}3m ® {0,1}m (on arguments which do not code 
symbol triples from the table, f can be defined arbitrarily). We know that such a function can 
be realized by some Boolean circuit C with 3m inputs and m outputs. For each 2 £ j £ |x|k+1 -1 
and i > 1, we have therefore 
 
C(si-1, j-1, 1 , si-1, j-1, 2 , ..., si-1, j+1, m) = si, j, 1 , ..., si, j, m . 
 
Graphically, we might wish to represent the circuit C as in Figure 11.2 (a).  
 

 
 

C

C C C C

C C CI

I

si ,j-1 -1,1 si ,j+ m-1 1,

si,j m,si,j,1 ...

...

(a)

(b)

...
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Figure 12.2: (a) The circuit C for f. (b) How to cast the computation tables of computations 
N(x) (for given length |x|) as a complex circuit made from copies of C for each local "triple 
transition" of A. The upper leftmost portion of the overall complex circuit is shown. The 
dashed rectangles I mark "identity circuits" which simply copy their m inputs to their m 
outputs.  
 
Notice that C depends only on N, not on input queries x. The construction of C does not enter 
the runtime of R!  
 
Idea 3: Code all runs of N on inputs of a given length l as a circuit made from copies of C.  
 
Consider the computation tables A that arise when N is started on inputs x of some given 
length l. They are all of size lk+1 by lk+1. Take (lk+1-2) lk+1 copies of C and "stack them 
together" into a composite circuit as indicated in Figure 11.2. (b), stuffed with lk+1 "identity 
circuits" on the left side and another lk+1 "identity circuits" on the right side. To make this 
composite circuit simulate the run N(x), first code the input x of N as a binary string of length 
m |x|k+1, which becomes the input to this composite circuit. This input is passed through the 
composite circuit and leads to a (coded) "yes" or "no" in the second m output gates, according 
to whether x Î L'. We are free to agree on a binary coding for "yes" which has a leading 1, 
and on a binary coding for "no" which has a leading 0. By assigning the m+1-st output gate of 
the composite circuit as its relevant output gate, we can read off from this gate the decision 
for x Î L'.  
 
In fact, what we have done so far in ideas 1 to 3 is to reduce the problem of deciding L' Î P to 
CIRCUIT VALUE (remember, this is the problem of whether a given truth assignment 
satisfies a given circuit): given x (and knowing N), we have constructed a circuit which yields 
1 iff x Î L'. It is a tedious exercise to show that the construction of this composite circuit can 
be done in logarithmic space... So, we briefly pause in our multi-step proof of Cooks theorem 
and note, as an interesting side-result: 
 
Proposition 12.4 CIRCUIT VALUE is P-complete with respect to logspace-reductions. 
 
Now we resume our proof of Cook's theorem. Remember that we want to reduce decidability 
of some language L Î NP to CIRCUIT SAT, and not of some language L' Î P to CIRCUIT 
VALUE! However, we have done most of the work. Remember that M is a nondeterministic 
single-tape TM (K, S, D, s) which accepts L in polynomial time.  
 
Idea 4: Transform M into a nondeterministic TM M' which at each step has exactly two 
nondeterministic choices.  
 
I give here only the basic idea without details, by way of a diagram: if the original M for a 
given read symbol and state has, say, 5 possible actions, spread this 5-fold alternative into a 
little binary alternative-action tree as in Figure 12.3: 
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Figure 12.3: Reducing the degree of nondeterminism. 
 
(Exercise: show that if M is polynomial-time, then so is M').  
 
Idea 5: Transform the nondeterministic binary-alternative TM M' into a deterministic TM 
with an extra input specifying the sequence of action alternatives. 
 
Our TM M' runs in time |x|k. At each time, there is a binary choice of alternatives; call them 0 
and 1. A given run with a given sequence of choices is thus determined by a bitstring c1, c2, 
..., c|x|k –1 of length |x|k - 1, which represents the choices. Repeat the construction of a 
computation table and a composite circuit for runs of M' on input of some length l, as we did 
in ideas 1 – 3, with one additional gadget. The circuit C is equipped with one extra input to 
account for the choice arguments ci: if this argument is 1, the new circuit C' carries out the 
local function as conforming to the first action alternative; if it is 0, conforming to the other 
alternative. Each choice variable ci becomes a Boolean variable, which is fed to all circuits C' 
in the i-th row of the new composite circuit. Figure 12.4 shows one such circuit picked from 
the i-th row: 
 

 
 
Figure 12.4: An augmented local circuit C' taken from the i-th row of the new composite 
circuit. 
 
To decide whether x Î L, we construct our augmented composite circuit and write our 
encoding of x into its input gates on the first row. Then by construction it holds that x Î L iff 
there exists a choice sequence c1, c2, ..., c|x|k –1 such that the composite circuit yields a 1 
answer. But this is just another way of asking whether the composite circuit can be satisfied 
by some choice of c1, c2, ..., c|x|k –1, that is, by some truth assignment for these variables. 
Again, by a bold hand-waving argument we declare that the construction of the composite 
circuit from x and M can be done in polynomial time. Thus we have finally reduced the 
question of deciding L to CIRCUIT SAT and hence to SAT, and have proven Cook's theorem. 
· 
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We now discuss why NP-completeness is such an important and pervasive issue. I strongly 
lean on the standard reference book on NP-complete problems, "Computers and 
Intractability" by M. R. Garey and D. S. Johnson (included in the course references at the 
IRC).  
 
The first observation that very many problems are NP-complete. Hundreds of problems have 
been shown to have this property! The majority of them come from the following fields: 
 
• Graph theory  

o Examples: TSP(D), HAMILTONIAN PATH 
o Example: VERTEX COVER: given a graph G and a positive integer K £ |V|, is 

there a vertex cover of size K or less for G, that is, a subset V' of V of size at most 
K, such that for each edge (x, y) of G, x or y is in V' ? 

• Networks and flows  
o Example: MAX CUT, that is, decide whether in a given network there is a cut with 

capacity exceeding some given threshold 
• Sets and partitionings 

o Example 1: 3-DIMENSIONAL MATCHING, aka 3DM: given a set M Í W ´ X ´ 
Y, where W and X and Y are disjoint and |W| = |X| = |Y| = q, is there a subset M' of 
M of size q, such that each element of W and X and Y appears exactly once in M' ? 

o Example 2: PARTITION, that is, given a finite set A and an integer "size" s(a) > 0 
for every element a Î A, decide whether A can be divided up into two disjoint 
subsets of identical size (where size of a set is sum of element sizes) 

• Propositional logic 
o Example 1: SAT 
o Example 2: 3SAT: Like SAT, with the additional requirement that all clauses in 

the Boolean CNF expression have exactly three literals. 
• Game theory 

o Examples: many generalized versions of e.g. checkers and Go, where the question 
is whether player 1 has a winning strategy from a given starting configuration, are 
known to be NP-hard 

• Automata and languages 
o Example: Given a single-tape nondeterministic TM M which may use only the 

tape portion where the input is written on (including two end-marking extra 
symbols), and given an input x, does M accept x? This is known to be NP-hard. 

• Program optimization 
• Algebra and number theory 

o Example: QUADRATIC DIOPHANTINE EQUATIONS: given positive integers 
a, b, c, are there positive integers x and y such that ax2 + by = c ? 

• Sequencing and scheduling 
o Examples: many problems concerning the construction of timetables and schedules 

(for workers, processors, trucks...) under time or other constraints 
• Data storage and retrieval 

o Example: BIN PACKING: Given a finite set U of items, a size s(u) for every item, 
a positive integer bin capacity B, a number K of bins, can the items be packed into 
the bins, that is, is there a partition of U into K subsets Ui (i = 1, ..., K) such that the 
sum of the sizes of items in each Ui is B or less? 
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The problem types collected in this list cover a very large variety of problems that one is 
likely to encounter in the daily practice of a computer scientist, especially if one considers the 
fact that many problems can easily be re-cast as graph, flow, or logical problems. If one is 
confronted with a novel problem P (say, in VLSI design or fleet scheduling or code 
optimization...), which appears to be difficult at first sight, then one can do basically two 
things: 
 

1. try to find a solution algorithm anyway, or 
2. try to prove that the problem is NP-complete (or NP-hard).  

