
Mantas Lukoševičius, Herbert Jaeger

Overview of Reservoir Recipes

Technical Report No. 11
July 2007

School of Engineering and Science

Overview of Reservoir Recipes
A survey of new RNN training methods that follow the Reser-
voir paradigm

Mantas Lukoševičius1, Herbert Jaeger

School of Engineering and Science
Jacobs University Bremen gGmbH
Campus Ring 12
28759 Bremen
Germany

Summary

Echo State Networks (ESNs) and Liquid State Machines (LSMs) introduced a
simple new paradigm in artificial recurrent neural network (RNN) training, where
an RNN (the reservoir) is generated randomly and only a readout is trained.
The paradigm, becoming known as reservoir computing, made RNNs accessible
for practical applications as never before and outperformed classical fully trained
RNNs in many tasks. The latter, however, does not imply that random reser-
voirs are optimal, but rather that adequate training methods for them are yet
to be developed. Thus much of the current research in reservoir computing is
done on reservoir adaptation, redefining the paradigm as using different methods
for training the reservoir and the readout. This report motivates the new defini-
tion of the paradigm and surveys the reservoir generation/adaptation techniques,
offering a natural conceptual classification which transcends boundaries of the cur-
rent “brand-names” of reservoir methods. The survey focuses more on methods
relevant to practical applications of RNNs rather than modeling biological brains.

1Corresponding author, email: m.lukosevicius@jacobs-university.de

mailto:m.lukosevicius@jacobs-university.de

Contents

1 Introduction 4

2 Formalism 5
2.1 Formulation of the Problem . 5
2.2 Expansions in Non-temporal Tasks 5
2.3 Expansions in Temporal Tasks . 6
2.4 Recurrent Neural Networks . 7
2.5 Error Backpropagation in RNNs . 7

3 Reservoir Methods 7
3.1 Echo State Networks . 8
3.2 Liquid State Machines . 9
3.3 Evolino . 9
3.4 Backpropagation-Decorrelation . 9
3.5 Other Types of Neurons . 10
3.6 Other Overviews of Reservoir Methods 10

4 Our Classification of Reservoir Recipes 10

5 Universal Reservoir Recipes 11
5.1 Classical ESN approach . 11
5.2 Different Topologies of the Reservoir 12
5.3 Modular Reservoirs . 13
5.4 Time-Delayed vs. Instantaneous Connections 13
5.5 ESNs with Leaky Integrator Units 14

6 Unsupervised Reservoir Pretraining 15
6.1 “Goodness” Measures of the Reservoir Activations 15
6.2 Unsupervised Local Methods . 16
6.3 Unsupervised Global Methods . 17

7 Supervised Reservoir Pre-training 18
7.1 Optimization of Reservoir Global Parameters 18
7.2 Genetically Modified Reservoirs . 18
7.3 Combining with Backpropagation 19
7.4 Trained Auxiliary Feedbacks . 19

8 Closing Remarks 20

1 Introduction

Training recurrent neural networks (RNNs) has always been a difficult problem.
This has impeded applications of RNNs for real life problems despite their lage the-
oretical potential. With Echo State Networks (ESNs) and Liquid State Machines
(LSMs) a new, much less complex paradigm for training RNNs was introduced.
The paradigm, becoming known as reservoir computing, was based on an obser-
vation, that as long as a randomly generated RNN (the reservoir) possess certain
properties, it is not necessary to train it, and training only a recurrence-free linear
readout is sufficient for many tasks. ESNs have been demonstrated to perform ex-
tremely well on several benchmark tasks, outperforming fully trained ESNs [Jae01].
The reservoir computing paradigm recently triggered many practical applications
of RNNs and a whole new stream of research.

Having no recurrences and nonlinearities in the trained part of the model is
what enables the fast and optimal training using linear regression. The same
feature, however, reduces the expressivity of the model, compared to fully trained
RNNs with the same number of neurons. Empirical simulations suggest that for
highly nonlinear tasks, achieving a good internal dynamics of the reservoir which
can be linearly mapped into desired output is hard, and increasing the number of
neurons in the reservoir does not easily improve the situation. Thus much of the
current research in reservoir computing is done on generating or training reservoirs
that are not (completely) random. This report offers a conceptual classification
and extensive survey of this stream of research. The paradigm differentiates itself
from the classical error backpropagation approach for training RNNs in that the
reservoir and the output are trained separately, using different techniques. The
reservoir-readout separation is both conceptual and algorithmical.

More details on the ideas expressed so far are presented throughout the rest
of this text, which is organized in the following way. We start by introducing our
formalism and notation in Section 2, which will be used throughout the rest of
this survey. More specifically, we define what we mean by “problem” or “task”
in the context of machine learning in Section 2.1. Then we define a very general
framework of notation for expansion (or kernel) methods for both non-temporal in
Section 2.2 and temporal in Section 2.3 task. We will show the temporal case as
a natural extension of the non-temporal one. Then we introduce our notation for
recurrent neural networks in Section 2.4, and give some references to their classical
training methods in Section 2.5.

In Section 3 we will briefly introduce the idea and conceptual motivation of
Reservoir Computing and proceed by naming the most prominent methods that
follow this line of thought.

In Section 4 we will introduce our classification of reservoir recipes together
with some remarks on it. Then, following this classification we will review uni-
versal – Section 5, unsupervised – Section 6, and supervised – Section 7 reservoir
generation/pretraining recipes. The recipes span through different reservoir meth-

4

ods, but most of them are related to Echo State Networks.
We will end with some closing remarks in Section 8.

2 Formalism

2.1 Formulation of the Problem

Let a problem or a task in machine learning be defined as a problem of learn-
ing a functional relation between a given input u(n) ∈ RNu and desired output
ytarget(n) ∈ RNy , where n = 1, · · · , T and T is the number of data points in the
training dataset {(u(n), ytarget(n))}. A non-temporal task is where the data points
are independent of each other and the goal is to learn the function y(n) = y(u(n)),
such that E(y, ytarget) is minimized, where E is a defined error function, e.g. nor-
malized root-mean-square error (NRMSE)

E(y, ytarget) =

√ 〈
‖y(n)− ytarget(n)‖2〉〈

‖ytarget(n)− 〈ytarget(n)〉‖2〉 , (1)

where ‖·‖ stands for the Euclidean distance (or norm). A temporal task is where
u and ytarget are signals in a discrete time domain n = 1, · · · , T and the goal is to
learn a function y(n) = y(· · · , u(n− 1), u(n)) such that E(y, ytarget) is minimized.

Thus the main difference between the temporal and non-temporal task is that
the function y(·) we are trying to learn has memory in the first case and is mem-
oryless in the latter. In both cases the conjecture is that the function(-al depen-
dence) we are trying to learn actually exists, i.e. in the case of the temporal task
ytarget(n) = ytarget(· · · , u(n− 1), u(n)) + θ(n), where θ(n) is a noise term limiting
the precision of the learning.

Normally one part of the T data points is used for training the model and
the other part (unseen during the training) for testing it. We will not distinguish
between these two phases/data parts throughout this report for brevity. When
speaking about the output errors and “performance” or “precision” we have testing
errors in mind (if not specified explicitly). Also n, denoting discrete time, will be
used omitting its range.

