
Semester Project Suggestion "Classifying pathological heartbeats from ECG 
signals" 
 
 
Overview. This project suggestion concerns the task to identify and classify pathological heartbeats from 
electrocardiographic (ECG) recordings. Many things can go wrong with that powerful blood pump in your chest, 
and the medical relevance of reliable detection of non-normal heartbeat conditions are obvious. There is a very 
well documented, extensive dataset of clinical ECG measurements available which has frequently been used in 
machine learning studies on temporal pattern classification – the MIT-BIH arrhythmia database (Moody et al 
2001) which is maintained at the MIT for the PhysioNet services of the NIH (Goldberger et al 2000). The data 
are freely available at https://physionet.org/content/mitdb/1.0.0/. The data format of this original database needs 
special tools to read, but there is a convenient version in csv format at https://www.kaggle.com/mondejar/mitbih-
database provided by Victor Mondejar (downloading size 300 MB – this is a really large dataset for a semester 
project, though not for current standards in deep learning…). The database consists of 48 half-hour high-
resolution recordings of 47 patients with a wide spectrum of cardiologic conditions. Figure 1 shows some 
important classes of pathological ECG patterns.  

            

Figure 1. Examples of normal (first panel) and some pathological heartbeat ECG patterns, found in the 
MIT-BIH arrhythmia database. The database contains instances of several more irregularities 
not shown here (altogether 17 pathological types). Figure taken from Hadaeghi (2019). 

This database has been used in machine learning and medical diagnostic studies in many ways. There is a rich 
literature about it, but there does not exist a standard objective of what, exactly, should be modeled / classified / 
recognized in these data. Every author seems to explore these nice data in different ways, which makes it hard to 
compare one's own results with a "state of the art".  

The holy grail for a machine learning modeler would be to train a general-purpose recognizer which, when given 
a new ECG trace from any new patient as input, can identify and classify non-normal beats. This is what a highly 
trained human cardiologist can do. For machine learning this is currently (I would think) out of reach because 
different patients give quite idiosyncratic recording signals, and the available training data (not confined to this 
specific database) are scarce and differ according to the recording instruments that are used. Thus, a more 
accessible task is to train individual models per patient from data recorded from that patient with a fixed 
recording instrument. This is what was done in the recent work of Hadeaghi (2019) which I recommend as a 
starting point for your project.  



Suggestions for concrete project goals. You are (of course) free to define your own project goals. Reading 
papers on research based on this dataset would help you to formulate interesting objectives. Here are two 
suggestions which you might directly adopt or modify:  

• Hadeaghi (2019) trained patient-individual RNN models to identify and classify irregular beats in the ECG 
signal obtained from that patient. Thus an RNN was freshly trained for each patient, using some part of the 
available recording from that patient as training data, and some other part for testing. The network was 
trained only for those arrhythmia types that actually occurred in the respective patient. Altogether 17 
patients were modeled in this way. In almost all cases, the obtained results were extremely good. However, 
for two patients (Nr 207 and 209) the classification accuracy was much poorer than for the other patients. It 
would be an interesting project to study these two patients in a close-up investigation, try to improve the 
classification accuracy, and/or find out what characteristics in the data made these two cases more difficult 
to model than the other 15 patients.  

• A common, but not easy to reach, goal in machine learning is transfer learning. The idea is to train some 
system, let us say a pattern classification CNN, on some dataset and task setting A, then train it on another, 
related task B using other data, such that some information which the CNN had learnt during the task A 
training can be transferred to learning task B. For instance, train an image classification CNN on a collection 
of photos taken from the transport domain for classifying cars vs. vans vs. buses = data and task setting A. 
Then take the trained network and train it further on a new collection of photos of humans with the objective 
to classify male vs. female persons. This kind of setting is particularly promising and useful if the dataset for 
A is much larger than the dataset available for B. The hope is that during training for task A, the CNN has 
distilled some information about perceiving low-level graphical elements in photos in general – the "early 
visual processing" part of the task. In order to preserve this information for task B, a standard approach is to 
identically re-use the first layers of the A-trained CNN (which are considered "early visual processing"), 
replace a few of the last layers by untrained ones, then train the hybrid half-A-trained CNN on task B data 
while freezing the weights in the early layers that had already been learnt.  