 
Often, option 2 is the more intelligent way to proceed. Proving NP-completeness of a given 
problem is often not too difficult! This is illustrated by the very fact that hundreds of 
problems have already been shown to be NP-complete. The most common strategy for 
proving NP-hardness or NP-completeness is simple:  
 

1. find a problem P' which is already known to be NP-complete, and which looks similar 
to P, 

2. reduce P' to P.  
 
This works because the following fact: 
 
Proposition 12.5 If an NP-complete problem P' can be reduced to a problem P, then P is 
NP-hard. 
 
This follows immediately from the definition of NP-hardness and NP-completeness.  
 
Finding a reduction from P' to P only establishes NP-hardness of P. To show NP-
completeness, in addition one has to verify that P lies in NP, that is, that correctness of a 
guessed solution can be verified in polynomial time. This is often (but not always) relatively 
simple.  
 
In fact, almost all of the known NP-complete or NP-hard problems have been dervived by 
reduction from previously known such problems. The "mother of all NP-complete problems" 
is SAT. This problem thus stands at the root of a huge "NP-completeness-reduction" tree. It is 
something like an art form which requires some practice to find in this huge tree the problem 
P which is best suited to be used in a reduction to your particular new problem P, and to 
carry out the reduction. For beginners in this reduction game, a small number of particularly 
versatile NP-complete problems are recommended as "mother problems" P': 3SAT, 3DM, 
VERTEX COVER, PARTITION, HAMILTONIAN CIRCUIT, CLIQUE. Their NP-
completeness can be derived from SAT in several ways. The Garey/Johnson book proves 
reductions as shown in Figure 12.5. The same book also explains numerous standard "tricks 
of the trade" of how reduction proofs can be achieved. If you should come into a situation 
where you have to convince yourself of NP-completeness of "your" problem P, you should 
read chapter 3 of that book.  
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Figure 12.5: Diagram of reductions used to establish NP-completeness by (transitive) 
reduction from SAT.  
 
 
After one has shown that one's current problem P is NP-complete, one has likely saved a lot 
of time by not trying to do the impossible, namely, finding a practical algorithm for P. 
However, one has not solved the problem. This is a typical situation to be in: one needs to 
solve a problem P, but one knows that no tractable solution exists. What can one do? There 
are a number of options. 
 
Option 1: Simplify the problem, by adding constraints or considering only special cases 
which are tractable.  
 
This approach is extremely common and useful. The literature (e.g. the Garey/Johnson book) 
contains many examples of known restrictions (not reductions...) of NP-complete problems 
which turn exponential problems into polynomial ones. SAT is a point in case. We have 
already seen that HORNSAT is tractable. Another tractable subproblem of SAT is 2SAT: 
satisfiability of CNF Boolean formulas where each clause contains at most 2 literals.  
 
Option 2: Be contended with approximate solutions. 
 
This applies specifically to optimization problems, where the task is to find solution which 
optimizes some cost criterium, as for instance path length in TSP. Here one faces a search 
problem: in a multitude of solution candidates, find one which is close to the optimum. There 
is no single general method of how to obtain good approximate algorithms. A host of general-
purpose techniques for search over "cost landscapes" is available, for instance genetic 
algorithms, simulated annealing, gradient descent methods, recurrent neural networks. They 
all require a good deal of specialized experience. In some cases, problem-specific 
approximate algorithms exist which have provable suboptimality bounds. An example is the 
optimal bin packing problem. This problem is a NP-hard variant of BIN PACKING and 
consists in finding a packing for a given set of items in a minimal number of bins. The 
following simple approximate algorithm is polynomial and can be shown never to result in a 
number of bins that is larger than the optimal number by at most a factor of 11/9:  
 

1. sort the items into a sequence u1, u2,..., un, such that their size is decreasing 
2. number your available bins b1, b2, ... 
3. sort the items into bins in the order u1, u2,..., un, putting each item into the first 

available bin whose capacity still holds the current item. 
 

SAT 
 
 
3SAT 
 
 

3DM  VERTEX COVER 
 
 

PARTITION  HAM.CIRCUIT CLIQUE 
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Option 3: Use a randomized "Monte Carlo" algorithm which gives the correct answer most of 
the times. 
 
Monte Carlo algorithms (MCA) work like follows on a given decision problem P, with an 
instance x, for which a yes-or-no answer is wanted: 
 

• Initialize the MCA with a random number. 
• Apply the initialized MCA on x. In polynomial time, MCA answers "yes" or "no".  
• If the MCA answer is "yes", then the true answer is also "yes", that is, the MCA 

produces no false positives. 
• If the MCA answer is "no", then the true answer is "yes" with a probability p < 1. That 

is, the probability of false negatives is bounded away from 1.  
• If you desire an answer that is false with a small residual error probability q, run the 

MCA with different initializations at most k times, where k is such that pk < q. If one 
of these runs yields "yes", stop: the true answer is found. If all k runs yield "no", the 
probability that the true answer is "yes" is  < q.  

 
Monte Carlo algorithms are not easy to come by, because they require deep insight into the 
problem to prove the bound p. An important class of MCAs arises in number theory: highly 
efficient MCAs are known for determining whether an integer number is composite (= not 
prime). The Papadimitriou book (chapter 11) gives a MCA for integer compositeness which 
has p = 1/2.  
 
 
 
12.3 P vs NP 
 
The classes P and NP appear to be intuitively quite different: 
 
• P contains those languages/problems for which there exists a tractable solution finding 

algorithm, whereas NP contains those languages/problems for which there exists a 
tractable solution checking algorithm.  

• CIRCUIT VALUE and CIRCUIT SAT, two problems that are complete for the two 
classes, appear to be of a quite different nature – that is, purely intuitively speaking.  

• Problems in NP have a strong flavour of "combinatorial search" – for all we know, there 
are not better ways of solving problems in this class other than by searching an 
exponentially branching search tree. In contrast, problems in P lack the element of search.  

 
In spite of these striking surface differences, it is currently not known whether P is, in fact, 
different from NP. The question, P =? NP, is one of the most famous unsolved mathematical 
problems of the present. There is a 1 Mio Dollar prize set on settling this question 
(http://www.claymath.org/millennium/ ). The majority of mathematicians believes that the 
answer is P ¹ NP, but there is a non-negligible minority of about 10% who favour the 
opposite idea. Plus, there are a few people who suspect the problem is ill-posed and 
undecidable... 51 
 

                                                
51 See http://www.claymath.org/millennium/P_vs_NP/Official_Problem_Description.pdf for an overview on 
current approaches and opinions on P =? NP. 
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Why is the P =? NP so famous, why should it be important except for a few specialists in 
computational complexity? There are a number of reasons that make this problem so 
tantalizing: 
 

1. The problem can be easily grasped. Among the great unsolved problems of 
mathematics, the P ¹ NP problem is most easily understood by non-specialists, and 
can even be explained to mathematical laymen quite easily.  

2. The question appears to have an almost obvious answer, namely, P ¹ NP. It is very 
painful for mathematicians (and computer scientists) that they have been unable to 
prove the apparently obvious for more than 40 years. 

3. The problem is economically very relevant. If it would turn out that P = NP, and if the 
proof of this fact would be constructive (that is, provide a polynomial-time algorithm 
for some NP-complete problem), then the currently used public-key encryption 
algorithms would become breakable.  

4. The question has deep philosophical aspects. In essence, if P = NP, then "creativity" 
and "intuition" [= guessing a solution for a problem] could be replaced by 
"mechanism", at least for problems in NP. 

5. The problem reaches close to the heart of mathematics, namely, finding proofs of 
claims. If it would hold that P = NP, then for any logic (say, FOL) and any proof 
calculus (say, the sequent calculus) and any class of conjectures expressible in the 
logic, the language La = {<c> | <c> is a code of a conjecture expressed in the logic, 
and c has a proof within the calculus of length at most |<c>|a} would be decidable in 
polynomial time. This circumstance would yield a family of polynomially cheap 
decision algorithms for whether conjectures c can be proven in polynomial-length 
proofs. Many open questions in mathematics might then be mechanically settled.  

 
If one sets out to prove P = NP, the strategy is straightforward: simply find a way to solve one 
of the many NP-complete problems in polynomial time. The fact that no such method has yet 
been found, in conjunction with the counterintuitive implications that P = NP would have, 
leads most mathematicians to believe that P ¹ NP.  
 