2.2 Expansions in Non-temporal Tasks

There are many powerful mathematical methods for solving linear equations. Most
of the nontrivial tasks, however, do not lend themselves to be expressed in a simple
linear relation between the u and ytarget. In more formal words, for many tasks
{u, ytarget} a linear model y(n) = Wu(n) (where W ∈ RNy×Nu) gives big errors
E(y, ytarget) for any W .

Many methods in statistical machine learning are based on the idea of expand-
ing the input u(n) into a high-dimensional feature vector x(n) ∈ RNx and then

5

combining those features in a linear fashion as a regression for real-valued outputs
or a linear separator for classifiers.2 They can be expressed in the form

y(n) = Woutx(u(n)), (2)

where Wout ∈ RNy×Nx . Typically Nx � Nu. There is also typically a constant bias
value added to (2), which is omitted here and in other equations for simplicity.
The bias can be easily implemented, having one of the features in x(n) constant
(e.g. = 1) and a corresponding column in Wout). Some models are defined as

y(n) = fout(Woutx[u(n)]), (3)

where fout(·) is some nonlinear function (e.g. sigmoid). We will consider this
definition as equivalent to (2), since fout(·) can simply be eliminated from y by
redefining the target as y′target = fout

−1(ytarget) (and the error function E(y, y′target)
if desired). Note, that (2) is a special case of (3), with the fout(·) being the identity.

The expansion function x(n) = x(u(n)) in some methods is called kernel func-
tion and those methods – kernel methods. The kernel methods are often defined
in literature as the methods in which the kernel trick (meaning that we don’t
need to calculate x(n) explicitly) is applied. Thus we will use a broader notion of
expansion function x(u(n)) and call any method corresponding to (3) (or (2) as
a special case) an expansion method. These methods then include Support Vec-
tor Machines (SVMs) and Feed-Forward Neural Networks (FFNNs)3 among many
others.

2.3 Expansions in Temporal Tasks

Many temporal methods are also based on the same principle. The difference is
that in temporal task the function to learn depends also on the history of the
input, as discussed in Section 2.1. Thus, the expansion function has memory:
x(n) = x(· · · , u(n − 1), u(n)), i.e. it is an expansion of the current input and
its (potentially infinite) history. Since this function has an unbounded number of
parameters, practical implementations often take an alternative, recursive, defini-
tion:

x(n) = x(x(n− 1), u(n)). (4)

The output is typically produced in the same way as for non-temporal methods
(2) or (3).

2We will focus on real-valued outputs in this review. Linear separation can be seen as a
thresholded linear readout, thus the results will also apply to some types of classification.

3The one-before-output layer of a FFNN can by considered as x(u(n)), and the output weights
then correspond to Wout in (3).

6

2.4 Recurrent Neural Networks

The type of recurrent neural networks that we will consider most of the time in this
report is a straightforward implementation of the latter definition. The nonlinear
expansion with memory is done into the state vector

x(n) = f(Winu(n) + Wx(n− 1)), n = 1, · · · , T, (5)

where x(n) ∈ RNx is a vector of internal neuron activations at a time step n, f(·)
is the neuron activation function, usually the symmetric tanh(·), or the positive
logistic (or Fermi) sigmoid, applied element-wise, Win ∈ RNx×Nu is the input weight
matrix and W ∈ RNx×Nx is a weight matrix of internal network connections. The
network is usually started with the initial state x(0) = 0. Bias values are again
omitted in (5) in the same way as in (2). The readout y(n) of the network is
implemented as in (3).

Some models of RNNs extend (5) as

x(n) = f(Winu(n) + Wx(n− 1) + Wofby(n− 1)), n = 1, · · · , T, (6)

where Wofb ∈ RNx×Ny is an optional output feedback weight matrix. But we will
most of the time consider model (5) which is less complicated.

2.5 Error Backpropagation in RNNs

The classical approach of training RNNs is by using error backpropagation (BP)
methods and gradual iterative adaptation of the weights Wout, W, and Win. The
BP methods for RNNs are extensions of the PB methods in FFNNs. A systematic
overview of the BP methods for RNNs is presented in [AP00]. However, apply-
ing BP for RNNs is significantly harder than for FFNNs [BSF94]. The [AP00]
contribution also proposes a significant improvement to the previous BP methods
for RNNs. The method is often referred to by other authors as the Atiya-Parlos
recurrent learning (APRL).

3 Reservoir Methods

Reservoir computing is a recently emerging term describing a group of novel RNN
methods that make the conceptual separation between the reservoir – an RNN
as a nonlinear temporal expansion function, and the readout, which produces the
desired output from the expansion.

A question might arise, why this conceptual separation between the expansion
x(n) and the final readout y(n) is useful at all. It is true that e.g. in RNNs with
error back-propagation training methods both x(n) and Wout are trained in the
same way, thus the separation does not make much sense. Reservoir methods as
well as nontemporal kernel methods, however, are based on the understanding

7

that x(n) and y(n) serve different purposes. x(n) expands the input u(n) into a
space where the data points can be linearly combined, while y(n) does the latter.
By “linearly combined” we mean, that for each dimension yi of y a vector in the
state space RNx is found where projection of each point x(n) on the vector is equal
to yi(n).

From a more philosophical point of view these two stages of the solution process
could be called analysis and synthesis.

Another, more empirical, way of arriving to this separation in the context of
RNNs is sketched in Section 3.4.

Since the expansion and the readout serve different purposes, training/generating
them separately and even with different goal functions makes sense. For the lin-
ear readouts y(n) as in (2), exact regression methods are well known that find
optimal Wout, i.e. giving the minimal mean-square or equivalently (1) error.4

But producing a good expansion function x(n) usually involves more creativity.
In many expansion methods the expansion function is chosen or generated “by
hand” (most often through trial-and-error) and is fixed.

The different “brand names” of the reservoir methods mainly differ in types of
units (neurons) that are used for the reservoir. Some have also distinctive reservoir
generation or training algorithms attached. In the following subsections we will
mention the most prominent reservoir methods.

3.1 Echo State Networks

Echo State Networks (ESNs) [Jae01][Jae02b] is one of the two pioneering reservoir
methods that uses the most popular (and perhaps one of the most simple-minded)
neuron models in machine learning, namely a neuron which adds its weighted
inputs an applies a sigmoid function (usually f(·) = tanh(·)) to the sum. The
random sparse reservoir of such units is governed by (5). Classical “recipes” of
producing the ESN reservoir are outlined in Section 5.1. The leaky integrator
neuron model is another option for the classical ESNs. This option is outlined in
Section 5.5.

The readout from the reservoir is usually linear as in (3), but also including
direct mappings from u(n) to y(n):

y(n) = fout(Wout[u(n)|x(n)]), (7)

where Wout ∈ RNy×(Nu+Nx) is the output weight matrix, that is learnt by linear
regression, fout(·) is the output neuron activation function (usually the identity)
applied component-wise, and ·|· stands for a vertical concatenation of vectors.

4In fact, readouts of reservoir methods can be trained the same way as in Support Vector
Machines [SGWG05] [SH07], following the analogy between the temporal and non-temporal
expansion methods.