You could do a similar thing with the MIT-BIH arrhythmia data. Using 1-dimensional CNNs whose inputs 
are (for example) 1-second windows from ECG traces, train it on all patients' data, that is the entire MIT-
BIH dataset, where the teacher output are classification indicator neurons for all the types of pathological 
heartbeats that this database includes. This task will likely prove to be (too) difficult and the results will 
likely not be satisfactory, but in this training process the early layers of the CNN will have learnt to distil all 
sorts of medically relevant features from the input patterns. Then re-train only the last few layers (maybe 
only the single very last one) of  this pre-trained CNN on individual patients. The hope is that this CNN can 
benefit from the large size of the complete dataset to "understand" much about "how ECG signals generally 
look like", and transfer this knowledge to the individual patient. Compare the results that you get in this way 
with the results of  CNNs trained exclusively on data of single patients.  

Unbalanced data problem. One difficulty with these data is that normal heartbeats occur much more often than 
pathological ones. You may want to (actually you should) use some balancing method to prevent the network to 
specialize on recognizing the normal beats very well, which gives an overall low training  and testing error but 
poor recognition of the few anomalous beats. Google "data balancing machine learning" to get a load of 
tutorials. 

Quantifying classification performance in medical applications. In medical applications, there are several 
important and different ways to quantify the goodness of a pattern classifier. In particular, false negatives 
(incorrectly classifying a pathological pattern as normal) and false positives (classifying a normal heartbeat as 
pathological) are both important types of classification errors with different clinical consequences. In the 
literature in this field, some standard performance measures are universally used: accuracy, sensitivity, 
precision, and a compound score called the F1-score. You find the definitions in Hadaeghi (2019).  

A difficulty you have to solve is that these measures are non-differentiable and cannot be used as a loss function 
for gradient descent optimization. You have to choose another, differentiable loss function for the network 
training, for instance the quadratic loss, L1-norm loss, or logistic regression (probably a good candidate). You'll 
probably be using a machine learning toolbox where you can easily choose between these (and more) loss 
functions – it will need experimentation to find out which one gives the best accuracy, sensitivity, precision, F1-
score, etc. 



Preprocessing. ECG data often are corrupted with 50 Hz signals resulting from the power supply of the 
recording instrument. Furthermore, such recordings often have slow drift components (the signal generally rises 
up and down, an artifact from the measurement procedure). I recommend to follow Hadaeghi (2019) and pass all 
timeseries through a frequency bandpass filter with a suitable lower and higher cutoff to cancel both the 50 (or 
60?) power-line oscillations and slow drifts. Hadaeghi used a Butterworth filter with cutoffs at 0.4 and 45 Hz.   

Network type. This task can be tackled both with feedforward and recurrent NNs. Other machine learning tools 
are probably less suited --- this task has a natural neural networks flavor! 

• If you use feedforward nets, the default kind of inputs are fixed-width windows from the training/testing 
timeseries, possibly subsampled. You can also replace this input by, or enrich it with, descriptive features 
that you define, for instance peak amplitude, peak gradient, variance or entropy measured in the input 
window. You will have as many output neurons as there are anomality classes that are relevant for the task, 
plus one output neuron for normal beats. The teacher signal per output unit can be defined in several ways. 
For instance, it could be a binary 0-1 signal which you set to 1 if and only if the input window captures a 
full pathological beat of the respective anomality class. You can also go for graded teachers with values in 
the continuous range [0, 1] depending of what fraction of an anomalous heartbeat is found in the input 
window.  

• If you use RNNs, the input signal is the timeseries of a recording, possibly sub-sampled or otherwise 
preprocessed. The output signal to be trained has as many channels as there are pathological heartbeat types 
that you want to identify, plus one for "normal". It is not obvious and indeed important for good results how 
to define the teacher signal for a given channel. For instance, it could be a binary signal that jumps to 1 
exactly at those time points where the expert annotation of the data flags the signal as pathological. But it 
could also be a ramp signal which climbs from 0 to 1 throughout the duration of a pathological beat pattern. 
This might be motivated by the fact that at the beginning of a heartbeat pattern it is less clear what type it is 
than it is at the end. 

Using RNNs seems natural for this task because this is a timeseries processing task after all. But RNNs are 
generally more difficult to train, and there is no easy way for transfer learning in RNNs (this is in fact a 
topic of current active research).  

Hadeaghi used a special kind of neural networks, Echo State Networks, which we will treat in the lecture 
only toward the end of the course (skip forward in the lecture notes if you start your project early, which 
would be a good idea…) Echo state networks are in some ways easier to handle than LSTM or other RNNs. 
An in-depth practical guide to using them cleverly is Lukoševičius (2012). 
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