However, the world of algorithms is always good for surprises. Consider the problem 
PRIMES, whose instances are the natural numbers n and the question is whether n is 
composite.  The naive method to check whether a natural number is composite is 
exponentially expensive: the "sieve of Eratosthenes check". However, PRIMES is easily seen 
to be in NP. The problem has much of the flavour of combinatorial search which is typical for 
NP-complete problems. However, NP-completeness of PRIMES could not be derived52 – and 
for a good reason: in 2004, M. Agrawal, N. Kayal and N. Saxena found a polynomial-time 
algorithm for deciding primality of natural numbers53, soon named the AKS algorithm. This 
earthquake result exploits deep insights from number theory and makes one at least faintly 
suspicious of the possibility that maybe, after all, P = NP might be ascertained by some 
"deep" algorithm solving some number-theoretic, NP-complete problem in polynomial time.  
 
If you are interested in the futility of mathematical effort, check out the hilarious website 
http://www.win.tue.nl/~gwoegi/P-versus-NP.htm (pointed out to me by Dmitri Cucleschin). 
Besides some serious overview articles, and youtube videos and two Homer Simpson cartoons 

                                                
52 In fact, most researchers in that field suspected PRIMES to be in P since long, -- for their reasons, check out 
http://primes.utm.edu/prove/prove4_3.html  
53 M. Agrawal, N. Kayal and N. Saxena, "PRIMES in P," Ann. of Math. (2), 160:2 (2004) 781--793.  Available 
from http://www.cse.iitk.ac.in/users/manindra/. 
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concerning P = NP, this page also lists about 90 published (!) research articles, divided into 
two groups of roughly same size, where papers in the first group present proofs of P = NP and 
papers in the other group present proofs of P ¹ NP. Plus, there is a small group of papers that 
prove in various ways and senses why/how neither P = NP  nor P ¹ NP can be proven.  
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13 Descriptive Complexity 
 
In this final chapter I want to introduce you to a recent new approach to computational 
complexity, which takes a quite different perspective than the "classical", execution-and-
implementation-oriented perspective of counting CPU cycles or measuring memory usage. 
This alternative approach, often called "descriptive complexity", characterizes complexity 
classes (like P or NP) not in terms of computational resources but in terms of the power of a 
logic needed to characterize the languages within one class. For instance, very roughly 
speaking, the class of languages that can be defined by propositional logic should be 
intuitively "less complex", or "simpler", than the class of languages definable within first-
order logic. This approach has led to fascinating ramifications into other fields of logic, game 
theory and the theory of database languages. I follow closely a survey work54 by Erich Grädel, 
a pioneer of the field.  
 
The main results that I will report are a landmark theorem55 by Fagin, which characterizes NP 
in terms of logical descriptive complexity, and which in retrospect was the starting shot for 
the field; and a more recent theorem by Grädel (1991) which gives a (partial, as we will see) 
characterization of P through a logic.  
 
I find this a very satisfying capstone chapter for the two-semester courses on theoretical CS 
(formal languages, logics, computability and complexity), because it brings together logics 
and computational complexity, and is elegant and modern.  
 
 
13.1 A recap of first-order logic 
 
We start with a recap of first-order predicate logic (FOL), which I essentially copy from the 
Adv. CS 1 lecture notes. Check out those lecture notes at http://minds.jacobs-
university.de/sites/default/files/uploads/teaching/lectureNotes/LN_FLL_Fall10.pdf for details, 
explanations and examples. You probably may skip most of this subsection, except the 
definitions 13.11 through 13.14 at the end, which introduce concepts not covered in the Adv. 
CS 1 lecture (namely, prenex normal forms and Horn formulae in FOL).  
 
Definition 13.1. Each FOL language uses the following sorts of symbols: 
 

1. Symbols which are shared by all FOL languages: 
a. variables x1, x2, x3, ... (for convenience we will also use y, z, and others), 
b. logical connectives Ù, Ú, ¬, ®, «,  
c. quantifiers $ and ", 
d. the identity symbol =,  
e. brackets ( and ).  

2. Domain-specific symbols: 
a. for each n ³ 1, a set (possibly empty) of n-ary predicate symbols,  
b. for each n ³ 1, a set (possibly empty) of n-ary function symbols,  
c. a set (possibly empty) of constant symbols.  

 
                                                
54 E. Grädel, Finite Model Theory and Descriptive Complexity. Online manuscript, fetched from www-
mgi.informatik.rwth-aachen.de, 2002. Copy at http://minds.jacobs-
university.de/sites/default/files/uploads/teaching/share/2160_Graedel07.pdf  
55 R. Fagin, Generalized first order spectra and polynomial time recognizable sets, in Complexity of 
Computation. SIAM-AMS proceedings 7 (R. Karp, ed.), 1974, 43-73 
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When one talks about the symbol set S of a FOL language, one typcially refers only to the 
collection of all its domain-specific symbols (the shared symbols are tacitly taken as granted). 
S is also referred to as the signature or the vocabulary of a FOL language.  
 
Definition 13.2. (Syntax of FOL terms with symbols from S). Given a symbol set S, the terms 
of the FOL language over S are defined inductively, as follows: 
 

1. Each variable is an S-term. 
2. Each constant from S is an S-term.  
3. If t0, ..., tn-1 are S-terms, and f is an n-ary function symbol from S, then f t0...tn-1 is an S-

term. 
 
Definition 13.3 (Syntax of S-expressions; FOL language over S) Given a symbol set S, the 
expressions of the FOL language over S are defined inductively, as follows: 
 

1. For S-terms t0 and t1, t0 = t1 is an S-expression. 
2. For S-terms t0, ..., tn-1, and an n-ary relation symbol R, Rt0...tn-1 is an S-expression. 
3. For an S-expression j, ¬ j is an S-expression. 
4. For S-expressions j and y, (j Ù y), (j Ú y), (j ® y), (j « y) are S-expressions. 
5. For an S-expression j and a variable x, $ x j and " x j are S-expressions. 

 
The set of S-expressions is denoted by LS, that is, the first-order language over S.  
 
Definition 13.4 (free occurrence of variables in S-expressions). We inductively define the set 
free(j) of variables that occur free in an expression j. For any term t, let var(t) denote the 
variables that occur in t. Then define 
 

free(t0 = t1) = var(t0) È var(t1) 
free(Rt0...tn-1) = var(t0) È ... È var(tn-1) 
free(¬ j) = free(j) 
free((j * y)) = free(j) È free(y) for * = Ù, Ú, ®, « 
free($x j) = free(j) \ {x} 
free("x j) = free(j) \ {x} 

 
We say that x is bound by a quantifier in an expression "x j or $x j  if x occurs free in j.  
S-expressions which do not contain free variables are called propositions or sentences. We 
write j[x1, ..., xn] to indicate that j contains at most the free variables x1, ..., xn.  
 
So much on the syntax of FOL. The semantics of FOL establishes in what sense S-expressions 
hold true (or not) for suitable mathematical objects, that is, how S-expressions describe 
mathematical entities. Here we adopt the set-theoretic view on mathematics, by which all 
mathematical objects can be seen as sets. Given a symbol set S, the S-structures are the 
objects which S-expressions can describe: 
 
Definition 13.5 (S-structures). 
 
Let S be a set of predicate, function, and constant symbols. An S-structure " is a non-empty 
set A (called the domain of  " - note that "domain" is here a technical term), wherein the 
following conditions are declared: 
 



 108 

1. For each constant symbol c of S, there is one fixed element of A, denoted by c ". For 
instance, if we talk about the real numbers, our symbol set S will very likely contain 
the constant symbol 1 [a formal symbol from our language], and 1" then is the real 
number of unit size [a mathematical "thing"]. 

2. For each unary predicate symbol P of S, there is a (possibly empty) subset AP of A, 
denoted by P". For instance, when describing ancient Athens, is-dog" is the set of all 
dogs in Athens. That is, in predicate logic we adhere to the so-called extensional 
interpretation of properties: a property "is" just the set of all things which have that 
property. One also speaks of the class or a type of things that have the property. 

3. For each binary predicate symbol R of S, there is a (possibly empty) subset AP of A ´ 
A, denoted by R". That is, R" is a set of pairs in A. Again, note the extensional 
perspective. For instance, when talking about the real numbers, < " is the set of all 
pairs (x, y) of real numbers where x < y. Predicates of higher arity are treated in a 
similar fashion. 

4. For each unary function symbol f of S, f " is a unary function in A, that is, a function 
that takes arguments and values from A. Technically, one can define such a function 
again as a set of pairs: f "  = {(x, y) | f " (x) = y}. Functions of higher arity are treated 
in a similar fashion.  