8

3.2 Liquid State Machines

Liquid State Machines (LSMs) [MNM02] is the other pioneering reservoir method
developed independently from ESNs. While ESNs are developed with practi-
cal/engineering applications in mind, LSMs are developed aiming to realistically
model the processes in biological brains. Thus LSMs use more sophisticated and
biologically realistic models of spiking neurons for the reservoir. The connectivity
among the neurons is based on their spacial embedding and follows biologically
plausible distributions of connections with respect to their length. Inputs to LSMs
also usually consist biologically plausible spike trains. In their readouts LSMs orig-
inally used FFNNs, but most current versions have linear readouts similar to ESNs.
Some additional mechanisms for averaging the spike trains are often employed.

3.3 Evolino

Evolino [SWGG07] transfers the idea of ESNs from an RNN of simple sigmoidal
units to a Long Short-Term Memory (LSTM) type of RNNs [HS97] constructed
from units capable of preserving memory for long periods of time. In Evolino the
weights of the reservoir are trained using evolutionary methods, as it is also done
in some extensions of ESNs discussed in Section 7.2.

3.4 Backpropagation-Decorrelation

The idea of separation between the dynamical reservoir and a readout function has
also been arrived at from the point of view of optimizing the performance of the
RNN training algorithms that use error backpropagation, mentioned in Section
2.5.

There was an analysis made of the weight dynamics of an RNN trained by
APRL [SS05]. It revealed that the output weights Win of the network being trained
are changing quickly, while the hidden weights W change slowly and in a case of
single output Nu = 1 the changes are column-wise coupled. Thus in effect APRL
decouples the RNN into a fast adapting output and a slowly adapting reservoir.
Inspired by these findings a new iterative/online5 RNN training method, called
Backpropagation-Decorrelation (BPDC) was introduced [Ste04]. BPDC uses the
reservoir update equation defined in (6) with the same type of units as ESNs, thus
in contrast to other “brand names” of reservoir methods discussed so far, BPDC
stands for a different approach to learning rather than a different type of neurons
used.

5As opposed to “single shot” linear regression training. Reservoir methods with linear readout
can also have an online version of training [Jae03] [JH04].

9

3.5 Other Types of Neurons

Using different activation functions inside a single reservoir might improve the
richness of the echo states, as it is illustrated with inserting some neurons with a
wavelet-shaped activation functions into the reservoir of ESNs [WYW06].

A hardware implementation friendly version of reservoirs composed of stochas-
tic bitstream neurons was proposed in [VSS05].

3.6 Other Overviews of Reservoir Methods

An experimental comparison of LSM, ESN, and BPDC reservoir methods with
different neuron models, even beyond the standard ones used for the respective
methods, and different parameter settings is presented in [VSDS07].

A rather extensive but also quite subjective overview of current literature on
(different flavors of) ESNs can be found in the appendix of [K0̈6].

A recent overview of many aspects of reservoir computing is presented in
[SVVC07]. The overview is much briefer and broader (also less focused, sparser),
covering literature on other methods for RNN training, applications and hardware
implementations of reservoir methods, also covering more extensively the biologi-
cal side of the reservoir research, than the overview your are currently reading.

4 Our Classification of Reservoir Recipes

Reservoir methods demonstrated (e.g. [Jae01]) that randomly generated RNNs
with only trained outputs can (substantially) outperform the ones trained using
computationally expensive state-of-art backpropagation methods. These results
do not imply, however that randomly generated reservoirs are optimal and can
not be improved. In fact “random” by definition can not be “the optimal”. They
rather indicate the need for some novel methods of training/generating the reser-
voirs, that are very probably not a direct extension of the way the output is trained
(as in error backpropagation). Thus much of the current research on reservoir
methods is done developing them. In fact, even the above mentioned “random”
reservoirs of the classical ESNs are generated using carefully selected parameters,
as we will see in Section 5.1.

It is well worth mentioning at this point, that the general “no free lunch” prin-
ciple in supervised machine learning [Wol01] (similar to the one in optimization)
states that there can exist no bias of a model which would universally improve the
accuracy of the model for all possible problems it is solving. In our context this
can be translated into a claim that no single reservoir can be optimal for all types
of problems.

In this report we will try to survey all basic ideas that help us produce good
reservoirs. We will classify those ideas into tree major groups based on their
universality:

10

• General guidelines/methods of producing good reservoirs irrespective to the
task (both the input u(n) and the desired output ytarget(n));

• Unsupervised pre-training of the reservoir with respect to the given input
u(n), but not the target ytarget(n);

• Supervised pre-training of the reservoir with respect to both the given input
u(n) and the desired output ytarget(n).

These three classes of methods are discussed in the following three sections of this
overview. Note that many of the methods to some extend transcend the boundaries
of these three classes, but are classified according to their main principle.

Even though this overview aims at covering developments under all reservoir
“brands”, it is slightly (?) biased towards machine learning applications and
different flavors of ESNs.

5 Universal Reservoir Recipes

While we have said, that this group of methods aims to produce good reservoirs
irrespective to the task at hand, this is not entirely true. Some parameters for gen-
erating good reservoirs are more or less dependent on the task (following the “no
free lunch” principle), but the methods discussed in this section preset them man-
ually, rather than doing an automated systematic search optimizing a predefined
goal function.

5.1 Classical ESN approach

The most fundamental guidelines of producing good reservoirs were presented with
the very introduction of the ESNs [Jae01][Jae02b]. Motivated by an intuitive goal
of producing “rich” set of dynamics the recipe is to generate a (i) big, (ii) sparsely
and (iii) randomly connected reservoir. This means that (i) Nx is sufficiently large:
the order ranging from tens to thousands, (ii) the weight matrix W is sparse:
several to 20 percent of possible connections, and (iii) weights of the connections
are usually generated randomly from a uniform distribution symmetric around the
zero value6 [Jae02b]. Such reservoir will have many, due to (i), activations, that
are not tightly coupled, due to (ii), and different, due to (iii).

The input weights Win and the optional output feedback weights Wofb are
usually dense (can also be sparse like W) generated randomly from a uniform
distribution. The exact scaling of both matrices and an optional shift of the input
are the few other free parameters that one has to choose, when “baking” an ESN.
The vague rules of thumb for them are following. The scaling (Win) and shifting of
the input depends on how much nonlinearity of the processing unit the task needs:

6In some early experiments [Jae01] with ESNs the connections are assigned weight values of
the same magnitude only choosing the sign of the value (positive or negative) randomly.

11

if inputs are close to 0, the tanh neurons tend to operate with activations close to
0, where they are virtually linear, while inputs far from 0 tend to drive them more
toward saturation where they exhibit more nonlinearity [Jae02b]. The shift of the
input might help to resolve tanh ESN’s symmetry with respect to the sign of the
signals. By the symmetry we mean, that if x(u(n)) = x(n) and y(u(n)) = y(n),
then x(−u(n)) = −x(n) and y(−u(n)) = −y(n) (taking the constant bias input
to the neurons as part of u(n)). The scaling of Wofb is in practice limited by
a threshold at which the ESN starts to exhibit an unstable behavior, i.e. the
output feedback loop starts to amplify (the errors of) the output and thus enters
a diverging generative mode.