 
Instead of f " one often writes fA etc. In many important examples of (mathematical) 
structures, the symbol set S is finite, even small. A convenient and much-used way to write 
down such a structure is to put all its ingredients into a tuple, the domain first. For instance, 
the standard structure of arithmetics is described using the symbol set Sar = {+, ×, 0, 1} and is 
denoted by  
 

 "ar = (N, + N, × N, 0 N, 1 N). 
 
 
Definition 13.6 (variable assignments). An assignment in an S-structure is a mapping  
b: {x0, x1, ... } ® A.  
 
Intuitively, an assignment specifies to what things variables point. If we fix an assignment, we 
can interpret the (free) variables in S-expressions by the assignees, and we can proceed further 
toward defining what S-expressions "mean". The technical term for the combined 
interpretation of symbols from S and variables under a fixed assignment is an S-interpretation: 
 
Definition 13.7 (S-interpretations). An S-interpretation  # is a pair ( ", b), where  " is an S-
structure and b is an assignment.  
 
Note that with  " we know how to interpret symbols from S and with b we know how to 
interpret variables.  
 
Often (namely, when we have to cope with variables unwantedly getting captured by 
quantifiers) we will want to rename variables. Renaming variables must be done carefully, 
because under a given assignment a variable is already "attached" to some element of A. To 
deal with this, we need a technical tool for adjusting assignments in one variable. We 
introduce the following notation: 
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Definition 13.8 (re-assignment of a single variable). Let b be an assignment, a Î A and x a 
variable. By b K

L
 denote the assignment which acts like b on all variables except x, and assigns 

x to a: 
 

 

 
If  # is ( ", b), let  #K

L
 denote ( ", bK

L
).  

 
Definition 13.9 (interpretation of terms). Let  # be an S-interpretation ( ", b).  
 

1. For each variable x,   #(x) = b(x).  
2. For each constant symbol c Î S,  #(c) = c  ". 
3. For n-ary f Î S and S-terms t0, ..., tn-1,  #( f t0...tn-1) = f " ( #(t0), ...,  #(tn-1)).  

 
 
Now we have everything prepared to define in rigorous terms what it means for some S-
expression j to "mean" something in an S-structure. The goal is to specify when a given j is 
true and when it is false. The truth or falseness of some j is relative to a given interpretation, 
because interpretations declare what the individual symbols occurring in j mean. Therefore, 
j  can be true or false only relative to an interpretation  #. We say that  # is a model of j, or 
that  # satisfies j, or that j holds in  #, and write   # £  j , if j is true relative to  #. 
 
Technically,  # £  j is defined by induction over the structure of j:  
 
Definition 13.10 (model relation between an interpretation and an S-expression or a set of S-
expressions).  
 
a. Let  " be an S-structure. For all  # = ( ", b) we define 
 
 # £  t0 = t1  iff  #(t0) =  #(t1) 
 # £  Rt0...tn-1  iff R" #(t0) ...#(tn-1)  [that is, in extensional view, (t0, ..., tn-1) Î R "] 
 # £  ¬ j  iff not  # £  j 
 # £  (j Ù y)  iff  # £  j and  # £  y 
 # £  " x j  iff for all a Î A,  # K

L
 £  j 

 # £  $ x j  iff for at least one a Î A,  #K
L
 £  j 

 
This definition can be extended by clauses dealing with Ú, ®, and « in an obvious manner.  
 
b. If F is a set of S-expressions (possibly empty or infinite), we write  # £ F iff  # £ j for all 
j Î F.  
 
Note that if j is a proposition, the model relation does not depend on the assignment, that is, 
for  #1 = ( ", b1)  and   #2 = ( ", b2), it holds that  #1 £  j iff  #2 £  j. That is, for 
propositions j we may write  " £  j instead of  # £  j. 
 
This ends our recapitulation of FOL basics from the earlier lecture Adv. CS 1.  
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13.2 Some more concepts of logic 
 
For our purpose of characterizing P and NP in terms of logics, we need a few more concepts 
from logics, which are standard constructions in logics at large and worth knowing for their 
own sake. 
 
Definition 13.11. A FOL S-expression j is in prenex normal form if j º Q1 x1 ... Qn xn x, 
where n ³ 0, Qi Î {", $}, and x is an S-expression that does not contain any quantifier. In 
other words, expressions in prenex normal form start with a (possibly empty) block of 
quantifiers followed by a "body" expression which is quantifier-free.  
 
Proposition 13.12. For each S-expression f there exists an equivalent S-expression j in 
prenex normal form.  
 
Proof (sketch): an easy exercise. Use induction over the structure of S-expressions, plus the 
rules "" º ¬$¬" and "$ º ¬"¬", to move quantifiers in f to the left and negations around 
quantifiers to the right.  
 
Definition 13.13. a. A FOL S-expression x is atomic if it is of the form t0 = t1, or of the form 
Rt0...tn-1, where the ti are S-terms.  
b. A literal is an atomic or negated atomic S-expression. The former are called positive 
literals, the latter negative literals. 
 
Examples: x = y, Px3, Rfaxgy are atomic S-expressions for S = {P, R, f, g, a} where P is a 
unary predicate symbol, R a binary predicate symbol, f a binary function symbol, g a unary 
function symbol, and a a constant symbol. These three expressions are also literals, as are ¬x 
= y, ¬Px3, ¬Rfaxgy.  
 
Definition 13.14. A FOL S-expression j is a Horn expression if (i) it is in prenex normal 
form, (ii) the quantifier block of the prenex normal form only contains universal quantifiers, 
and (iii) the body is a conjunction of disjunctions of literals, where each disjunction contains 
at most one positive literal. These disjunctions are called the clauses of a Horn expression. 
 
Examples: x = y, Pax Ù (fz = a Ú ¬Px3), or "x"y (Pax Ù (fz = a Ú ¬Px3)) are Horn 
expressions, whereas "x$y (Pax Ù (fz = a Ú ¬Px3)) or "x"y (Pax Ù (fz = a Ú Px3)) are not.  
 
Remarks.  
 
1. Disjunctions of literals with at most one positive literal can be rewritten as implications. 

For instance, fz = a Ú ¬Px3 is equivalent to ¬Px3 ® fz = a. In general, ¬x1Ú ... Ú ¬xn 
Ú z is equivalent to (x1Ù ... Ù xn) ® z. If one wishes, one can also interpret a single 
positive literal x as the implication true ® x, where true is some tautology (e.g., true º x 
= x), and a negative literal ¬x as the implication x ® false, where for instance false º ¬x 
= x.  

2. Horn logic is the basis for logic programming, instantiated in the PROLOG programming 
language family, which is widely used in computer linguistics.  
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Second-order logic (SOL) is a (very far-reaching) generalization of FOL, which is obtained 
by admitting not only quantification on individuals, but also on predicates and relations. We 
do not give a formal specification of the extended syntax and semantics of SOL, which is 
quite straightforward, but rather illustrate it with the following formula: 
 
 "P ((P0 Ù " n (Pn ® P(n+1))) ® " n (Pn)) 
 
This is a SOL formula which reads, "for all properties P, if 0 has it and if some n has it, then 
n+1 has it, too, then all n have this property" – you should recognize the principle of 
induction over the natural numbers here.  
 
Full SOL allows existential and universal quantification on predicates and relations of any 
arity, and is an extremely expressive logic. However, it is also a "monster", -- the other side of 
its extreme expressive power is that full SOL has almost no "nice" properties. In particular, 
any syntactic proof calculus for SOL will be far from being complete. Logicians stay away 
from full SOL as much as possible, and rather extend FOL by timid small steps toward full 
SOL whenever FOL is too weak for a particular purpose. Of such useful fragments of SOL 
there are plenty. For instance, one may extend FOL by a quantifier $f, where $f x j[x] would 
be interpreted to mean "there exist only finitely many elements x sucht that j[x]". $f can be 
defined within SOL (how? hint: with SOL it is possible to define the natural numbers.)  
 
For our purposes in descriptive complexity, the following fragment of SOL is of particular 
interest: 
 
Definition 13.15. Existential second-order logic, sometimes denoted , is the set of SOL 
expressions of the form $R1 ... $Rm j,  where j is a FOL expression and R1 ,..., Rm are 
relation variables of any arity.  
 