A crucial element for ESNs to work is that reservoir should have the Echo State
Property [Jae01]. This condition in essence states that the effect of an input u(n)
on the reservoir activation x(n+k) should die out gradually as time passes k →∞,
and not to persist or even get amplified. For practical purposes the condition is
satisfied if the generated W is scaled so that its spectral radius ρ(W) < 1 [Jae01].
The optimal value of ρ(W) should be set depending on the amount of memory
which the given task requires. A rule of thumb is that ρ(W) should be close to 1
for tasks that require long memory and accordingly smaller for the tasks where a
too long memory might in fact be harmful.

Recently a less restrictive sufficient condition than ρ(W) < 1 has been derived
[BY06].

It has also been shown that an ESN with a reservoir generally not satisfying
the echo state condition can still work [OP05] reasonably well. The main principle
of this result is that even though the reservoir exhibits meaningless (to the task)
self-induced activations in absence of the input (i.e. the activations do not grad-
ually die-out as in proper ESNs), a strong enough input u(n) can “push out” this
meaningless activity and make the activations dependent on the (fading) history
of u(n).

5.2 Different Topologies of the Reservoir

There have been attempts made to find alternative topologies of the ESN reser-
voir to the sparse random network. The famous models of small-world [WS98],
scale-free [BA99], and biologically inspired networks generated by spatial growth
[KH04] where tested for this purpose in [Lie04]. The NRMS error (1) of y(n)
as well as the eigenvalue spread of the cross-correlation matrix of the activations
x(n) (see Section 6.1 for more details on this) where used as the performance
measures of the topologies. The datasets used were a synthetic NARMA (Non-
linear Autoregressive Moving Average) time series and the Mackey-Glass chaotic
attractor. The contribution also explored an approach of exhaustive brute-force
search of topologies of tiny networks (motives) of 4 units, and then combining
successful motives (in terms of the eigenvalue spread) into larger networks. The
investigation, unfortunately, concludes, that “... none of the investigated network

12

topologies was able to perform significantly better than simple random networks,
both in terms of eigenvalue spread as well as testing error” [Lie04]. This, however,
does not serve as a proof that similar approaches are futile.

It has been demonstrated that the reservoir can even be an unstructured feed-
forward network if the finite limited memory window that it offers is enough for
the task at hand [vM05].

A degenerate case of a “reservoir” composed of linear units and a diagonalized
W and unitary inputs Win is considered in [FE05]7.

A one-dimensional lattice (ring) topology was used for a reservoir, together
with an adaptation of the reservoir discussed in Section 6.2, in [VSVC07].

5.3 Modular Reservoirs

One of the shortcomings of the conventional ESN reservoirs is that even though
they are sparse, the activations are still coupled enough so that the ESN is poor in
dealing with different time scales simultaneously, e.g. predicting several superim-
posed sine waves of different frequencies. This problem was successfully tackled by
dividing the reservoir into decoupled sub-reservoirs and introducing inhibitory con-
nections among all the sub-reservoirs [XYH07]. For this approach to be effective,
the inhibitory connections must predict the activations of the sub-reservoirs one
time step ahead. For this two different methods are proposed in the contribution.

The Evolino approach introduced in Section 3.3 can also be classified as be-
longing to this group, as the LSTM RNN used for its reservoir consists of specific
small memory-holding modules (which could alternatively be regarded as more
complicated units of the network).

5.4 Time-Delayed vs. Instantaneous Connections

Another time-related limitation of the classical ESNs pointed out in [Luk07] is
that no matter how many neurons are contained in the reservoir, looking from
a perspective of a simple recurrent networks the reservoir (like any other fully
recurrent network) is only a single layer. Consider a problem where the mapping
from u(n) to y(n) is a very complex one, and the data in neighboring time steps is
almost independent (i.e. little memory is required), e.g. the “meta-learning” task
as in [PFT02].8 Inside a single time step n signals from the input u(n) propagate
only through one untrained layer Win, influence the activations x(n) and reach
the output y(n) through the trained weights Wout. Thus ESNs are not capable
of producing a very complex instantaneous mapping from u(n) to y(n), which

7The contribution erroneously states that weights in regular ESNs are drawn from normal
distributions.

8ESNs have been shown to perform well in a (significantly) simpler version of the “meta-
learning” in [OLS05].

13

could (only) be done by a multilayer FFNN.9 The effect of propagating signals
through several, say k, layers of units can in principle be achieved in k time steps,
i.e. mapping u(n) to y(n + k − 1) (we could shift ytarget accordingly), as in this
time the signals “reverberate” or “cross” units of the reservoir k times (looking
at a time-expanded ESN as a multilayer FFNN). But during this time the signals
get “mixed” with the ones coming from the different time steps and being in the
different virtual “layers”. If by the nature of the problem time steps are almost
independent, this mixing kicks in as a very strong noise (the bigger k, the more)
for each individual time step, which ruins the complex mappings of individual
time steps. As a possible remedy an idea of Layered ESNs was presented [Luk07],
where part (up to almost half) of the connections can be instantaneous, and the
rest take one time step for the signals to propagate as in normal ESNs. Randomly
generated Layered ESNs, however, do not offer a consistent improvement for large
classes of tasks, and pre-training methods of such reservoirs have not yet been
investigated.

5.5 ESNs with Leaky Integrator Units

In addition to the basic sigmoid units, leaky integrator neurons were suggested
to be used in ESNs from the point of their introduction [Jae01]. This type of
neurons does a leaky integration of its activation, i.e. partially remembers its
previous activation. Instead of (5), a reservoir of such units is governed by

x(n) = (1− a∆t)x(n− 1) + ∆tf(Winu(n) + Wx(n− 1)), (8)

where ∆t is a compound time gap between two consecutive time steps divided by
the time constant of the system and a is the decay (or leakage) rate [LPJS06] – the
two new free parameters that the leaky integrator ESNs (LIESNs) have compared
to simple ESNs. Other flavors of leaky integrator neurons (or a more advanced
discretization than Euler’s) can also be used instead of (8). Note that the simple
ESN (5) is a special case of LIESNs (8) with a = 1 and ∆t = 1. As a corollary, a
LIESN with a good choice of the parameters can always perform at least as good
as a corresponding simple ESN. With the introduction of the two new parameters
a and ∆t, th conditions for the echo state property is redefined [Jae01]. A natural
constraint on the two new parameters is a∆t ∈ [0, 1] – a neuron should neither
retain, nor leak more activation than it had.

The additional parameters of the LIESN control the “speed” of the reservoir
dynamics. Small values of a and ∆t result in reservoirs that react slowly to the
input. By changing these parameters it is possible to shift the effective interval of
frequencies in which the reservoir is working.

Along these lines, time warping invariant ESNs (TWIESNs) – an architecture
that can deal (e.g. detect temporal patterns) with strongly time-warped signals

9In theory, a big single hidden layer is also capable of producing arbitrary complex mappings,
but that is not realistic if only the outputs are trained.

14

was framed [LPJS06] [JLPS07]. It varies ∆t on-the-fly, directly depending on the
speed at which the input u(n) is changing.

6 Unsupervised Reservoir Pretraining

In this section we will describe reservoir training/generation methods that try
to optimize some measure on the activations x(n) of the reservoir, for a given
input u(n), but regardless of the desired output ytarget(n). In Section 6.1 we
survey measures of reservoir activations x(n) that are used to estimate the quality
of the reservoir, detached from the methods optimizing them. Then the local
(Section 6.2) and global (Section 6.3) unsupervised reservoir training methods are
surveyed. Note, that not all the measures discussed in Section 6.1 are reported
in the literature to be used as a targets for reservoir optimization. On the other
hand some of the adaptation methods do not use the discussed measures as their
target.

6.1 “Goodness” Measures of the Reservoir Activations

A much-desired measure to minimize is the eigenvalue spread (max. eigenvalue/min.
eigenvalue) of the cross-correlation matrix of the activations x(n) (EVSCCA), as
small EVSCCA is necessary for an online training of the ESN output by stochastic
gradient descent [Jae03] [JH04]. In classical ESNs EVSCCA sometimes reaches
1012 or even higher [Jae05], which makes such training unfeasible.

Other desired features of the reservoir could be small pairwise correlation of
reservoir activations x(n), or entropy of x(n) distribution (e.g. [Jae05]). The latter
is quite a popular measure, as seen later in this review. A measure for short term
capability of reservoirs was introduced in [Jae02a]. A criterion for maximizing
information transmission of each individual neuron was introduced (and pursued,
see Section 6.2) in [Tri05].

Methods for estimating the computational power and generalization capabil-
ity of neural reservoirs where presented in [MLB05]. The proposed measure for
computational power or “kernel quality” is performed in a following way. Take k
different segments of input(s) ui(n), i = 1, · · · , k, and collect the resulting reser-
voir activations for each of the input sequence xui

(n0) into a matrix M ∈ Rk×Nx ,
where n0 is some fixed time after the appearance of ui(n) in the input. The rank r
of the matrix M is the measure. If r = k, this means that all the presented inputs
can be separated by a linear readout from the reservoir, and thus the reservoir is
said to have a linear separation property. For estimating the generalization capa-
bility of the reservoir the same procedure can be performed with s (s � k) inputs
uj(n), j = 1, · · · , s that represent the set of all possible inputs. If the resultant r,
is substantially smaller than the size of the training set, then this means that the
reservoir generalizes well. These two measures are more targeted to tasks of time

15

series classification, but can also be beneficial in estimating the power of regression
[LM07a].

The so called Edge of Chaos is a region of parameters of a dynamical system at
which it operates at the boundary between the chaotic and non-chaotic behavior.
It is observed that at the edge of chaos many types of dynamical systems, includ-
ing dynamic reservoirs, possess high computational power [BN04] [LM07b].10 It is
intuitively clear that the edge of chaos in reservoirs can only arise when the effect
of inputs on the reservoir state does not die out quickly, thus such reservoirs can
potentially have high memory capacity, which is also demonstrated in [LM07b].
However this does not universally imply that such reservoirs are optimal [LM07a].
The edge of chaos can be empirically detected (even for biological networks) by
measuring Lyapunov exponents [LM07b], even though such measurements are not
trivial (and often involve a degree of subjectivity) for high-dimensional noisy sys-
tems. There is also an empirical observation, that while changing different param-
eter settings of a reservoir, the best performance with a given task correlates with
a Lyapunov exponent specific to that task [VSDS07]. The optimal exponent is
related to the amount of memory needed for the task as discussed in Section 5.1.
It was observed in ESNs with no input, that when ρ(W) is slightly greater than 1,
the internally generated signals are periodic oscillations whereas for larger values
of ρ(W), the signals are more irregular and even chaotic [OP05]. Even though
such reservoirs can still be used, no real benefit of such regimes was found in the
latter contribution.

A tendency that higher ranks of the connectivity matrix Wmask (where wmaski,j =
1 if wi,j 6= 0, and = 0 otherwise, for i, j = 1, · · · , Nx) correlate with lower output
errors was observed in [BT05].

6.2 Unsupervised Local Methods

Local learning methods such as Hebbian or Anti-Hebbian learning did not prove
useful in improving the reservoirs so far [Jae05].

Recently a significant interest is being shown to reservoir adaptation inspired by
various kinds of plasticity of biological neurons. A local learning method inspired
by intrinsic plasticity of the real-world neurons was recently shown to improve
the performance of BPDC [Ste07]. This approach can also be formally derived
by maximizing information transmission of each individual neuron [Tri05]. Even
though the latter result, as most of the plasticity models, applies to Fermi (i.e.
having a positive sigmoid activation function) or spiking neurons, the method
is shown to have positive effect on ESN reservoirs, but can also cause stability
problems [Ste07]. An adaptation of this result to tanh type of neurons, that
results in Gaussian (instead of the original exponential) distribution of outputs is
presented in [VSVC07].

10The significance and universality of the idea that dynamical systems are most powerful at
the edge of chaos is disputed, e.g. [MHC93].

16

There are also investigations done on how several types of plasticity interact
in a network. E.g. the effects of simultaneous intrinsic and synaptic plasticity on
an individual Fermi neuron are explored in [Tri04]. A recent contribution [LPT07]
investigates how the intrinsic and spike timing dependent interact in a reservoir
of spiking neurons.

6.3 Unsupervised Global Methods

A biologically inspired unsupervised approach with a reservoir trying to predict
itself is proposed in [MB04]. An additional output z(n) ∈ RNx , z(n) = Wzx(n)
from the reservoir is trained on the target ztarget(n) = x′(n+1), where x′(n) are the
activations of the reservoir before applying the neuron transfer function tanh(·),
i.e. x(n) = tanh(x′(n)). Then, in the second run the original activations x′(n),
that result from u(n), Win, and W are mixed with the predicted ones z(n − 1),
that result from Wz with a certain ratio (1− α) : α. The coefficient α determines
how much the reservoir is relying on the external input u(n) and how much on
the internal self prediction z(n). With α = 0 we have the classical ESN and
with α = 1 we have an “autistic” reservoir that does not react to the input.
Intermediate values of α close to 1 where shown to enable reservoirs to generate
slow changing highly nonlinear signals that are hard to get otherwise.

An algebraic unsupervised way of designing ESN reservoirs was proposed in
[OXP07]. The idea is to linearize the ESN update equation (5) locally, around
its current state x(n) at every time step n to get a linear approximation of (5)
as x(n + 1) = Ax(n) + Bu(n), where A and B are time (n) dependent matrices.
The approach aims at making the complex eigenvalues of A be distributed uni-
formly within the unit circle on the Z plane. The reservoir matrix W is obtained
analytically from the set of the predefined eigenvalues and a given input u(n).
The motivation for this is, that if the target ytarget(n) is unknown, it is best to
have something like an orthogonal basis in x(n), from which any ytarget(n) could
be constructed well. The spectral radius of the reservoir is suggested to be set
by hand (according to the correlation time of u(n), which is an indication of a
memory span needed for the task), or by adapting the bias value of the reservoir
units to minimize the output error.11 Reservoirs generated this way are shown to
yield higher average entropy of x(n) distribution, short term capacity (both mea-
sures mentioned in Section 6.1), and smaller output error with a couple of synthetic
problems. Unfortunately, reservoirs of only very small size (Nx = 20, 30) have been
considered, and the most popular version of classical ESNs with a sparse random
(both sign and size of the weights) reservoir is not among the ones compared.