Thus  is the fragment of SOL characterized by the constraints that only existential second-
order quantifiers are admitted, and that they all must appear in a negation-free fashion in the 
beginning of an expression. 
 
 
13.3 Setting the stage for descriptive complexity 
 
In the remainder of chapter 13, I follow closely the survey paper of Grädel, frequently 
copying portions verbatim, only adapting Grädel's notation to the one used in the Adv. CS 1 
course.  
 
Fagin's and Grädel's theorems characterize NP and (partially) P as the sets of languages that 
can be specified by formulae of certain extensions of FOL toward second-order logic. In order 
to formulate these theorems, we need to make ourselves familiar with the way of thinking in 
this field.  
 
In traditional complexity theory, a language is a set of strings over some alphabet S. In the 
field of descriptive complexity, the notion of a language is, at first sight, more general: a 
language is a set of finite S-structures. This perspective is not fundamentally different, though, 
because strings over some alphabet can be seen as finite S-structures (exercise: how? there are 
many possibilities. Hint: one way to see symbol strings as S-structures is to interpret the 
symbols from S as unary predicates in S, and the linear order of a string is just this, a linear 
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order... for which you would need another binary relation symbol in S). Conversely, given 
some signature S, finite S-structure can be coded in bitstrings under certain circumstances. 
The next few definitions serve to clarify all of this. 
 
Definition 13.16. For any signature S, we write Fin(S) for the class of finite S-structures and 
Ord(S) for the class of all structures ( ", <A), where  " Î Fin(S) and <A is a binary relation on 
A which is a linear order on A. In other words, the structures in Ord(S) are finite S È {<} – 
structures (we may assume that < is new to S), with the requirement that <A is a linear order 
on A. We also say, ( ", <A) is an ordered S-structure.  
 
For any ordered S-structure ( ", <A) of cardinality |A| = n and any k we can identify Ak with 
the set {0, ..., nk - 1}, by associating each k-tuple with its position in the lexical ordering 
induced by <A on Ak. Ordered S-structures can be encoded in strings over some alphabet S in 
many ways; however, an encoding scheme must meet the following requirements: 
 
Definition 13.17. A function code: Ord(S) ® S* is an encoding of ordered S-structures in 
words of some alphabet S, if  
 
1. it identifies isomorphic structures, that is,   

code( ", <A) = code( $, <B) if ( ", <A) @ ( $, <B), 
2. its values are polynomially bounded, that is, if 

| code( ", <A) | £ p(|A|) for some polynomial p, 
3. it is first-order definable in the following sense: for all k Î N and all a Î S there exists a 

FOL S È {<} – expression  ba[x1, ..., xk] such that for all ( ", <A) Î Ord(S) and all       
𝑎 ∈ 𝐴>, 𝑎 = 𝑎@ …	𝑎>, with N(𝑎) being the position of 𝑎	in the lexical ordering of Ak  w.r.t. 
<A, the following equivalence holds: 

( ", <A) £ ba [a1, ..., ak] iff the N(𝑎)th symbol of code( ", <A) is a56, and 
4. given code( ", <A), a k-ary relation symbol R of S and a (representation of a) tuple         

𝑎 ∈ 𝐴>, one can efficiently decide (in at most linear time) whether ( ", <A) £ R𝑎. 
 

Condition 3 is not very easy to understand. The key idea here is that in order to describe the 
codeword code( ", <A) by first-order logic expressions, these expressions have to talk about 
the i-th symbol in code( ", <A), for any i not greater than the length of the word code( ", <A). 
The expression ba [a1, ..., ak] "mis-"uses the tuple (a1, ..., ak) merely to code the number      
N(𝑎). 
 
A convenient encoding is the following. Let < be a linear order on A and let                           
 " = (A, R1

A, ..., Rt
A) be a relational structure of cardinality n. Let l be the maximal arity of 

the relation symbols R1, ..., Rt. With each relation R of arity j we associate the binary string     
c(R) =  𝑤Q …𝑤ERS@0E

USER 	 ∈ 	 {0,1}EU, where wi = 1 if the i-th tuple of Aj belongs to R, and wi 
= 0 otherwise. Now, set code( ", <A) = 1E0EUSE	𝜒 𝑅@ …𝜒 𝑅Y . – If S contains function 
symbols, proceed accordingly, by coding the graph of the function; if S contains constant 
symbols, code them as if they were unary predicates comprising a single individual from A.  
 

                                                
56 ba[a1, ..., ak] is obtained from ba [x1, ..., xk] by replacing free occurences of the xi by the corresponding ai.  



 113 

Definition 13.17 and the example suggest that having an order available within an S-structure 
 " is essential for being able to code  " in a string. In fact, there is no known generic way to 
encode S-structures  " lacking an order. Therefore, when we want to encode an unordered S-
structure  ", we associate with  " the set of all encodings code( ", <A), where <A is a linear 
order on A. We are now prepared to define in what sense we may algorithmically decide a 
class % of S-structures. 
 
Definition 13.18. (deciding classes of S-structures) Let  % be a class of finite S-structures. 
With  % we associate the language  
 

code( %) = { code( ", <A) |  " Î  % and <A is a linear order on A}. 
 

We say that a TM M decides  % iff M decides code( %). 
 
 
Notes: 
 
1. The task of deciding classes of S-structures is a generalization of the language decision 

task, since languages are classes of strings over some alphabet, and such strings can be 
seen as a particularly simple kind of S-structures. 

2. If M decides  %, then M is invariant w.r.t. <A, that is, for any finite S-structure  " (not 
necessarily in  %), any linear orderings <1

A, <2 A on A, it holds that M(code( ", <1
A)) = 

M(code( ", <2
A)). Unfortunately, it is undecidable whether a given TM M is invariant 

w.r.t. <A. That is, when dealing with decision algorithms M for classes of S-structures, we 
have to verify on a case-by-case basis whether M is invariant w.r.t. <A. Fortunately, this is 
usually not difficult.  

3. In the light of definition 13.18, classes  % of S-structures can essentially be seen as 
languages, and it makes sense to ask whether some such  % belongs to a particular 
complexity class, say, P or NP. In particular, given some sentence j in some logical 
language with signature S, it makes sense to ask what is the complexity of deciding     
 %(j) = { " |  " is a finite S-structure and  " £ j }.  

 
Capturing complexity classes. We are now prepared to understand the general approach 
taken in descriptive complexity. Recall that logicians freely design logics (plural!) as they 
deem fit. We have met with only a few logics so far in this lecture, namely propositional 
logic, FOL, full SOL, existential SOL, and the SOL fragment FOL + $f – but if this gave you 
the impression that only some few logics exist, then this is quite a false impression; certainly, 
thousands of logics have been introduced and used on the fly by mathematicians, computer 
scientists and linguists so far. Now, given some logic  &, and with it the set of well-formed 
 &-expressions j (over arbitrary signatures S), descriptive complexity focusses on the 
question: 
 
Given &, is there a complexity class C such that for all  &-expressions j, the complexity of 
deciding  %(j) is in C? 
 
This statement of the mission of descriptive complexity is intuitive only and needs to be made 
more precise. To this end, we formulate the following definition: 
 
Definition 13.19. (Capturing a complexity class by a logic on a domain of finite structures). 
Let & be a logic, C a complexity class (in the ordinary sense based on TMs), and D a class of 
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finite structures (later we will consider the class of all finite structures with non-empty finite 
signatures, and the class of ordered structures with finite signatures, i.e. such signatures which 
contain a <-relation which is a linear order on the carrier of the structure). We say that & 
captures C on D if 
 

1. For every non-empty finite signature S and every sentence j Î &(S), and for every 
finite S-structure ", the language 

 
   {code(", <A) | " Î %(j), <A is a linear order on A} 

 
 is in C. 
 

2. For every model class %  Í  D(S) [where D(S)  denotes the restriction of D on S-
structures], where the language {code(", <A) | " Î %, <A is a linear order on A} is in 
C, there exists a sentence j Î &(S), such that  

 
  %  = { " Î D(S) | " £ j }. 
 
For brevity, we say that % Î C if the language {code(", <A) | " Î %, <A is a linear order on 
A} is in C. This gives a short way to state the above definition: that & captures C on D if for 
all %  Í  D(S):  % Î C iff  % =  %(j) for some &-sentence j. 
 
In the light of this definition, the quest in descriptive complexity is for identifying complexity 
classes with logics, relative to certain classes of finite structures. The insights achieved in this 
way of thinking are "deeper", in a certain sense, than the insights achievable in traditional, 
"algorithmic" complexity theory. In traditional complexity theory, a complexity class is 
defined in terms of the computational resources needed to decide languages (or, in the more 
general view, classes of S-structures). These computational resources need some machine 
model, which is in a sense ad hoc – you may have found the ubiquitous use of TMs as the 
reference machine model somewhat unsatisfying (at least I did), and the justification of 
settling on TMs by showing that TMs can simulate other machine models in polynomial loss 
in efficiency (and vice versa) is tedious (and breaks down when linear or even sublinear 
complexity classes are considered – then the choice of the underlying machine model does 
suddenly matter).  
 
In contrast, in descriptive complexity the fundamental question is not about computational 
resources to decide classes of objects, but the descriptive complexity of the objects 
themselves. The approach of descriptive complexity is free of ad-hoc choices of machine 
models!  
 
Thus, a pure descriptive complexity approach would just not care about machine models, but 
instead focus on logics and the sets of S-structures  %(j) characterizable within particular 
logics. However, because the traditional approach to complexity is (of course) also very 
interesting and historically dominating, many results in descriptive complexity aim at the 
"classical" complexity classes, like L, P or NP, and try to find logics that characterize those 
traditional classes.  
 
The first landmark result of descriptive complexity, to which we will now direct our attention, 
is therefore a result that found a logic which captures NP.  
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13.4 Fagin's theorem: capturing NP on finite structures 
 
In 1974, Ronald Fagin (now at the IBM Almaden Research Center57) proved Fagin's theorem: 
 
Theorem 13.1. Let  % be an isomorphism-closed class of finite S-structures, where S is any 
finite, non-empty signature. Then  % Î NP iff  % =  %(j) for some existential SOL sentence 
j. In other words, existential second-order logic captures NP on the class of all finite S-
structures (with non-empty signature). 
 
Note. The restriction to non-empty signatures is essential. The reason is that S-structures with 
empty signature are just bare sets which would be encoded differently (by logarithmically 
shorter codewords) than with the code conventions assumed here, leading to different 
complexity behavior. 
 
Proof. First we show how to decide  %(y) in nondeterministic polynomial time, for any 
existential SOL sentence y = $R1 ... $Rm j. For this we need a nondeterministic polynomial-
time algorithm M which, given an encoding code( ", <A) of an S-structure  ", decides 
whether  " £ y. First, M guesses relations R1

A, ...,  Rm
A on A. A relation Ri

A is determined by 
a binary string of length nri, where ri is the arity of Ri

A and |A| = n. Then M decides whether 
(", R1

A, ...,  Rm
A) £ j. Since j is a first-order expression, this can be done in polynomial time 

(exercise: use induction on the structure of j). Hence the computation of M consists of 
guessing a polynomial number of bits, followed by a deterministic polynomial-time 
computation.  
 
Conversely, let  % be an isomorphism-closed class of finite S-structures and M a 
nondeterministic, single-tape TM which, on input code( ", <A), decides in polynomial time 
whether  " belongs to  %. We construct an existential second-order sentence j whose finite 
models are precisely the structures in  %.  
 
Let M = (Q, S, q0, d) be a single-tape nondeterministic TM with state set Q, tape symbol set 
S, starting state q0, transition function d, just as we know it except that here we have a set F+ 
Í Q of accepting states and F- Í Q of rejecting states, and that we identify the cursor motion 
set {®, ¬, -} with the integers {1, -1, 0}. Without loss of generality we may assume that all 
computations of M on input code( ", <A) reach an accepting or rejecting state after at most 
nk-1 steps, where n is the size of A.  
 
We represent a computation of M on input code( ", <A) by a tuple 𝑋 of relations on A, and we 
will construct a first-order sentence jM of signature S È {<} È {𝑋} such that 
 
 ( ", <,	𝑋) £ jM       iff the relations 𝑋 represent an accepting computation 
     of M on code( ", <A). 
 
To represent the nk time and space parameters of the computation we identify numbers up to 
nk-1 with tuples in Ak. Given a linear order, the associated successor relation s and the least 

                                                
57 http://www.almaden.ibm.com/cs/people/fagin/ 
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and greatest element are first-order definable58. Note further, that if a successor relation s and 
constants 0, e for the first and last elements are available, then the induced successor relation 
𝑦 = 𝑥 + 1 on k-tuples (where each member of the tuple is an element from A which we may 
identify with its position index w.r.t. <) is definable by a quantifier-free expression 
 
 (𝑥 = 𝑒 ∧ 𝑦 = 0) ∧ 𝜎𝑥#^-# 𝑦# 	∧ 	 𝑥^H# = 𝑦#-> . 
 
Hence for any integer m (may also be negative), the relation  𝑦 = 𝑥 +𝑚  is first-order 
definable, too.  
 
The description 𝑋 of a computation of M on code( ", <A) consists of the following relations: 
 
1. For each state q Î Q, the predicate 
 

Xq := { 𝑡 	∈ 	𝐴> | at time	𝑡, M is in state q}. 
 
2. For each symbol a Î S, the predicate 
 

Ya := { 𝑡, 𝑐 ∈ 𝐴>	×𝐴> | at time	𝑡, tape cell 𝑐 contains symbol a}. 
 
3. The head predicate 
 

Z := { 𝑡, 𝑐 ∈ 𝐴>	×𝐴> | at time	𝑡, the read/write head is on position  𝑐}. 
 
The sentence jM is the universal closure (w.r.t. first-order universal quantification) of the 
conjunction START Ù COMPUTE Ù END. 
 
The subexpression START enforces that the configuration of M at time 0 is C0( ", <A), that 
is, the input configuration on code( ", <A). Recall from condition 3 in definition 13.17 that an 
encoding is represented by first-order S È {<} - epressions ba [x1, ..., xk] =: ba [𝑥	]. We set 
 

  
 
The subexpression COMPUTE describes the transitions from one configuration to a next one. 
It is the conjunction of the expressions 
 

   
and 

   
 
where 

                                                
58 Exercise: assuming that < satisfies the axioms of a linear order, provide a FOL {<}-expression succ[x, y] that 
encodes succ[x, y] Û y is the direct successor of x under <; and give FOL {<}-expressions first[x] amounting to 
"x is the minimal element of <" and last[x] amounting to "x is the maximal element of <" 
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NOCHANGE expresses that the contents of currently not scanned tape cells do not change 
from one configuration to the next, whiles CHANGE enforces the changes of the relations Xq, 
Ya, and Z imposed by the transition function.  
 
Finally we have the expression 
 

  
which enforces acceptance by forbidding rejection. 
 
Having captured the workings of M in jM, we proceed with the main argument of our proof, 
by showing two claims.  
 
Claim 1. If M accepts code( ", <A), then  ( ", <A)  £ ($ 𝑋)jM. 
 
This follows immediately from the construction of jM, since for any accepting computation of 
M on code( ", <A), the intended meaning of 𝑋 satisfies jM. 
 
Claim 2. If ( ", <A,	𝑋)  £ jM, then M accepts code( ", <A). 
 
Expressed in words, this claim says that "if there exist relations 𝑋 = ({Xq}, {Ya}, Z) of arities 
(k, 2k, 2k) on A, such that ( ", <A, 𝑋)  £ jM, then M accepts code( ", <A)." In order to show 
the claim, suppose that ( ", <A, 𝑋)  £ jM. For any M-configuration C with state q, head 
position p and tape content , and for any time j < nk, let CONF[C, j] be the 
conjunction of the atomic statements that hold for C at time j, that is,  

  
 where 𝚥, 𝑝, 𝚤  are the tuples in Ak representing the numbers j, p, i.  
 

a. Let C0 be the input configuration of M on code( ", <A). Since ( ", <A, 𝑋)  £  START, 
it follows that  

 
( ", <A, 𝑋)  £   CONF[C0, 0]. 

 
b. Due to the subexpression COMPUTE of jM we have for all non-final configurations C 

and all j < nk - 1 that 

  
where Next(C) = {C' | C 

5
 C'} is the set of possible successor configurations of C. It 

follows that there is a computation  
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 C0( ", <A) = C0
5

 C1 
5

... 
5

Cnk-1= Cend 
 
of M on code( ", <A) such that for all j < nk,  
 
 ( ", <A, 𝑋)  £   CONF[Cj, j]. 

 
c. Since ( ", <A, 𝑋)  £   END, the configuration Cend is not rejecting. Thus, M accepts 

code( ", <A). 
 