11The latter actually makes this a supervised method, but since it is initially motivated by
having ytarget(n) unknown, we list it among the unsupervised ones.

17

7 Supervised Reservoir Pre-training

In this section we will discuss methods for training reservoirs to perform a specific
given task, i.e. not only the concrete input u(n), but also the desired output
ytarget(n) is taken into account. Since a linear readout from a reservoir is easy to
train, the suitability of a reservoir for a particular task (e.g. in terms of NRMSE
(1) is also relatively inexpensive to check.

7.1 Optimization of Reservoir Global Parameters

In Section 5.1 we discussed guidelines for the manual choice of global parameters
for reservoirs of ESNs. This approach requires some experience, intuition and luck
in selecting good parameters, which makes using ESNs in practical applications
a bit more difficult. A systematic gradient descent method of optimizing the
global parameters of LIESNs (a generalization of ESNs, having more parameters,
discussed in Section 5.5) to fit them to a given task is presented in [JLPS07].
The investigation shows that the error surfaces in the combined global parameter
and Wout spaces are often nontrivial (i.e. have high curvature and multiple local
minima), thus gradient descent methods are not always practical.

7.2 Genetically Modified Reservoirs

As one can see form the previous sections of this review, pretraining of the reser-
voirs is generally not an easy, and largely yet unsolved, problem. On the other hand
training an output and checking the performance of a resulting ESN is relatively
inexpensive. This brings in evolutionary methods for the reservoir pretraining as
a natural candidate.

Recall that the classical method generates a reservoir randomly, thus the per-
formance of the resulting ESN slightly (and in some cases not so slightly) varies
from one instance to another. Then indeed, an “evolutionary” method as naive as
“generate k reservoirs, pick the best” will outperform the classical method (“gen-
erate a reservoir”) with probability (k−1)/k, even though the improvement might
be not significant.

Several evolutionary approaches on optimizing reservoirs of ESNs where pre-
sented in [IvdZBP04]. In the first attempt the authors did an evolutionary search
on only the three main global parameters used for generating W : the reservoir
size Nx, the spectral radius ρ(W), and the density of W . This search showed that
for the task at hand (which was modeling the motion of an underwater robot)
tiny reservoirs of only 5 units did best, which enabled the authors to do a more
involving genetic search on the resulting weight matrices directly. An evolution-
ary algorithm [Hol92] with a truncation selection, 1% mutation, 50 individuals,
and one-point crossover was used on the individuals consisting of all the weight
matrices (Win, W, Wofb). In addition to this direct search, a variant with a reduced
search space was also tried, where the weights, but not the topology of W was

18

explored, i.e. elements of W that where 0 initially, allways stayed 0, and only non-
zero values where changed. In all the cases W was normalized back to ρ(W) = 1
whenever ρ(W) > 1 occured during the search, to maintain the echo state prop-
erty. The results showed, that the methods used outperfomed other state-of-art
methods, and ESNs with more paremeters adapted genetically performed better,
than the ones with less, but the performance difference between the direct and
topology-restricted search was small.

Another approach of genetically optimizing the reservoir W is presented in
[BT05]. To reduce the search space, W was (similarly to the previously described
approach) decomposed into the topology Wmask and the sizes of the weights Wrand.
W is obtained by W = Wmask · Wrand (element-wise multiplication), and rescaled
such that ρ(W) = 0.9. Wrand was a dense random matrix with all the elements
uniformly sampled from [−1, 1] and was fixed throughout all optimization. A local
genetic search (contrary to the previously described approach) was only performed
on the topology matrix Wmask, each element of which is either 0 or 1. The search
starts by randomly generating the initial topology with a predefined sparsity. At
each iteration Nx (out of Nx

2 possible) “mutations” of the original topology are
generated, by flipping a single randomly chosen element. The mutation yielding
the lowest output error is retained for the next iteration. If no mutation gives an
improvement the search is terminated. This approach was demonstrated to yield
on average 50% smaller (and much more stable) error in predicting the behaviour
of a mass-spring-damper system, than the classical one. The experiments were
done using only small (Nx = 20) reservoirs.

Yet another approach uses a multilayer FFNN as a readout from the reservoir
and applies genetic search to find optimal weights of the FFNN [XLP05]. Such an
ESN is applied for a hard task as direct adaptive control replacement of a classical
indirect controller.

Evolino [SWGG07], introduced in Section 3.3, is another example of adapting
a reservoir (in this case a LSTM network) using genetic search.

7.3 Combining with Backpropagation

It has been shown that the performance of a trained ESN can further be improved
by further training it using gradient descent methods [Erh04].

The BPDC reservoir method introduced in Section 3.4 can also be viewed as
lying in between the reservoir and error backpropagation methods.

7.4 Trained Auxiliary Feedbacks

A recent development in the theory of dynamic systems has shown, that trained
feedbacks can endow fixed neural circuits with universal computational capabil-
ities [MJS06]. This theory has direct implications for reservoir methods since
reservoirs are fixed neural circuits. Different ideas on how the power of ESNs

19

could be improved along the lines of this theory are explored in [Luk07]. It is
done by defining intermediate targets, and on these targets training additional
outputs of ESNs, that are fed-back to the reservoir. The intermediate targets are
constructed from ytarget(n) and/or u(n). The intuition is that the feedbacks could
shift the internal dynamics in the directions that would make them better linearly
combinable into ytarget(n). The investigation showed that for some types of tasks
there are natural candidates for such intermediate targets, that indeed improve
the performance significantly. On the other hand there are no universally good
methods for producing intermediate targets devised, such that the targets would
be both easy to learn and improve accuracy of the final output y(n). In addition,
training multiple outputs with feedback connections Wofb makes the whole proce-
dure more complicated, as cyclical dependencies between the trained outputs as
well as stability issues arise.

8 Closing Remarks

We have surveyed the current methods of RNN training based on the paradigm
of separation between the RNN (the reservoir) and the readout which is a hot
and lively research topic. This overview is not covering the different methods of
readouts from the reservoirs, that are quite a few. Also some important reservoir
recipes might have been missed since the field is very young and dynamic, the
author apologies for that in advance. On the other hand we were not trying to
put every contribution relating to reservoirs on this review, but only the ones
highlighting the main research directions.

Following the analogy between the ESNs and non-temporal kernel methods,
ESNs would be shallow architectures of type-1 according to the classification re-
cently proposed in [BC07]. The reviewed reservoir adaptation techniques would
make ESNs shallow architectures of type-3, that are more expressive. However,
authors of [BC07] argue that any type of shallow (i.e. non-hierarchical) archi-
tectures are incapable of learning complex intelligent tasks.12 This suggests that
for really complex tasks adaptation of a single reservoir might not be enough and
a hierarchical architecture of ESNs [Jae07] might be needed. In any case, adap-
tation/generation of the reservoirs is still relevant in the hierarchical framework.
On the other hand if we take adaptation of a single, perhaps structured, reservoir
seriously enough, it just might result in containing dynamics of different levels of
abstractions/timescales.