This proves claim 2. Let j< be a FOL sentence axiomatizing linear orders (exercise). Taking 
into account what was said in definition 13.18 concerning that M is invariant w.r.t. <A, we 
finally obtain from the two claims 
 
  " Î  %    iff  "  £  $ < $ 𝑋 (j<  Ù  jM), 
 
that is, we have characterized  % by an existential SOL sentence  y =   $ < $ 𝑋 (j<  Ù  jM). · 
 
 
Fagin's theorem is the strongest and "deepest" theorem that we met in this lecture. Some of its 
implications connect some old-standing questions of logics to complexity – topics beyond the 
scope of this lecture (if you are interested, check out corollary 2.8 in Grädel's survey). Here 
we demonstrate the power of Fagin's theorem by deriving Cook's theorem as a simple 
corollary: 
 
Corollary 13.2. SAT is NP-hard.  
 
Proof. Let L be any problem in NP – where by "problem" here we refer to the classical 
interpretation of L as a language of codewords of problem instances, over some alphabet S. 
Since codewords can be considered as finite structures over some suitable signature S (was a 
teaser exercise at the beginning of section 13.3), we can identify L with some  %  Í Fin(S). 
By Fagin's theorem, there exists a FOL sentence j such that  
 
  %  = { " Î Fin(S) |  " £ $R1 ... $Rm j}. 
 
We have to find a transformation from a problem instance  " Î Fin(S) (that is, a word w Î 
S*, seen as a finite S-structure) to a Boolean formula. We use the information from  " and 
adapt j to our purpose, obtaining a Boolean formula j " that does what we want. Given  ", 
replace in j 
 

• all subexpressions $x z by  𝜁K∈j
K
L

,59 

• all subexpressions "x z by 	 𝜁 K
LK∈j , 

• all (ground) S-atoms by their truth values in  ". 
 
After this transformation, the remaining atoms  with relation variables Ri are considered 
as Boolean variables, and we have  
                                                
59 z 𝑎

𝑥
 denotes the expression that is identical to z, except that free occurrences of x have been replaced by a.  
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  " Î  %  iff  " £ $R1 ... $Rm j  iff j " is satisfiable.  · 
 
 
13.5 Grädel's theorem: capturing P on ordered structures 
 
It would be nice to have an analog of Fagin's theorem for a logical characterization of finite 
structures that can be decided by some TM in deterministic polynomial time – said simply, we 
want to capture P by some logic. A theorem of Grädel60 (1992) comes close, but a full 
solution is unknown – a very interesting fact, see the concluding remarks at the end of this 
subsection.  
 
Essentially, Grädel's theorem states that if we use existential Horn SOL instead of existential 
SOL (as in Fagin's theorem), then we (almost) capture P instead of NP. Let us first fix 
notation: 
 
Definition 13.20. Existential second-order Horn logic, sometimes denoted -HORN, is the 
set of SOL expressions of the form $R1 ... $Rm j,  where j is a FOL Horn expression (see 
definition 13.14) and R1 ,..., Rm are relation variables of any arity. 
 
The point where Fagin's theorem is more general than what we will be able to get for P is that 
Fagin's theorem was stated for arbitrary S-structures  " Î Fin(S), while now we will have to 
restrict ourselves to ordered S-structures  " Î Ord(S): 
 
Theorem 13.3 (Grädel 1992). Let  % be an isomorphism-closed class of ordered finite S-
structures  ", where S is any finite, non-empty signature containing < such that <A is a linear 
order. Then  % Î P iff  % =  %(j) for some existential SOL Horn sentence j. In other words, 
existential second-order Horn logic captures P on ordered structures. 
 
Remarks on the proof. The easy direction (if  % =  %(j) for some existential SOL Horn 
sentence j then  % Î P) is essentially a re-use of the idea in the proof of corollary 13.2, using 
as a final twist that HORNSAT Î P. The hard direction of the proof is a remake of the proof 
of Fagin's theorem, exploiting determinism of M to make jM Horn. The point where the 
restriction to ordered S-structures comes into play is right at the end of Fagin's original proof, 
where a FOL sentence j< describing linear orderings was used – but such a sentence is 
necessarily non-Horn.  
 
It is conjectured that no logic can capture P on general S-structures. Proving this, however, 
amounts to settling the question P =? NP (Detailed treatment in Section 5.4 of Grädel's 
survey).  
 
I think this is a nice capstone for this lecture, which knots together logic, complexity, and P 
=? NP in a profound, surprising, and unsettled way, leaving room for your own future 
breakthrough research (someone will do it – why not YOU??). 
 
 
 

                                                
60 E. Grädel, Capturing complexity classes by fragments of second-order logic. Theoretical Computer Science 
101 (1992), 35-57 
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14 What did we learn? 
 
Here is the eagle's view of the grand picture of computation and complexity – the big, 
essential, over-arching and under-lying landscape-shaping insights. For the sake of 
completeness, I include some hints to material that we did not cover in the lecture (and that 
will not be tested in the final exam). This material is marked by (*) 
 
It is clear what "computation" and "computability" means. 
 
It is not clear that this should be clear! But in the last 50 years or so (and not earlier), it has 
indeed become clear. Computation  
 

• is what Turing Machines can do is what RAMs can do  
• is what recursive functions can produce  
• is what lamda calculus can produce  
• is what your PC (under Windows or under Linux or in assembler or even using Word 

macros) can do  
• (*) is what type-0 grammars can do 
• (*) is what cellular automata can do (we cast a glance on them in the tutorial) 
• (*) is what first order predicate logic can do (we did not enter into this topic) 
• is what ...  

 
All of these models of computation (and there are even more), as different as they may appear 
on the surface, are known to be equivalent. The Church-Turing hypothesis claims that indeed 
THIS IS COMPUTATION, and there is no way to "compute" beyond this.  
 
So we have a big collection of equivalent mechanisms of computation. Likewise, there is a 
sizable collection of equivalent task types of computation. We have seen that  
 

• the question of calculating an integer-valued partial function is essentially the same as  
• the question of accepting a language as 
• the question of solving a problem (which in full generality would include problems 

that admit "undecidable" outcomes). 
 
Turing machines (and other computational mechanisms) have "universal simulation power" 
 
We have seen that a universal TM can simulate any other TM. We have seen that RAMs can 
simulate TMs and vice versa. We have seen how programs written in L5 can be transformed 
into lambda expressions and we have seen a part of the story how recursive functions can be 
captured in lambda calculus. (*) We omitted a host of similar mutual simulation methods in 
the lecture – for instance, how a TM can be specified in first order logic, how a TM can be 
simulated by a cellular automaton (we saw a glimpse of that in a homework problem and in 
the proof of Cook's theorem), how a TM can be coded as an arithmetic function, etc. All in 
all, each of the (equivalent) computation mechanisms is capable of simulating every other.  
 
Note that every such simulation of some mechanism A by another mechanism B involves 
some coding convention. For instance, the representation of integers as Church numerals is 
just one possible way of expressing numbers as lambda expressions. Likewise, if a universal 
TM U is constructed, you have to fix a scheme for coding other TMs as suitable input strings 
for U. Again, this rests on a convention and can be done in many different ways.  
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From that universal simulation power, undecidability results from self-simulation paradoxes 
 
A universal TM U can simulate itself – and thus run into trouble when it is asked whether it 
will run forever on the question whether it will run forever. If you assume that this question 
can be answered by U itself, then it should terminate with "yes" iff it runs forever – this is the 
basic idea of the diagonalization proof of showing undecidability of the halting problem. (*) 
The same idea of diagonalization underlies many other undecidability results relating to other 
computation mechanisms – for instance, the famous undecidability theorems concerning first 
order logics, due to Gödel. While Gödel's original proof did not use TMs (they were not 
known at that time) but employed a direct FOL-internal diagonalization approach, today most 
textbooks prove undecidability of FOL by reduction to the halting problem, in that first it is 
shown that FOL can express TMs.  
 
(*) In a similar vein, it can be shown that one cannot decide whether a lambda expression 
reduces to normal form or whether a recursive function is defined on a given input argument, 
etc.   
 
All of these undecidability results have a certain contrived flavour – after all, computational 
problems involving self-simulations are not very "natural". (*) But there exist also "natural", 
"useful" problems that can be shown to be undecidable. They are not easy to come by and the 
few results available are celebrated.  
 
Often one computational problem can be expressed in terms of another – reductions. 
 
Not only computational mechanisms, but also computational problems sometimes can 
"simulate" another. The basic idea is to construct a reduction: Translate some problem A into 
another problem B such that A can be solved by first translating it into B and then solving B. 
We used this strategy twice: for deriving undecidability results (reduction of the halting 
problem to some target language) and for obtaining NP-complete problems (reduction of SAT 
to some target problem). 
 
The rigorous semantics and proof calculi for lambda-calculus and FOL is the basis for 
program verification 
 
For lambda calculus and for FOL there exist rigorous proof calculi, that is, purely syntactical 
symbol-manipulation systems that allow you to derive statements of the form "given that the 
FOL formulae x1, ..., xn are true, j is true" or "given that equivalences x1 = z1, ..., xn = zn hold 
true, the lambda expression j is equivalent to the lambda expression y".  
 
We learnt in ACS 1 what it means that a FOL formula x "holds": it holds for a mathematical 
structure  # (an "interpretation") if  # £  x (we defined what that means). "Holding true" is a 
semantic relation between an expression x and a (mathematical) structure  #. What a structure 
is we defined using set theory – basically, it is a set where the symbols appearing in x are 
interpreted.  
 
(*) In a similar way, one can define mathematical structures suitable for use with lambda 
calculus. However, one typically does not use sets as the mathematical "substance" from 
which model structures for lambda calculus are made, but directed hierarchical graphs (in a 
hierarchical graph, sets of nodes can be assembled into "meta-nodes"). We did not explore the 
issue of graph models for lambda calculus in the lecture. But the idea is the same as with the 



 122 

set-based models used with FOL: first, one interprets the symbols of a lambda expression x by 
subgraphs (just as constants in FOL are interpreted by set elements, relation symbols by 
relation sets etc). Then, there is a general scheme of how the syntactical operations of 
concatenation and lambda abstraction (the syntactical constructions that make up lambda 
expressions from their constitutents) are reflected in the construction of other subgraphs from 
the constitutent subgraphs. In this way, a lambda expression "means" a subgraph in a graph 
model. Two lambda expressions are equivalent (semantically) if they mean the same 
subgraphs in all graph models. The lambda conversion calculus that we introduced in 
Definition 7.6. is correct in the sense that if equivalence of two lambda expressions j and y 
is derived from premises x1 = z1, ..., xn = zn, then the subgraphs denoted by j and y are the 
same in all graph models where the subgraphs denoted by x1 and z1, ..., xn and zn are the 
same. 
 
(*) The existence of correct proof calculi for FOL and/or lambda calculus is the reason why 
FOL and lambda calculus can be used for program verification: Generally speaking, the 
program and its input is represented by some FOL formulae x1, ..., xn or lambda equations x1 
= z1, ..., xn = zn. Then the respective calculus is used to prove that other FOL formulae y or 
lambda equations j = y are entailed. The formulae y or lambda equations j = y are the 
specifications of the desired (and then guaranteed) result of the program. The technical 
implementation of program verification tools may look different on the surface from this, but 
this is the logical essence behind the scene.  
 
Computational complexity classes show that there are problems of qualitatively different 
"difficulty" 
 
The basic insight of complexity theory is that computational resources matter: the more time 
or memory space you have, the more problems you can solve. There are two main types of 
results: 
 

• Complexity hierarchies: results of the kind C(f(n))  C(g(n)), where C defines some 

way to measure complexity (for instance time or space) and f(n) grows slower than 
g(n).   

• Relations between different ways of measuring complexity: results of the kind C(f(n)) 
Í D(g(n)), where C and D relate to two different ways of measuring complexity (for 
instance space vs. time or deterministic vs. nondeterministic).  

• (*) Another type of complexity results are tradeoff insights of the kind C(f(n), g(n)) Í 
C(f'(n), g'(n)), where C depends on two functions of the input length, each one 
measuring a different aspect of complexity, for instance C(f(n), g(n)) = TIME(f(n)) + 
SPACE(g(n)).  

 
The theory of computational complexity is more abstract than a practitioner might wish. Most 
results contain a "big-Oh", that is, complexity claims are made up to a constant factor. Even 
worse, much of complexity theory does not even care about polynomial differences – classes 
P and NP and higher classes like EXP don't differentiate between polynomially related 
complexities. When real-life computation time matters, this is too coarse. Therefore, when it 
comes to fine-tuning real-life algorithms, the insights of complexity theory are of little help. 
 
There is a continental divide in complexity: tractable vs. intractable 
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Problems in P are called tractable, problems that need exponential resources are called 
intractable. While this appears plausible at first sight, this perspective should be adopted with 
caution: 
 

• If a problem is polynomial of high order, it is dubious to call it "tractable". However, 
experience shows that if a high-order polynomial algorithm is found for some 
problem, sooner or later lower-order polynomial algorithms will be found. A point in 
case is the polynomial-time algorithm found for testing primality of integers (see 
remarks in 7.3).  

• Large constants hidden in the big-Oh can be cumbersome. Much ingeniuity may have 
to be spent to reduce the multiplicative constants. A point in case are certain 
algorithms for linear adaptive filtering in signal processing (the RLS algorithm family) 
which has time complexity O(n2) with constants in the range of 7 for naive 
implementations. Because these algorithms are often run in time-critical applications, 
it matters that with an extra effort the time constant can be halved.  

• (*) Conversely, it sometimes happens that a problem has an exponential-time 
algorithm which in practice runs faster than another algorithm that has polynomial 
time. The reason is that our definition of complexity actually measures the worst-case 
resource needs. Sometimes the worst case occurs very rarely or not at all in 
"reasonable" problem instances, and the average resource consumption of an 
exponential algorithm may be quite small. The study of average complexity is a 
(difficult but important) subfield of complexity theory.  

 
Almost all interesting optimization problems are equivalent, and probably very difficult. 
 
Whether you want to optimize a VLSI layout, find a winning chess strategy, or minimize the 
expenses when scheduling a fleet of trucks, you invariably end in an NP-complete or NP-hard 
problem. NP-complete problems are a quite magical class: there are very many of them, and 
they are all alike. It seems that when real-life problems reach a certain level of complexity, 
you are always basically in the same situation. You very likely have to test out all possibilities 
(that is the deterministic-exponential nature of NP), and in testing out all possibilities you 
have to invoke a general-purpose search method that you can re-use on other such problems 
(that is the completeness aspect).  
 
Nondeterminism is a deep riddle 
 
Is P = NP? NP is the class of problems that apparently need "ingenuity": you first have to 
guess the solution, then checking it is easy (= polynomial in time). Can the guessing part be 
captured by an efficient (= polynomial-time) deterministic (= machine-runnable) algorithm? If 
so, mathematicians or executive decision-makers might become obsolete, because the "gut 
feeling" that guides human judgement would become efficiently programmable. It appears 
rather unlikely that this should be possible – but who knows? and why can't we settle this 
question despite great efforts? Where's the riddle? We can't even put our finger on it. There is 
something about solving problems that we deeply don't understand.  
 
It is not really clear what "computational complexity" means 
 
While we have a widely shared and transparent understanding of the concept of computability 
(is a function computable – yes/no), we do not have a likewise transparent and universally 
agreed notion of complexity (is a function costly to compute – less/more). In the lecture we 
have dwelled mostly on the most classical way to come to terms with complexity, which is 
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based on "machine running cost" intuitions about complexity and in its most elementary 
versions measures TM runtime and tape expenditure. However, truly interesting and relevant 
questions arise when the "unrealistic" nondeterministic complexities are considered; and there 
are weirder ramifications of the standard TIME and SPACE complexity measures (such as 
considering the complexities obtained by TMs equipped with "oracles"...) which are 
"irrealistic" but yield important insights. We also threw a look on an alternative approach to 
characterizing the complexity of problems, i.e. descriptive complexity. Let me mention that 
there are yet other approaches to come to terms with computational complexity, for instance 
the axiomatic complexity framework of Blum (check out Google for "complexity Blum 
axiom"), which could be seen as the broadest possible abstraction of the "classical" 
complexity measures, and Kolmogorov (or minimal description length) complexity, which 
describes the complexity of stochastic signals in terms of sizes in terms of the required size of 
generators for these signals.  