Acknowledgments

The author would like to thank his supervisor Prof. Herbert Jaeger for the patient
discussions and sharing his expertise in the field.

12This also relates to the limitations of ESNs discussed in Section 5.4.

20

References

[AP00] Amir F. Atiya and Alexander G. Parlos. New results on recurrent
network training: Unifying the algorithms and accelerating conver-
gence. IEEE Transactions on Neural Networks, 11(3):697–709, May
2000.

[BA99] Albert-Laszlo Barabasi and Reka Albert. Emergence of scaling in
random networks. Science, 286:509, 1999.

[BC07] Yoshua Bengio and Yann Le Cun. Scaling learning algorithms towards
ai. In L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, editors,
Large-Scale Kernel Machines. MIT Press, Cambridge, MA, 2007. To
appear.

[BN04] Nils Bertschinger and Thomas Natschläger. Real-time computation at
the edge of chaos in recurrent neural networks. Neural Computation,
16(7):1413–1436, 2004.

[BSF94] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-
term dependencies with gradient descent is difficult. IEEE Transac-
tions on Neural Networks, 5(2):157–166, March 1994.

[BT05] Keith Bush and Batsukh Tsendjav. Improving the richness of echo
state features using next ascent local search. In Proceedings of the
Artificial Neural Networks In Engineering Conference, St. Louis, MO,
2005.

[BY06] Michael Buehner and Peter Young. A tighter bound for the echo
state property. IEEE Transactions on Neural Networks, 17(3):820–
824, 2006.

[Erh04] Dumitru Erhan. Exploration of combining ESN learning with
gradient-descent RNN learning techniques. Bachelor’s the-
sis, International University Bremen, 2004. http://www.eecs.

jacobs-university.de/archive/bsc-2004/erhan.pdf.

[FE05] Georg Fette and Julian Eggert. Short term memory and pattern
matching with simple echo state networks. In Artificial Neural Net-
works: Biological Inspirations ICANN 2005, volume 3696/2005,
pages 13–18. Springer Berlin / Heidelberg, 2005.

[Hol92] John H. Holland. Adaptation in Natural and Artificial Systems: An
Introductory Analysis with Applications to Biology, Control and Ar-
tificial Intelligence. MIT Press, Cambridge, MA, USA, 1992.

21

http://www.eecs.jacobs-university.de/archive/bsc-2004/erhan.pdf
http://www.eecs.jacobs-university.de/archive/bsc-2004/erhan.pdf

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural Computation, 9(8):1735–1780, 1997.

[IvdZBP04] Kazuo Ishii, Tijn van der Zant, Vlatko Bečanović, and Paul Plöger.
Identification of motion with echo state network. In OCEANS ’04
MTS/IEEE - TECHNO-OCEAN ’04, volume 3, pages 1205–1210,
2004.

[Jae01] Herbert Jaeger. The “echo state” approach to analysing and train-
ing recurrent neural networks. Technical Report GMD Report 148,
German National Research Center for Information Technology, 2001.

[Jae02a] Herbert Jaeger. Short term memory in echo state networks. Techni-
cal Report GMD Report 152, German National Research Center for
Information Technology, 2002.

[Jae02b] Herbert Jaeger. Tutorial on training recurrent neural networks, cov-
ering BPTT, RTRL, EKF and the “echo state network” approach.
Technical Report GMD Report 159, German National Research Cen-
ter for Information Technology, 2002.

[Jae03] Herbert Jaeger. Adaptive nonlinear system identification with echo
state networks. In S. Becker, S. Thrun, and K. Obermayer, editors,
Advances in Neural Information Processing Systems 15, pages 593–
600. MIT Press, Cambridge, MA, 2003.

[Jae05] Herbert Jaeger. Reservoir riddles: suggestions for echo state network
research. In Neural Networks, 2005. IJCNN ’05. Proceedings. 2005
IEEE International Joint Conference on, volume 3, pages 1460–1462,
2005.

[Jae07] Herbert Jaeger. Discovering multiscale dynamical features with hier-
archical echo state networks. Technical Report No. 9, Jacobs Univer-
sity Bremen, 2007. to appear.

[JH04] Herbert Jaeger and Harald Haas. Harnessing nonlinearity: Predicting
chaotic systems and saving energy in wireless communication. Sci-
ence, pages 78–80, April 2004.

[JLPS07] Herbert Jaeger, Mantas Lukoševičius, Dan Popovici, and Udo Siew-
ert. Echo state networks with leaky integrator neurons, and opti-
mization of their global control parameters. Neural Networks 20 (4),
2007.

[K0̈6] Ali U. Küçükemre. Echo state networks for adaptive filtering. Mas-
ter’s thesis, University of Applied Sciences Bohn-Rhein-Sieg, Ger-
many, April 2006.

22

[KH04] Marcus Kaiser and Claus C. Hilgetag. Spatial growth of real-world
networks. Physical Review E, 69:036103, 2004.

[Lie04] Benjamin Liebald. Exploration of effects of different network topolo-
gies on the ESN signal crosscorrelation matrix spectrum. Bachelor’s
thesis, International University Bremen, 2004. http://www.eecs.

jacobs-university.de/archive/bsc-2004/liebald.pdf.

[LM07a] Robert Legenstein and Wolfgang Maass. Edge of chaos and predic-
tion of computational power for neural microcircuit models. Neural
Networks, 2007. In press.

[LM07b] Robert Legenstein and Wolfgang Maass. What makes a dynamical
system computationally powerful? In S. Haykin, J. C. Principe,
T. Sejnowski, and J. McWhirter, editors, New Directions in Statistical
Signal Processing: From Systems to Brain, pages 127–154. MIT Press,
2007.

[LPJS06] Mantas Lukoševičius, Dan Popovici, Herbert Jaeger, and Udo Siew-
ert. Time warping invariant echo state networks. Technical Report
No. 2, International University Bremen, 2006.

[LPT07] Andreea Lazar, Gordon Pipa, and Jochen Triesch. Time series pre-
diction, fading memory and error correction in recurrent networks
shaped by plasticity. Neural Networks 20 (4), 2007.

[Luk07] Mantas Lukoševičius. Echo state networks with trained feedbacks.
Technical Report No. 4, International University Bremen, 2007.

[MB04] Norbert M. Mayer and Matthew Browne. Echo state networks and
self-prediction. In Biologically Inspired Approaches to Advanced In-
formation Technology, BioADIT 2004. Revised Selected Papers, pages
40–48, 2004.

[MHC93] M. Mitchell, P. T. Hraber, and J. P. Crutchfield. Dynamic compu-
tation, and the “edge of chaos”: A re-examination. In G. Cowan,
D. Pines, and D. Melzner, editors, Integrative Themes, Reading, MA,
1993. Addison–Wesley.

[MJS06] Wolfgang Maass, Prashant Joshi, and Eduardo D. Sontag. Principles
of real-time computing with feedback applied to cortical microcircuit
models. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances
in Neural Information Processing Systems 18, Cambridge, MA, 2006.
MIT Press.

[MLB05] W. Maass, R. A. Legenstein, and N. Bertschinger. Methods for es-
timating the computational power and generalization capability of

23

http://www.eecs.jacobs-university.de/archive/bsc-2004/liebald.pdf
http://www.eecs.jacobs-university.de/archive/bsc-2004/liebald.pdf

neural microcircuits. In L. K. Saul, Y. Weiss, and L. Bottou, edi-
tors, Advances in Neural Information Processing Systems, volume 17,
pages 865–872, Cambridge, MA, 2005. MIT Press.

[MNM02] Wolfgang Maass, Thomas Natschläger, and Henry Markram. Real-
time computing without stable states: a new framework for neural
computation based on perturbations. Neural Comput., 14(11):2531–
2560, 2002.

[OLS05] Mohamed Oubbati, Paul Levi, and Michael Schanz. Meta-learning for
adaptive identification of non-linear dynamical systems. In Proceed-
ings of the Joint 20th IEEE International Symposium on Intelligent
Control, pages 473–478, June 2005.

[OP05] Mustafa C. Ozturk and José C. Pŕıncipe. Computing with transiently
stable states. In Neural Networks, 2005. IJCNN ’05. Proceedings.
2005 IEEE International Joint Conference on, volume 3, pages 1467–
1472, 2005.

[OXP07] Mustafa C. Ozturk, Dongming Xu, and José C. Pŕıncipe. Analysis
and design of echo state networks. Neural Computation, 19(1):111–
138, 2007.

[PFT02] Danil V. Prokhorov, Lee A. Feldkamp, and Ivan Yu. Tyukin. Adaptive
behavior with fixed weights in RNN: an overview. In Proceedings of
International Joint Conference on Neural Networks (IJCNN2002),
pages 2018–2023, 2002.

[SGWG05] Jürgen Schmidhuber, Matteo Gagliolo, Daan Wierstra, and Faustino
Gomez. Evolino for recurrent support vector machines. Technical Re-
port 19-05 version 2.0, IDSIA, December 2005. Published in ESANN
’06 — 14 th European Symposium on Artificial Neural Networks, M.
Verleysen ed.

[SH07] Zhinwei Shi and Min Han. Support vector echo-state machine for
chaotic time-series prediction. IEEE Transactions on Neural Net-
works, 18(2):359–72, 2007.

[SS05] Ulf D. Schiller and Jochen J. Steil. Analyzing the weight dynamics
of recurrent learning algorithms. Neurocomputing, 63C:5–23, 2005.

[Ste04] Jochen J. Steil. Backpropagation-decorrelation: Recurrent learn-
ing with O(N) complexity. In Proc. IJCNNNeural Networks, 2004.
IJCNN ’04. Proceedings. 2004 IEEE International Joint Conference
on, volume 2, pages 843–848, July 2004.

24

[Ste07] Jochen J. Steil. Online reservoir adaptation by intrinsic plasticity
for backpropagation-decorrelation and echo state learning. Neural
Networks 20 (4), 2007.

[SVVC07] Benjamin Schrauwen, David Verstraeten, and Jan Van Campenhout.
An overview of reservoir computing: theory, applications and im-
plementations. In Proceedings of the 15th European Symposium on
Artificial Neural Networks, pages 471–482, 4 2007.

[SWGG07] Jürgen Schmidhuber, Daan Wierstra, Matteo Gagliolo, and
Faustino J. Gomez. Training recurrent networks by evolino. Neu-
ral Computation, 19(3):757–779, 2007.

[Tri04] Jochen Triesch. Synergies between intrinsic and synaptic plasticity in
individual model neurons. In Advances in Neural Information Pro-
cessing Systems 17, 2004.

[Tri05] Jochen Triesch. A gradient rule for the plasticity of a neuron’s intrin-
sic excitability. In Proceedings of the 15th European Symposium on
Artificial Neural Networks, pages 65–70, 2005.

[vM05] Michal Čerňanský and Matej Makula. Feed-forward echo state net-
works. In Neural Networks, 2005. IJCNN ’05. Proceedings. 2005
IEEE International Joint Conference on, volume 3, pages 1479–1482,
2005.

[VSDS07] David Verstraeten, Benjamin Schrauwen, Michiel D‘Haene, and Dirk
Stroobandt. An experimental unification of reservoir computing
methods. Neural Networks 20 (4), 2007.

[VSS05] David Verstraeten, Benjamin Schrauwen, and Dirk Stroobandt.
Reservoir computing with stochastic bitstream neurons. In Proceed-
ings of the 16th Annual ProRISC Workshop, pages 454–459, Veld-
hoven, The Netherlands, 11 2005.

[VSVC07] David Verstraeten, Benjamin Schrauwen, and Jan Van Campenhout.
Adapting reservoirs to get gaussian distributions. In Proceedings of
the 15th European Symposium on Artificial Neural Networks, pages
495–500, 4 2007.

[Wol01] David H. Wolpert. The supervised learning no-free-lunch theorems.
In Proc. 6th Online World Conf. on Soft Computing in Industrial
Applications, 2001.

[WS98] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of
’small-world’ networks. Nature, 393:440–442, April 1998.

25

[WYW06] Se Wang, Xiao-Jian Yang, and Cheng-Jian Wei. Harnessing non-
linearity by sigmoid-wavelet hybrid echo state networks (swhesn).
Intelligent Control and Automation, 2006. WCICA 2006. The 6th
World Congress on, 1:3014– 3018, June 2006.

[XLP05] Dongming Xu, Jing Lan, and Jose C. Principe. Direct adaptive con-
trol: An echo state network and genetic algorithm approach. In
Neural Networks, 2005. IJCNN ’05. Proceedings. 2005 IEEE Inter-
national Joint Conference on, volume 3, pages 1483–1486, 2005.

[XYH07] Yanbo Xue, Le Yang, and Simon Haykin. Decoupled echo state net-
works with lateral inhibition. Neural Networks 20 (4), 2007.

26

	Introduction
	Formalism
	Formulation of the Problem
	Expansions in Non-temporal Tasks
	Expansions in Temporal Tasks
	Recurrent Neural Networks
	Error Backpropagation in RNNs

	Reservoir Methods
	Echo State Networks
	Liquid State Machines
	Evolino
	Backpropagation-Decorrelation
	Other Types of Neurons
	Other Overviews of Reservoir Methods

	Our Classification of Reservoir Recipes
	Universal Reservoir Recipes
	Classical ESN approach
	Different Topologies of the Reservoir
	Modular Reservoirs
	Time-Delayed vs. Instantaneous Connections
	ESNs with Leaky Integrator Units

	Unsupervised Reservoir Pretraining
	``Goodness'' Measures of the Reservoir Activations
	Unsupervised Local Methods
	Unsupervised Global Methods

	Supervised Reservoir Pre-training
	Optimization of Reservoir Global Parameters
	Genetically Modified Reservoirs
	Combining with Backpropagation
	Trained Auxiliary Feedbacks

	Closing Remarks

